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The B- (curl-)mode of the correlation of galaxy ellipticities (shear) can be used to detect a stochas-
tic gravitational wave background, such as that predicted by inflation. In this paper, we derive the
tensor mode contributions to shear from both gravitational lensing and intrinsic alignments, using
the gauge-invariant, full-sky results of Schmidt and Jeong [1]. We find that the intrinsic alignment
contribution, calculated using the linear alignment model, is larger than the lensing contribution
by an order of magnitude or more, if the alignment strength for tensor modes is of the same order
as for scalar modes. This contribution also extends to higher multipoles. These results make the
prospects for probing tensor modes using galaxy surveys less pessimistic than previously thought,
though still very challenging.

PACS numbers: 98.65.Dx, 98.65.-r, 98.80.Jk

I. INTRODUCTION

A stochastic gravitational wave (GW) background is
one of the key testable predictions of inflation. Thus,
much theoretical and experimental effort is devoted to
searching for this gravitational wave background. One
necessary ingredient of any method designed to search for
a GW background is the ability to cleanly separate the
GW contribution from scalar perturbations. Most com-
monly, this is done by considering spin-2 quantities on
the sky, such as the anisotropy in the polarization of the
cosmic microwave background (CMB) radiation [2, 3],
the anisotropy of the 2-point correlation function [4–7],
or the ellipticity of galaxy images [8]. The polarization
of the cosmic microwave background is commonly con-
sidered as the most promising probe. However, the 21cm
emission from the dark ages has recently been shown to in
principle offer even more discovery potential [5, 9]. On
the other hand, previous authors have concluded that
weak lensing shear will most likely not be a competitive
probe of primordial GW [8, 10, 11]. Nevertheless, given
the scientific impact, it will be crucial to confirm a pos-
sible detection of a GW background in the CMB with
independent methods, such as shear.
The goal of this paper, and its companion [7], is to

systematically and rigorously derive the GW effects on
large-scale structure observables. While we restrict our-
selves to a linear treatment in the tensor perturbations,
we strive to keep the results as general as possible other-
wise.
This paper deals with shear, i.e. the correlations of

galaxy ellipticities. The underlying assumption in inter-
preting shear correlations is that in the absence of per-
turbations, galaxy ellipticities are uncorrelated on large
scales. However, in the relativistic context, this raises the
question of the frame of reference in which galaxy ellip-
ticities are actually uncorrelated. In Schmidt and Jeong
[1], we have derived an expression for the shear based
strictly on observable quantities (“standard rulers”). As
shown there, that expression is equivalent to the state-

ment that galaxies are isotropically oriented in their local
inertial frame, described by the Fermi normal coordinates
along a given galaxy’s geodesic.

Consider a region of spatial extent R, much larger than
the size of individual galaxies but smaller than the typ-
ical wavelength of the perturbations we aim to measure
through shear. The center of mass of this region moves on
a time-like geodesic. We can construct a coordinate sys-
tem where the center of mass is at rest at the origin, and
the time coordinate tF corresponds to the proper time
of this geodesic. In other words, the unit vector defin-
ing the time coordinate is equal to the tangent vector to
this geodesic. The spatial coordinate lines are chosen to
be space-like geodesics (“straight lines”) orthogonal to
this time direction, and whose unit vectors are parallel-
transported along the observer’s geodesic. These are the
so-called Fermi normal coordinates (FNC) [12, 13]. It
is straightforward to construct them perturbatively for a
given metric and time-like geodesic (see App. A). The
most important property of Fermi normal coordinates is
that the metric is Minkowski at the spatial origin at all
times tF , with corrections away from the geodesic go-
ing as xi

Fx
j
F /R

2
c , where xi

F denote the spatial Fermi co-
ordinates and Rc is the typical curvature scale of the
space-time (Rc ∼ H−1 for an unperturbed FRW space-
time). Thus, the Fermi normal coordinates are the frame
in which a local observer in a weak gravitational field
would describe her experiments. Neglecting the correc-
tions ∝ x2

F , there is no preferred direction in these coor-
dinates along which galaxies could align, and they thus
have to be oriented isotropically. The contribution to the
shear from the transformation to the local Fermi coordi-
nates was first introduced by Dodelson et al. [8], who
showed that this term, which they call “metric shear”,
has a significant impact on the observational signatures
of tensor modes. Furthermore, as shown in [1], this term
is crucial to ensure that the expression for the observ-
able shear does not receive contributions from constant
and pure-gradient metric perturbations, as required by
coordinate-invariance.
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Here, we evaluate this expression for the shear in an
FRW space-time with tensor modes, which yields the
shear contribution by “projection effects” induced by a
GW background. As discussed in [7, 14], the tensor con-
tributions typically peak at the source location rather
than at lower redshifts, and there is no enhancement of
the contribution by transverse modes. Both of these facts
lead to qualitative differences from the scalar case.

As discussed, the space-time in Fermi coordinates
around a given galaxy is not perfectly flat however, and
the corrections to the metric ∝ xi

Fx
j
F /R

2
c provide pre-

ferred directions along which galaxies can align. For
non-relativistic motions (which generally applies to large-
scale structure), the relevant contribution to the metric
in the Fermi frame corresponds to a tidal field, which can
align galaxies and thus contribute to the observed shear
correlation. Here we derive the contribution to the tidal
field by tensor perturbations, and for the first time calcu-
late the intrinsic alignment contribution of tensor modes
in the linear alignment model. This prescription has been
shown to agree well with observations on large scales in
the scalar case. Note that this approach is only appli-
cable for gravitational waves with periods much longer
than the dynamical time of galaxies.

The key advantage of the shear applies to both lens-
ing and linear intrinsic alignment contributions: linear
scalar perturbations contribute only to the parity-even
E-(gradient-)mode component at linear order, while ten-
sor perturbations also contribute to the B-(curl-)mode
(both through lensing and intrinsic alignments). Impor-
tantly, scalar perturbations do contribute to B-modes at
second and higher order, a point which we will discuss in
detail in § VIA.

The outline of the paper is a follows: we introduce our
notation and conventions in § II (they are the same as in
the companion paper [7]). § III presents the derivation of
the lensing (projection) contribution, while § IV discusses
the intrinsic alignment contribution from tensor modes.
§ V gives the expressions for the E− and B-mode power
spectrum of the shear, including the connection to pre-
vious results. § VI presents the results. We conclude in
§ VII. The appendix contains details on Fermi normal
coordinates, the derivation of angular power spectra, and
the connection to convergence and rotation.

II. PRELIMINARIES

We begin by introducing our convention for the metric
and tensor perturbations and some notation; it is iden-
tical to that used in [7]. For simplicity, we restrict our-
selves to a spatially flat FRW background, and consider
only tensor (gravitational wave) modes in the main part
of the paper. The perturbed metric is given by

ds2 = a2(η)
[

−dη2 + (δij + hij) dx
idxj

]

, (1)

where hij is a metric perturbation which is assumed to
be transverse and traceless:

hi
i = 0 = (hik)

,i. (2)

We then decompose hij into Fourier modes of two polar-
ization states,

hij(k, η) = e+ij(k̂)h
+(k, η) + e×ij(k̂)h

×(k, η), (3)

where esij(k̂), s = +,×, are transverse (with respect to

k̂) and traceless polarization tensors normalized through

esije
s′ ij = 2δss

′

. Note that hs = eijs hij/2. We assume
both polarizations to be independent and to have equal
power spectra:

〈hs(k, η)hs′ (k
′, η′)〉 = (2π)3δD(k − k

′)δss′
1

4
PT (k, η, η

′).

(4)

Here, η denotes conformal time, and the unequal-time
power spectrum is given by

PT (k, η, η
′) = TT (k, η)TT (k, η

′)PT0(k), (5)

where TT (k, η) is the tensor transfer function, and the
primordial tensor power spectrum is specified through
an amplitude ∆2

T and an index nT via

PT0(k) = 2π2 k−3

(

k

k0

)nT

∆2
T . (6)

Following WMAP convention [15], we choose k0 =
0.002Mpc−1 as pivot scale. Throughout, we will assume
a scalar-to-tensor ratio of r = 0.2 at k0 (consistent with
the 95% confidence level WMAP bound), which together
with our fiducial cosmology determines ∆2

T . The tensor
index is chosen to follow the inflationary consistency re-
lation, nT = −r/8 = −0.0025. For the expansion history,
we assume a flat ΛCDM cosmology with h = 0.72 and
Ωm = 0.28. Contributions from scalar perturbations are
evaluated using a spectral index of ns = 0.958 and power
spectrum normalization at z = 0 of σ8 = 0.8.
From Eq. (3) and Eq. (4), we easily obtain

〈hij(k, η)hkl(k
′, η′)〉 = (2π)3δD(k− k

′) (7)

×
[

e+ij(k̂)e
+
kl(k̂) + e×ij(k̂)e

×
kl(k̂)

]

× 1

4
PT (k, η, η

′)

〈hij(k, η)h
ij(k′, η′)〉 = (2π)3δD(k− k

′)PT (k, η, η
′).

Long after recombination, the transverse anisotropic
stress which sources gravitational waves becomes neg-
ligible, and the tensor modes propagate as free waves.
During matter-domination, the tensor transfer function
then simply becomes

TT (k, η) = 3
j1(kη)

kη
, (8)
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which however is still valid to a high degree of accuracy
during the current epoch of acceleration. We will use
Eq. (8) throughout. We also define

P ij = δij − n̂in̂j (9)

as the projection operator perpendicular to the line of
sight.
As a traceless 2-tensor on the sphere, the shear can

be decomposed into spin±2 functions ±2γ = γ1 ± iγ2 (in
analogy to the combination of Stokes parameters Q± iU
for radiation) as

γij = 2γ m
i
+m

j
+ + −2γ m

i
−m

j
−. (10)

Here, we have defined the unit vectors of the circularly
polarized basis, m± ≡ (eθ∓ i eφ)/

√
2 (see App. A in [1]).

If we choose a coordinate system where n̂i is along the
z-axis and eiθ along the x-axis, we have

γij =





γ1 γ2 0
γ2 −γ1 0
0 0 0



 . (11)

This decomposition is particularly useful for deriving
multipole coefficients and angular power spectra. In
particular, we can define the multipole moments of the
parity-even E-modes and parity-odd B-modes through

aγElm =
1

2

(

aγlm + aγ∗lm
)

aγBlm =
1

2i

(

aγlm − aγ∗lm
)

. (12)

We also define

X± ≡mi
∓Xi

E± ≡mi
∓m

j
∓Eij (13)

for any vector Xi and tensor Eij .

III. LENSING EFFECTS

We begin with the definition of shear in the relativistic
context as derived in [1], for a synchronous comoving
metric as in Eq. (1):

±2γ ≡mi
∓m

j
∓Aij

= − 1

2
h± −mi

∓m
j
∓∂⊥ i∆x⊥ j . (14)

In other words, the shear is the traceless part of the sym-
metric 2 × 2 matrix Aij which describes the transverse
distortion of transverse standard rulers. ∆xi

⊥ is the dis-
placement perpendicular to the line of sight of the ob-
served position from the true position of the source, in
terms of the global comoving coordinates.

As shown in [1], Eq. (14) is explicitly given by

(±2γ)(n̂) = −1

2
h± o −

1

2
h± (15)

−
∫ χ̃

0

dχ

{

χ̃− χ

2

χ

χ̃
(mi

∓m
j
∓∂i∂jhkl)n̂

kn̂l

+

(

1− 2
χ

χ̃

)

n̂lmk
∓m

i
∓∂ihkl −

1

χ̃
h±

}

.

The last term in the first line of this equation can be un-
derstood as coming from the transformation from global
coordinates to the local Fermi normal coordinates [1]; in
the following we will refer to this as the “FNC term”.
It is immediately clear that a constant metric perturba-
tion hij (which corresponds to a pure gauge mode) does
not contribute to γ1 ± iγ2. The same is true for a pure
gradient hij = Bijkx

k. In App. C of [1] we have ap-
plied several test cases to Eq. (15), including a Bianch I
cosmology where all terms contribute non-trivially.

IV. INTRINSIC EFFECTS

Eq. (15) is derived assuming we have a perfect stan-
dard ruler, in the sense that the intrinsic physical size
of the ruler is uncorrelated with the perturbations hij .
In the case of weak lensing shear surveys, the “standard
ruler” is the fact that galaxies are randomly oriented, i.e.
their apparent size measured along two different fixed
directions is on average equal. However, we know that
in reality galaxy orientations are not truly random, but
there is some alignment with large-scale tidal fields.
In order to determine the effective tidal field experi-

enced by galaxies in a Universe with propagating ten-
sor modes, we derive the corrections ∝ x2

F to the metric
gFµν in the Fermi normal coordinate frame. In particular,
since we are concerned with non-relativistic motions, we
are mostly interested in the time-time part of the metric
gF00. The detailed derivation for a space-time described
by Eq. (1) is presented in App. A. The result for gF00 is

gF00(xF , tF ) = − 1 + (Ḣ +H2)r2F − 2ΨF (xF , tF ) (16)

ΨF (xF , tF ) = − 1

4
[ḧij(0, tF ) + 2H(tF )ḣij(0, tF )]x

i
Fx

j
F ,

(17)

where r2F = δijx
i
Fx

k
F , and dots indicate derivatives with

respect to time t (equivalent to tF at this order). The
terms ∝ r2F in Eq. (16) are the usual Hubble drag which
provide an effective repulsive force. The leading effect
of large-scale cosmological perturbations on the region
considered is to add an effective tidal field ΨF , which de-
pends on the time derivatives of the metric perturbation
hij . Note that for a traceless tensor perturbation, ΨF is
indeed a purely tidal field (i.e. ∇2ΨF = 0). The fact that
the amplitude of the tidal field is given by the time deriva-
tives of the tensor modes implies that only modes that
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have entered the horizon contribute; through Eq. (8), the
terms are seen to be of order k/H and (k/H)2.
In the absence of perturbations (hij = 0), Eq. (16)

is isotropic. Thus, in the Fermi frame, there is no pre-
ferred direction along which galaxies forming in this re-
gion could align, and their orientations are truly random
in this case. As shown in [1], the expression for the shear
Eq. (14) contains precisely this statement (of course this
holds not only for galaxy orientations, but any standard
ruler).

In the presence of perturbations, the tidal field∝ xi
Fx

j
F

provides a preferred direction along which galaxies can
align. The fact that large-scale tidal fields tend to align
galaxies (intrinsic alignment, IA) is well established both
theoretically and observationally for scalar perturbations
(e.g., [16–18]). In order to make progress, we will adopt
the linear alignment (LA) model, which has recently been
shown to be consistent with observations on large scales
(& 10 Mpc/h) [19, 20]. In this model (following the no-
tation of [19]), the tidal tensor tij at the location of the
galaxy, defined through

tij =

(

∂i∂j −
1

3
δij∇2

)

Ψ, (18)

contributes to the traceless part of the observed distor-
tion matrix Aij of the galaxy image through

AIA
ij (n̂) = − C1

4πG
PikPjlt

kl(zp)

= − 2

3
C1ρcr0H

−2
0 PikPjl t

kl(zp). (19)

That is, AIA
ij is proportional to the projection of the tidal

tensor onto the sky plane. Here, ρcr0 = 3H2
0/(8πG) is the

critical density today. The constant of proportionality
C1 determines the magnitude of alignment, while zp, the
redshift at which the tidal field is evaluated, is another
parameter of the model. Observationally, C1ρcr0 ∼ 0.1
for galaxies at redshifts less than 1, when choosing zp
to be equal to the source redshift. A positive C1, to-
gether with the overall sign in Eq. (19), corresponds to a
galaxy’s major axis aligning with the smallest eigenvec-
tor of tij ; physically, an initially spherical perturbation
will tend to collapse last in the direction of the smallest
potential curvature, leading to a preferential alignment of

the major axis with this direction. Note that in Eq. (19),
C1ρcr0 multiplies the tidal field in physical rather than
comoving units.

While this mechanism is expected to be qualitatively
the same for tensor modes as for scalar modes, there is no
reason for the amplitude C1 to be the same in both cases.
In particular, linear tidal fields sourced by scalar per-
turbations are constant during matter domination, while
tensor perturbations decay and oscillate. However, we
will see that the tensor modes relevant for the IA contri-
bution are long-wavelength and should not have a qual-
itatively different impact on the formation of galaxies
than scalar tidal fields. We will return to this issue in
§ VI. In the following, we will assume that zp is equal
to the source redshift. Generally, evaluating the tidal
field at zp > z̃ leads to larger effects so that this is a
conservative assumption.

Using Eq. (17) and Eq. (14), it is then straightforward
to evaluate the contribution of tensor modes to the shear

±2γ:

(±2γ)
IA(n̂) =mi

∓m
j
∓AIA

ij

=
1

3
C1ρcr0H

−2
0

(

ḧ± + 2Hḣ±

)

=
1

3
C1ρcr0H

−2
0 a−2

(

h′′
± + aHh′

±

)

, (20)

where primes indicate derivatives with respect to η, and
we have used dt = adη.

V. OBSERVED SHEAR STATISTICS

We now use the results derived in the previous two
sections to calculate the angular power spectrum of the
observed shear induced by tensor modes. We briefly out-
line the steps of the derivation, which follows the general
prescription described in App. A1 of [1], with details rel-
egated to App. B.

In the first step, we consider a single tensor mode of
wavevector k which we assume oriented along the z-axis.
Including the intrinsic alignment contribution (§ IV), we
obtain for the contribution to the shear

(±2γ)(k, n̂) =
∑

p=−1,1

{

− 1

2

[

hp(k, η0) +

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

hp(k, η̃)e
ik·n̂ χ̃

]

1

2
(1∓ pµ)2ei2pφ

+

∫ χ̃

0

dχ

[

χ̃− χ

4

χ

χ̃
k2(1− µ2)2 +

(

1− 2
χ

χ̃

)

i
k

2
(1 − µ2)(1∓ pµ) +

1

2χ̃
(1 ∓ pµ)2

]

× ei2pφhp(k, η0 − χ)eik·n̂χ

}

,
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where h±1 = (h+ ∓ ih×)/2 are the circular polarization states of tensor modes, µ = cos θ, and θ, φ denote the polar
and azimuthal angles of the line of sight unit vector n̂. We then apply the spin-lowering/raising operator twice to ±2γ
in order to obtain a rotationally invariant (spin-0) quantity. The spherical harmonic coefficients of this scalar quantity
are directly related to those of the spin±2 shear components (see App. A in [1]). We can then separate aγlm into a

real part aγElm , which is parity-even and thus transforms in the same way as a tensor derived from a scalar function f ,

and an imaginary part i aγBlm , which acquires an additional minus sign under parity. This E/B-mode decomposition
is useful because any symmetric tensor γij derived from a scalar function is parity-even and thus does not source any
B-modes (as shown explicitly for the shear in [1]). Further, any perturbations generated by parity-conserving physics
do no induce an E −B cross-correlation.
Finally, using relations derived in App. A1 of [1], we obtain the angular power spectra of E- and B-modes of the

shear induced by tensor modes (App. B2):

CXX
γ (l) =

1

2π

∫

k2dk PT0(k)|F γX
l (k)|2, X = E, B (21)

F γE
l (k) ≡ − 1

4

[

TT (k, η0)

(

Re Q̂1(x)
jl(x)

x2

)

x=0

+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

TT (k, η̃)Re Q̂1(x̃)
jl(x̃)

x̃2

]

+

∫ χ̃

0

dχ

χ

[

Re Q̂2(x) +
χ

χ̃
Re Q̂3(x)

]

jl(x)

x2
TT (k, η0 − χ)

F γB
l (k) ≡ − 1

4

[

TT (k, η0)

(

Im Q̂1(x)
jl(x)

x2

)

x=0

+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

TT (k, η̃)Im Q̂1(x̃)
jl(x̃)

x̃2

]

+

∫ χ̃

0

dχ

χ
Im Q̂2(x)

jl(x)

x2
TT (k, η0 − χ).

Here Q̂i(x) are derivative operators whose action on
jl(x)/x

2 is given explicitly in Eq. (B16); in particular

Im Q̂3(x)[jl(x)/x
2] = 0.

A. Relation to convergence and rotation

The shear is most commonly written in terms of an-
gular derivatives of the deflection angle ∆θi, i.e. γij is
defined as the trace-free part of ∂∆θj/∂θi. In our nota-
tion, ∆θi = ∆xi

⊥/χ̃, and ∂∆θj/∂θi = ∂⊥i∆x⊥j . There
are two degrees of freedom in ∆xi

⊥, and hence only two
independent components of ∂⊥i∆x⊥j . If we define the
convergence κ̂ and rotation ω through

κ̂ ≡ − 1

2
∂⊥i∆xi

⊥

ω ≡ − 1

2
εijkn̂

i∂j
⊥∆xk

⊥, (22)

then the E-mode of the shear defined as trace-free part
of ∂⊥i∆x⊥j is directly related to κ̂, while the B-mode is
related to ω. As shown by Stebbins [21], on the full sky

CEE
γ (l) =

(l + 2)(l − 1)

l(l+ 1)
Cκ̂(l)

CBB
γ (l) =

(l + 2)(l − 1)

l(l+ 1)
Cω(l). (23)

However, neither of the deflection angle ∆xi
⊥, the con-

vergence κ̂, or the shear defined as trace-free part of
∂⊥i∆x⊥j are observable (the rotation is only observable

if there is an intrinsic preferred direction in the source
plane). Instead, the observable shear is given by Eq. (15)
which includes the FNC term. Nevertheless, the relations
Eq. (23) are useful as an analytical and numerical cross-
check of Eq. (21) (without the IA contribution), and this
cross-check is presented in App. C.
In the previous work of [8], the rotation was used as a

proxy for shear B-modes through Eq. (23). This result
thus does not include the FNC term. However, they also
consider the “metric shear”, which is the contribution
to ω that corresponds to the shear contribution by the
FNC term. When including the metric shear in ω, we
indeed recover the B-modes of the shear including the
FNC term through the relation Eq. (23) (see App. C 2).
Thus, our results for the lensing-induced shear B-modes
from tensor modes (i.e., neglecting the intrinsic align-
ment contribution) agree with those of [8], modulo the
factor (l + 2)(l − 1) / l(l+ 1).

VI. RESULTS

We begin by investigating the separate terms con-
tributing to the shear E- and B-mode power spectra in
Eq. (21), focusing on the lensing contributions without
intrinsic alignment first. Fig. 1 shows the E-mode an-
gular power spectra obtained by separately considering
only the terms ∝ Q̂2, ∝ Q̂3, and the FNC and observer
terms ∝ Q̂1. Here, we have multiplied the power spec-
tra by l6 as they are very steeply falling with l. We see
that for l . 10 there is a very significant cancellation (by
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FIG. 1: Lensing (projection) contributions to the observed an-
gular power spectrum of the E-mode component of the shear
from tensor modes, separated into terms ∝ Q̂1 (observer and

FNC terms), ∝ Q̂2 and ∝ Q̂3 respectively. Note that power
spectra are multiplied by l6. We have assumed a sharp source
redshift of z̃ = 2.

three orders of magnitude) between the different terms.
In fact, the magnitude of the individual terms depends
on the lower limit used in the integration over k, and di-
verges logarithmically as kmin → 0 for small l. For the
B-modes, the cancellation is not as important, though
still significant (Fig. 2; in this case there is no Q̂3 term).
This result is in agreement with the findings of [8]: when
including the FNC contribution (metric shear), the am-
plitude decreases significantly. This is not surprising: if
we drop the FNC term in Eq. (21), tensor perturbations
with k → 0 contribute to the shear at low l, and since
the tensor power spectrum is sharply falling with k, these
contributions are large. Clearly, these contributions are
unphysical however, and the FNC term must be included.
Fig. 3 shows the total lensing contribution to the E-

mode power spectrum of the shear, the intrinsic align-
ment contribution, as well as the sum of the two, while
Fig. 4 shows the same for the (more interesting) B-
modes. Here, we assumed a Gaussian redshift distribu-
tion dN/dz̃ ∝ exp(−(z̃ − z̄)2/2∆z2) with ∆z = 0.03(1 +
z̄). Further, we have adopted a value of C1ρcr0 = 0.12
as measured in the Sloan Digital Sky Survey [19]. This
coefficient will depend on the specific galaxy sample con-
sidered, in particular on the redshift. Here we extrapolate
the value of C1ρcr0 measured for galaxies at z ≈ 0.3−0.5
to galaxies at z = 2, assuming no evolution. Thus our
results should only be seen as a rough estimate of the
magnitude of this effect (note however that we assume

FIG. 2: Same as Fig. 2, but for the B-mode component.

a constant alignment strength with respect to the phys-
ical, not comoving tidal field). Even with this caveat
in mind however, it is clear that the intrinsic alignment
contribution is far larger than the lensing contribution.
This is in contrast to the scalar case, where for source
galaxies at cosmological redshifts the lensing signal is
significantly larger than the intrinsic alignment contri-
bution. The underlying reason is that the projected con-
tributions from lensing are relatively suppressed in the
tensor case. While scalar perturbations with transverse
wavevector deflect light coherently along the past line
cone to the source, tensor perturbations propagate and
decay, such that no such coherent deflection occurs even
for transverse wavevectors [14]. The result is that the
lensing contributions are mostly localized at the source
for tensor modes, and down-weighted by the lensing ker-
nel (∝ χ̃− χ).

Apart from C1ρcr0, the linear alignment model has an-
other free parameter in the redshift zp at which the tidal
field is evaluated. By default, we choose zp = z̃. How-
ever, choosing zp to correspond to a time 5 × 108 years
before observation (zp ≈ z̃ + 0.04 for z̃ = 2), which cor-
responds to several dynamical times for typical galax-
ies, only yields a slight increase in the power spectrum
contribution by ∼3%. Varying zp thus does not have
a significant impact on the intrinsic alignment contribu-
tion. On the other hand, this mild dependence on zp
indicates that the bulk of the IA contribution induced
by tensor modes is due to slowly varying tidal fields, i.e.
tensor modes with k/H ∼ 1, rather than rapidly oscillat-
ing modes with k/H ≫ 1 (this is confirmed by numeri-
cal inspection of the intrinsic alignment contribution to



7

FIG. 3: Angular power spectrum of the observed E-
component of the shear from lensing and intrinsic alignment
affects, as well as the total power spectrum. We assumed
C1ρcr0 = 0.12 (following the results of [19]), and a Gaussian
distribution of source redshifts centered at z̃ = 2 with RMS
width of ∆z = 0.03(1 + z̃).

FE,B
l ). Such tidal fields, which vary on a Hubble time,

are not expected to have a qualitatively different effect
on the formation of galaxies and halos than scalar tidal
fields, given that the relevant time scale is the dynam-
ical time of the collapsing dark matter halo. We thus
expect that the value of C1ρcr0 relevant for the IA con-
tributions to shear from tensor modes will not be very
different from that for scalar tidal fields. However, one
would expect C1ρcr0 to be generically scale-dependent for
tensor modes, decaying from its low-k limit to smaller
values as 1/k approaches the scale of halos and galaxies
(k & 0.3 h/Mpc).

Fig. 5 shows the redshift evolution of the B-modes of
the shear. As expected, larger source redshifts yield sig-
nificantly larger signals, due to the decay of the tensor
modes and since at higher redshifts, larger scales are be-
ing probed at a given l. However, we also see that the
intrinsic alignment contribution evolves even faster with
source redshift (note that here we have assumed the same
value for C1ρcr0 at all redshifts). This can be traced back
to the factor of ã−2 in the IA contribution [Eq. (21)],
which is due to the transformation from conformal time
derivatives to physical time derivatives. It is also interest-
ing to consider the dependence of the signal on the width
of the source galaxy redshift distribution. This is illus-
trated in Fig. 6. The lensing contributions are largely
independent of ∆z for the range of multipoles relevant

FIG. 4: Same as Fig. 3, but for B-modes.

here. On the other hand, the IA contribution is notice-
ably increased for sharp source redshifts at l & 10, a
consequence of the fact that this contribution is not pro-
jected along the line of sight but evaluated at the source.
Thus, unlike the lensing contribution, the IA contribution
is essentially a three-dimensional field. Note also that in
this case l(l + 1)CBB

γ (l) ≈ const, i.e. there is roughly
equal power per decade in multipole for the IA contribu-
tion. However, following our discussion above, we expect
the approximation of a scale-independent alignment coef-
ficient to break down once the wavelength of contributing
tensor modes approaches the scale of halos, roughly at l
greater than a few hundred.

A. B-modes from scalar perturbations

In addition to being sourced by primordial tensor
modes, shear B-modes are also produced by second-order
corrections to lensing by scalar perturbations. These
come from three sources.
The first source is tensor modes generated by non-

linear gravitational instability (e.g., [22, 23]). The shear
B-mode power spectrum induced by these tensor modes
was found to be roughly scale-invariant and at the level
of l(l+1)CBB(l)/2π ≈ 10−14 [10] which is much smaller
than the total primordial GW signal presented here for
r = 0.2. However, the calculation of [10] did not include
the intrinsic alignment effect which will also increase the
B-mode signal of scalar-induced tensor modes. Due to
the different scale-dependence and redshift evolution of
the latter, the boost will likely be somewhat smaller than
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that for the primordial tensor modes. We leave this for
future work.
The second, more significant scalar source for B-modes

is from second-order corrections in the geodesic equation
(beyond-Born correction and lens-lens coupling) [24, 25].
We have evaluated these according to

CBB
γ =

(l + 2)(l − 1)

l(l+ 1)
Cωω

l , (24)

where Cωω
l is given in Eq. (51) of [24]. Note that the

expression given there uses the Limber and flat-sky ap-
proximations and is thus not expected to be accurate
for l . 10. We compare this contribution with the to-
tal contribution from primordial tensor modes (intrinsic
alignment and lensing) in Fig. 7. At z = 2, the scalar
contributions become larger than the tensor mode signal
at l & 6. For higher redshifts, they only dominate at
higher l.
Finally, a third contribution comes from the fact that

observationally we measure the reduced shear g = γ/(1−
κ) [26, 27]. Furthermore, selection effects (“lensing bias”)
lead to a similar second order correction [28]. At leading
order, both contributions can be summarized by writing
the observed shear tensor as

γobs
ij (n̂) = γij(n̂) + (1 + q)κ̂(n̂)γij(n̂), (25)

where the parameter q parametrizes the lensing bias con-
tribution [28]. We can evaluate the scalar B-mode con-
tribution from both of these effects using Eq. (21) in [28].
Note that this equation was derived in the flat-sky limit
and hence will also not be accurate at l . 10. This con-
tribution is also shown in Fig. 7 (assuming a lensing bias
coefficient of q = 1). This contribution is even larger
than that from the second order Born correction, and
in fact dominates over the primordial GW contribution
at z̃ = 2 for all l but l = 2. In principle one could re-
duce this contribution significantly by selecting a source
galaxy sample with q ≈ −1, although whether this is
feasible in practice would need to be investigated. The
fact that the reduced shear and lensing bias contribu-
tions produce the dominant scalar contribution to shear
B-modes is an interesting result in itself and has not been
pointed out before.

VII. DISCUSSION

In this paper, we have studied the shear induced by a
primordial GW background. In addition to the projec-
tion (lensing) effects, for which we use a gauge-invariant
expression, we derive for the first time the contribution
due to intrinsic alignment (IA) of galaxies through the
effective tidal field induced by tensor modes. We have
found that this contribution is typically much larger than
that from lensing. While surprising initially, this is due to
the qualitatively different properties of lensing by tensor
modes as compared to scalar modes.

FIG. 5: Dependence of the lensing and intrinsic alignment
contributions to the B-mode shear power spectrum on the
source redshift z̃. We have assumed a Gaussian redshift dis-
tribution centered at z̃ = 5, 2, 1 (from top to bottom), and
RMS width ∆z = 0.03(1 + z̃). The black dotted line near
the top of the figure shows the 1σ error on the shear power
spectrum per multipole induced by shape noise [Eq. (27)], for
a survey with n̄ = 100 arcmin−2, σe = 0.3, and fsky = 0.5.

The IA contribution depends on a coefficient which
can be observationally determined for scalar perturba-
tions. In general, this does not have to be the same for
tensor modes, since tensor modes evolve while the scalar
tidal field is constant on large scales (during matter dom-
ination). On the other hand, the bulk of the tensor con-
tributions is from horizon-scale modes, which evolve on
the Hubble time scale. Compared to the dynamical time
of galaxies and halos, this is a very slow evolution, and
we expect the alignment coefficient to only be mildly af-
fected by this. On the other hand, the results shown in
Fig. 3 through 6 depend on the alignment strength at
high redshifts, which is currently poorly known observa-
tionally.
The IA contribution also decays much more slowly to-

wards high l than the lensing contribution (especially for
narrow source redshift distributions). In principle, this
could allow one to access smaller-scale tensor modes than
those probed by the cosmic microwave background. Fur-
ther, since the IA contribution is not projected along the
light cone, this effect in principle allows us to measure the
entire three-dimensional field of tensor perturbations. In
the case of perfect redshift measurements, the number of
tensor modes measurable up to a maximum scale would
thus scale as k3max rather than l2max.
On the other hand, even with this increased signal, the
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FIG. 6: Dependence of the lensing and intrinsic alignment
contributions to the B-mode shear power spectrum on the
width of the source redshift distribution ∆z. z̃ = 2 for all
curves.

requirements for a detection of a stochastic GW back-
ground using galaxy ellipticities are still extremely chal-
lenging. Purely in terms of statistical power, the intrinsic
ellipticities of galaxies add noise (“shape noise”) to the
shear E- and B-mode power spectra. The corresponding
1σ error on the power spectrum per multipole is given by

∆CXX
γ (l) =

1
√

(2l + 1)fsky

σ2
e

2n̄
, (26)

where X = E,B, fsky is the fraction of sky covered by
the survey, σe is the RMS intrinsic ellipticity of galaxies,
and n̄ is the number of source galaxies per steradian. In
numbers, this yields

l(l+ 1)

2π
∆CXX

γ (l) ≈ 1.6× 10−11

(

l

2

)3/2

f
−1/2
sky

( σe

0.3

)2

×
( n̄

100 arcmin−2

)−1

. (27)

This prediction, for fsky = 0.5, is shown as black dotted
line in Fig. 5. Clearly, one would need to go to source
redshifts z̃ > 2, at very high source densities, to detect
a GW contribution at the level of r = 0.2 (unless the

alignment strength at z ∼ 2 is significantly larger than
that measured at low redshifts).

Given the smallness of the signal and the possible con-
tamination by scalar contributions (§ VIA), quantitative
constraints on an inflationary GW background will thus
be very challenging. Nevertheless, shear B-modes remain

FIG. 7: Shear B-modes from tensor perturbations (black
solid, including both lensing and intrinsic alignment) and sec-
ond order scalar contributions from corrections to the Born
approximation (magenta dashed) and reduced shear and lens-
ing bias (assuming q = 1, red dash-dotted). Results are for
redshifts z̃ = 5, 2, 1 (from top to bottom). Note that the
scalar contributions have been calculated using the Limber
and flat-sky approximations, respectively, which are not ac-
curate at l . 10 (dotted lines).

one of only a handful of probes in cosmology that can be
used to search for such a background.
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Appendix A: Fermi normal coordinates

In this appendix we review the basic concept of Fermi normal coordinates and its application to a flat FRW metric
with perturbation hij of the spatial components (Eq. (1), but without imposing the transverse or tracefree conditions
on hij). General covariance allows us to choose coordinates such that, at any given space-time point P , the metric is
Minkowski and the Christoffel symbols vanish [29]; i.e.,

gµν = ηµν

gµν,α = 0. (A1)

Riemann normal coordinates realize such coordinates by using a set of four geodesics (one time-like and three space-
like) starting from the fixed point P . Fermi normal coordinates (FNC) are a specific extension of Riemann coordinates
such that Eq. (A1) holds for every point along a fixed time-like geodesic. Specifically, we single out a time-like geodesic
(“central geodesic”) that passes through P , as the wordline of the observer around which the FNC are constructed.
Given three space-like tangent vectors at P which are orthogonal to the tangent vector of the central geodesic at
P , the tangent vectors at all other points along the central geodesic are defined through parallel transport. For all
points along the central geodesic, we construct Riemann coordinates using these tangent vectors. Then, the condition
Eq. (A1) is satisfied at all points along the central geodesic. Given a central geodesic, FNC are uniquely defined up
to three Euler angles. The significance of FNC is that they are the natural coordinates in which an observer moving
along the central geodesic would describe local experiments. With the conditions Eq. (A1) satisfied, the departure
from Minkowski of the metric in FNC appears at quadratic order in the spatial Fermi coordinate xi

F .
The Fermi normal coordinates can be explicitly constructed as follows (see [13, 30]). The time coordinate is chosen

to coincide with the proper time along the central geodesic. Let x0
F (P ) = tP denote its value at point P . We can

construct the spatial slicing of FNC, i.e. the x0
F = const hypersurface, as comprising all space-time points in the

neighborhood of the central geodesic that are reached by a congruence of spatial geodesics whose tangent vector at P
are orthogonal to the tangent vector of the central geodesic (e0)

µ
P . Let Q denote a point on this hypersurface, so that

x0
F (Q) = tP . Further let x

µ(λ) be the unique geodesic (up to reparametrization) that connects P and Q. We can fix
the affine parameter by requiring xµ(0) = P, xµ(1) = Q. We now expand xµ(λ) in a power series in λ around λ = 0,

xµ(λ) =
∞
∑

n=0

αµ
nλ

n. (A2)

The requirement that xµ(0) = P constrains αµ
0 to be equal to the coordinates of P in the chosen, arbitrary coordinate

system. Given a set of three orthonormal space-like unit vectors (ei)
µ
P at P which are orthogonal to (e0)

µ
P , we can

further write

αµ
1 =

dxµ

dλ

∣

∣

∣

λ=0
= xi

F (ei)
µ
P . (A3)

Since (ei)
µ are parallel transported along the central geodesic, they are uniquely defined along the geodesic once they

are specified at one point; i.e., they are unique up to three Euler angles. Eq. (A3) defines the spatial Fermi coordinate

xj
F (recall that we have defined λ through xµ(λ = 1) = Q, so that δijx

i
Fx

j
F provides a measure for the spatial distance

between points Q and P ).
In order to obtain the metric in the Fermi coordinate up to including O(x2

F ), we also need quadratic (αµ
2 ) and cubic

(αµ
3 ) order coordinate transformation. For that, we use the geodesic equation:

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0. (A4)

Rearranging the equation immediately yields

d2xµ

dλ2

∣

∣

∣

∣

λ=0

= 2αµ
2 = − Γµ

αβ

dxα

dλ

dxβ

dλ

∣

∣

∣

∣

λ=0

= −Γµ
αβ

∣

∣

∣

P
(ei)

α
P (ej)

β
Px

i
Fx

j
F

αµ
2 = − 1

2
Γµ
αβ

∣

∣

∣

P
(ei)

α
P (ej)

β
Px

i
Fx

j
F . (A5)

Applying one more derivative with respect to λ to the geodesic equation yields αµ
3 through

αµ
3 =

1

6

d3xµ

dλ3

∣

∣

∣

∣

λ=0

= −1

6

d

dλ

(

Γµ
αβ

dxα

dλ

dxβ

dλ

)∣

∣

∣

∣

λ=0

= − 1

6

[

Γµ
αβ,γ − 2Γµ

σαΓ
σ
βγ

]

P
(ei)

α
P (ej)

β
P (ek)

γ
Px

i
Fx

j
Fx

k
F . (A6)
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Combining all, we find the coordinate transformation from FNC to general coordinates on a fixed x0
F hypersurface,

up to third order in xi
F :

xµ(xi
F )

∣

∣

∣

tP
= xµ(P ) + (ei)

µ
P xi

F − 1

2
Γµ
αβ

∣

∣

∣

P
(ei)

α
P (ej)

β
Px

i
Fx

j
F − 1

6

[

Γµ
αβ,γ − 2Γµ

σαΓ
σ
βγ

]

P
(ei)

α
P (ej)

β
P (ek)

γ
Px

i
Fx

j
Fx

k
F . (A7)

Here we have made explicit that (eν)
µ and Γµ

αβ are always evaluated along the central geodesic at P . In App. A 1, we

use this to derive the quadratic order FNC metric gFµν for a given global metric gµν [Eq. (A23)]. This result is also
given in Eq. (66) of [13] and Eq. (13.73) in [29]. In App. A 2 we then apply this procedure to the perturbed FRW
metric in synchronous gauge [Eq. (1)] to obtain the Fermi coordinates and corrections ∝ x2

F to the metric. Readers
familiar with Fermi coordinates and Eq. (A23) may want to skip to App. A 2.

1. Metric in Fermi coordinate

In this section we derive the metric in the Fermi coordinate by using the coordinate transformation we have found
in Eq. (A7). The final result will be that derived by [13], Eq. (A23). Under a coordinate transformation, the metric
tensor transforms as

gFµν(xF ) =
∂xα

∂xµ
F

∂xβ

∂xν
F

gαβ(x). (A8)

Given the coordinate transform Eq. (A7), we derive the partial derivatives to second order in xF , yielding

∂xµ

∂x0
F

=
∂xµ(P )

∂x0
F

+
∂

∂x0
F

(ei)
µxi

F − 1

2

∂

∂x0
F

[

Γµ
αβ

∣

∣

∣

P
(ei)

α(ej)
β
]

xi
Fx

j
F

= (e0)
µ − Γµ

αβ

∣

∣

∣

P
(ei)

α(e0)
βxi

F − 1

2

[

Γµ
αβ,γ − 2Γµ

σβΓ
σ
γα

]

P
(e0)

γ(ei)
α(ej)

βxi
Fx

j
F (A9)

∂xµ

∂xl
F

= (el)
µ − Γµ

αβ

∣

∣

∣

P
(ei)

α(el)
βxi

F − 1

6

[

Γµ
αβ,γ − 2Γµ

σγΓ
σ
αβ

]

P

[

(ei)
α(ej)

β(el)
γxi

Fx
j
F + 2(el)

α(ej)
β(ek)

γxj
Fx

k
F

]

= (el)
µ − Γµ

αβ

∣

∣

∣

P
(ei)

α(el)
βxi

F − 1

6

[

Γµ
αβ,γ + 2Γµ

γα,β − 2Γµ
σγΓ

σ
αβ − 4Γµ

σβΓ
σ
γα

]

P
(ei)

α(ej)
β(el)

γxi
Fx

j
F , (A10)

where all unit vectors are evaluated at P . Note that ∂xµ(P )/∂x0
F = (e0)

µ
P , since by definition (e0)

µ is the tangent

vector to the central geodesic at P . Further, we have used that (ei)
µ
P and Γµ

αβ

∣

∣

∣

P
only depend on x0

F , and that by

construction, the basis vectors (ei)
µ are parallel transported along the central geodesic. This implies

0 =
D

Dx0
F

(ei)
α = (ei)

α
;µ(e0)

µ =

[

∂

∂xµ
(ei)

α + Γα
βµ(ei)

β

]

(e0)
µ =

∂

∂x0
F

(ei)
α + Γα

βµ(ei)
β(e0)

µ

⇒ ∂

∂x0
F

(ei)
α = − Γα

βµ(ei)
β(e0)

µ. (A11)

In Eq. (A9) we have also used

∂

∂x0
F

Γµ
αβ

∣

∣

∣

P
= Γµ

αβ,γ

∣

∣

∣

P
(e0)

γ
P . (A12)

Finally, we need to take into account that the metric on the right-hand side of Eq. (A8) is evaluated at a point Q
(specified by xi

F ) away from the central geodesic. We perform a Taylor expansion of gµν around P ,

gαβ(Q) = gαβ

∣

∣

∣

P
+ gαβ,µ

∣

∣

∣

P
δxµ +

1

2
gαβ,µν

∣

∣

∣

P
δxµδxν +O(δx3) (A13)

where, from Eq. (A7),

δxµ = (ei)
µ
P xi

F − 1

2
Γµ
αβ

(ei)
α
P (ej)

β
P xi

Fx
j
F (A14)
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That is, up to second order in xi
F , the metric at Q is given by

gαβ(Q) = gαβ

∣

∣

∣

P
+ gαβ,µ

∣

∣

∣

P
(ei)

µ
Px

i
F +

1

2

[

gαβ,µν − gαβ,σΓ
σ
µν

]

P
(ei)

µ
P (ej)

ν
Px

i
Fx

j
F . (A15)

From now on, every instance of gµν , Γ
σ
αβ, and (eν)

µ will be evaluated at P , and we will omit P for brevity hereafter.

Inserting Eq. (A9), Eq. (A10) and Eq. (A15) into Eq. (A8), and expanding to second order in xi
F yields the desired

metric in FNC. At linear order, Eq. (A8) becomes

gFµν =

[

(eµ)
α − Γα

ρσ (ei)
ρ (eµ)

σ xi
F

][

(eν)
β − Γβ

ρσ (ej)
ρ (eν)

σ xj
F

]

[

gαβ + gαβ,κ(ek)
κxk

F

]

= (eµ)
α
(eν)

β
gαβ +

(

gαβ,ρ − gσβΓ
σ
ρα − gασΓ

σ
ρβ

)

(eµ)
α
(eν)

β
(ei)

ρ
xi
F

= (eµ)
α
(eν)

β
gαβ + gαβ;ρ (eµ)

α
(eν)

β
(ei)

ρ
xi
F = ηµν , (A16)

where the last equality follows from the definition of the orthonormal tetrad at P ,

gµν(eα)
µ(eβ)

ν = ηαβ , (A17)

and the Levi-Civita connection, gµν;ρ = 0.
Next, we calculate the quadratic correction to the metric in FNC,

δgF00 =

[

1

2
gµν,αβ − 1

2
gµν,σΓ

σ
αβ − 2gµγ,αΓ

γ
βν − gµγΓ

γ
αβ,ν + 2gµγΓ

γ
σβΓ

σ
να + gγσΓ

γ
αµΓ

σ
βν

]

(e0)
µ(e0)

ν(el)
α(em)βxl

Fx
m
F

(A18)

δgF0i =

[

1

2
gµν,αβ − 1

2
gµν,σΓ

σ
αβ − gµγ,αΓ

γ
βν − gνγ,αΓ

γ
βµ − 1

2
gνγΓ

γ
αβ,µ + gνγΓ

γ
σαΓ

σ
µβ + gγσΓ

γ
αµΓ

σ
βν

− 1

6
gµλ

(

Γλ
αβ,ν + 2Γλ

να,β − 2Γλ
σνΓ

σ
αβ − 4Γλ

σβΓ
σ
αν

)

]

(e0)
µ(ei)

ν(el)
α(em)βxl

Fx
m
F (A19)

δgFij =

[

1

2
gµν,αβ − 1

2
gµν,σΓ

σ
αβ − 2gµγ,αΓ

γ
νβ + gγσΓ

γ
αµΓ

σ
βν

− 1

3
gµλ

(

Γλ
αβ,ν + 2Γλ

να,β − 2Γλ
σνΓ

σ
αβ − 4Γλ

σβΓ
σ
αν

)

]

(ei)
µ(ej)

ν(el)
α(em)βxl

Fx
m
F . (A20)

Finally, using

0 = gµν;α = gµν,α − gσνΓ
σ
µα − gµσΓ

σ
να, (A21)

we have

gµν,αβ = gµσΓ
σ
να,β + gσνΓ

σ
µα,β + gµγΓ

γ
σβΓ

σ
να + gγνΓ

γ
σβΓ

σ
µα + gγσ

(

Γγ
µβΓ

σ
να + Γγ

νβΓ
σ
µα

)

. (A22)

By using Eqs. (A21)–(A22), we write the partial derivatives of the metric as a function of the metric itself and the
Christoffel symbols, to obtain the final expression for the FNC metric at quadratic order:

δgF00 = −RF
0l0mxl

Fx
m
F (A23)

δgF0i = − 2

3
RF

0limxl
Fx

m
F

δgFij = − 1

3
RF

iljmxl
Fx

m
F .

Here, we have defined RF
αβγδ as the Riemann tensor in FNC,

RF
αβγδ = (eα)

µ(eβ)
ν(eγ)

κ(eδ)
λ Rµνκλ, (A24)

where the Riemann tensor is defined following the convention of [29]

Rµ
αβγ = Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓ
σ
αγ − Γµ

σγΓ
σ
αβ . (A25)
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2. Application to synchronous gauge metric

We write the perturbed FRW metric Eq. (1) in terms of proper time t instead of conformal time η,

ds2 = −dt2 + a2(t)[δij + hij ]dx
idxj . (A26)

For this metric, coordinate time coincides with proper time for a comoving observer (xi = const). Thus, without loss
of generality we choose {(t, 0, 0, 0)}t as central geodesic. Further, since the FNC time coordinate tF is given by the
proper time along the central geodesic, we have tF = t along the central geodesic (while tF 6= t away for xi

F 6= 0).
Correspondingly, the unit time vector is given by (e0)

µ = (1, 0, 0, 0), and orthogonal spatial basis vectors are given by
(see also [31])

(ek)
µ =

(

0,
1

a

[

δik −
1

2
hik

])

. (A27)

The inverse metric is

g00 = −1, gij =
1

a2
(δij − hij) . (A28)

This leads to the following Christoffel symbols,

Γ0
00 = Γ0

0i = Γi
00 = 0 (A29)

Γ0
ij = a2Hδij + a2Hhij +

a2

2
ḣij (A30)

Γi
0j =Hδij +

1

2
ḣij (A31)

Γi
jk =

1

2
(hji,k + hki,j − hjk,i) , (A32)

where here and throughout, dots denote derivatives with respect to t. The Riemann tensor is given by

Ri
00m =

(

Ḣ +H2
)

δim +
1

2
ḧim +Hḣim (A33)

Rn
0im =

1

2

(

ḣnm,i − ḣni,m

)

(A34)

Rn
ijm = a2H2 [δnjδim − δnmδij ] +

1

2
(hmn,ij + hij,nm − him,nj − hjn,im)

+ a2H2 (himδnj − hijδnm) +
a2H

2

(

ḣnjδim + ḣimδnj − ḣijδnm − ḣnmδij

)

. (A35)

We then have

Ri00m = gijR
j
00m = a2

(

Ḣ +H2
)

δim + a2
[

1

2
ḧim +Hḣim +

(

Ḣ +H2
)

him

]

(A36)

Rl0im =
a2

2

(

ḣlm,i − ḣli,m

)

(A37)

Rlijm = a4H2 [δljδim − δlmδij ] +
a2

2
(hml,ij + hij,lm − him,lj − hjl,im)

+ a4H2 (himδlj + hljδim − hijδlm − hlmδij) +
a4H

2

(

ḣljδim + ḣimδlj − ḣijδlm − ḣlmδij

)

. (A38)

Finally, the Riemann tensor in terms of FNC is given by

RF
l00m = (el)

µ
(e0)

ν
(e0)

κ
(em)

λ
Rµνκλ =

(

Ḣ +H2
)

δlm +

[

1

2
ḧlm +Hḣlm

]

(A39)

RF
l0im =

1

2a

(

ḣlm,i − ḣli,m

)

(A40)

RF
lijm =H2 [δljδim − δlmδij ] +

1

2a2
(hml,ij + hij,lm − him,lj − hjl,im) +

H

2

(

ḣljδim + ḣimδlj − ḣijδlm − ḣlmδij

)

.

(A41)
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Combining all with Eq. (A23), we find that the metric in FNC is

gF00 = − 1 +
(

Ḣ +H2
)

r2F +

[

1

2
ḧlm +Hḣlm

]

xl
Fx

m
F .

gF0i =
1

3

(

∇iḣlm −∇mḣli

)

xl
Fx

m
F

gFij = δij +
H2

3

[

xi
Fx

j
F − r2F δij

]

+
1

6
(∇i∇jhml +∇l∇mhij −∇l∇jhim −∇i∇mhjl)x

l
Fx

m
F

+
H

6

(

ḣljx
l
Fx

i
F + ḣimxm

F xj
F − ḣijr

2
F − ḣlmxl

Fx
m
F δij

)

. (A42)

Here, we define r2F = δijx
i
Fx

j
F and denote the partial derivative with respect to the FNC by ∇i ≡ ∂/∂xi

F . Note that
in Eq. (A42), the derivative terms are already order x2

F , hence we can use ∇i = (1/a)∂/∂xi here. We reiterate that
Eq. (A42) is valid for any spatial metric perturbation hij , and thus also encompasses scalar cosmological perturbations
written in synchronous-comoving gauge.
It is also useful to have an explicit expression for the transformation from global coordinates xµ to Fermi coordinates

xν
F . Evaluating Eq. (A7) for the metric Eq. (A26) yields

xi =

(

δij −
1

2
hij

)

1

a
xj
F − 1

2
Γi
jk

1

a2
xj
Fx

k
F +O(x3

F ) (A43)

1

a
xi
F =

(

δij −
1

2
hij

)

xj − 1

2
Γi
jkx

jxk +O(x3). (A44)

This result is used in § VIIB of [1].
Finally, given the FNC metric Eq. (A42), we can derive the motion of non-relativistic bodies (of momentum pi and

mass m), which is governed by

1

m

dpi

dt
=

1

2
gF00,i = (H2 + Ḣ)xi

F −∇iΨ
F (A45)

ΨF = − 1

2

(

1

2
ḧij +Hḣij

)

xi
Fx

j
F . (A46)

This is the usual quasi-Newtonian equation of motion of a particle in an expanding Universe with peculiar potential
ΨF . The effective potential induces a tidal tensor given by

tij ≡
(

∂i∂j −
1

3
δij∇2

)

ΨF

= − 1

2

(

1

2
ḧlm +Hḣlm

)(

∂i∂j −
1

3
δij∇2

)

xl
Fx

m
F

= −
[(

1

2
ḧlm +Hḣlm

)

− 1

3
δijTr

(

1

2
ḧlm +Hḣlm

)]

. (A47)

If hij is traceless, the last term vanishes and we obtain

tij
traceless

= −
(

1

2
ḧlm +Hḣlm

)

. (A48)

Appendix B: Derivation of shear

1. Shear statistics from tensor modes

We express the tensor metric perturbation hij(x̃, η) as

hij(x̃, η) =

∫

d3k

(2π)3

[

e+ij(k̂)h
+(k, η) + e×ij(k̂)h

×(k, η)
]

eik·n̂ χ̃

=

∫

d3k

(2π)3

∑

p=−1,1

epij(k̂)hp(k, η) e
ik·n̂ χ̃, (B1)
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where we have defined the helicity±2 polarization tensors and Fourier amplitudes through

e±1
ij ≡ e+ij ± ie×ij

h±1 ≡ 1

2
(h+ ∓ ih×). (B2)

In standard spherical coordinates, we have

mi
± =

1√
2
(êθ ∓ iêφ) =

1√
2





cos θ cosφ± i sinφ
cos θ sinφ∓ i cosφ

− sin θ



 , (B3)

where êθ and êφ are, respectively, the unit vectors of the polar and azimuthal angles. In order to make progress, we
begin by evaluating the contribution of a single plane wave, assuming that k = kẑ. We have

ep±(k̂, n̂) ≡ epij(k̂)m
i
∓(n̂)m

j
∓(n̂) =

1

2
(1 ∓ pµ)2ei2pφ

ep‖(k̂) ≡ epij n̂
in̂j = (1− µ2)ei2pφ

epij(k̂)m
i
∓(n̂)n̂

j =

√

1− µ2

√
2

(µ∓ p)ei2pφ, (B4)

where p = ±1 and µ = cos θ. We will also use the notation k± = mi
∓ki = − sin θ k/

√
2. Using Eq. (15) and Eq. (20),

we then have for the contribution to the shear

(±2γ)(k, n̂) =
∑

p=−1,1

{

− 1

2

[

hp(k, η0) + hp(k, η̃)e
ik·n̂ χ̃

]

ep± +
1

3
C1ρcr0H

−2
0 ã−2

(

h′′
p(k, η̃) + ãH̃h′

p(k, η̃)
)

eik·n̂,χ̃ep±

−
∫ χ̃

0

dχ

[

χ̃− χ

2

χ

χ̃
(−k2±)e

p
‖ +

(

1− 2
χ

χ̃

)

ik±m
k
∓n̂

lepkl −
1

χ̃
ep±

]

hp(k, η0 − χ)eik·n̂χ

}

=
∑

p=−1,1

{

− 1

2

[

hp(k, η0) +

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

hp(k, η̃)e
ik·n̂ χ̃

]

1

2
(1 ∓ pµ)2ei2pφ

+

∫ χ̃

0

dχ

[

χ̃− χ

4

χ

χ̃
k2(1− µ2)2 +

(

1− 2
χ

χ̃

)

i
k

2
(1− µ2)(µ∓ p) +

1

2χ̃
(1 ∓ pµ)2

]

× ei2pφhp(k, η0 − χ)eik·n̂χ

}

.

(B5)

Here, η̃ = η0 − χ̃ is the conformal time at emission inferred from the observed redshift, and all tilded quantities are
evaluated at the source redshift. The next step will be to derive the spherical harmonic coefficients of the shear.
Clearly, all factors involve e±i2φ, so that only spherical harmonic coefficients with m = ±2 will be non-zero (this is of
course a consequence of the choice k = kẑ).

2. Spin-raising and lowering

Let us consider the case of 2γ, and restrict to one circular polarization p = +1 first:

2γ(k, n̂,+1) = − 1

4

[

h1(k, η0)e
ixµ

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)e
ix̃µ

]

(1− µ)2ei2φ

+

∫ χ̃

0

dχ

[

χ̃− χ

4

χ

χ̃
k2(1− µ2)2 +

(

1− 2
χ

χ̃

)

ix

2χ
(1− µ2)(µ− 1) +

1

2χ̃
(1 − µ)2

]

ei2φh1(k, η0 − χ)eixµ,

(B6)
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where we have defined x = kχ, x̃ = kχ̃. Since this is a spin+2 quantity, we apply the spin-lowering operator twice to
obtain a scalar. For this, we use that for functions that satisfy ∂φ sf = im sf (see App. A of [1] and [32] for details),

ð̄
2
2f(µ, φ) =

(

− ∂

∂µ
+

m

1− µ2

)2
[

(1− µ2) 2f(µ, φ)
]

ð
2
−2f(µ, φ) =

(

− ∂

∂µ
− m

1− µ2

)2
[

(1− µ2) −2f(µ, φ)
]

. (B7)

With m = 2, this yields

ð̄
2
2γ(k, n̂,+1) = − 1

4

(

− ∂

∂µ
+

2

1− µ2

)2 {

(1− µ2)(1− µ)2
[

h1(k, η0)e
ixµ

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)e
ix̃µ

]}

ei2φ

+

∫ χ̃

0

dχ

(

− ∂

∂µ
+

2

1− µ2

)2

(1− µ2)

[

1

4

χ̃− χ

χχ̃
x2(1− µ2)2 +

1

2

χ̃− 2χ

χχ̃
ix(1− µ2)(µ− 1) +

1

2χ̃
(1 − µ)2

]

× ei2φh1(k, η0 − χ)eixµ

= − 1

4

(

− ∂

∂µ
+

2

1− µ2

)2 {

(1− µ2)(1− µ)2
[

h1(k, η0)e
ixµ

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)e
ix̃µ

]}

ei2φ

+

∫ χ̃

0

dχ

χ

(

− ∂

∂µ
+

2

1− µ2

)2

(1− µ2)

[(

1

4
x2(1− µ2)2 +

1

2
ix(1− µ2)(µ− 1)

)

+
χ

χ̃

(

−1

4
x2(1 − µ2)2 − ix(1− µ2)(µ − 1) +

1

2
(1− µ)2

)]

× ei2φh1(k, η0 − χ)eixµ

=

{

− 1

4

[

h1(k, η0)
(

Q̂1(x)e
ixµ

) ∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)Q̂1(x̃)e
ix̃µ

]

+

∫ χ̃

0

dχ

χ

[

Q̂2(x) +
χ

χ̃
Q̂3(x)

]

h1(k, η0 − χ)eixµ

}

(1− µ2)ei2φ, (B8)

where we have turned powers of µ into powers of −i∂x and defined derivative operators Q̂i(x) as

Q̂1(x) = 12− x2 + 8x∂x + x2∂2
x − i

(

8x+ 2x2∂x
)

Q̂2(x) = − 1

4

[

14x2 + x4 + (40x+ 14x3)∂x + (50x2 + 2x4)∂2
x + 14x3∂3

x + x4∂4
x

]

− 1

2
i
[

4x+ x3 + 6x2∂x + x3∂2
x

]

Q̂3(x) =
1

4

[

24 + 24x2 + x4 + (96x+ 16x3)∂x + (72x2 + 2x4)∂2
x + 16x3∂3

x + x4∂4
x

]

. (B9)

Although these operators are complicated, they will facilitate the connection with the convergence and rotation below.
Note that, as expected, the real parts of Q̂i(x) only involve even powers of x (counting derivatives as well), while the

imaginary parts involve odd powers only (where Im Q̂3 = 0). We now turn to p = −1:

2γ(k, n̂,−1) = − 1

4

[

h−1(k, η0)e
ixµ

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h−1(k, η̃)e
ix̃µ

]

(1 + µ)2e−i2φ

+

∫ χ̃

0

dχ

[

χ̃− χ

4

χ

χ̃
k2(1− µ2)2 +

(

1− 2
χ

χ̃

) −ix

2χ
(1− µ2)(−µ− 1) +

1

2χ̃
(1 + µ)2

]

e−i2φh−1(k, η0 − χ)eixµ.

(B10)

The appropriate spin-lowering operator is now for m = −2, i.e.

(−∂µ − 2/(1− µ2))2 = (∂µ + 2/(1− µ2))2 = (−∂−µ + 2/(1− µ2))2. (B11)
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Thus, 2γ(k, n̂,−1) is equal to 2γ(k, n̂,+1) [Eq. (B6)] when changing µ → −µ, x → −x in addition to h1 → h−1, φ →
−φ. Since Q̂i(−x) = Q̂∗

i (x), we obtain

ð̄
2
2γ(k, n̂,−1) =

{

− 1

4

[

h−1(k, η0)
(

Q∗
1(x)e

ixµ
)

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h−1(k, η̃)Q
∗
1(x̃)e

ix̃µ

]

+

∫ χ̃

0

dχ

χ

[

Q̂∗
2(x) +

χ

χ̃
Q̂∗

3(x)

]

eixµh−1(k, η0 − χ)

}

(1− µ2)e−i2φ. (B12)

Similarly, we can derive the corresponding expressions for −2γ,

−2γ(k, n̂,+1) = − 1

4

[

h1(k, η0)e
ixµ

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)e
ix̃µ

]

(1 + µ)2ei2φ

+

∫ χ̃

0

dχ

[

χ̃− χ

4

χ

χ̃
k2(1− µ2)2 +

(

1− 2
χ

χ̃

) −ix

2χ
(1 − µ2)(−µ− 1) +

1

2χ̃
(1 + µ)2

]

ei2φh1(k, η0 − χ)eixµ,

(B13)

and correspondingly for p = −1, by acting twice with the spin-raising operator for m = ±2, (−∂µ ∓ 2/(1−µ2)). This
immediately leads to

ð
2
−2γ(k, n̂,+1) =

{

− 1

4

[

h1(k, η0)
(

Q∗
1(x)e

ixµ
)

∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h1(k, η̃)Q
∗
1(x̃)e

ix̃µ

]

+

∫ χ̃

0

dχ

χ

[

Q̂∗
2(x) +

χ

χ̃
Q̂∗

3(x)

]

eixµh1(k, η0 − χ)

}

(1− µ2)ei2φ

ð
2
−2γ(k, n̂,−1) =

{

− 1

4

[

h−1(k, η0)
(

Q̂1(x)e
ixµ

) ∣

∣

∣

x=0
+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

h−1(k, η̃)Q̂1(x̃)e
ix̃µ

]

+

∫ χ̃

0

dχ

χ

[

Q̂2(x) +
χ

χ̃
Q̂3(x)

]

eixµh−1(k, η0 − χ)

}

(1− µ2)e−i2φ. (B14)

This is in the desired form of Eq. (A17) in App. A1 of [1], with azimuthal harmonic index r = ±2. Since the shear

±2γ is a spin±2 quantity, and h±1 are two independent polarization states with power spectra Ph±1
(k) = PT0(k)/8,

we can apply Eq. (A24) in [1] with s = 2, r = 2, NP = 2, and Ph = PT0/8:

CXX
γ (l) =

1

2π

∫

k2dk PT0(k)|F γX
l (k)|2 (B15)

F γE
l (k) ≡ − 1

4

[

TT (k, η0)

(

Re Q̂1(x)
jl(x)

x2

)

x=0

+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

TT (k, η̃)Re Q̂1(x̃)
jl(x̃)

x̃2

]

+

∫ χ̃

0

dχ

χ

[

Re Q̂2(x) +
χ

χ̃
Re Q̂3(x)

]

jl(x)

x2
TT (k, η0 − χ)

F γB
l (k) ≡ − 1

4

[

TT (k, η0)

(

Im Q̂1(x)
jl(x)

x2

)

x=0

+

(

1− 2

3
C1ρcr0H

−2
0 ã−2

{

∂2
η̃ + ãH̃∂η̃

}

)

TT (k, η̃)Im Q̂1(x̃)
jl(x̃)

x̃2

]

+

∫ χ̃

0

dχ

χ

[

Im Q̂2(x) +
χ

χ̃
Im Q̂3(x)

]

jl(x)

x2
TT (k, η0 − χ).
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Again, η̃ = η0 − χ̃, ã = a(η̃), and x = kχ, x̃ = kχ̃. This completes the derivation of the angular power spectrum of

E- and B-modes of the shear. The operators Q̂i when applied to spherical Bessel functions can be simplified to yield

Re Q̂1(x)
jl(x)

x2
= − 1

x2

[

(2x2 − l2 − 3l − 2)jl(x) + 2xjl+1(x)
]

Im Q̂1(x)
jl(x)

x2
= − 1

x
[2(l + 2)jl(x)− 2xjl+1(x)]

= 2

[

(l − 1)
jl(x)

x
− jl−1(x)

]

Re Q̂2(x)
jl(x)

x2
= − 1

4

[

(l4 − 5l2 + 4)
jl(x)

x2
+ 2(l2 + l − 2)

jl+1(x)

x

]

= − 1

4
(l + 2)(l − 1)

[

(l + 1)(l − 2)
jl(x)

x2
+ 2

jl+1(x)

x

]

Im Q̂2(x)
jl(x)

x2
= − (l − 1)(l + 2)

2

jl(x)

x

Re Q̂3(x)
jl(x)

x2
=

1

4

(l + 2)!

(l − 2)!

jl(x)

x2

Im Q̂3(x)
jl(x)

x2
= 0. (B16)

In the limit of x → 0 for l = 2, we have

Re Q̂1(x)
j2(x)

x2

x→0
=

4

5

Re Q̂3(x)
j2(x)

x2

x→0
=

2

5
, (B17)

while all other operators vanish in this limit for l = 2, and all operators vanish in this limit for l > 2. With this, we
can easily verify that modes with k → 0 do not contribute to the quadrupole, as desired. As we let k → 0, and thus

x → 0, we trivially have F γB
l (k) → 0, and

F γE
l (k)

k→0
= −1

4
2

(

4

5

)

+

∫ χ̃

0

dχ

χ

χ

χ̃

(

2

5

)

= −2

5
+

2

5
= 0, (B18)

where we have used that TT (k → 0, η) → 1 (of course, we only need the fact that TT (k → 0, η) → const).

Appendix C: Connection to convergence and rotation

In this section, we cross-check Eq. (B15) with the angular power spectra of coordinate convergence and rotation,
through the relations Eq. (23).

1. Angular power spectrum of coordinate convergence

We begin with the general expression for the coordinate convergence κ̂ ≡ −1/2∂⊥i∆xi
⊥ derived in [1], restricted to

synchronous-comoving gauge, and assuming a tranverse-traceless metric perturbation hij :

κ̂ =
3

4
(h‖)o +

1

2

∫ χ̃

0

dχ

[

− ∂‖h‖ −
3

χ
h‖ + (χ̃− χ)

χ

χ̃
∇2

⊥

{

−1

2
h‖

}

]

=
3

4
(h‖)o +

∫ χ̃

0

dχ

[

−1

2
∂‖h‖ −

3

2χ
h‖

]

− 1

4
∇2

Ω

∫ χ̃

0

dχ
χ̃− χ

χχ̃
h‖. (C1)
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This is equivalent to the expression used in [7], but in a form more convenient for the comparison with the shear.
Considering a single plane-wave perturbation oriented along the z-axis, with +1 circular polarization, we have

κ̂(n̂,k,+1) =
3

4
(1− µ2)ei2φeixµ

∣

∣

∣

x=0
h1(k, η0) +

∫ χ̃

0

dχ

[

− 1

2χ
x∂x − 3

2χ

]

(1− µ2)ei2φeixµh1(k, η)

− 1

4
∇2

Ω

∫ χ̃

0

dχ
χ̃− χ

χχ̃
(1− µ2)ei2φeixµh1(k, η), (C2)

where we have used Eq. (B4), and turned iµk into x/χ∂x, understanding that the derivative only acts on eixµ. In
order to derive the multipole moments of κ̂, we now use the relation (see App. A in [1])

∫

dΩ Y ∗
lm(1− µ2)e±i2φeixµ = −

√

4π(2l+ 1)

√

(l + 2)!

(l − 2)!
il
jl(x)

x2
δm±2, (C3)

which yields

aκ̂lm(k) = −
√

2l+ 1

4π

(l + 2)!

(l − 2)!
(4π)ilδm2

[

3

4
h1(k, η0)

jl(x)

x2

∣

∣

∣

x=0

+

∫

dχh1(k, η)

{

− 1

2χ
x∂x − 3

2χ
+

1

4
l(l + 1)

χ̃− χ

χχ̃

}

jl(x)

x2

]

. (C4)

We thus obtain for the angular power spectrum of κ̂:

Cκ̂(l) =
1

2π

∫

k2dk PT0(k)|F κ̂
l (k)|2

F κ̂
l (k) =

√

(l + 2)!

(l − 2)!

[

− 3

4
TT (k, η0)

jl(x)

x2

∣

∣

∣

x=0
−
∫

dχ

χ
TT (k, η0 − χ)

{

−1

2
x∂x − 3

2
+

1

4
l(l + 1)

(

1− χ

χ̃

)}

jl(x)

x2

]

=

√

l(l + 1)

(l + 2)(l − 1)

[

− (l + 2)(l− 1)
3

4
TT (k, η0)

1

15
δl2

− (l + 2)(l − 1)

∫

dχ

χ
TT (k, η0 − χ)

{

−1

2
x∂x − 3

2
+

1

4
l(l + 1)

(

1− χ

χ̃

)}

jl(x)

x2

]

, (C5)

where for the observer term we have used limx→0 jl(x)/x
2 = 1/15 for l = 2, and 0 for l > 2. We can now simplify the

operator applied to the spherical Bessel function, using the recurrence relation j′l = l/x jl − jl+1, yielding

{

−1

2
x∂x − 3

2
+

1

4
l(l+ 1)

}

jl(x)

x2
= − 1

2

{

[l + 1− 1

2
l(l + 1)]

jl
x2

− jl+1

x

}

=
1

4
(l − 2)(l+ 1)

jl
x2

+
1

2

jl+1

x
. (C6)

We thus have

F κ̂
l (k) =

√

l(l + 1)

(l + 2)(l − 1)

[

− 1

5
TT (k, η0)δl2

−
∫

dχ

χ
TT (k, η0 − χ)

[

(l + 2)(l − 1)

4

{

(l − 2)(l + 1)
jl
x2

+ 2
jl+1

x

}

− 1

4

χ

χ̃

(l + 2)!

(l − 2)!

jl(x)

x2

]

]

.

(C7)

For comparison, the corresponding filter function for the E-mode of the shear is (without metric shear and IA
contributions, as discussed in § VA)

F γE
l (k) = − 1

5
TT (k, η0)δl2 −

∫ χ̃

0

dχ

χ

[

(l + 2)(l − 1)

4

{

(l + 1)(l − 2)
jl(x)

x2
+ 2

jl+1(x)

x

}

− χ

χ̃

1

4

(l + 2)!

(l − 2)!

jl(x)

x2

]

TT (k, η0 − χ),

(C8)
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where we have used the x → 0 limit for Re Q̂1jl/x
2 for the observer term. Hence,

F γE
l (k) =

√

(l + 2)(l − 1)

l(l + 1)
F κ̂
l (k). (C9)

Our result for the shear (without metric shear and intrinsic alignment) thus recovers the full-sky relation between
shear E-(gradient-)modes and coordinate convergence Eq. (23).

2. Angular power spectrum of rotation

Using the definition of the rotation Eq. (22), and the expression for ∆xi
⊥ [Eq. (36) in [1]] restricted to synchronous

gauge, we obtain

ω =
1

2

∫ χ̃

0

dχ
[

εijkn̂
i(∂j

⊥h
k
m)n̂m

]

=
1

2

∫ χ̃

0

dχ
[

εijkh
k ,j
m

]

n̂in̂m. (C10)

Note that εijk∂
j
⊥n̂

k = εijk∂
j n̂k = 0, and n̂j∂⊥ jf(x, η) = 0, and that pulling the derivatives inside the integrand yields

a factor of χ/χ̃. This result agrees with Eq. (4) in [8] (this ω is also equivalent to ∇2
θΩ as defined above Eq. (19) of

[6]). We now calculate the angular power spectrum of ω. Assuming as above a single plane wave with k = kẑ, we
have

εijkh
k ,j
m n̂in̂m = − ik

[

−2n̂1n̂2h+ +
(

(n̂1)2 − (n̂2)2
)

h×

]

eik·x

= − ik(1− µ2) [− sin 2φh+ + cos 2φh×] e
ikχµ

= k(1− µ2)
[

h1e
2iφ − h−1e

−2iφ
]

eikχµ, (C11)

since h−1 = h∗
1. Thus,

ω(n̂,k) =
1

2

∫ χ̃

0

dχ k
[

h1e
2iφ − h−1e

−2iφ
]

(1− µ2)eikχµ. (C12)

Note the relative minus sign between the two polarization states which shows that ω is parity-odd. In analogy with
the derivation for κ̂ (see also App. A1 in [1]) we use Eq. (C3) to obtain the angular power spectrum of the rotation
(it only contains “B-modes”):

CBB
ω (l) =

1

2π

∫

k2dk PT0(k)|Fω
l (k)|2 (C13)

Fω
l (k) ≡ − 1

2

√

(l + 2)!

(l − 2)!

∫

dχ

χ
xTT (k, η0 − χ)

jl(x)

x2

∣

∣

∣

x=kχ
. (C14)

In Dodelson et al. [8], an additional “metric shear” term was added to Fω
l (k):

Fω
l → Fω

l + FωMS
l

FωMS
l (k) = − 1

2

1

(l + 2)(l − 1)

√

(l + 2)!

(l − 2)!

[

(l − 1)
jl(x̃)

x̃
− jl−1(x̃)

]

TT (k, η̃). (C15)

Note that in our convention, there is an overall minus sign for both Fω
l and Fω,MS

l . Next, consider the B-mode power
spectrum of the shear without observer, IA and FNC terms, Eq. (B15) with

F γB
l (k) = − 1

2
(l + 2)(l − 1)

∫ χ̃

0

dχ

χ
xTT (k, η0 − χ)

jl(x)

x2

=

√

(l + 2)(l − 1)

l(l+ 1)
Fω
l (k), (C16)
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where we have used Eq. (B16) and Eq. (C14). We thus recover the relation Eq. (23) between the B-modes of the
shear and the rotation (without “metric shear”). The contribution of the FNC term to the B-modes of the shear is
given by

F γBFNC
l (k) = − 1

4
TT (k, η̃)Im Q̂1(x̃)

jl(x̃)

x̃2
= −1

2
TT (k, η̃)

[

(l − 1)
jl(x̃)

x̃
− jl−1(x̃)

]

=

√

(l + 2)(l− 1)

l(l + 1)
FωMS
l (k), (C17)

showing that the “metric shear” contribution to ω derived in [8] agrees with the contribution of the FNC term to the
shear B-modes.
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