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We study a ghost-free model of massive vector curvaton proposed in the literature, where the quick
decrease of the vector background expectation value is avoided by a suitable choice of kinetic and
mass functions. The curvaton perturbations of this model have been so far computed assuming that
these functions are external classical quantities, and it was found that some special time evolution
of these functions leads to scale invariant and statistically isotropic perturbations of the vector
curvaton. However, external functions should be understood as originating from the expectation
value of some additional field. Since these functions need to present a non-trivial evolution during
inflation, the field cannot be trivially integrated out, and, in particular, its perturbations need to be
included in the computation. We do so in a minimal implementation of the mechanism, where the
additional field is identified with the inflaton. We show that, except for a narrow window of model
parameters, the interaction with this field generally causes the curvature perturbations to violate
statistical isotropy beyond the observational limit.

I. INTRODUCTION

In the past three decades, primordial inflation has become a dominant paradigm for the very early universe. It
provides a simple, yet compelling mechanism to resolve the conceptual problems that the standard Big Bang cosmology
confronts, namely the horizon, flatness, and monopole problems [1–3]. On the other hand, the observations of large-
scale structure (LSS) and cosmic microwave background (CMB) exhibit small fluctuations of order 10−5, which are
considered of primordial origin. The same theories that realize inflation can also predict such fluctuations with the
observed features (near scale invariance, nearly Gaussian statistics, greater power in scalar modes than in tensor),
which makes inflation a particularly favorable theory (see e.g. [4] for review). However, many realizations of inflation
give degenerate predictions compatible with these observations, and therefore there is a large parameter space yet
to explore for the underlying particle physics in the very early universe. Considerable amounts of study have been
done to discriminate among otherwise degenerate models. One discriminator is non-Gaussianity, deviation from the
Gaussian statistics, in the CMB. While non-Gaussianity is predicted to be undetectable in the simplest models of
inflation [5–8], a number of extended models have been studied which predict detectable non-Gaussian signature
[9–15]. The current bounds on non-Gaussianity are still loose [16], but future missions, such as Planck satellite, are
expected to improve measurement precisions to unprecedented level [17].

Observable non-Gaussianity, and other interesting signatures, can be obtained in the curvaton mechanism [18],
where the field responsible for the primordial perturbations is not the inflaton. While for simplicity it is most often
assumed that the curvaton is a scalar field, models of vector curvatons have also been proposed [19–21]. Vector
fields break the background isotropy through their vacuum expectation value (vev), and therefore their spectrum
of perturbations may break statistical isotropy. Interestingly, a 30% level violation of statistical isotropy has been
detected at 9σ in the WMAP data [22, 23]. However, the direction of the asymmetry nearly coincides with the ecliptic
one, which strengthens the case for a systematic origin of the effect. Fortunately, this can be checked by Planck, that
can be sensitive to anisotropies at the few percent level [24]. The observed anisotropy, and the expected improvement
from Planck, have motivated the study of cosmological models that can produce this effect, including those of vector
curvaton.

In the standard scenarios with an expansion by a (approximate) positive cosmological constant, it has been shown
that the models of almost all Bianchi types evolve rapidly toward the de Sitter solution and any anisotropy present
initially will be washed away (sometimes called cosmic no-hair conjecture) [25]. To obtain an observable anisotropy,
the premises in [25] have to be violated. One way to accomplish this is to introduce a vector field with a non-vanishing
vev during inflation.

However, in the case of a familiar U(1) gauge field with a minimal kinetic term −F 2/4 and no potential term, the
field is conformally coupled to gravity. Thus its energy density quickly decays away and cannot source any appreciable
anisotropy for sufficiently long time. By breaking the conformal invariance, the vector field can provide non-vanishing
prolonged shear pressure, which supports a prolonged stage of anisotropic expansion and leads to violation of statistical
isotropy. Several implementations of this idea have been suggested [26, 27]; however, these models break the U(1)
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symmetry and inevitably introduce a longitudinal polarization which, for these models, happens to be a ghost [28–30].
To avoid this instability, a model was suggested in [31], and further studied in [32–34], where the U(1) gauge invariance
is preserved and therefore no dangerous longitudinal mode is present. In this work, the fast decrease of the gauge
field vev is avoided by introducing a scalar function that multiplies the vector kinetic term, L ⊃ −f (ϕ)F 2/4, where
ϕ is the inflaton field. 1

A similar idea to that of [31] was used in [19, 20], where the vector field plays the role of the curvaton, and where
two time dependent functions were considered 2

L = −f (t)

4
FµνF

µν − 1

2
m2 (t)AµA

µ (1)

The kinetic coupling is typical of moduli or dilaton-like fields in string theory and supergravity frameworks, and the
mass can be induced by a Higgs-like mechanism. Since the vector field is massive, the additional degree of freedom
(longitudinal mode) is present, but, for f,m2 > 0 the model has no ghosts. It is shown in [19, 20] that the curvature
perturbations generated in this model attain the scale-invariant statistically-isotropic power spectrum, if the varying
functions have a specific time dependence, i.e. f ∝ a−4 and m ∝ a, where a is the scale factor, and if the vector
mass is initially light and is heavy by the end of inflation (the physical vector mass m/

√
f grows considerably during

inflation).
In a field theory, an external time dependence should be understood as the vev of a field. Given that the functions

f and m needs to present a nontrivial evolution during inflation, this field cannot be trivially integrated out, and,
in particular, its perturbations cannot be disregarded. The field acts as “clock”; therefore, the most minimal choice
is to identify this field with the inflaton field. Ref. [39] already provided some specific examples where f and m are
functions of the inflaton, and showed that, for a generic inflaton potential that satisfies the slow-roll conditions, the
attractor solutions of the background evolution lead to small anisotropy in the expansion and to the required time
dependence for the background values of f and m. However, ref. [39] does not compute cosmological perturbations in
this set-up, but refers to the results of [19, 20], in which the functions f and m are only external classical quantities.

The non-minimal coupling through the kinetic and mass terms modulated by inflaton inevitably induces an in-
teraction between the scalar and the vector perturbations. It is natural to think that this interaction modifies the
evolution of perturbations in a non-trivial way. As we will show later in this paper, this interaction, which is present
already in the linearized level, can actually be directionally biased due to the background anisotropy. Moreover, since
the system of perturbations is now a coupled one, consistent quantization has to be done in the matrix form, the
formulation first developed in [40] and summarized in Section III. In this paper, we treat the full coupled system
consistently, and show that the scalar-vector interaction produces direction-dependent effects in the power spectrum
of curvature perturbations, in the framework of the vector curvaton scenario. We find that the near scale invariance
of the spectrum is a generic feature of the model. The (near) statistical isotropy can also be achieved; however, it
requires a specific choice of the coupling constant entering in the functions f and m, and appropriate initial conditions.
This is in contrast with the approximated computation of [19, 20], in which the statistical isotropy appeared to be a
generic result, independent of the functional form of f and m.

We stress that, despite introducing an inflaton, we still want to work under the assumption of [19, 20] that this is a
model of vector curvaton, so that the vector field should be responsible for the cosmological perturbations. This can
for instance be achieved by assuming that, after inflation, the inflaton quickly decays into relativistic fields, and that
the energy density of the decay products become completely negligible with respect to that of the curvaton (or its
decay products). We do no follow the details of reheating here, but we simply compute the vector field perturbations
until they freeze out, and we assume that they are the source of cosmological perturbations, according to the curvaton
mechanism hypothesis. As also done in [19, 20], we still disregard (for technical reasons, as the computation is very
involved) the metric perturbations in the analysis. These are the same working assumptions of the realizations of this
mechanism suggested in [39]. In addition to [39], we however consistently include the interaction with the inflaton
perturbations induced by the two functions f and m that characterize this model. We show that this drastically
changes the curvaton power spectrum in this model.

The paper is organized as follows. In Section II, we analyze the background dynamics including the vev of the scalar
and vector fields and the anisotropic expansion of the universe. The background attractor of this model is derived.

1 The kinetic term used in [31] is analogous to the one originally employed by Ratra [35]. The magnetogenesis application of [35] suffers
of a strong coupling problem [36, 37]; however it was shown in [37] that the model [35] (without need of identifying the vector field with
the electromagnetic one) produces non-Gauassianity of the primordial perturbations of nearly local type.

2 More recently [38], this model was extended to includes the effects from a parity violating term, proportional FF̃ , where F̃ is the
dual of the field-strength tensor. The non-Gaussian signatures due to particle production through the interaction ϕFF̃ , where ϕ is a
pseudo-scalar inflaton, are studied extensively in [15].
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In Section III, we discuss the evolution of the perturbations. We focus on the 2D scalar modes, which are the ones
that contribute to the energy density and thus to the curvature perturbations. We quantize the system consistently
for a coupled system and derive the equations of motion to evolve the system of perturbations in the matrix form.
In Section IV, we numerically compute the power spectrum of the vector density fluctuations and relate it to that
of curvature perturbations. Results are shown for some different values of parameters. In Section V, we discuss the
results and conclude. Throughout the paper, natural units are used, ~ = c = 1, and the Einstein notation is assumed
for repeated indices.

II. BACKGROUND DYNAMICS

We consider a model with a scalar inflaton ϕ and a massive vector field Aµ whose mass and kinetic functions vary
in time. This model is a realization of the mechanism of [19, 20], where cosmological perturbations were computed
under the assumption that the vector field is a curvaton, and using the Lagrangian (1). The computation of [19, 20]
can be considered as an approximated computation of the perturbations, performed under the following non-trivial
simplifying assumptions: (i) the background dynamics is in pure de Sitter, (ii) the background anisotropy induced
from the vev of the vector field is negligible, (iii) the vector mass and kinetic functions are classical external functions
of time, with no perturbations. The goal of this work is to improve over the results of [19, 20] by removing these
assumptions.

A. Model and Setup

The model we consider is described by the action

S =

∫
d4x
√
−g

[
M2
p

2
R− 1

2
∂µϕ∂

µϕ− V (ϕ)− f (ϕ)

4
FµνF

µν − 1

2
m2 (ϕ)AµA

µ

]
(2)

where Fµν = ∂µAν − ∂νAµ and Mp is the reduced Planck mass. The universe expansion during inflation is driven by
ϕ with a sufficiently flat potential V (ϕ), allowing slow-roll inflation (which we assume throughout this paper). Here
the vector mass and kinetic terms are function of ϕ rather than being external functions of time. In [19, 20], it is
claimed that the scale invariance and statistical isotropy of the power spectrum of primordial curvature perturbations
can be achieved in the vector curvaton scenario, if f and m have time dependence f ∝ a−4 and m ∝ a, where a is
the overall scale factor. With an appropriate choice of f (ϕ) and m (ϕ), these time dependences can be dynamically
achieved (as shown in [39], and as we review below for our particular model).

We can, without loss of generality, fix the background coordinate system such that the vector vev points in the x
direction, i.e. 〈Aµ〉 = (0, A (t) , 0, 0). A background metric consistent with this choice is a Bianchi type I metric with
the residual isotropy in the yz plane, given by

ds2 = −dt2 + a2 (t) dx2 + b2 (t)
(
dy2 + dz2

)
, (3)

where we parametrize the two scale factors by a (t) = eα(t)−2σ(t) and b (t) = eα(t)+σ(t). Hence α (t) is the number of
e-folds averaged over all directions, and σ (t) measures the difference in e-folds between the two directions. Note that
α̇ corresponds to the “overall” Hubble parameter, and σ̇ corresponds to the shear.

There are four dynamical degrees of freedom in the background system of this model, φ (t), A (t), α (t) and σ (t),
where φ (t) is the homogeneous vev of ϕ. The corresponding equations of motion are, respectively,

φ̈+ 3 α̇ φ̇+ V ′ = f e−2α+4σ

(
f ′

2f
Ȧ2 − mm′

f
A2

)
(4)

Ä+

(
α̇+ 4 σ̇ +

f ′

f
φ̇

)
Ȧ+

m2

f
A = 0 (5)

2 α̈+ 3 α̇2 + 3 σ̇2 =
1

M2
p

(
−1

2
φ̇2 + V

)
+

f

6M2
p

e−2α+4σ

(
−Ȧ2 +

m2

f
A2

)
(6)

σ̈ + 3 α̇ σ̇ =
f

3M2
p

e−2α+4σ

(
Ȧ2 − m2

f
A2

)
(7)
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with the Einstein constraint equation

3 α̇2 − 3 σ̇2 =
1

M2
p

[(
1

2
φ̇2 + V

)
+
f

2
e−2α+4σ

(
Ȧ2 +

m2

f
A2

)]
. (8)

Here, and throughout the paper, dot denotes the derivative with respect to t, and prime with respect to ϕ. Notice
that Eq. (7) implies that the evolution of σ is directly supported only by the pressure of vector field. Also notice that
the system is invariant under the unphysical rescalings α→ α+α0, σ → σ+σ0, A→ A eα0−2σ0 , where α0 and σ0 are
arbitrary constants, and thus the normalization of α and σ does not affect any physical quantity. As a consistency
check, if we set A = 0 and σ̇ = 0, we would recover the standard single-scalar-field inflation. It is also useful to define
the background energy densities for the scalar and vector fields, given by

ρφ =
1

2
φ̇2 + V (9)

ρA =
f

2
e−2α+4σ

(
Ȧ2 +

m2

f
A2

)
. (10)

The inflaton energy density is the standard one, and in the slow-roll regime, V (� 1
2 φ̇

2) drives the quasi exponential
expansion. Due to the non-zero vector mass, the vector energy density is also split into the kinetic and potential
parts. Interestingly, in the pure de Sitter (σ̇ = 0 and α̇ is constant), ρA is exactly constant during inflation, if f ∝ a−4
and m ∝ a. As a consequence, in the quasi de Sitter background with small anisotropy, which is the case we consider,
ρA stays nearly constant during inflation until the desired time dependence of f and m starts to be violated near
the end of inflation. Also, it is worth noting that A is not a physical quantity; it always appears in the combination√
fe−α+2σA, which is the physical one, and the physical mass of the vector field is

M ≡ m√
f
. (11)

In the following, we occasionally use M instead of m, when the meaning is more transparent. We should note that
M scales as ∝ a3 during inflation and that we are interested in the parameter space where M � α̇ at early stages
of inflation and M � α̇ by the end of inflation, which attains the scale invariant and statistically isotropic power
spectrum in the curvaton scenario for the case of isotropic de Sitter background and unperturbed f,m [19, 20].

The desired time dependence of the mass and kinetic functions, f ∝ a−4 andm ∝ a, have to be achieved dynamically.
For a concrete realization of this, we consider the simplest chaotic potential of inflaton

V (ϕ) =
1

2
m2
ϕϕ

2. (12)

With this form of potential, in order to obtain the desired time dependence, f and m take the form

f (ϕ) = e
c ϕ2

M2
p , m (ϕ) = m0 e

− c ϕ2

4M2
p (13)

where c and m0 are positive constants. Notice that after inflation, φ (t) starts oscillating and approaches 0; accordingly,
f approaches to unity, and m to a constant value m0. We will now derive the attractor of the background system
and show that it leads to f ∝ a−4 and m ∝ a during inflation.

B. Attractor Solutions

We are interested in finding the attractor in the slow-roll inflationary regime. There are four dynamical background
degrees of freedom in this system, but none of them has an exact analytic solution. However, in the pure de Sitter
with negligible anisotropy, (5) has an analytic solution for A (t) in the case f ∝ a−4 and m ∝ a. Motivated by this

fact, we parametrize A (t) and Ȧ (t) in terms of C (t) and D (t) in the following way:

A (t) ≡ C (t) cos

∫ t

tin

dt′M [φ (t′)] +D (t) sin

∫ t

tin

dt′M [φ (t′)] (14)

Ȧ (t) ≡ M [φ (t)]

[
−C (t) sin

∫ t

tin

dt′M [φ (t′)] +D (t) cos

∫ t

tin

dt′M [φ (t′)]

]
(15)
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where tin is some early time during inflation. Such parametrization can always be done. In pure de Sitter, C and
D are integration constants; here, they are promoted to be time dependent. In this parametrization, we can solve
two first-order differential equations for C and D, instead of one second-order equation for A. The former is in fact
numerically favorable, since C and D vary little during inflation and do not have a large hierarchy between themselves.
Also, we assume the initial equipartition for the vector energy density: namely, the vector kinetic energy is equal to
the vector potential at initial stages of inflation (this is assumed in [19], and we verified that it is indeed a necessary
condition for the statistical isotropy in the power spectrum in the case of unperturbed f and m). Since M � α̇ at

early times, we have A ' C and Ȧ 'MD, and thus the energy equipartition implies

|C (tin)| = |D (tin)| . (16)

To investigate the background attractor solution, we assume |C| ∼ |D| and that C and D are constants (the precise
solution of C and D is instead used in the cumputation of the perturbations).3

We focus on the background equations for φ, σ and the constraint, namely (4), (7) and (8), respectively. Here we

consider the early time regime, namely the vector mass is light M � α̇. From (4), ignoring φ̈ and σ terms (slow roll
and small anisotropy), we have

3 α̇ φ̇ '

[
−m2

ϕ +
cm2

0

(
C2 + 2D2

)
2M2

p

e
−2α− c φ2

2M2
p

]
φ. (17)

Now we use α as the time variable with d
dt = α̇ d

dα . Since the right-hand side of (8) is dominated by the term V (which

will be verified), we have α̇2 ' 1
3M2

p
V . Defining φ̃2 ≡ φ2 +

4M2
p

c α, we write the above equation in terms of φ̃,

φ̃
dφ̃

dα
' −2M2

p

c− 1

c
+ c

m2
0

m2
ϕ

(
C2 + 2D2

)
e
− c φ̃2

2M2
p . (18)

The homogeneous solution for this equation implies that the time variation of φ̃ is small, so we can neglect the
left-hand side of (18). Then we find

e
− c φ̃2

2M2
p = e

−2α− c φ2

2M2
p ' c− 1

c2
2M2

p

C2 + 2D2

m2
ϕ

m2
0

(19)

Since the right-hand side of (19) is constant, we obtain α ' − c φ2

4M2
p

, up to some constant. This means that the chosen

forms of f and m indeed obey the desired time dependence, f ∝ a−4 and m ∝ a, in this attractor. This is verified
numerically in FIG. 1. Combining this with α̇2 ' 1

6M2
p
m2
ϕφ

2 gives

3 α̇ φ̇ ' −
m2
ϕφ

c
, or φ̇ ' −mϕMp

c

√
2

3
. (20)

This coincides with the attractor found in [31]. It is worth noting that for this attractor solution to be valid, we need
to have c > 1, as can easily be seen in (19). From here on, we assume this range of values of c.

To consider the anisotropy, we ignore the σ̈ term in (7) and take the phase in the parametrization of A and Ȧ to
be zero. Since we assume initial equipartition for the vector energy density, it is convenient to define

rA ≡
ρVA
ρkinA

(21)

i.e. the ratio of the vector potential to the vector kinetic energy density. We are interested in the case where this ratio

stays close to 1. At initial times, this ratio reduces to rinitialA ' C2

D2 . Combining these with (19) and α̇2 ' 1
6M2

p
m2
ϕφ

2,

we find the attractor lead the anisotropy to

σ̇

α̇
' −4

3

c− 1

c2
rA − 1

rA + 2

M2
p

φ2
. (22)

3 In fact, D changes some, depending on the value of c and the value of σ̇ (which in turn depends on the ratio between the vector kinetic
and potential energies), while C stays really constant until near the end of inflation.
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FIG. 1: Time dependence of f . The x-axis is the overall e-folds α, and y-axis is the quantity ḟ/fα̇, which would be equal to
−4 if f ∝ a−4 exactly. This desired time dependence is well retrieved until the vector field becomes heavy (α ' −2.2). At
M ≈ α̇, the time dependence is slightly violated; before it comes back to −4, inflation ends (α = 0), and f approaches 1. The
parameters here are taken to be c = 1.5 and m0 = 1000mϕ. By construction, m obeys ∝ a when f ∝ a−4.
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FIG. 2: Evolution of the anisotropy, |σ̇|/α̇. The numerical solution (blue solid curve) is compared to the attractor solution
(22) (red dashed curve), where the numerical solutions are used for rA and φ. Here the overall e-folding (α) is normalized to
0 when inflation ends. The vector field becomes heavy (M = α̇) at α ' −2.2. As discussed in the main text, the attractor
solution matches well with the numerical until M ≈ α̇; after this moment, the anisotropy decays quickly, but (22) does not
replicate that. Here the parameters are taken to be c = 1.5, m0 = 1000mϕ and rinitialA = 1. For other values of parameters,
the attractor is valid as long as c is not too close to 1.

Notice that σ̇ vanishes if rA = 1. This is clear both intuitively and from (7). If ρVA = ρkinA , the right-hand side of (7)
becomes 0, and then σ̇ decays away to 0 quickly. The only matter content in this model that causes the shear pressure
is the vector field. When the vector kinetic and potential terms are equal, the pressure vanishes, like non-relativistic
dust, and does not enhance anisotropy. In the actual evolution, rA does not stay exactly equal to 1, so anisotropy
is produced to a small amount, until the vector field becomes heavy . Once the vector mass exceeds the background
expansion rate (M > α̇), the pressure vanishes and so does the anisotropy. FIG. 2 shows that (22) is a very good
approximation, until the vector field becomes heavy (M ≈ α̇).

We can also determine from the attractor the ratio between the energy densities of the scalar and the vector.
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Assuming slow roll and small anisotropy, we find

ρA
ρφ
' 2

c− 1

c2
rA + 1

rA + 2

M2
p

φ2
. (23)

We note that in the limit of rA → 0 (massless), this recovers the attractor solution found in [31, 33] and one of the
attractor solutions in [39]; on the other hand, in the limit of rA � 1, it recovers another attractor in [39]. We stress
that our early-time attractor expressions (20), (22) and (23) are valid for arbitrary values of rA.

Our starting assumptions are now verified: anisotropy is small (σ̇ � α̇), and the vector energy density is subdomi-
nant (ρA � ρϕ), in the slow-roll regime with the potential V of the form (12). The vector kinetic and mass functions
of the form (13) are dynamically led to their desired time dependence by the attractor. The existence of the attractor
requires c > 1, and we only consider this range of c. Also, we assume the initial equipartition for the vector density,
which translates to |C (tin)| = |D (tin)| as an initial condition. As long as anisotropy is small with quasi de Sitter
expansion and f and m obey the time dependence, C and D are nearly constant, and the equipartition is maintained.
In fact, if c is too close to 1, the attractor is no longer a good approximation; then the time dependence of f and m
starts differing from the desired one, and the initial equipartition deviates as the system evolves in time.

III. PERTURBATIONS

We now consider the perturbations of the model (2). To avoid an extreme computational complication, we neglect
metric perturbations in this paper. While a further study including them would be interesting, we will show that the
inclusion of background anisotropy and the perturbations of ϕ drastically changes the power spectrum of curvature
perturbations, as compared to the case of isotropic, pure de Sitter background with no δϕ, studied in [19]. Here we
study the effects in the linearized level of perturbation theory.

A. Basics

First note that since the vector mass is put by hand, there is no U(1) gauge freedom (so we never call it “gauge”
field). Consequently the vector perturbations contain three independent degrees of freedom, two transverse and one
longitudinal, in terms of momentum directions. In some of massive vector models, the longitudinal modes may suffer
from ghost instabilities [28–30]; however, this particular model we consider here is ghost-free [20].

Since we are neglecting the metric perturbations, the metric still takes the form (3). We define the field perturbations
as the field values with their background subtracted,

δϕ (t, ~x) ≡ ϕ (t, ~x)− 〈ϕ〉 , δAµ (t, ~x) ≡ Aµ (t, ~x)− 〈Aµ〉 (24)

and their Fourier transformations through

δϕ (t, ~x) =

∫
d3k

(2π)
3/2

ei
~k·~x δϕ

(
t,~k
)
, δAµ (t, ~x) =

∫
d3k

(2π)
3/2

ei
~k·~x δAµ

(
t,~k
)

(25)

as usual. To simplify the computation and to make geometrical interpretation transparent, we orient the coordinate
system such that the z-component of the comoving momentum vanishes [41],

~k = (kL, kT , 0) (26)

where L and T denote “longitudinal” and “transverse” in terms of the background vector vev. This choice can be
made without loss of generality, due to the residual 2D symmetry in yz plane after orienting the vector vev along
the x-axis (as done in Section II). In this coordinate system, it can easily be seen that the 2nd-order action is split
into two decoupled sectors, 2D scalar ({δϕ, δA0, δAx, δAy}) and 2D vector ({δAz}). The 2D vector mode δAz does
not contribute to the curvature perturbations, which are intrinsically a scalar quantity (this is more explicitly shown
in Section IV), and thus we disregard this sector in the following discussions. We denote the physical momentum
~p = (pL, pT , 0), with its components and norm

pL =
kL
a
, pT =

kT
b
, p =

√
p2L + p2T . (27)

(Recall a = eα−2σ and b = eα+σ.)
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Among the 2D scalar modes, δA0 is non-dynamical and can be integrated away. We see that δA0 is related to other
2D scalar modes by

δA0 =
−i

p2 +M2

(
pL
a
δȦx +

pT
b
δȦy +

f ′

f

pL
a
Ȧ δϕ

)
. (28)

We now have three independent modes in 2D scalar and one in 2D vector, as expected. One of the two vector
transverse mode is the 2D vector mode δAz; the other transverse and the longitudinal modes are linear combinations
of δAx and δAy. The 2D scalar sector of 2nd-order action is now

S
(2)
2dS =

1

2

∫
dt d3k e3α

{
|δϕ̇|2 +

f

a2
p2T +M2

p2 +M2

∣∣∣δȦx∣∣∣2 +
f

b2
p2L +M2

p2 +M2

∣∣∣δȦy∣∣∣2 − f

ab

pL pT
p2 +M2

(
δȦ†x δȦy + δȦ†y δȦx

)
+
f ′

a2
p2T +M2

p2 +M2
Ȧ
(
δϕ† δȦx + δȦ†xδϕ

)
− f ′

ab

pLpT
p2 +M2

Ȧ
(
δϕ† δȦy + δȦ†yδϕ

)
−
[
p2 + V ′′ +

f

a2
Ȧ2

(
f ′2

f2
p2L

p2 +M2
− f ′′

2 f

)
+

f

a2
M2A2

(
M ′2

M2
+
f ′′

2 f
+

2 f ′M ′

f M
+
M ′′

M

)]
|δϕ|2

− f

a2
(
p2T +M2

)
|δAx|2 −

f

b2
(
p2L +M2

)
|δAy|2

− f

a2
M2A

(
f ′

f
+ 2

M ′

M

)(
δϕ† δAx + δA†x δϕ

)
+
f

ab
pLpT

(
δA†x δAy + δA†y δAx

)}
. (29)

We need to solve this system to find the power spectrum of curvature perturbations. However, it is not possible to solve
such a complicated system exactly; moreover, we look for the effects from non-zero σ̇ and from the coupling between
δAµ and δϕ, and thus approximated methods would be quite delicate. Thus we employ numerical computation here
to obtain the final results. To this end, we need to appropriately quantize the system and find the initial conditions.
This is a coupled system, and so the quantization and the evolution have to be done in the matrix form, as described
in detail in [33, 40] and summarized in the following subsections.

B. Quantization

We first rotate the system such that the kinetic mixing term present in the first line of (29) vanish. This can be
done through

δi = Rij Ŷj (30)

where δi = (δϕ, δAx, δAy)i and a rotation matrix

Rij = e−3α/2

 1 0 0
0 a√

p2T+M
2
cT

a√
p2T+M

2
cL

0 − b√
p2L+M

2
cT

b√
p2L+M

2
cL


ij

(31)

with arbitrary time dependent functions cT and cL. By choosing them as

c2T =
p2 +M2

2f
[
1 + pL pT /

√
(p2L +M2) (p2T +M2)

] , c2L =
p2 +M2

2f
[
1− pL pT /

√
(p2L +M2) (p2T +M2)

] (32)

then the kinetic matrix becomes the identity. Subtracting appropriate total derivatives, the action (29) takes the form

S
(2)
2dS =

1

2

∫
dt d3k

[
˙̂
Y †

˙̂
Y +

˙̂
Y † X̂ Ŷ − Ŷ † X̂ ˙̂

Y − Ŷ † Ω̂2 Ŷ
]

(33)

where all the components of the matrices X̂ and Ω̂2 are real. These matrices have further properties X̂T = −X̂ and
Ω̂2T = Ω̂2, which is always possible by subtracting total derivatives; moreover, X̂ and Ω̂2 are invariant under the

parity ~k → −~k. Also note that all the field components entering in the action satisfies Ŷ †i

(
−~k
)

= Ŷi

(
~k
)

(so that Ŷi
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are real in the coordinate space). The action (33) is formally of the same type as in [33], so we follow the procedure
outlined there.

To remove the X̂ terms, define

ψ = R Ŷ (34)

where R is a real, orthogonal matrix, so that Ŷ † Ŷ = ψ†ψ, and satisfies the relation Ṙ = RX̂. The action now
becomes

S =
1

2

∫
dt d3k

[
ψ̇†ψ̇ − ψ†Ω̃2ψ

]
(35)

where Ω̃2 = R
(

Ω̂2 − X̂2
)
RT . Note that we can always choose R to have the property R

(
−~k
)

= R
(
~k
)

since

X̂ satisfies the same property. Hence, Ω̃2
(
−~k
)

= Ω̃2
(
~k
)

, and ψ†
(
−~k
)

= ψ
(
~k
)

. Thanks to this property, it is

immediately realized that ψ is an array of real fields in the coordinate space and that the conjugate momentum is

defined as πi ≡ ψ̇i. The Hamiltonian is then H = 1
2

∫
d3k

[
π†π + ψ†Ω̃2ψ

]
. To diagonalize the Hamiltonian, we further

define

ψ = C ψ̂ , π = C π̂ (36)

where C is an orthogonal matrix (CT C = 1) that diagonalize Ω̃2, i.e.

CT Ω̃2 C = diag
(
ω2
1 , ω

2
2 , ω

2
3

)
≡ ω2 (37)

giving H = 1
2

∫
d3k

[
π̂†π̂ + ψ̂†ω2ψ̂

]
. Note that, since Ω̃2 is a Hermitian matrix and Ω̃2

(
−~k
)

= Ω̃2
(
~k
)

, ω2
i are all real

and ω2
(
−~k
)

= ω2
(
~k
)

. Since C is unchanged under the parity ~k → −~k, we then define

ψ
(
~k
)

= Cij

(
~k
) [
hjl

(
~k
)
Plm am

(
~k
)

+ h∗jl

(
−~k
)
P ∗lm a

†
m

(
−~k
)]

π
(
~k
)

= Cij

(
~k
) [
h̃jl

(
~k
)
Plm

(
~k
)
am

(
~k
)

+ h̃∗jl

(
−~k
)
P ∗lm a

†
m

(
−~k
)]

(38)

where ai

(
~k
)

and a†i

(
~k
)

are arrays of annihilation and creation operators, respectively, satisfying the commutation

relation
[
ai

(
~k1

)
, a†j

(
~k2

)]
= δijδ

(3)
(
~k1 − ~k2

)
. The matrix Pij is a constant Hermitian matrix; this phase freedom is

present in quantizing a coupled system, similarly to arbitrary phases appearing in a free-field theory, and this phase
does not affect any physical result (in fact, any consistent quantization should be constructed allowing such freedom).
In the coordinate space, ψ and π are real, and to have ψ and π satisfy the equal-time commutation relation, we require[

h
(
~k
)
h̃†
(
~k
)
− h∗

(
−~k
)
h̃T
(
−~k
)]

ij
= i δij . (39)

We decompose h and h̃ in a similar manner to Bogolyubov transformation:

h =
1√
2ω

(α+ β) , h̃ =
−i ω√

2ω
(α− β) . (40)

Here h, h̃, ω, α and β are all matrices, but since ω2 is a diagonal matrix, 1/
√

2ω and ω/
√

2ω are well defined matrices.
With these “Bogolyubov coefficients” α and β, the condition (39) is translated to[

α
(
~k
)
α†
(
~k
)
− β∗

(
−~k
)
βT
(
−~k
)]

ij
= δij ,

[
α
(
~k
)
β†
(
~k
)
− β∗

(
−~k
)
αT
(
−~k
)]

ij
= 0. (41)

This is not the unique choice to satisfy (39), but it is a sufficient condition and the following derivation is consistent
with this choice. The Hamiltonian now becomes, after normal-ordering,

:H :=

∫
d3k ωi b

†
i

(
~k
)
bi

(
~k
)

(42)
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where bi and b†i are defined as  b
(
~k
)

b†
(
−~k
)  =

 α(~k) β∗
(
−~k
)

β
(
~k
)
α∗
(
−~k
)  a

(
~k
)

a†
(
−~k
)  . (43)

Using (41), it can be shown b and b† satisfies
[
bi

(
~k1

)
, b†j

(
~k2

)]
= δij δ

(3)
(
~k1 − ~k2

)
. The Hamiltonian is thus fully

diagonalized and the system is consistently quantized.

We are now ready to find the equations of motion for the system in terms of
{
h, h̃

}
or of {α, β}. As we have

ψ̇i

(
~k
)

= πi

(
~k
)

and π̇i

(
~k
)

= −Ω̃2
(
~k
)
ψ
(
~k
)

(from (35)), the equations of motion for h and h̃ are

ḣ = h̃− Γh ,
˙̃
h = −Γ h̃− ω2h (44)

where Γ = CT Ċ. With α and β, these equations are expressed as

α̇ = −i ω α+
ω̇

2ω
β − Iα− Jβ , β̇ = i ω β +

ω̇

2ω
α− Iβ − Jα (45)

where

I =
1

2

[√
ω Γ

1√
ω

+
1√
ω

Γ
√
ω

]
, J =

1

2

[√
ω Γ

1√
ω
− 1√

ω
Γ
√
ω

]
. (46)

At asymptotically early times, when modes are deeply inside the horizon, Ω̂2
ij ' p2δij and X̂ij � p, and consequently

ωi ' p and Γ, I, J, ω̇ω � ω. Thus we obtain the adiabatic initial condition αin = e−i
∫ t dt′ωin1 and βin = 0, or

equivalently

hin =
1√

2ωin
e−i

∫ t dt′ωin ' 1√
2 pin

e−i
∫ t dt′ωin1

h̃in =
−i ωin√

2ωin
e−i

∫ t dt′ωin ' −i
√
pin
2

e−i
∫ t dt′ωin1. (47)

This is the solution to (44) at early times and satisfies the quantization condition (39). It corresponds to the initial
adiabatic vacuum, if we choose the Bunch-Davis initial vacuum which is annihilated by the operator ai appearing in
(38). Therefore, we have formally quantized the coupled system of the 2D scalar sector of the model, and we can
determine the initial conditions through (47) to evolve the system.

C. Early-Time Evolution

We now need to evolve the system given by the action (29), with the initial conditions determined by (47). As is
clear from the quantization procedure, this must be done in the matrix form. It would be ideal to rotate the system
using the rotation matrix (31) with the coefficients cT,L in (32) to make the kinetic matrix the identity, and to evolve

hij and h̃ij according to their equations of motion (44). However, we have found it computationally challenging to
use (32). To circumvent this issue, we still rotate the system by (31) but choose cT,L such that the kinetic matrix
becomes very close to the identity only at early times M � p. For this purpose, we take

cT =
p

2
√
f
, cL =

pL pT

M
√
f
. (48)

The action (29) now becomes 4

S
(2)
2dS =

1

2

∫
dt d3k

[
Ẏ † T Ẏ + Ẏ †X Y + Y †XT Ẏ − Y † Ω2 Y

]
. (49)

4 Here, X is not an antisymmetric matrix, i.e. XT 6= −X. Although anytisymmetrization is always possible for X, we did not do it here,
only for simpler expressions of the matrices, which are explicitly written in Appendix A. This does not change the evolution, since
antisymmetrization is done by adding total derivatives in the action and thus does not affect the equations of motion.
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Here, each component of Yi is related to that of Ŷi in the previous subsection only by rescaling due to a different
choice of the coefficients. The matrix T is diagonal, and at early times, we have Tearly ' 1 as we required; moreover,
Ω2

early ' p2 1 and Xearly � p, necessary for adiabatic initial conditions. The complete expressions for the matrices

T , X and Ω2 are written in Appendix A. From the expression of T33, it is manifest that Y3 corresponds to the
longitudinal mode, with the free choice of sign (pL pT ) > 0.

We evolve the system of Yi. By varying the action (49), the equations of motion are obtained as

Ÿi +Aij Ẏj + Bij Yj = 0 (50)

where

A = T−1
(
Ṫ +X −XT

)
, B = T−1

(
Ω2 + Ẋ

)
. (51)

Since T is diagonal, T−1 is trivially found. We now need to decompose Yi into arrays of creation and annihilation
operators with matrix coefficients, consistent with the quantization procedure, as in (38). That is,

Yi

(
t,~k
)

= Yij
(
t,~k
)
aj

(
~k
)

+ Y∗ij
(
t,−~k

)
a†j

(
−~k
)

(52)

where the creation and annihilation operators here are the same as those that enter in (38). The matrix coefficients
Yij are related to hij by

Yij =
(
T−1/2RTCh

)
il
Plj , Ẏij =

[
T−1/2RTC h̃+ ∂t

(
T−1/2RTC

)
h
]
il
Plj (53)

where the matrices R, C, and P are introduced in the previous subsection. By writing in terms of Y, the equations

of motion (50) consist of two parts, one proportional to aj

(
~k
)

and the other to a†j

(
−~k
)

, and these two terms must

vanish simultaneously. They are in fact not independent but equivalent terms, due to the fact that A and B are real

and invariant under ~k → −~k. Therefore the equation of motion we need to evolve in the matrix form is

Ÿij +Ail Ẏlj + Bil Ylj = 0. (54)

To determine the initial conditions, we employ the adiabatic initial condition (47) and relate it to Y through (53).
In doing so, we take advantage of the phase freedom by fixing the arbitrary constant Hermitian matrix P to eliminate
the initial phase. (This procedure is done in [34].) Namely, we choose P = CTR at initial time; since both of R

and C are orthogonal, and since both h and h̃ are proportional to the identity, we can simplify (53) to Y = T−1/2 h

and Ẏ ' T−1/2 h̃ + n α̇ T−1/2 h, where n is some number of O (1). Recall that Tearly ' 1 with subdominant terms

completely negligible (suppressed by ∼ M2/p2), and ∂t
(
T−1/2RTC

)
∼ α̇ T−1/2RTC. The second term in Ẏ is

suppressed by α̇/p and thus is negligible. Therefore, we give Y initial conditions

Yij, in '
1√
2 pin

δij , Ẏij, in ' −i
√
pin
2
δij . (55)

We evolve the system in terms of Y at the early stage of inflation, i.e. until a few e-folds before M = p.5 After
this moment, we switch back to the original variables δi = (δϕ, δAx, δAy), for the ease of computation of the power
spectrum. In the next subsection, we briefly formulate this late-time evolution.

D. Late-Time Evolution

For the late time of evolution (after M ∼ p), we rotate the system back to the original variables δϕ, δAx, δAy. We
do this as it is numerically efficient and the computation of power spectrum is much more compact. We could not do
this for the early time, due to a huge hierarchy between the transverse (corresponding to Y2) and longitudinal (to Y3)

5 In numerical computation of the early stage of evolution, we needed to Taylor-expand each component of all the matrices up to sufficient
order. Without doing this, the components that are relevant for the longitudinal mode of the vector field encounter cancellations in
the leading order in the expansion. The sub-leading terms are, however, proportional to M2/p2, which is too tiny at early times to be
within numerical precision. Such cancellation can be seen in the matrix components T33, X3i and Ω2

3i in Appendix A.
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modes of the vector field. This hierarchy is originated from the fact that M � p at the beginning (to have a feeling,
if we take m0 = 1000mϕ, then M/p ∼ 10−76 at horizon crossing). The fields δAx and δAy are linear combinations of
these modes, and no sensible numerical precision can take such tiny initial values into account. This is why we had
to evolve Y for early times. After M & p, however, the transverse and longitudinal modes evolve similarly, and thus
such an issue no longer arises.

The action for the late time takes the form

S
(2)
2dS =

1

2

∫
dt d3k

(
δ̇† T̄ δ̇ + δ̇† X̄ δ + δ† X̄T δ̇ + δ† Ω̄2 δ

)
(56)

where δi = (δϕ, δAx, δAy) and T̄ is not a diagonal matrix. This is nothing but a compact expression of (29), and the
matrices T̄ , X̄ and Ω̄2 can easily be identified. As for the early time, the late-time variables must be evolved in the
matrix form. We decompose δi by

δi

(
t,~k
)

= ∆ij

(
t,~k
)
aj

(
~k
)

+ ∆∗ij

(
t,−~k

)
a†j

(
−~k
)

(57)

where the creation and annihilation operators are as in (38) and (52). At the transition, we connect the late-time
matrices to the early-time ones by

∆ij = Ril Ylj , ∆̇ij = Ril Ẏlj + Ṙil Ylj . (58)

The equations of motion for ∆ij can be found in the manner similar to the early-time case; varying the action (56),

identifying the terms proportional to aj

(
~k
)

and a†j

(
−~k
)

, we obtain

∆̈ij + Āil ∆̇lj + B̄il ∆lj = 0 (59)

where

Ā = T̄−1
(

˙̄T + X̄ − X̄T
)
, B̄ = T̄−1

(
Ω̄2 + ˙̄X

)
. (60)

Using the numerical solution for ∆ij , we compute the power spectrum of primordial curvature perturbation in the
vector curvaton scenario. In the next section, we formulate the procedure and show the numerical results of spectrum.

IV. OBSERVABLES

A. Vector Curvaton Scenario

The mechanism we consider in this paper to produce the curvature perturbations is the curvaton model. It is the
mechanism to convert isocurvature (entropy) perturbations into curvature perturbations [18, 42] (see also [43, 44]). In
this model, the background expansion is driven by the inflaton (φ, in our case), but the primordial curvature pertur-
bation is generated by some other field “curvaton” (Aµ), while the direct contribution from the inflaton perturbation
on the final observed cosmological perturbations is negligible, unlike single-field inflation. However, even if the model
is arranged such that at late times the contribution of the inflaton perturbations to the cosmological perturbations
is much smaller than that of the vector curvaton, the inflaton perturbations can still drastically affect the vector
perturbations due to the direct ϕ−Aµ coupling that necessarily originates from the two functions f (ϕ) and m (ϕ).

The physical picture we have in mind is the following: the primordial perturbations of both fields ϕ and Aµ are
originated from quantum fluctuations in the initial adiabatic vacuum. At some time during inflation, the vector
curvaton becomes heavy and starts oscillating; however, due to the coupling with inflaton that breaks the conformal
invariance of the vector field, the vector energy density does not decay away even after the oscillation starts but
stays nearly constant until the coupling is terminated at the end of inflation. Some time after inflation ends, the
inflaton decays into radiation (the detailed mechanism of (p)reheating is beyond the scope of this paper, and we
simply assume an instantaneous reheating not long after inflation). The curvaton still oscillates, but it now behaves
as non-relativistic dust, since its mass is larger than the Hubble parameter and its coupling to inflaton is no longer
present. Since the radiation energy density decrease as ∝ a−4 and the oscillating curvaton density as a−3, the
cosmological perturbations induced by those in the radiation density becomes negligible. Due to the coexistence
of radiation and dust, the pressure is non-adiabatic; as the curvaton oscillation continues for many Hubble times,
this non-adiabatic pressure perturbation converts the curvaton perturbation into the curvature perturbation. Finally
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(and before neutrino decoupling [18]), the curvaton decays and the curvature perturbation remains constant until the
horizon re-enetry. We assume for simplicity that the curvaton decay is also instantaneous.

We consider the curvature perturbation after the universe becomes isotropic (which is true after the vector field
becomes heavy), and work in the spatially flat slicing. In this slicing, the curvature perturbation defined on the
uniform-density hypersurfaces is given by [18, 45]

ζ = −H δρ

ρ̇
' r

4 + 3 r

δρA
ρA

(61)

where ρ = ρr + ρA is the total background energy density, r ≡ ρA/ρr is the ratio of the background vector energy
density to the radiation density, and δρA corresponds to the vector energy density perturbation. In the approximate
equality in (61), we assume that the radiation perturbation has already become negligible at the time of curvaton

decay and that ρr ∝ a−4 and ρA ∝ a−3. If the curvaton dominates the energy density before its decay, then ζ ' 1
3
δρA
ρA

;

in the opposite case, ζ ' r
4
δρA
ρA

. In either case, the lesson here is that the important quantity we need to focus on is

the ratio δρA/ρA.
We can identify the energy density as −T 0

0 , where T νµ is the energy-momentum tensor of the model, and its

perturbation is found by perturbing the field contents. In the limit δgµν = 0, we then find 6

δρA =
f

a2

[
p2T +M2

p2 +M2
Ȧ δȦx −

a

b

pL pT
p2 +M2

Ȧ δȦy +M2AδAx

]
(62)

in the Fourier space. In finding (62), δA0 is already substituted by (28). Notice that (i) the unphysical normalization
of scale factors and Aµ does not affect δρ, which is a physical quantity (see the brief discussion after (8)), and (ii) the
2D vector mode δAz does not contribute at linear level to δρ, which is intrinsically a scalar quantity. This justifies
disregarding the 2D vector mode.

By using the decomposition (57), we write

δρA

(
t,~k
)
≡ δρA,i

(
t,~k
)
ai

(
~k
)

+ δρ∗A,i

(
t,−~k

)
a†i

(
−~k
)

(63)

δρA,i =
f

a2

[
p2T +M2

p2 +M2
Ȧ ∆̇2i −

a

b

pL pT
p2 +M2

Ȧ ∆̇3i +M2A∆2i

]
. (64)

The 2-point correlation function of curvature perturbation is
〈
ζ2
〉
∝
〈
δρ2A

〉
/ρ2A, so we compute

γ (~x, ~y) ≡ 1

ρ2A (t)
〈δρA (t, ~x) δρA (t, ~y)〉 =

∫
d3k

(2π)
3 ei

~k·(~x−~y)F
(
~k
)

(65)

where the expression of ρA is shown in (10), and

F
(
~k
)
≡ 1

ρ2A

∑
i

∣∣∣δρA,i (~k)∣∣∣2 (66)

When we chose the momentum orientation in (26), we set the coordinate system so that k3 vanish. To be consistent

with this choice, we set ~x−~y = (rL, rT , 0). Since the function F is unchanged under the parity ~k → −~k, (65) becomes

γ =

∫
dk

k

∫ 1

0

dξ cos (k ξ rL) J0

(
k
√

1− ξ2 rT
)
Pγ (67)

where k =
√
k2L + k2T , ξ = kL/k, and Jν is the Bessel function of the first kind. We have introduced the power

spectrum

Pγ ≡
k3

2π2
F (k, ξ) . (68)

6 The 2D scalar sector is a coupled system and the quantization is done with respect to the initial vacuum, so, in principle, also the
cross-correlation 〈δρA δρϕ〉 contributes to the value of 〈δρ δρ〉. We verified numerically that the cross correlation is comparable to
〈δρA δρA〉 at the end of inflation. Since our focus is the study of a curvaton mechanism, we want to assume that δρϕ plays no role in the
post-inflationary perturbation. This can be trivially achieved if, after inflation, the inflaton decays into a relativistic species X before
the massive vector decays. Then there is a stage in which ρX ∝ a−4, while ρA ∝ a−3, and the cross-correlation decreases a factor of a
faster than 〈δρA δρϕ〉.
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Notice that, in the case of statistical isotropy, F depends only on k, and we recover the standard expression γ =∫
dk
k

sin(k r)
k r Pγ . Finally the quantity of interest is

Pγ =
k3

2π2

f2

a4ρ2A

∑
i

∣∣∣∣p2T +M2

p2 +M2
Ȧ ∆̇2i −

a

b

pL pT
p2 +M2

Ȧ ∆̇3i +M2A∆2i

∣∣∣∣2 (69)

and in the late-time limit, the middle term in (69) is completely negligible and p�M , so we have

Pγ '
2 k3

π2

∑
i

∣∣∣∣∣ Ȧ ∆̇2i +M2A∆2i

Ȧ2 +M2A2

∣∣∣∣∣
2

(70)

where we used (10). This is the quantity we compute. In the following subsection, we show the numerical results for
Pγ .

Due to the non-vanishing anisotropy in the background expansion (until the vector field becomes heavy) and due to
the scalar-vector interaction, it is natural to consider the possibility that a directional dependence of Pγ arises, while
it is absent in the simplest single-field inflation. To quantify this statistical anisotropy in the spectrum, we employ
the ACW parametrization [26]

P
(
~k
)

= Piso (k)
[
1 + g∗ ξ

2
]

(71)

where ξ is the cosine of the angle between the mode ~k and the background privileged direction, coinciding with the ξ
above.7 This parametrization shares the same concept as the multipole expansion for small higher-order moments. In

(71), parity (~k → −~k, ξ → −ξ) symmetry is assumed, which is valid in the model of our interest. Therefore the leading
effect of anisotropy is proportional to ξ2, corresponding to a quadrupole. Let us remind that this expansion is valid for
small g∗, and for |g∗| ∼ 1, the contributions from higher-order multipoles become important. The detected statistical
anisotropy that we have mentioned in the Introduction is g∗ = 0.29 ± 0.031 [22, 23], although, as we mentioned,
this effect is likely systematic. As a reference, we work under the assumption that the primordial perturbations are
statistically isotropic with |g∗| < O

(
10−1

)
. Planck will probe the anisotropy up to |g∗| = O

(
10−2

)
, as shown in [24].

B. Numerical Results

In this subsection, we show the result of the power spectrum of primordial curvature perturbation (up to overall
factor 1/3 or r/4) computed by (69) (or its late-time value (70)). As we discussed in Section II, the initial equipartition
of the vector energy density is required for statistical isotropy in the de Sitter limit with δϕ = 0 [19], i.e. ρkinA = ρVA , or
|C (tin)| = |D (tin)|. We take this condition for all the numerical computation. For the same reason, the vector mass
needs to be M � α̇ initially and M � α̇ by the end of inflation, and thus we choose the values of m0 accordingly.
Also, to ensure the existence of the attractor (20, 22, 23), c > 1 is required. We concentrate on the parameter space
that satisfies all these conditions. In numerical calculation, we take ξ = pL/p evaluated at the end of inflation. This
coincides with the definition in the previous subsection, since the vector field is already heavy at the end of inflation
and the expansion is isotropic from then on.

Our main interest is the effects due to the non-minimal couplings between the vector and scalar fields introduced
in the action (2). These couplings are controlled by two parameters c and m0, so in order to see such effects, we
observe how the spectrum changes for different values of these parameters. FIGs. 3 and 4 show the computed power
spectra for a few different values of ξ.8 These choices of ξ are solely of illustrative purpose and have no particular
physical significance. In this model, the coupling functions f and m smoothly approach to constants after inflation,
but this does not occur instantaneously. As a result, it takes some time for the system to completely decouple and
for the curvature perturbation defined in (61) to become adiabatic direction and freeze out. We therefore evaluate
the spectrum a few oscillations (of inflaton) after the end of inflation, when the variation of the values of Pγ is at 1%
level.

7 In the case of bispectrum, the parametrization of statistical anisotropy in a vector field model is developed in [46].
8 The horizontal axis of FIG. 3 and 4 is p0/α̇0 ' k/ (a0H0), where 0 denotes the end of inflation. Ideally, we would compute the spectrum

of the modes that correspond up to the largest observable scale, or the modes that exit the horizon 60 e-folds before the end of inflation,
but due to numerical difficulties, we show the modes p0/α̇0 = 10−10 to p0/α̇0 = 10−3 and expect no significant change in the spectral
behavior for smaller momenta.
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FIG. 3: Power spectrum Pγ defined in (70), in the units of m2
ϕ/M

2
p . The left panel shows the result when m0 = 50mϕ, and the

right when m0 = 1000mϕ. In each plot, both the complete results (solid curves) and the cases where the coupling is artificially
neglected (dashed curves) are shown. For each case, a few values of ξ (corresponding to different orientations of ~p) are taken
to illustrate the directional dependence. Here c = 1.5 is arbitrarily chosen to clearly exhibit the difference.
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FIG. 4: Power spectrum Pγ , in the units of m2
ϕ/M

2
p . The left panel shows the spectrum when c = 1.07, which achieves the

observable level of statistical anisotropy, and the right when c = 1.5 in order to compare with FIG. 3. Results for some different
values of ξ are shown to visualize the directional dependence and its difference between the two cases. It is observed that the
dependence on ξ is flipped between the two panels: larger ξ leads to larger Pγ (positive g∗) on the left panel, and the opposite
(negative g∗) on the right. In fact, g∗ monotonically decreases with increasing c, shown in FIG. 5. Here the mass of vector field
is fixed to be m0 = 1000mϕ.

FIG. 3 shows two cases that compare different values of vector mass: m0 = 50mϕ on the left panel and m0 =
1000mϕ on the right. In each panel, two plots are compared, one (solid curves) with the consistent evolution of
the coupled system, and the other (dashed curves) with the vector-scalar coupling neglected for the perturbations
(equivalent to setting δϕ = 0). Let us emphasize that in the latter, setting δϕ = 0 is completely artificial and is
inconsistent within the model. We show this unrealistic case only to illustrate how significant effects the coupling
produces, and one can observe that the impact is indeed substantial. If the coupling is manually turned off (dashed
curves), the observed or smaller statistical anisotropy can be attained, consistent to the claim in [19, 20] 9; however,
if the coupling is present, then the statistical isotropy is clearly violated (g∗ ' −0.8), as can be seen in the figure.
Comparing the two panels, we observe that changing the value of the vector mass does not make a significant difference
in the spectrum. The overall values of Pγ for the coupled case decrease by < 10% when m0 is changed from 50mϕ

9 In fact, this is true only for the coupling constant c & 1.25. If the value of c is closer to 1, the attractor solutions of background become
loose, toward the time when the vector field becomes heavy. More specifically, the equipartition of the vector energy density is not
maintained to the sufficient level during the evolution. As is shown in FIG. 5, the full spectrum with δϕ 6= 0 attains unacceptably large
anisotropy for c & 1.25.
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FIG. 5: The values of g∗ as a function of the coupling constant c, for m0 = 1000mϕ. For smaller values of m0, the curve would
shift slightly upward, but the general feature would be unaffected.

to 1000mϕ, but the angular dependence does not change: g∗ ' −0.8 for both masses (as a comparison, g∗ ' 0.15
for the δϕ = 0 case). Although this value is undoubtedly excluded by observations, this comparison tells us that (i)
the interaction between the vector and scalar through the vector kinetic and mass terms modulates the curvature
perturbation significantly, that (ii) satisfying the conditions on the vector mass (M � α̇ initially and M � α̇ by the
end of inflation) is not sufficient to attain the statistical isotropy, and that (iii) changing the vector mass does not
affect the directional dependence of the power spectrum.

The directional dependence of Pγ is sensitive to the value of c. FIG. 4 compares two cases of different values of c
with the same vector mass m0 = 1000mϕ. For the purpose of comparison, the right panel takes the same choice of
parameters as in the right panel of FIG. 3 (with two more sample values of ξ and without δϕ = 0 case). In the left
panel, the spectra for the case c = 1.07 are shown. For this particular value of c, the spectrum acquires the observed
level of statistical anisotropy. It is interesting to see that the dependence on ξ is opposite between these two cases.
The spectral amplitude is larger for larger ξ in the c = 1.07 case, and it is smaller for larger ξ in c = 1.5: this is
equivalent to positive g∗ for the former and negative for the latter. To quantify g∗, we show its values as a function
of c in FIG. 5.10 It is found that g∗ does not change over the range of momenta.

There are a few things to note. In every case, a nearly scale-invariant power spectrum is obtained, as exhibited in
the figures. Secondly, g∗ acquires negative values in most of the parameter space, while it becomes positive for the
small range 1 < c < 1.1. This implies that for c > 1.1, the larger pT is, the larger the spectrum, and it is peaked when
~p is completely orthogonal to the direction of the vector vev, i.e. ξ → 0. Thirdly, the interaction effect is maximal
when ξ is close to 0, as can be seen from FIG. 3. Since the momentum is completely orthogonal to the background
vector vev at ξ = 0, the larger amplitude for ξ → 0 suggests that the interaction depends largely on pT . Lastly,
although the spectrum can achieve the observed anisotropy, the allowed window of c (g∗ is insensitive to m0) is very
narrow, due to the strong dependence on c near g∗ ' 0.3. This c dependence of the statistical feature of the spectrum
is indeed real, resulting from the δϕ− δAµ interaction.

V. DISCUSSION AND CONCLUSIONS

We studied the primordial inflation with a vector field non-minimally coupled to inflaton through vector kinetic
and mass terms, and computed the power spectrum of curvature perturbations within the framework of curvaton
mechanism. In this model (2), the mass term inevitably introduces a vector longitudinal mode, but it does not
acquire a negative kinetic term and therefore is free from ghost instabilities. It is claimed in [19] that a scale-

10 The angular decomposition of power spectrum, (71), is essentially a multipole expansion for small g∗. When |g∗| approaches to 1, the
validity of this expansion starts to break down. The higher-order terms (higher than quadrupole) becomes non-negligible, and indeed,
the decomposition (71) does not approximate the actual values well. We should treat with care the values of |g∗| ∼ 1, but it is clear
that such large anisotropy is excluded by the observations.
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invariant statistically-isotropic power spectrum can be obtained in this model. However, in their work the anisotropy
of background evolution was neglected in the pure de Sitter universe, and the kinetic and mass terms were taken to
be external functions of time and thus did not introduce any interaction effect due to the vector-inflaton coupling. In
[39], anisotropic background expansion was taken into account, and it was shown that the background attractor leads
to the desired time-dependent functions, which we also showed in our language in Section II. However, the interaction
effects were still assumed to be negligible. In this paper, we relaxed this assumption and did an extensive analysis in
the linearized perturbation theory with the consistent inclusion of the vector-inflaton coupling.

The non-trivial features arise due to the presence of the vector vev and its perturbations. The vev of vector field
changes the dynamics of the system in three ways: (i) it modifies the background by slowing down the inflaton motion,
(ii) it renders the direction of the vev a “privileged” direction, that expands differently from the other two, and (iii)
it introduces interactions between the inflaton and the vector perturbations already at the linearized level. We have
verified that the first two points do not make a dominating change. Namely, if we include (i) and (ii) (not (iii) yet),
the anisotropy in the background expansion is small throughout inflation and is rapidly washed away after the vector
field becomes heavy; also, the near scale invariance and statistical isotropy of the power spectrum can be attained
(see dashed lines in FIG. 3). The last point, however, generates significant effects on the spectrum. Although the
scale invariance is not affected, the statistical isotropy is no longer a generic feature. We stress that this effect was
disregarded in all the existing computation of the perturbations in this model.

There are two parameters in the model that control the coupling (13) between the inflaton and vector fields: the
inflaton-slowing parameter c, and the vector mass end value m0. While changing m0 does not make any appreciable
impact on the spectrum, the directional dependence of the spectrum is highly sensitive to the values of c. The measure
of the statistical anisotropy, g∗, is found to be a monotonically decreasing function of c and is mostly negative, except
for a small range 1 < c < 1.1. This means that for c > 1.1, the value of spectrum increases as the direction of
associated momentum approaches to the direction perpendicular to that of the vector vev. Also, as FIG. 3 suggests,
the effect from δAµ− δϕ coupling is strongest when the momentum is orthogonal to the vector vev. All these features
can be justified by observing the action in the early- and late-time regimes. From (70), we see that only δAx mode
contributes (at the linearized level) to the final value of the spectrum, so we look into the relevant part of the action. In

the early time, we know M � p, Ȧ ∼MA, and δAx ∼ δAy ∼ a pm δϕ (order of magnitude, assuming small background
anisotropy). Then the part of the action (29) which contains δAx simplifies to

S
(2) early
2dS ∼

∫
dtd3k e3α

f

2 a2

[
p2T
p2

∣∣∣δȦx∣∣∣2 − a

b

pL pT
p2

(
δȦ†x δȦy + h.c.

)
− p2T |δAx|

2
+
a

b
pLpT

(
δA†x δAy + h.c.

)
+
f ′

f

p2T
p2
Ȧ
(
δϕ† δȦx + h.c.

)]
+ . . . (72)

where . . . denotes the terms without δAx. From (72), it is seen that initially the interaction term (second line) is
negligible, as the initial vacuum is adiabatic, but in the time period when M ∼ p, this term can make an O (1)
contribution to δAx, and thus to the spectrum. This term also illustrates that the interaction strength is proportional
to c and pT , and also that it is unrelated to m0.11 In the late time, when the vector mass becomes M � p, all the
directional dependence vanishes from the action, and so no anisotropy is further produced. Therefore, the statistical
anisotropy in the spectrum is generated during M ∼ p through the interaction between δϕ and δAx, and its strength
is controlled by c and pT . This heuristic argument justifies the behavior of our numerical results.12

The vector field is a curvaton and needs to eventually decay to imprint a signature in the curvature perturbations.
The curvature power spectrum Pζ is either 1

3Pγ or r
4Pγ , depending on whether ρA or ρr dominates the total energy

density, but the features in the spectrum, such as scale invariance and statistical anisotropy, are directly inherited
from Pγ . While a nearly scale-invariant spectrum is a generic result of this model, statistical isotropy is not. We
have shown that the observed value of the anisotropy parameter g∗, albeit controversial in itself, can be achieved in
this model; however, the allowed parameter space is small (only near c = 1.07). This is in contrast with the results

11 One might be concerned that m0 should appear as there is Ȧ present in the interaction term. However, the value of Ȧ (and A) is

enforced by the attractor (23). Since ρA = m2

2a2

(
C2 +D2

)
and since (23) is independent of m0, we have |C| = |D| ∝ 1

m0
. Thus the

interaction is not affected by the value of m0.
12 As long as the attractor (23) is a good approximation, it is enforced that Ȧ ∝

√
c− 1/c, which implies that the interation term in (72) is

∝
√
c− 1. Then it appears that as c→ 1, the effects from this term vanish and the statistical isotropy would be achieved. However, in

the real evolution, the time variation of C and D (especially the latter) becomes appreciable as c→ 1, and the assumption of constant
C and D is violated. Then the simple argument above does not apply; as c gets closer to 1, g∗ becomes positive and large.
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of [19, 20] where statistical isotropy was found to be a result of simply the classical evolution of f and m, and with
the corresponding claim of [39], in which the results for the perturbations of [19, 20] were used, implying statistical
isotropy for any value of c. This discrepancy is due to the direct coupling between δAµ and δϕ, which was neglected
in [19, 20], but should generically be present in any effective field theory realization of the mechanism.

Throughout our analysis, we always assumed the initial equipartition of the vector energy density. In principle,
we could compensate the unacceptable statistical anisotropy by adjusting the initial partition. However, since this
partition is maintained during the evolution, it would still require fine-tuning. Thus it would not change our conclusion:
the statistical isotropy of the curvature power spectrum is not in general attainable without finely-tuned parameters
and initial conditions.

Although this model is certainly not the only possibility to realize the vector curvaton scenario with varying kinetic
and mass terms of the desired time dependence, we have studied a concrete, realistic example that consistently takes
into account the vector-scalar interaction in the presence of the vev of vector field. Curvaton mechanism was first
introduced in order to separate the generation of curvature perturbations from the detail of inflation dynamics and to
relax the requirements for inflaton [18]. This mechanism is favorable in this sense, if the fields are minimally coupled.
However, when multiple fields couple to each other in a non-minimal way, as required in [19, 20], the interaction non-
trivially modifies the situation. In such models, calculation in the decoupled limit is not sufficient, and the consistent
treatment of the whole system is crucial.
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Appendix A: Matrices in Early Time Evolution

In this appendix, we show the complete expressions of the early-time matrices T , X and Ω2, appearing in (49).
As mentioned in a footnote in the main text, we did not antisymmetrize X for simpler expressions. However,
this affects neither the initial conditions at the level of approximation we concern, nor the equations of motion,
since antisymmetrization is simply to add total derivatives in the action. On the other hand, Ω2 is symmetric, by
construction.

T =


1 0 0

0 1
2

p2

p2+M2

(
1 + pL pT√

p2L+M
2
√
p2T+M

2

)
0

0 0
2 p2Lp

2
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(
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) f ′
f
φ̇+ 2M ′

(
p2L + 2M2

)
φ̇

]
×
[
M
(
p2T +M2

) f ′
f
φ̇+ 3 p2TM α̇+M3 (5 α̇+ 2 σ̇) + 2M ′

(
p2T + 2M2

)
φ̇

]
× 2 pL pT

(p2L +M2)
3/2

(p2T +M2)
3/2

+

[
M
(
p2T +M2

)
f ′

f φ̇+ 3 p2T Mα̇+M3 (5 α̇+ 2 σ̇) + 2M ′
(
p2T + 2M2

)
φ̇

p2T +M2

]2}
(A16)

It can be seen from the above expressions that all the matrices are real and invariant under the parity ~p→ −~p.
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