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Observed angular positions and redshifts of large-scale structure tracers such as galaxies are
affected by gravitational waves through volume distortion and magnification effects. Thus, a grav-
itational wave background can in principle be probed through clustering statistics of large-scale
structure. We calculate the observed angular clustering of galaxies in the presence of a gravitational
wave background at linear order including all relativistic effects. For a scale-invariant spectrum of
gravitational waves, the effects are most significant at the smallest multipoles (2 ≤ ℓ ≤ 5), but
typically suppressed by six or more orders of magnitude with respect to scalar contributions for
currently allowed amplitudes of the inflationary gravitational wave background. We also discuss
the most relevant second-order terms, corresponding to the distortion of tracer correlation functions
by gravitational waves. These provide a natural application of the approach recently developed in
Schmidt and Jeong [1].

PACS numbers: 98.65.Dx, 98.65.-r, 98.80.Jk

I. INTRODUCTION

The origin of the initial perturbations which gave rise
to the structure in the Universe is one of the most pro-
found questions in cosmology. Currently, the most popu-
lar scenario is inflation [2, 3], a phase of accelerating ex-
pansion in the very early Universe which produced seed
perturbations as quantum fluctuations frozen after exit-
ing the horizon. One of the key predictions of inflation is
a potentially observable background of stochastic gravi-
tational waves (GW). A detection of a GW background
would allow for a determination of the energy scale of
inflation, and pose a significant challenge to competing
scenarios for the origin of the initial perturbations.

The polarization of the cosmic microwave background
(CMB) is widely considered to be the most promising
probe of the primordial GW background in the near fu-
ture [4, 5]. However, given the profound impact of a
detection, it is worth studying complementary observa-
tional techniques, in order to be able to provide inde-
pendent confirmation of a positive result. The study of
the effect of GW on large-scale structure observables has
a long history. Linder [6] considered the distortion of
galaxy correlation functions and derived an upper limit
on the GW background. Bar-Kana [7] studied the ap-
parent proper motion of distant objects induced by GW
(see also [8, 9]). More recently, Book et al. [10] have
studied the prospects for using gravitational lensing of
the CMB for this purpose. At redshifts of order 10−200,
the 21cm HI emission from the dark ages has been pro-
posed as a potentially extremely sensitive probe of a GW
background [11, 12]. Due to its three-dimensional na-
ture and observable structure on much smaller scales, the
21cm emission should in principle be able to probe GW
amplitudes orders of magnitude smaller than the CMB.
The shear, measured through correlations of galaxy el-
lipticities, has also been studied as avenue for detecting
a GW background [13, 14], though these authors have

concluded that this measurement will likely not be com-
petitive with the CMB (see also [15]).

The goal of this paper, and its companion [15], is to
systematically and rigorously derive the GW effects on
large-scale structure observables. While we restrict our-
selves to a linear treatment in the tensor perturbations,
we strive to keep the results as general as possible other-
wise. This paper deals with observed densities of large-
scale structure tracers, which have so far not been inves-
tigated in the context of two-point statistics as a probe
of GW. The companion paper deals with shear (as mea-
sured from, e.g., galaxy ellipticities).

Since there is no 3-scalar that can be constructed from
tensor perturbations at linear order without making ref-
erence to some external (3-)vector or tensor, the “intrin-
sic” density of tracers, i.e. the density that would be
measured by a local comoving observer, is not affected
by tensor modes at linear order. Thus, the impact of
tensor perturbations is exclusively due to projection ef-
fects which can be derived in analogy to [16–19] using
the geodesic equation. The main observable we consider
is the angular power spectrum C(l) of tracers. Since the
GW effects are most important on the very largest scales,
the 3D power spectrum P (k) is not a meaningful quantity
for this purpose.

Note that in contrast, the shear is itself a tensorial
quantity, and thus there is a possible “intrinsic” contri-
bution correlated with the GW background, analogous
to the intrinsic alignment effect present for scalar per-
turbations. This issue, which has not been investigated
before, is the topic of the companion paper [15].

As emphasized by Kaiser and Jaffe [20], there are some
key differences in how tensor perturbations affect pho-
ton geodesics as opposed to scalar perturbations: scalar
modes which are transverse to the line of sight lead to
a significantly amplified coherent deflection, whereas the
same does not happen for tensor modes as they them-
selves propagate at the speed of light. Furthermore, while
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scalar modes grow (in the matter-dominated era), tensor
modes redshift away. Thus, the intuition that transverse
modes at lower redshifts contribute most of the projec-
tion (lensing) effects does not hold anymore for tensor
modes. Rather, the GW contribution to the clustering
of LSS tracers is dominated by contributions close to the
time of emission, and time-derivatives of the perturba-
tions are (at least) as relevant as spatial derivatives.
The outline of the paper is as follows. We introduce

our notation and conventions in § II. § III presents the
geodesic equation for a tensor mode and the derivation
of the tensor mode contributions to the observed galaxy
density, including the magnification bias contribution.
The galaxy angular power spectrum is discussed in § IV.
We also highlight the differences to the scalar case in
this calculation. § V deals with the relevant higher or-
der terms neglected in § III. We conclude in § VI. The
appendix contains details on some aspects of the calcu-
lation.

II. PRELIMINARIES

We begin by introducing our convention for metric and
tensor perturbations and some notation. For simplicity,
we restrict ourselves to a spatially flat FRW background,
and consider only tensor (gravitational wave) modes in
the main part of the paper. The perturbed metric is then
given by

ds2 = a2(η)
[

−dη2 + (δij + hij) dx
idxj

]

, (1)

where hij is a metric perturbation which is transverse
and traceless:

hi
i = 0 = (hik)

,i. (2)

In order to simplify the analysis, we shall also consider
the conformal metric,

ds̄2 = −dη2 + (δij + hij) dx
idxj , (3)

where η denotes the conformal time, for our analysis of
the light deflection.
We then decompose hij into Fourier modes of two po-

larization states,

hij(k, η) = e+ij(k̂)h
+(k, η) + e×ij(k̂)h

×(k, η), (4)

where esij(k̂), s = +,×, are transverse (with respect to

k̂) and traceless polarization tensors normalized through

esije
s′ ij = 2δss

′

. We assume both polarizations to be
independent and to have equal power spectra:

〈hs(k, η)hs′ (k
′, η′)〉 = (2π)3δD(k− k

′)δss′
1

4
PT (k, η, η

′).

(5)

Here, η denotes conformal time, and the unequal-time
power spectrum is given by

PT (k, η, η
′) = TT (k, η)TT (k, η

′)PT0(k), (6)

where TT (k, η) is the tensor transfer function, and the
primordial tensor power spectrum is specified through
an amplitude ∆2

T and an index nT via

PT0(k) = 2π2 k−3

(

k

k0

)nT

∆2
T . (7)

Following WMAP convention [21], we choose k0 =
0.002Mpc−1 as pivot scale. Throughout, we will assume
a scalar-to-tensor ratio of r = 0.2 at k0 (consistent with
the 95% confidence level WMAP bound), which together
with our fiducial cosmology determines ∆2

T . The tensor
index is chosen to follow the inflationary consistency re-
lation, nT = −r/8 = −0.0025. For the expansion history,
we assume a flat ΛCDM cosmology with h = 0.72 and
Ωm = 0.28. Contributions from scalar perturbations are
evaluated using a spectral index of ns = 0.958 and power
spectrum normalization at z = 0 of σ8 = 0.8.
From Eq. (4) and Eq. (5), we easily obtain

〈hij(k, η)hkl(k
′, η′)〉 = (2π)3δD(k− k

′) (8)

×
[

e+ij(k̂)e
+
kl(k̂) + e×ij(k̂)e

×
kl(k̂)

]

×
1

4
PT (k, η, η

′)

〈hij(k, η)h
ij(k′, η′)〉 = (2π)3δD(k− k

′)PT (k, η, η
′).

Long after recombination, the transverse anisotropic
stress which sources gravitational waves becomes neg-
ligible, and the tensor modes propagate as free waves.
During matter-domination, the tensor transfer function
then simply becomes

TT (k, η) = 3
j1(kη)

kη
, (9)

which however is still valid to a high degree of accuracy
during the current epoch of acceleration. We will use
Eq. (9) throughout.

III. TENSOR CONTRIBUTIONS TO THE

OBSERVED GALAXY DENSITY

In this section we derive the GW contribution to the
observed density of tracers, including the magnification
bias effect. We follow the notation in Jeong et al. [19]
(see also [1]) which is summarized in their Sec. II A. The
zero-th order photon geodesic in conformal coordinates
[Eq. (3)] is simply

x̄µ(χ) = (η0 − χ, n̂χ) , (10)

where the comoving distance χ along the geodesic serves
as affine parameter, with χ = 0 corresponding to the
observer’s location. Here and throughout, n̂ denotes the
unit vector in the direction of the observed position of
the source (ˆ̃n in [19]). Hence,

dx̄µ

dχ
= (−1, n̂). (11)
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In the following, z̃ will stand for the observed redshift of
the source, and χ̃ ≡ χ̄(z̃) is the conformal distance corre-
sponding to that redshift when evaluating the distance-
redshift relation χ̄(z) in the background.
We decompose vectors into transverse and longitudinal

parts with respect to the line-of-sight,

X‖ ≡ n̂iX
i

X⊥ ≡X i − n̂i n̂j X
j, (12)

and correspondingly define longitudinal and transverse
derivatives through

∂‖ ≡ n̂i ∂i

∂i
⊥ ≡ ∂i − n̂i∂‖. (13)

Finally, we define

∇2
⊥ ≡ ∂⊥i∂

i
⊥ = ∇2 − ∂2

‖ −
2

χ̃
∂‖, (14)

and make use of

∂‖ ˆ̃n
i = ˆ̃ni∂⊥i = 0. (15)

A. Photon geodesics with a tensor mode

We now briefly outline the derivation of the displace-
ments ∆xi of the true emission point from the observa-
tionally inferred position. This is a special case of the
derivation in App. B of Schmidt and Jeong [1], to which
the reader is referred for more details. We parameterize
the linear order deviation of the photon geodesic as

dxµ

dχ
= (−1 + δν, n̂+ δe). (16)

The initial conditions for integrating the geodesic equa-
tion are set by demanding that the components of the
photon momentum measured in a locally orthonormal
frame at the observer’s location match n̂. For that, we
construct an orthonormal tetrad (ea)µ (a = 0, 1, 2, 3) car-
ried by an observer so that at the observer’s location

gµν(ea)µ(e
b)ν = ηab. (17)

Then, the photon four-momentum measured by the ob-
server is given by

(

1, n̂i
)

=
(

(e0)µ, (e
i)µ

) dxµ

dχ
. (18)

A detailed calculation is presented in appendix B of [1].
Using that the four-velocity of comoving observers is
given by uµ = a−1(1, 0, 0, 0), this leads to

δν(χ = 0) = 0

δei(χ = 0) = −
1

2
(hi

j)o n̂
j . (19)

Here and throughout, a subscript o indicates that the
quantity is evaluated at the observer’s location. The cor-
responding initial condition for the geodesic equation for
comoving observers with general metric is presented in
Eq. (B11) of [1]. In case of scalar perturbations, includ-
ing δei(χ = 0) is important to ensure gauge-invariant
expressions [19]. While there is no gauge ambiguity in
tensor modes, we will show that the observer term is nu-
merically important for the quadrupole of the observed
galaxy density. The redshift perturbation is related to
the shift in the frequency through

δz(χ̃) = −δν =
1

2

∫ χ̃

0

h′
‖dχ, (20)

where we have defined

h‖ ≡ hij n̂
in̂j . (21)

Here and hereafter, a prime denotes a derivative with
respect to conformal time, if not used for distinguish-
ing different variables. The distinction between the two
should be clear from the context. The redshift of the pho-
ton along the perturbed geodesic is given by 1 + z(χ) =
[1+δz(χ)]/a(x0(χ)). Requiring that the redshift at emis-
sion equals z̃ yields an equation for the first-order per-
turbation to the affine parameter at emission χe [19],

χe = χ̃+ δχ

δχ = δx0 −
1 + z̃

H(z̃)
δz, (22)

where δx0 is the perturbation to the 0th component of
the geodesic evaluated at χ = χ̃. We now relate the
observed position x̃, inferred assuming the unperturbed
geodesic x̄µ, and the true position x through (see Fig. 1
in [19])

∆x ≡ x− x̃ = δx(χ̃) + n̂δχ, (23)

where δx(χ̃) is the spatial perturbation to the geodesic
evaluated at χ = χ̃. We can then decompose the dis-
placement ∆x into perpendicular and longitudinal parts,

∆x‖ = δxin̂i + δx0 −
1 + z̃

H(z̃)
δz (24)

∆x⊥ =∆xi − n̂i∆x‖. (25)

Explicitly,

∆x‖ = −
1

2

∫ χ̃

0

dχ h‖ −
1 + z̃

2H(z̃)

∫ χ̃

0

dχ h′
‖ (26)

and

∆xi
⊥ =

1

2
χ̃
[

(hij)o n̂
j −

(

h‖

)

o
n̂i
]

+

∫ χ̃

0

dχ

{

χ̃− χ

2
∂i
⊥h‖ +

χ̃

χ

(

h‖n̂
i − hij n̂

j
)

}

.

(27)
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Note that Eqs. (26)–(27) can be obtained directly from
Eqs. (43)–(47) in [1] (with δz = ∆ ln a) by setting
A = B = v = 0, or, alternatively, from the correspond-
ing Eqs. (38)–(39) in [19] by restricting to a transverse-
traceless metric perturbation and setting E‖ = h‖/2.
In the following, we will further need the convergence

κ̂, defined through (see App. A)

κ̂ ≡ −
1

2
∂⊥i∆xi

⊥

=
5

4
h‖o −

1

2
h‖ −

1

2

∫ χ̃

0

dχ
[

h′
‖ +

3

χ
h‖

]

−
1

4
∇2

Ω

∫ χ̃

0

dχ
χ̃− χ

χ̃ χ
h‖. (28)

Here ∇2
Ω = χ2∇2

⊥ is the Laplacian on the sphere. Also,
we will use

∂χ̃∆x‖ = −
1

2
h‖ −

1 + z̃

2H(z̃)
h′
‖

−
H(z̃)

2

∂

∂z̃

[

1 + z̃

H(z̃)

]
∫ χ̃

0

dχh′
‖, (29)

where we have used dχ̃ = dz̃/H(z̃). [Perhaps:] While κ̂
is the usual coordinate convergence, ∂χ̃∆x‖ is the distor-
tion of the volume along the line of sight and can thus
be seen as a “radial convergence”. [instead of: These are
rate at which geodesic deviates from the geodesic of un-
perturbed universe along the radial (∂χ̃∆x‖) and angular
(κ) direction.]

B. Observed galaxy density

The observed comoving number density of galaxies
a3ñg is related to the true comoving number density a3ng

through

a3(z̃)ñg(x̃, z̃) =

(

1 +
1

2
δgµµ

)

a3(z̄)ng(x, z̄)

(

1 +
∂∆xi

∂x̃i

)

.

(30)
The first term in brackets comes from the covariant
volume factor

√

|g| and is equal to unity, since for
transverse-traceless metric perturbations δgµµ = 0 at lin-

ear order. The factor a3(z̄)ng(x, z̄) is the true comoving
number density at the point of emission, which we ex-
pand as

a3(z̄)ng(x, z̄) = a3(z̄)n̄g(z̄) [1 + δg(x, z̄)], (31)

by defining the intrinsic perturbations to the comoving
number density δg. z̄ is the redshift that would be mea-
sured for the source in an unperturbed universe, and is
related to z̃ through

1 + z̃ = (1 + z̄)(1 + δz). (32)

Note that, when inserting Eq. (31) into Eq. (30), the dis-
tinction between x and x̃ in the argument of δg is second

order if we regard intrinsic galaxy density perturbations
as first order, which we will do in this section. The rel-
evant additional terms will be studied in § V. Finally,
1 + ∂i∆xi is the volume distortion due to gravitational
waves, which as derived in [19] becomes

∂∆xi

∂x̃i
= ∂χ̃∆x‖ +

2∆x‖

χ̃
− 2κ̂. (33)

Thus, gravitational waves affect the observed density of
galaxies through a volume distortion effect, and by per-
turbing their redshifts so that we compare the measured
galaxy density ñg to the “wrong” background density
n̄g(z̃). The latter effect is quantified by the parameter

be ≡
d ln(a3n̄g)

d ln a

∣

∣

∣

z̃
= −(1 + z̃)

d ln(a3n̄g)

dz

∣

∣

∣

z̃
. (34)

Note that this parameter can be measured for a given
galaxy sample, provided the redshift-dependence of the
selection function is understood.
We can now summarize the tensor contributions to the

observed galaxy density perturbation as

δ̃gT (x̃, z̃) = beδz − 2κ̂−
1

χ̃

[

∫ χ̃

0

dχh‖ +
1 + z̃

H(z̃)

∫ χ̃

0

dχh′
‖

]

−
1

2
h‖ −

1 + z̃

2H(z̃)
h′
‖ −

H(z̃)

2

∂

∂z̃

[

1 + z̃

H(z̃)

]
∫ χ̃

0

dχh′
‖.

(35)

Here, the subscript T denotes tensor contributions, and
we have assumed that the intrinsic density perturbation
δg does not correlate with the tensor modes (following
the arguments in § I). Note that hij only enters through
h‖. This has to be the case, since the galaxy density
is a scalar quantity and h‖ is the only non-trivial scalar
linear in hij . The latter also implies that tensor modes do
not contribute to the monopole and dipole of the galaxy
density.

C. Magnification bias

In the last section, we have assumed that all galax-
ies are included in the sample. In reality, most large-
volume surveys are limited in flux. A cut on observed
flux induces additional fluctuations in the galaxy density,
since perturbations to the photon geodesic (e.g., gravita-
tional lensing) modify the observed flux of a given source.
The magnification M can be derived as the perturba-
tion to the angular diameter distance squared ([19], with
δMthere = Mhere),

1 +M ≡
D̄2

A(z̃)

D2
A

, (36)

where DA is the true angular diameter distance to the
source while D̄A(z) is the background angular diameter
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distance-redshift relation. Alternatively, one can use the
standard ruler approach of [1], which for a metric of the
form Eq. (1) yields (see Eq. (105) in [1], where we set
d ln r0/d lna = 0 neglecting the higher order effect of an
evolving number count slope)

MT = −2δz +
1

2
h‖ −

2∆x‖

χ̃
+ 2κ̂. (37)

We then parametrize the effect on the observed galaxy
density through a parameter Q,

δ̃gT = δ̃gT (no magn.) +QMT . (38)

For a purely flux-limited survey, Q = −d ln n̄g/d ln fcut,
where fcut is the flux cut. More generally, Q can also
receive a contribution from a size cut [22].

D. Summary of tensor contributions

Combining the result of the last two sections, we ob-
tain the following expression for the linear-order tensor
contributions to the observed galaxy density:

δ̃gT = (be − 2Q)δz − 2(1−Q)κ̂−
1−Q

2
h‖ −

1 + z̃

2H(z̃)
h′
‖

−
1−Q

χ̃

[

∫ χ̃

0

dχh‖ +
1 + z̃

H(z̃)

∫ χ̃

0

dχh′
‖

]

−
H(z̃)

2

∂

∂z̃

[

1 + z̃

H(z̃)

]
∫ χ̃

0

dχh′
‖. (39)

For later convenience, we reorder the terms as follows:

δ̃gT = fχ̃h‖ + f ′
χ̃h

′
‖ + f

∫

dχ

χ
h‖ + f̃

∫

dχ

χ̃
h‖ (40)

+ f ′

∫

dχ h′
‖ + fκ∇

2
Ω

∫

dχ
χ̃− χ

χ χ̃
h‖ + fo h‖o.

Here, all terms outside integrals (without subscript o)
are evaluated at χ̃, and the integrals go from 0 to χ̃. The
coefficients are given by

fχ̃ = −
1

2
(Q− 1) (41)

f ′
χ̃ = −

1 + z̃

2H
f = − 3(Q− 1)

f̃ =Q− 1

f ′ =
1

2

(

be − 1− 2Q+ (1 + z̃)
dH/dz̃

H

)

− (Q− 1)

+ (Q− 1)
1 + z̃

Hχ̃

fκ = −
1

2
(Q− 1)

fo =
5

2
(Q− 1).

IV. OBSERVED GALAXY POWER SPECTRUM

A. Angular power spectrum

Consider a galaxy sample with a redshift distribution
dN/dz, normalized to unity in redshift. Then, the pro-
jected galaxy overdensity as a function of position on the
sky is given by

∆g(n̂) =

∫ ∞

0

dz̃
dN

dz̃
δ̃g(χ̄(z̃)n̂; z̃), (42)

We will assume that the quantities be, Q describing the
galaxy sample are independent of redshift for simplicity.
We can then write the multipole coefficients of the galaxy
density as

aglm =

∫

d2n̂ Y ∗
lm(n̂)∆g(n̂). (43)

We can write all individual contributions to Eq. (39) as

A(n̂, χ̃) =

∫ χ̃

0

dχWA(χ, χ̃)h‖(χn̂, χ)

=

∫ χ̃

0

dχWA(χ, χ̃)

×

∫

d3k

(2π)3
eik·n̂χn̂in̂jhij(k, η0 − χ). (44)

Note that terms involving h′
‖ can be brought into the

form A(n̂) by including d lnTT (k, η)/dη in WA(χ). The
observer term 5h‖o/3 contained in κ̂ can similarly be
written with WA(χ) = 5/3 δD(χ). We will deal with
that term specifically in § IVB. By changing the order
of integration, we can then write the contribution to the
projected galaxy overdensity as

A(n̂) =

∫ ∞

0

dz̃
dN

dz̃
A(n̂, χ̃) =

∫ ∞

0

dχWA(χ)h‖(χn̂, χ)

WA(χ) ≡

∫ ∞

z(χ)

dz̃
dN

dz̃
WA (χ, χ̄(z̃)) . (45)

Note that if WA = δD(χ− χ̃), WA(χ) = (HdN/dz)|z(χ).
We now consider the contribution of a single plane wave
tensor perturbation with k-vector aligned with the z-
direction. Then,

n̂in̂jhij(k, η) = sin2 θ
[

cos 2φ h+(k, η) + sin 2φ h×(k, η)
]

= sin2 θ
[

ei2φh1 + e−i2φh2

]

, (46)

where

h1,2 ≡
1

2
(h+ ± ih×). (47)

Note that the power spectra of these circular polarization
staters are Ph1h2

= Ph2h2
= PT /8, while Ph1h2

= 0. Let
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us denote as A(n̂,k) the contribution to A(n̂) from this
plane-wave tensor perturbation. We have

A(n̂,k) =

∫

dχWA(χ)e
ikχµ(1 − µ2) (48)

×
[

e2iφh1(k, η0 − χ) + e−2iφh2(k, η0 − χ)
]

where µ = cos θ is the cosine of the angle between n̂ and

k̂. Note the e±2iφ factors which are the key difference

to the case of scalar perturbations. The multipole coeffi-
cients of A are then obtained as follows:

aAlm =

∫

d3k

(2π)3
aAlm(k), (49)

aAlm(k) =

∫

d2n̂ Y ∗
lm(n̂)A(n̂)

=

∫

dχWA(χ)

∫

d2n̂ Y ∗
lm(µ, φ)eikχµ(1− µ2)

[

e2iφh1(k, η0 − χ) + e−2iφh2(k, η0 − χ)
]

. (50)

We now use the relation (see App. A1 in [1])

∫

dΩ Y ∗
lm(1− µ2)e±i2φeixµ = −

√

4π(2l+ 1)

√

(l + 2)!

(l − 2)!
il
jl(x)

x2
δm±2, (51)

which yields

aAlm(k) = −

√

2l + 1

4π

(l + 2)!

(l − 2)!
(4π)il

∫

dχWA(χ) [h1(k, η0 − χ)δm2 + h2(k, η0 − χ)δm−2]
jl(kχ)

(kχ)2
. (52)

Further, we can use the properties of the spherical har-
monics to obtain

alm[∇2
ΩA] = −l(l+ 1)aAlm, (53)

which we will use to evaluate the convergence contribu-
tion. Using the definition of the angular power spectrum,
we can now easily write down the cross-correlation be-
tween two different projections A, B of h‖ (App. A1 in
[1]):

CAB
l ≡

1

2l+ 1

∑

m

Re〈aA∗
lmaBlm〉

=
1

2π

(l + 2)!

(l − 2)!

∫

k2dk PT0(k)F
A
l (k)FB

l (k) (54)

FX
l (k) ≡

∫

dχWX(χ)TT (k, η0 − χ)
jl(kχ)

(kχ)2
. (55)

It is then straightforward to evaluate auto- and cross-
correlations of the observed angular correlation of galax-
ies, neglecting the contribution of the term h‖o for the
moment (see § IVB). In particular, if we want to eval-
uate the total tensor contribution to the angular (auto-
)power spectrum of galaxies, we set WA = WB = Wg,
where

Wg(χ) = fχ̃δD(χ− χ̃) +
d lnTT

dη

∣

∣

∣

η0−χ

(

f ′
χ̃δD(χ− χ̃) + f ′

)

+ f
1

χ
+ f̃

1

χ̃
− fκ l(l + 1)

χ̃− χ

χ χ̃
, (56)

and the coefficients are defined in Eq. (41). Note that
the divergent pieces ∝ χ−1 cancel for l = 2:

f − 6fκ = 0, (57)

while for l ≥ 3 the Bessel function in Eq. (55) ensures
that all terms are regular. Fig. 1 shows numerical results
for a galaxy sample with a sharp (observed) redshift of
z̃ = 2, and for be = 2.5, Q = 1.5. The colored lines
indicate the separate contributions proportional to pro-
jections of h‖, h

′
‖, and ∇2

Ωh‖. While for l . 4 all terms

contribute significantly, the h′
‖ contribution dominates

at higher l. This contribution is the same as the GW
effect δsh explored in [9]. We will return to this in § IVD.
Note that the total contribution (black solid line) is sig-
nificantly smaller than the individual contributions for
l = 2, 3. We will discuss this in the next section.

B. Quadrupole

Fig. 1 shows that the individual tensor contributions
to the observed angular power spectrum increase rapidly
towards small l, while the total contribution is much
smaller. These cancellations are essentially a conse-
quence of causality, which demands that the observed
clustering of galaxies cannot depend on tensor modes
that are super-horizon today.
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FIG. 1: Contributions to the observed galaxy angular power
spectrum from inflationary gravitational waves, for a sharp
source galaxy redshift of z̃ = 2, and using the tensor mode
power spectrum defined in § II. The black solid line shows the
total contribution, while the colored lines show contributions
proportional to line-of-sight integrals of h‖ (blue dotted), h′

‖

(green short-dashed) and∇2

Ωh‖ (magenta long-dashed). Here,
we have assumed be = 2.5, Q = 1.5. The black square at l = 2
indicates the result for l = 2 if the observer term is neglected
(see § IVB).

In particular, it is important to take into account the
last term in Eq. (40), which quantifies the shearing of the
observer’s coordinate system by the gravitational waves.
We refer to this as the observer term. Since hij(o) is
a constant (transverse-traceless) tensor, this term only
contributes to the quadrupole l = 2. Specifically, we
have an additional contribution to Eq. (55) for galaxies,

F g
l=2(k) → F g

l=2(k) + F g,o
2 (k)

F g,o
2 (k) = fo lim

χ→0
TT (k, η0 − χ)

j2(kχ)

(kχ)2

=
1

15
fo TT (k, η0). (58)

The solid black line in Fig. 1 includes this term, while
the black square indicates the value of Cl=2 we would
obtain without this term. Neglecting the observer term
results in an overestimation of the tensor contribution
to the galaxy quadrupole by three orders of magnitude.
The reason for this significant effect becomes clear when
considering the contributions to F g

l=2 as function of k
(Fig. 2). The individual contributions to F g

l approach
a constant as k → 0, while the sum goes to zero for
k/H0 . 1, as demanded by causality. When neglect-

FIG. 2: Contributions to the kernel Fl(k) for l = 2 (thick) and
l = 20 (thin, only total contribution shown, scaled by 104),
for a sharp source redshift z̃ = 2 and the same parameters
as in Fig. 1. Note that the separate contributions have non-
zero weight for k → 0, while the total F g

l (black solid) is only
non-zero for k & 10−4 h/Mpc, as required by causality.

ing the observer term (light blue in Fig. 2) on the other
hand, a residual constant contribution to F g

l=2 remains
for k → 0, which together with the steeply falling tensor
power spectrum leads to a significant overestimation of
the quadrupole.

C. Limber approximation

In the context of angular galaxy clustering, one often
uses the Limber approximation [23] which significantly
simplifies the calculation of Cg

l . The underlying assump-
tion is that the dominant contribution to the angular
clustering comes from galaxy pairs that are at similar dis-
tances along the line of sight. It is instructive to consider
this approximation in the context of tensor modes. Since
the Limber approximation works best for a broad redshift
distribution, we will here consider a redshift distribution
roughly as expected for the Large Synoptic Survey Tele-
scope (LSST [24]),

dN

dz
∝ z2 exp

[

−

(

z

z0

)β
]

, (59)

with z0 = 0.15 and β = 0.73, yielding a mean redshift of
1.2.
The Limber approximation can formally be applied by
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using

2

π

∫

k2dk F (k, χ) jl(kχ)jl(kχ
′) ≈

F
(

l+1/2
χ , χ

)

χ2
δD(χ−χ′).

(60)
In the usual application to scalars, the functions of k, χ
involved (apart from the Bessel functions) are smooth
and positive, whereas for tensor modes, the transfer func-
tion is oscillatory. Performing the k and then one of the
χ integrals in Eq. (54) leads to

CAB
l ≈

(l + 2)!

(l − 2)!

1

(l + 1/2)4
1

4

∫

dχ

χ2
PT0

(

l + 1/2

χ

)

(61)

×WA(χ)WB(χ)

[

TT

(

(l + 1/2)
η0 − χ

χ

)]2

.

Here we have used that TT is only a function of kη. Note
that for l ≫ 1, the prefactor approaches 1/4. Given
that PT0 ∝ k−3+nT , we immediately see that the Limber
approximation predicts Cg

l ∝ l−3+nT for large l, if WA,B

are l-independent.
Fig. 3 shows the different contributions to Cg

l (as in
Fig. 1) for the redshift distribution Eq. (59) using the
full calculation (thick lines) and using the Limber approx-
imation (thin lines). Clearly, the Limber approximation
predicts the wrong l-scaling of all terms, and we do not
see any improvement in the approximation for high l as
in the scalar case. Thus, the Limber approximation is not
applicable for calculating the tensor contribution to the
angular galaxy power spectrum at any ℓ. There are two
reasons for this. First, the tensor mode power spectrum
is falling as ∼ k−3, so that the assumption that pairs of
comparable line-of-sight distance dominate because they
have the smallest separation does not hold. Second, ten-
sor modes oscillate and decay towards late times (while
scalar modes grow), so that the contributions to Cg

l are
concentrated at large scales and high redshifts near the
source.

D. Dependence on galaxy sample

Fig. 4 shows the tensor contribution to Cg
l for differ-

ent source redshifts. Here, we have assumed a Gaussian
redshift distribution centered on z̃ with RMS width of
0.03(1 + z̃), emulating the effect of photometric redshift
errors. We have kept be = 2.5, Q = 1.5 fixed. While
the low multipoles (l . 4) do not depend very strongly
on z̃, the contribution for higher l grows by an order of
magnitude when going from z̃ = 1 to z̃ = 2, and from
z̃ = 2 to z̃ = 5. We found that reducing the width ∆z̃
of the redshift distribution has no impact on the results
at relevant l. The reason is that the bulk of the tensor
mode contribution comes from near horizon-scale modes,
as tensor modes decay once they enter the horizon. Such
long-wavelength modes are not affected by averaging over
a reasonably narrow redshift window (∆z̃ < 1).

FIG. 3: Contributions of tensor modes to the angular galaxy
power spectrum for a broad redshift distribution (Eq. (59))
expected for LSST, separated into different contributions as in
Fig. 1 (again using be = 2.5, Q = 1.5). The thick lines show
the exact calculation, while the thin lines show the Limber
approximation using Eq. (61).

Fig. 5 shows the effect of varying the galaxy sample
parameters be, quantifying the redshift evolution of the
average number density, and Q, which determines the
magnification bias contribution. We see a significant ef-
fect at low multipoles when varying Q and especially be.
This is not surprising since we have seen that there is a
high degree of cancelation between different terms at low
l (Figs. 1 and 2), so that varying the coefficients of the
different terms can have a large impact.

On the other hand, Cg
l is insensitive to changes in be

and Q for l & 10. While surprising initially, this fact can
be understood straightforwardly. At high l, the contri-
butions from h′

‖ dominate (Fig. 1). Specifically, following

Eq. (39) there are two contributions, f ′
χ̃h

′
‖ and f ′

∫

h′
‖dχ.

The former contribution is a pure line-of-sight volume
distortion effect, and the coefficient f ′

χ̃ ∝ H−1(z̃) is in-
dependent of the galaxy sample. Now consider a single
Fourier mode contributing to both terms. Neglecting fac-
tors of order unity, we can estimate the ratio between the
two terms as

f ′
∫ χ̃

0 h′
‖dχ

f ′
χ̃h

′
‖

∼H(z̃)

∫ χ̃

0
T ′
T (k(η0 − χ))dχ

T ′
T (k(η0 − χ̃))

, (62)

where T ′
T = dTT /dη. Since T ′

T decays rapidly once the
argument kη become of order unity, we can approximate
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the numerator as

∫ χ̃

0

T ′
T (k(η0 − χ))dχ ∼ T ′

T (k(η0 − χ̃))∆χ, (63)

where ∆χ = ∆(kη)/k ∼ 1/k is the range in χ that con-
tributes to the integral. Thus, we arrive at an order-of-
magnitude estimate of

f ′
∫ χ̃

0
h′
‖dχ

f ′
χ̃h

′
‖

∼
H(z̃)

k
. (64)

Physically, the integral of h′
‖ along the line of sight leads

to significant cancelations that become more severe as
k increases. It is not surprising then that the volume
distortion term f ′

χ̃h
′
‖ dominates at high l. Specifically,

using the kernel F g
l (k) for l = 20 shown in Fig. 2, we can

estimate that the typical wavenumber of tensor modes
contributing to multipole l is

ktyp ∼ 0.003 h/Mpc×
l

10
. (65)

Eq. (64) then says that we expect f ′
χ̃h

′
‖ to dominate for

l & 10, in good agreeement with Fig. 5.

Thus, the line-of-sight volume distortion ∝ h′
‖/H is

the single dominating term in Cg
l at high l, which ex-

plains why the tensor contribution is independent of the
galaxy sample at high multipoles. Note however, that the
prospects for detecting this effect are mostly restricted to
l . 10 anyway due to the steep decline of the signal.

V. HIGHER ORDER TERMS

So far, we have only kept terms linear in all pertur-
bations. While all terms second and higher order in hij

are likely irrelevant given the small amplitude of tensor
perturbations, there are terms of order hij δg which can
be much less suppressed on small scales where δg can be-
come order unity. There are more terms of order hij A
where A stands for any scalar metric perturbation. How-
ever, those terms are much smaller than hij δg and can be
neglected. Note that as long as scalar and tensor modes
do not correlate, the lowest non-trivial statistic induced
by these terms is a four-point function of δ̃g. A specific
quadratic estimator for the tensor modes can be con-
structed based on these terms [11, 12]. Physically, one
uses the anisotropy of the small-scale correlation func-
tion of δ̃g to search for coherent large-scale distortions
induced by tensor modes. Most of the signal-to-noise for
detecting a GW background is contained on very small
scales [12].

Noting that x = x̃ −∆x and 1 + z̄ = (1 + z̃)(1 − δz),
the relevant terms neglected in going from Eq. (30) to

FIG. 4: Total tensor mode contribution to the angular galaxy
power spectrum as a function of source redshift, for a Gaus-
sian redshift distribution centered on z̃ with an RMS width
of 0.03(1 + z̃). Here, be = 2.5, Q = 1.5 fixed.

Eq. (35) are given by

δ̃gT,2nd = δg [x̃−∆x, (1 + z̃)(1− δz)− 1]− δg (x̃, z̃)

= −∆x · ∇δg(x̃, z̃)− δz
∂

∂ ln(1 + z̃)
δg(x̃, z̃),

(66)

where δg is the intrinsic fractional perturbation in the
comoving galaxy density. Note that both ∆x and δz are
linear in hij . If we approximate ∇δg ∼ δg/r, where r is
the scale on which the correlation function of δg is mea-
sured, then the second term is suppressed with respect to
the first term by a factor of r/χ̃, since ∂ ln δg/∂ ln(1 + z)
is typically order unity. This term is thus highly sup-
pressed on small scales where the second-order terms be-
come relevant. While the intrinsic two-point function
ξ(r) of the tracer is isotropic and location-independent
(neglecting redshift-space, tidal distortions and intrinsic
anisotropy/inhomogeneity [11, 25]), the observed corre-
lation function

ξ̃(n̂, z̃; n̂′, z̃′) = 〈δ̃(x̃)δ̃(x̃′)〉 (67)

is anisotropic and depends on the location x̃. This can be
used to measure the distortions by tensor perturbations.
Specifically, since we have 6 free parameters in x̃, x̃′, we
can measure 6 components of the distortion field. At this
point, it is important to stress that the terms in Eq. (66)
are not observable directly (as a simple example, consider
the case of a constant deflection ∆x = const). In order
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FIG. 5: Relative impact on the total tensor mode contribution
to galaxy clustering when changing be from 2.5 to 4 and 1
(thick and thin green long-dashed, respectively), and when
changing Q from 1.5 to 3 and 0 (thick and thin red dot-
dashed, respectively). Here, a Gaussian redshift distribution
centered on z̃ = 2 with RMS width 0.03(1 + z̃) was assumed.

to determine which quantities are actually observable,
consider contours of constant ξ̃,

ξ̃(n̂, z̃; n̂, z̃′) = ξ0. (68)

These contours correpond to a fixed physical scale r0
(on a constant-proper-time hypersurface) at the source
through

ξ(r0) = ξ0. (69)

In other words, the intrinsic homogeneous and isotropic
correlation function ξ(r) is supplying us with a “standard
ruler” r0 (or, a set of standard rulers as we are free to
vary ξ0). In Schmidt and Jeong [1], we carefully define
a general standard ruler and derive the properties of the
deflection field which are observable through it. As we
have seen here, the distortion of correlation functions by
tensor modes is one application of the results of [1].

Finally, we point out that a non-zero three-leg coupling
〈δ(k1)δ(k2)hij(k3)〉 present at an early stage of the uni-
verse can also imprint its signature as a local departure
from statistical homogeneity. The optimal estimator for
the amplitude of tensor perturbations given such a cou-
pling has been constructed in [25].

FIG. 6: Comparison between tensor mode contributions to
the galaxy power spectrum (black solid) for z̃ = 2 (cf. Fig. 4),
and scalar contributions for a linear bias b = 2 (see App. B
for details on the calculation of the scalar contributions).

FIG. 7: Comparison between tensor mode and scalar contri-
butions to the angular cross-correlation between two widely
separated redshift bins (z̃ = 1, z̃′ = 4) and for Q = 1 so that
most magnification contributions drop out (linear bias = 2;
other parameters as in Fig. 4).
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VI. DISCUSSION

We have derived the complete tensor contributions to
the observed galaxy density at linear order. The re-
sult is summarized in Eq. (39). At this order, gravi-
tational waves do not perturb the intrinsic physical den-
sity of tracers; thus all contributions are projection ef-
fects from the effects of GW on the propagation of light.
We have found that, contrary to gravitational lensing
by scalar perturbations, tensor perturbations contribute
mainly at redshifts close to the source redshift. Together
with the scale-invariant power spectrum of GW, this re-
sults in a steeply falling angular power spectrum of the
tensor contributions, with multipoles l ∼ 10 already be-
ing suppressed by an order of magnitude with respect to
l = 2− 4.

Fig. 6 shows a comparison of the tensor contributions
with the scalar contributions to the galaxy density. Here,
we have assumed a linear bias of b = 2, and all relativis-
tic corrections are included following [19] (see App. B
for details). Clearly, the tensor contributions are sup-
pressed by ∼7 orders of magnitude with respect to the
scalar contributions at the largest scales, for the max-
imum currently allowed value of r = 0.2. One might
wonder whether galaxy cross-correlations, i.e. between
different redshift bins, could be more promising. Af-
ter all, when cross-correlating widely separated redshift
slices, there is little intrinsic correlation of galaxies, and
the main contribution comes from lensing (magnification
bias effect ∝ 2(Q−1)κ̂). Hence, the most optimistic case
for detecting tensor modes through their modulation of
the galaxy density would consist of cross-correlating two
galaxy populations widely separated in redshift, both of
which have Q = 1 so that the magnification bias effect
drops out (this could be achieved, for example, by select-
ing galaxies on surface brightness). This most optmistic
case is shown in Fig. 7. We find that the tensor contri-
bution can become as large as 10−3 times the residual
scalar contribution; however, this is still much too small
to be detectable.

Thus, given that we are not able to directly distinguish
between scalar and tensor contributions to the galaxy
angular power spectrum, we do not expect much detec-
tion potential for gravitational waves from the leading
order effect on the angular power spectrum of galax-
ies. However, there are terms of order hij δg (where δg
is the intrinsic galaxy overdensity) which induce a par-
ticular four-point correlation function in the observed
galaxy density δ̃g. This is the effect exploited in [11, 12]
for projected constraints from 21cm emission from the
dark ages. In essence, the intrinsic (homogeneous and
isotropic) correlation function provides us with a stan-
dard ruler that allows us to observe certain properties
of the distortion field, as derived in [1]. Thus, one can
apply the the scalar-vector-tensor decomposition on the
sky described in [1]. Most importantly, both the (2-
)vector and (2-)tensor components allow for an E/B-
decomposition, so that any scalar contributions to the

distortion (e.g. from lensing or redshift-space distortions)
do not contribute to the B-mode at linear order. We
leave a more detailed investigation of these possibilities
for future work.
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Appendix A: Convergence

We define the convergence through the divergence of
the transverse displacements:

κ̂ ≡ −
1

2
∂⊥ i∆xi

⊥ (A1)

First, taking the transverse divergence of Eq. (27) yields

−2κ̂ =
1

2
χ̃
(

hi
j∂⊥in̂

j − h‖∂⊥in̂
i
)

o
(A2)

+

∫ χ̃

0

dχ
[

− ∂⊥i

(

hi
j n̂

j − h‖n̂
i
)

+
1

2
(χ̃− χ)

χ

χ̃
∇2

⊥h‖

]

.

Using the fact that hij is transverse and that ∂χ = ∂‖ −
∂η, straightforward algebra then yields

κ̂ =
5

4
h‖o −

1

2
h‖ −

1

2

∫ χ̃

0

dχ
[

h′
‖ +

3

χ
h‖

]

−
1

4
∇2

Ω

∫ χ̃

0

dχ
χ̃− χ

χ̃ χ
h‖. (A3)

The last term is familiar as the one dominating on small
scales (Newtonian limit) for the scalar case, and is shown
separately as blue dotted lines in Fig. 1 and Fig. 3. Note
that due to the very different power spectrum of tensor
modes, and the fact that tensor modes decay with de-
creasing redshift, this term actually becomes suppressed
on small scales.

Appendix B: Angular galaxy power spectrum from

scalar perturbations

In this section, we provide expressions for the angular
power spectrum of galaxies due to scalar perturbations
(see Fig. 6 and 7), including all relativistic corrections as
derived in [16–19].
It is convenient to use expressions in conformal-

Newtonian gauge, where we write the metric as

ds2 = a2(η)
[

−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdx
idxj

]

. (B1)
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Further, for convenience we write the velocity vi in
terms of a scalar velocity potential V , vi = V,i, and re-
late V, Φ, Ψ to the density contrast δscm in synchronous-
comoving gauge through (see [26, 27])

V (k, η) = aHfk−2D(a(η))δscm(k, η0)

Φ(k, η) −Ψ(k, η) =DΦ−
(k, η)δscm(k, η0)

Φ(k, η) + Ψ(k, η) = g(k, η)DΦ−
(k, η)δscm(k, η0)

⇒ Φ(k, η) =
1

2
[g + 1]DΦ−

δscm(k, η0)

Ψ(k, η) =
1

2
[g − 1]DΦ−

δscm(k, η0)

(Φ−Ψ)′(k, η) =DISW(k, η)δscm(k, η0), (B2)

where f ≡ d lnD/d ln a, D(a) is the matter growth fac-
tor (normalized to unity at a = 1) and we have defined
general coefficient functions DΦ−

, g, DISW to allow for
non-standard cosmologies. In a ΛCDM cosmology, we
have

DΦ−
(k, η) = 3Ωm

a2H2

k2
D(a(η)) = 3Ωm0

H2
0

k2
a−1(η)D(a(η))

g(k, η) = 0. (B3)

Here, the subscript 0 denotes that the quantity is eval-
uated at z = 0. Throughout, we will drop observer
terms corresponding to the monopole and dipole, but
keep terms that contribute to the quadrupole.
Converting Eqs. (55) and (72) in [19] from

synchronous-comoving gauge to conformal-Newtonian
gauge, using the relations given in App. D of [19], we
obtain (see also [17])

δ̃g(x̃) = δg + be(δz − aHV )−
1

aH
∂2
‖V

−

(

1−
1

aH

dH

dz
+

2

aHχ̃

)

z̃

[δz − aHV ]

+ 2(Φ + aHV )

−
2

χ̃
V −

2

χ̃

∫ χ̃

0

dχ(Φ−Ψ)− 2κ

−
1

aH
(Φ + aHV )

′
+QM

M = − 2Φ− 2aHV +
2

χ̃
V + 2κ

+
2

χ̃

∫ χ̃

0

(Φ−Ψ)dχ+ 2

[

1

aHχ̃
− 1

]

(δz − aHV ),

where

δz = ∂‖V −Ψ+

∫ χ̃

0

dχ(Φ−Ψ)′

κ = −
1

2

∫ χ̃

0

dχ(χ̃− χ)
χ

χ̃
∇2

⊥(Φ−Ψ) (B4)

denote the redshift perturbation and convergence, re-
spectively, in conformal-Newtonian gauge. Assuming a
linear bias relation in synchronous-comoving gauge (as
discussed in [19]), and expanding the different contribu-
tions, we obtain

δ̃g(x̃) = bδscm

+

[

be − 1− 2Q+
1

aH

dH

dz
+ 2(Q− 1)

1

aHχ̃

]

δz

+

[

(3 − be)aH −
dH

dz

]

V + 2(1−Q)Φ

+ 2(Q− 1)

∫ χ̃

0

dχ

χ̃
(Φ−Ψ) + 2(Q− 1)κ

−
1

aH

[

∂2
‖V + (Φ + aHV )′

]

. (B5)

We can now evaluate the contribution of a sin-
gle plane wave along the z-axis, i.e. δscm(x, η) =
δscm(k, η0)D(a(η))eixk. Further, we write x = n̂χ, and
x · k = xµ with x = kχ, x̃ = kχ̃. First, we have
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δz = δscm(k, η0)

[

(

aHfD

k
∂x̃ −

1

2
(g − 1)DΦ−

)

z̃

eix̃µ +

∫ χ̃

0

dχDISWeixµ

]

κ =
1

2
l(l + 1)

∫ χ̃

0

dχ
χ̃− χ

χχ̃
DΦ−

(k, η0 − χ)eixµ δscm(k, η0)

∂2
‖V = (aHfD)z̃ ∂

2
x̃e

ix̃µ δscm(k, η0)

Φ′ =
1

2

(

g′DΦ−
+ [g + 1]DISW

)

k,η̃
eix̃µδscm(k, η0)

1

aH
(aHV )′ =

(

aH

k

)2

z̃

(fD)z̃

[

2
d ln aH

d ln a
+

d ln fD

d ln a

]

z̃

eix̃µδscm(k, η0). (B6)

Following the procedure described in App. A1 of [1], it is then straightforward to derive the angular power spectrum

of δ̃g, for a sharp source redshift z̃, in terms of the matter power spectrum today Pm(k) in synchronous-comoving
gauge:

Cg̃(l) =
2

π

∫

k2dk Pm(k)|F g̃
l (k)|

2

F g̃
l (k) = bD(ã)jl(x̃) +

[

be − 1− 2Q+
1

aH

dH

dz
+ 2(Q− 1)

1

aHχ̃

]

z̃

F δz
l (k)

+

[

(3− be)−
1

aH

dH

dz

]

z̃

(

aH

k

)2

z̃

(fD)z̃ jl(x̃) + 2(1−Q)
1

2
([g + 1]DΦ−

)z̃ jl(x̃)

+ 2(Q− 1)

[

∫ χ̃

0

dχ

χ̃
DΦ−

jl(x) +
1

2
l(l+ 1)

∫ χ̃

0

dχ
χ̃− χ

χχ̃
DΦ−

jl(x)

]

− (fD)z̃ ∂
2
x̃jl(x̃)

−
1

aH

1

2

(

g′DΦ−
+ [g + 1]DISW

)

z̃
jl(x̃)−

(

aH

k

)2

z̃

(fD)z̃

[

2
d lnaH

d ln a
+

d ln fD

d ln a

]

z̃

jl(x̃) (B7)

F δz
l (k) =

(

aHfD

k
∂x̃ −

1

2
(g − 1)DΦ−

)

z̃

jl(x̃) +

∫ χ̃

0

dχDISWjl(x), (B8)

where again x = kχ, x̃ = kχ̃. We can also easily derive the power spectrum of the magnification itself, which is an
observable (see [1]):

CM(l) =
2

π

∫

k2dk Pm(k)|FM
l (k)|2

FM
l (k) = 2

[

1

aHχ̃
− 1

]

F δz
l (k)− ([g + 1]DΦ−

)z̃ jl(x̃)

+ l(l + 1)

∫ χ̃

0

dχ
χ̃− χ

χχ̃
DΦ−

jl(x) + 2

∫ χ̃

0

dχ

χ̃
DΦ−

jl(x). (B9)

These expressions are for a sharp source redshift. It is straightforward to generalize them to a distribution dN/dz̃ of
source redshifts (where dN/dz̃ is assumed normalized), following the discussion in § IVA. In particular, contributions
to FX

l (k) of the form

∫ χ̃

0

dχW (χ̃, χ)Q̂(x)jl(x), (B10)

where Q̂(x) is any derivative operator, are generalized to

∫ χ̃

0

dχW (χ̃, χ)Q̂(x)jl(x) →

∫ ∞

0

dχW(χ)Q̂(x)jl(x)

W(χ) =

∫ ∞

z(χ)

dz̃
dN

dz̃
W (χ̃ = χ̄(z̃), χ). (B11)
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Further, contributions evaluated at the source are generalized to

A(χ̃)Q̂(x̃)jl(x̃) →

∫ ∞

0

dχW(χ)Q̂(x)jl(x)

W(χ) =

[

dN

dz
H(z)

]

z(χ)

A(χ). (B12)
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[8] L. G. Book and É. É. Flanagan, Phys. Rev. D 83, 024024
(2011), 1009.4192.

[9] S. Bharadwaj and T. Guha Sarkar, Phys. Rev. D 79,
124003 (2009), 0901.3655.

[10] L. G. Book, M. Kamionkowski, and T. Souradeep, ArXiv
e-prints (2011), 1109.2910.

[11] K. W. Masui and U.-L. Pen, Physical Review Letters
105, 161302 (2010), 1006.4181.

[12] L. Book, M. Kamionkowski, and F. Schmidt, ArXiv e-
prints (2011), 1112.0567.

[13] S. Dodelson, E. Rozo, and A. Stebbins, Physical Review
Letters 91, 021301 (2003), arXiv:astro-ph/0301177.

[14] S. Dodelson, Phys. Rev. D 82, 023522 (2010), 1001.5012.
[15] F. Schmidt and D. Jeong (2012), 1205.1514.

[16] J. Yoo, A. L. Fitzpatrick, and M. Zaldarriaga, Phys. Rev.
D 80, 083514 (2009), 0907.0707.

[17] A. Challinor and A. Lewis, ArXiv e-prints (2011),
1105.5292.

[18] C. Bonvin and R. Durrer, ArXiv e-prints (2011),
1105.5280.

[19] D. Jeong, F. Schmidt, and C. M. Hirata, Phys. Rev. D
85, 023504 (2012), 1107.5427.

[20] N. Kaiser and A. Jaffe, Astrophys. J. 484, 545 (1997),
arXiv:astro-ph/9609043.

[21] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett,
B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R.
Nolta, L. Page, et al., Astrophys. J. Supp. 192, 18 (2011),
1001.4538.

[22] F. Schmidt, E. Rozo, S. Dodelson, L. Hui, and E. Shel-
don, Physical Review Letters 103, 051301 (2009),
0904.4702.

[23] D. Limber, Astrophys. J. 119, 655 (1954).
[24] URL http://www.lsst.org.
[25] D. Jeong and M. Kamionkowski, ArXiv e-prints (2012),

1203.0302.
[26] F. Schmidt, Phys. Rev. D 78, 043002 (2008), 0805.4812.
[27] W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007),

0708.1190.


