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Abstract

We consider the multiverse in the intrinsically quantum mechanical framework recently
proposed in Refs. [1, 2]. By requiring that the principles of quantum mechanics are univer-
sally valid and that physical predictions do not depend on the reference frame one chooses
to describe the multiverse, we find that the multiverse state must be static—in particular,
the multiverse does not have a beginning or end. We argue that, despite its naive appear-
ance, this does not contradict observation, including the fact that we observe that time flows
in a definite direction. Selecting the multiverse state is ultimately boiled down to finding
normalizable solutions to certain zero-eigenvalue equations, analogous to the case of the hy-
drogen atom. Unambiguous physical predictions would then follow, according to the rules of
quantum mechanics.



1 Introduction

The goal of fundamental physics is to find a prescription in which (potentially) testable predictions

can be made and, through it, to learn how nature works at the most fundamental level. In the

present way physics is formulated, this can be done in three steps:

(i) “Theory” — We must specify the fundamental structure of the theory, which consists of the

following two parts:

(i-1) Kinematics — We must understand what is a “state” which somehow represents the

status of a physical system. We must also understand how it is related to the observed

reality. For example, in conventional quantum mechanics a state is a ray in Hilbert space,

which is related to reality through the Born rule, while in classical mechanics a state is

a point in classical phase space (so is directly observable).

(i-2) Dynamics — We must know a (set of) fundamental law(s) the states obey. In quan-

tum mechanics it is the Schrödinger equation, i d
dt
|Ψ(t)〉 = H |Ψ(t)〉, while in classical

mechanics it is the Newton equation, m ẍ(t) = F.

(ii) “System” — We then need to specify a system we consider, which again consists of two parts:

(ii-1) Kinematics — We need to know the kinematical structure of the system. In quantum

mechanics this corresponds to specifying the Hilbert space, which is characterized by its

dimension and operators acting on its elements. In classical mechanics, it is given by the

dimension of the phase space.

(ii-2) Dynamics — We also need to specify dynamics of the system. In the examples in (i-2),

we need to give the forms of H and F, respectively.

(iii) “Selection Conditions” — Even if (i) and (ii) are known, we still need to provide “selection

conditions” on a state. Usually, they are given in the form of boundary conditions, for example

as the knowledge one already has, e.g. |Ψ(0)〉 and {x(0), ẋ(0)}, before making predictions on

something unknown, e.g. |Ψ(t)〉 and {x(t), ẋ(t)} for t > 0.

To understand the ultimate structure of nature, we would want to do the above in the context

of cosmology, and see whether the resulting predictions are consistent with what we observe. In

this respect, physics of eternal inflation—which occurs under rather general circumstances [3]—has

caused tremendous confusions in recent years. A major problem has been the so-called measure

problem: even if we know the initial state and its subsequent evolution, we cannot define (even

probabilistic) predictions unambiguously.1 This occurs because in eternal inflation anything that

can happen will happen infinitely many times, so it apparently leads to arbitrariness in predictions,

1There are several varying, though related, definitions of the measure problem in literature. In this paper we
adopt the definition as stated here.
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associated with how these infinities are regularized [4]. Such an arbitrariness would prevent us from

making well-defined predictions, so it seemed that to define the theory we needed to specify the

exact way of regulating spacetime, where the infinities occur. This would be quite uncomfortable,

since then the theory requires a specification of a (ad hoc) regularization prescription beyond the

basic principles of quantum mechanics and relativity.

Recently, a framework that addresses this problem has been proposed in Refs. [1, 2], which

allows for an intrinsically quantum mechanical treatment of the eternally inflating multiverse (see

Ref. [5] for a review directed to a wide audience). In this framework, physics is described in

a fixed reference (local Lorentz) frame associated with a fixed reference point p, with spacetime

existing only within its (stretched) apparent horizon. An essential point is that the principles

of quantum mechanics constrain the space of states HQG [2] in such a way that the problem of

infinity does not arise. Namely, the correct identification of (ii-1) avoids the problem, without

changing (i) from that of usual unitary quantum mechanics. A state representing the multiverse

|Ψ(t)〉 “evolves” deterministically and unitarily in HQG, following the laws of quantum mechanics:

i d
dt
|Ψ(t)〉 = H |Ψ(t)〉. Here, t is an auxiliary parameter introduced to describe the “evolution”

of the state, and need not be directly related to physical time we observe. Once the state |Ψ(t)〉

is known, physical predictions can be obtained through the (extended) Born rule [1, 2] without

resorting to a further regularization procedure. This framework makes it possible that once a

boundary condition on the state, e.g. |Ψ(t)〉 at some t = t0, is given (element (iii)) and the

explicit form of H acting on HQG is understood, e.g. by studying string theory (element (ii-2)),

then predictions are obtained for any physical questions one asks. While the framework does not

achieve all of (i)–(iii), it does address the measure problem and provides a setting in which the

remaining issues can be discussed.

In this paper we consider the issue of (iii) in the quantum mechanical framework of the multi-

verse described above. We take the following hypothesis:

�

�

�

�
Hypothesis I: The laws of quantum mechanics are not violated.

This—in particular the fact that the evolution of a quantum state is deterministic and unitary—

implies that the multiverse state exists all the way from t = −∞ to +∞. Namely, the multiverse

does not have a beginning or end. (For recent discussions on the beginning of the eternally inflating

multiverse, see, e.g., Refs. [6].) There are three potential issues in this picture:

• Uniqueness — What is the selection condition imposed on the multiverse state, on which

physical predictions will depend? In particular, what is the principle determining it?

• Well-definedness — The (extended) Born rule formula in general involves t integrals, which

would now run from −∞ to +∞. Will this give well-defined probabilities?
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• Consistency — Are the resulting predictions consistent with observation? In particular, are

they consistent with the observed arrow of time, even if there is no beginning or end?

In this paper we argue that consistency with observation excludes the possibility that the

selection condition is determined purely in HQG, without referring to an operator algebra. In

particular, this excludes the possibility that the multiverse is in the maximally mixed state in

HQG. We then propose that the multiverse state must satisfy the following simple criterion:

�

�

�

�
Hypothesis II: Physical predictions do not depend on the reference frame one chooses.

We show that this requirement leads to the condition

d

dt
|Ψ(t)〉 = 0 ⇔ H |Ψ(t)〉 = 0, (1)

where we have taken t to be the proper time at p; namely, we find that the multiverse state must

be static! We will argue that despite its naive appearance, this does not contradict observation,

including the fact that we observe that time flows in a definite direction. It simply gives constraints

on the structure of H , on which we will allow for making arbitrary assumptions, given that its

explicit form is not available under current theoretical technology. We will also argue that the

hypothesis leads to unique and well-defined predictions for any physical questions, once one knows

the explicit form of H (element (ii-2) listed at the beginning). Specifically, any physical question

can be phrased in the form: given what we know A about a state, what is the probability for it to

be consistent also with B? And the relevant probability is given by

P (B|A) =
〈Ψ| OA∩B |Ψ〉

〈Ψ| OA |Ψ〉
, (2)

where |Ψ〉 ≡ |Ψ(0)〉, and OX is the operator projecting onto states consistent with condition X .

There are two comments. First, given Hypothesis I, Hypothesis II arises as a consequence

of general covariance (and its suitable extension to the quantum regime) if we assume that the

multiverse is in a zero-eigenvalue eigenstate of global energy and boost operators. This condition,

therefore, provides another, more technical way of stating Hypothesis II. Second, without knowl-

edge of the ultimate structure of H in quantum gravity, the scenario presented here is not the only

option available within the framework of Refs. [1, 2], although it seems to be the most natural

possibility. For example, one might imagine that the multiverse has a “beginning,” and evolves

only thereafter. (This violates both Hypotheses I and II.) The framework of Refs. [1, 2] itself may

still be applied in such a case.

The organization of this paper is as follows. In the next section, we review the framework

of the quantum multiverse given in Refs. [1, 2], and discuss the issue of selection conditions in

that context. In Section 3, we reconsider what the arrow of time is. We emphasize that the
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observed flow of time does not necessarily mean that the state is actually evolving. In Section 4,

we explore the possibility that the selection condition is expressed in HQG without referring to any

quantum operator. We find that this forces the multiverse to be in the maximally mixed state in

HQG, which is observationally excluded. In Section 5, we present our main scenario in which the

multiverse state is determined by the two hypotheses described above. We find this implies that the

multiverse state must be static, and discuss how it can be realized in the cosmological context. We

also see that the scenario arises as a consequence of quantum mechanics and general covariance

if we assume that the multiverse is in a zero-eigenvalue eigenstate of global energy and boost

operators. In Section 6, we discuss the consistency of the scenario with observation, specifically

the observed arrow of time. In Section 7, we provide our final discussions. We draw a close analogy

of the present scenario with the case of the hydrogen atom, underscoring the intrinsically quantum

nature of the scenario.

2 Framework—the Quantum Multiverse

In this section we review the framework of Refs. [1, 2], describing the quantum multiverse. We

also discuss the issue of selection conditions in making predictions within this framework.

2.1 The Hilbert space

The framework is based on the principles of quantum mechanics. In particular, we formulate

it using Hamiltonian (canonical) quantum mechanics, although the equivalent Lagrangian (path

integral) formulation should also be possible. We take the Schrödinger picture throughout.

Recall that to do Hamiltonian quantum mechanics, we need to fix all gauge redundancies.

Since these redundancies include coordinate transformations in a theory with gravity, states must

be defined as viewed from a fixed (local Lorentz) reference frame associated with a fixed reference

point p. Moreover, to avoid violation of the principles of quantum mechanics, they must represent

only spacetime regions within the (stretched) apparent horizons of p, as suggested first in the study

of black hole physics [7]. Together with the states associated with spacetime singularities, these

states form the Hilbert space for quantum gravity HQG.

The construction of HQG can proceed analogously to the usual Fock space construction in

quantum field theory. For a set of fixed semi-classical geometries M = {Mi} having the same

apparent horizon ∂M, the Hilbert space is given by

HM = HM,bulk ⊗HM,horizon, (3)

whereHM,bulk andHM,horizon represent Hilbert space factors associated with the degrees of freedom
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inside and on the horizon ∂M.2 The dimensions of these factors are both exp(A∂M/4), where A∂M

is the area of the horizon in Planck units:

dimHM = dimHM,bulk × dimHM,horizon = exp

(

A∂M

2

)

, (4)

consistently with the holographic principle [8]. The full Hilbert space for dynamical spacetime is

then given by the direct sum of the Hilbert spaces for different M’s

H =
⊕

M

HM, (5)

where dimH =
∑

M dimHM. In addition, the complete Hilbert space for quantum gravity must

contain “intrinsically quantum mechanical” states, associated with spacetime singularities [2]:

HQG = H⊕Hsing, (6)

where Hsing represents the Hilbert space for the singularity states. The evolution of the multiverse

state |Ψ(t)〉, which represents the entire multiverse, is deterministic and unitary in HQG, but not

in HM or H. In particular, a state that was initially an element of a particular HM can evolve

into a superposition of elements in different HM’s (and Hsing) at late times.

The dimension of the complete Hilbert space HQG is infinite, as the dimensions of Hilbert

subspaces associated with stable Minkowski space and spacetime singularities are infinite:

dimHMinkowski = ∞, dimHsing = ∞. (7)

This implies, by the second law of thermodynamics, that a generic multiverse state in HQG will

evolve at large t into a superposition of terms corresponding to supersymmetric Minkowski space

or spacetime singularity:

|Ψ(t)〉
t→∞
−→

∑

i

ai(t) |supersymmetric Minkowski space i〉 +
∑

j

bj(t) |singularity state j〉 , (8)

where we have assumed that the only absolutely stable Minkowski vacua are supersymmetric ones,

as suggested by the string landscape picture [9].

Note that an infinite number of states exist only in a Hilbert subspace associated with a

spacetime singularity or a Minkowski space in which the area of the apparent horizon diverges

2As in the case of a black hole viewed from a distant observer, here we have added the horizon degrees of freedom
to the bulk degrees of freedom; namely, we assume that the situation with a cosmological horizon is simply the
“inside out” version of a black hole described in a distant reference frame [1, 2]. Note that a cosmological horizon
then stores information about objects going outside the horizon in a global spacetime picture. In the limit that M
approaches true de Sitter space, the apparent horizon approaches the true horizon exponentially; in this case we
interpret the conventional entropy bound to imply the dimension of HM,bulk.
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A∂M = ∞. In particular, the number of states associated with a fixed Friedmann-Robertson-

Walker (FRW) time in a Minkowski bubble is finite for any finite energy density ρ, since the area

of the apparent horizon is given by A∂M = 3/2ρ (with ρ in Planck units) [10], so that A∂M < ∞

for ρ > 0.

2.2 The (extended) Born rule

For a given multiverse state |Ψ(t)〉, physical predictions can be obtained following the rules of

quantum mechanics. An important point is that the “time” parameter t here is simply an auxiliary

parameter introduced to describe the “evolution” of the state. The physical information is only in

correlations between events; specifically, time evolution of a physical quantity X is nothing more

than a correlation between X and a quantity that can play the role of time, such as the location

of the hands of a clock or the average temperature of the cosmic microwave background in our

universe. A particularly useful choice for t is the proper time at p, which we will assume for the

rest of the paper.

Any physical question can then be phrased as: given what we know A about a state, what is the

probability for that state to be consistent also with condition B? In the context of the multiverse,

this probability is given by [1]

P (B|A) =

∫

dt 〈Ψ(0)|U(0, t)OA∩B U(t, 0) |Ψ(0)〉
∫

dt 〈Ψ(0)|U(0, t)OA U(t, 0) |Ψ(0)〉
, (9)

where U(t1, t2) = e−iH(t1−t2) is the “time evolution” operator with H being the Hamiltonian of the

entire system for a fixed “time” parameterization t (here the proper time at p), and OX is the

operator projecting onto states consistent with condition X . Note that since we have already fixed

a reference frame, conditions A and B in general must involve specifications of ranges of location

and velocity in which a physical object must be with respect to the reference point p.

As we will discuss in more detail in Section 3, the formula in Eq. (9) can be used to answer any

physical questions including those about dynamical evolution of a system, despite the fact that

conditions A and B both act at the same moment t. We therefore base all our discussions on Eq. (9)

in this paper. (For a different formula that can be used more easily in many practical contexts, see

Ref. [2].) The t integrals in the equation run over the entire region under consideration. Suppose,

for example, that we know the universe/multiverse is in a particular, e.g. eternally inflating, state

|Ψ(0)〉 at t = 0, and want to predict what happens in t > 0. In this case, the integrals must be

taken from t = 0 to ∞, since condition A may be satisfied at any value of t > 0 in some component

of |Ψ(t)〉. Note that despite the integrals running to ∞ the resulting probability is well-defined,

because Eq. (8) prohibits an event from occurring infinitely many times with a finite probability,

which would cause divergences.
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2.3 The issue of selection conditions

What kind of predictions does the framework described above allow us to make? While the

framework addresses the issues of infinity and the ambiguity associated with it (i.e. the measure

problem as defined here), it is certainly not complete. In particular, ...

(a) “Unspecified System” — We did not identify the system explicitly. Specifically, the complete

theory of quantum gravity is not known, so that we do not know the form of H , especially

the part acting on the horizon degrees of freedom. This particular issue can be bypassed if

we focus only on questions addressed at the semi-classical level. Even then, however, current

technology does not give us the explicit form of H , e.g. the structure of the string landscape.

(b) “Selection Conditions” — Predictions in general depend on the selection condition we impose

on |Ψ(t)〉 (even if we know H explicitly). For example, in the situation considered at the end

of the previous subsection, they depend on the initial condition |Ψ(0)〉.

These limitations may still allow us to make certain predictions, possibly with some assumption

on the dynamics of the system. First of all, if we are interested in a system localized in a small

region compared with the horizon scale for a timescale shorter than the characteristic timescale

for the evolution of the horizon, then we can make predictions on the evolution of the system (i.e.

correlation with a physical quantity that plays the role of time) using prior information about the

system—indeed, one can show that Eq. (9) is reduced to the standard Born rule in such a case.

Second, if we are interested in quantities whose distributions in H are reasonably inferred in an

anthropically allowed range, then we can predict the probability distribution of these quantities

seen by a typical observer, under the assumption that the selection condition provides a statistically

uniform prior [11]. This is, for example, the case if we are interested in the probability distribution

of the cosmological constant one observes [12].

However, if we want to answer general “multiversal” questions, e.g. if we want to predict the

probability distribution of the structure of the low-energy Lagrangian found by an intellectual

observer in the multiverse, then we would need to address both (a) and (b) above. (What the

intellectual observer means can be specified explicitly by condition A.) For (a), one could hope

that future progress, e.g. in string theory, might provide us (at least the relevant information on)

the form of H in HQG. But what about (b)?

There are at least three aspects which make this problem substantial:

• One might speculate that a physical theory only allows for relating a given initial state

to another final state, which is indeed the case in conventional Newtonian and quantum

mechanics. In the present context, this implies that to make general predictions, we need to

know the state |Ψ(t)〉 explicitly for some t. This is, however, impossible to do observationally!

Quantum mechanics does not allow us to know the exact state including us, the observer.
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Moreover, |Ψ(t)〉 is the quantum state for the whole multiverse, so it in general contains

terms representing different semi-classical universes than what we live in.

• General predictions in the multiverse, therefore, will be possible only if we have a theoretical

input on the selection condition of |Ψ(t)〉. Suppose it takes the form of a specific “initial

condition,” |Ψ(0)〉. Then, the predictions depend on |Ψ(0)〉, so that, unless we have a separate

theory of the initial condition, the uniqueness of (even statistical) predictions will be lost.

• Imagine that there is, indeed, a theory of the initial condition giving a particular state |Ψ(0)〉,

and that the framework described in Sections 2.1 and 2.2 applies only to t > 0. In this case,

the laws of quantum mechanics, especially deterministic and unitary evolution of the state,

is violated at t = 0. While this is possible, it would be more comfortable if fundamental

principles, such as those of quantum mechanics, do not have an “exception” like this.

In the rest of the paper, we will address the problem of selection conditions, i.e. issue (b),

from the viewpoint of extrapolating the principles of quantum mechanics to the maximum extent

possible. By postulating a certain simple criterion, and requiring consistency with observation, we

will arrive at the picture that the multiverse state must, in fact, be static. This provides a strong

selection of the possible states. The observed flow of time arises from the structures of H in HQG,

and not because of a t dependence of |Ψ(t)〉.

3 The Observational “Data”

Any selection condition imposed on the multiverse state must not lead to results inconsistent with

observation, if it is to do with nature. The basic observational fact in our universe is that we see

time flow in a definite direction, and predictions of a theory must not contradict it. As we will

see, this seemingly weak requirement, in fact, provides a powerful tool to determine the selection

condition. Here, we carefully consider what the observed flow of time actually means in the context

of the quantum multiverse.

3.1 What is the arrow of time?

What does the fact that we see time flow really mean? At the most elementary level, it just means

that the memory state of my (or your) brain is consistent with the hypothesis that it is generated

by an environment whose coarse-grained entropy evolves from lower to higher values. The point

is that the states consistent with such a hypothesis are very special ones among all the possible

states the brain can take. What the fundamental theory must explain is why my brain is in one

of these highly exceptional states.
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•
Figure 1: Suppose you know that there are a half of a chair and of a room in the first half of
the scene (the upper picture). In a regular ordered world, you expect the second half of the scene
contains the other half of the chair and the room, possibly with some other things (the lower left
picture). On the other hand, the number of such states is much smaller than that of states in
which the second half contains random, disordered configurations (the lower right picture).

To illustrate the basic idea further, let us consider a more corporeal example of a chair in a

room. Suppose you are looking at only a half of the scene and find a half of a chair and of a

room there; see the upper picture in Fig. 1. What would you expect to be in the other half? In

the ordered world we live in, we expect to see the other half of the chair and the room, possibly

with some other things such as a painting on the wall, as depicted in the lower left picture in

Fig. 1. However, any such configurations are extremely rare among all the possible configurations

physically allowed and consistent with the first half of the scene. The vast majority of these general

configurations correspond to the ones in which the other half of the scene is completely disordered,

as depicted in the lower right picture in Fig. 1. The arrow of time refers to the fact that we always

find ordered configurations (as in the lower left picture) rather than disordered ones (as in the

lower right picture) in any similar situation, i.e. not only for a chair in a room but also for other
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objects. Such ordered configurations can be naturally expected if the entire system is evolved from

a state having a much lower coarse-grained entropy; otherwise, we would expect disordered ones

since the number of states corresponding to disordered configurations is much larger than that

corresponding to ordered ones.

In the context of the multiverse, the fact that we live in our universe and see the arrow of time

tells us two things:

(A) A typical observer among all the “conscious” observers in the multiverse (including fluke,

Boltzmann brain observers [13]) must live in a universe consistent with our current knowledge,

i.e. a universe whose low energy physics is described by the standard model of particle physics

and cosmology.

(B) When we ask any conditional probability P (B|A) within our universe, i.e. when precondition

A is chosen such that it selects a situation in our universe (e.g. my brain state), the answer

should be dominated by one that arises from a low coarse-grained entropy state through

evolution.

These two are the only things we definitely know from observation about the structure of the

multiverse; for example, the arrow of time may not exist in other universes, i.e. the probabilities

may be dominated by disordered configurations in those universes. What we must require is that

the theory must (at least) be compatible with these two conditions.

The above discussion shows that the following two statements are literally equivalent as con-

cepts: “An observer sees the arrow of time” and “There is no Boltzmann brain problem.” This

is consistent with the picture presented recently by Bousso [14], who analyzed the arrow of time

in the context of the evolving multiverse in the landscape. Historically, the argument like the one

here was first used to exclude the possibility that our universe, which has a positive cosmological

constant, is absolutely stable [13]. It was also argued in Ref. [2] that it excludes the possibility

that the multiverse is a closed, finite system if it has a generic initial condition in HQG. This

possibility, however, is allowed if the selection condition imposed on the entire multiverse state is

special, as is the case in the scenario considered in this paper.

In summary, a selection condition imposed on the multiverse state must be such that the

resulting probabilities are consistent with conditions (A) and (B) listed above. In particular, this

leads to the following corollary:

(∗) Any selection condition on |Ψ(t)〉 that leads to an (almost) equal probability for all the

possible states in HQG corresponding to our universe is observationally excluded.

This is because such a scenario would lead to the probabilities being dominated by disordered

configurations in our universe, contradicting observation. This condition will play an important

role in rejecting a possible selection condition in Section 4.
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3.2 Is the multiverse really evolving?

The consideration given above also illuminates the following question: is the multiverse really

evolving? The answer is: it need not. In order to be consistent with the observed arrow of

time, it is only necessary that the probabilities in our universe are dominated by configurations

that are consistent with the hypothesis that the system has evolved from a lower coarse-grained

entropy state. This, however, does not necessarily mean that the multiverse state |Ψ(t)〉 is actually

evolving in t. It simply says that the probabilities obtained from |Ψ(t)〉 should be consistent with

the hypothesis that our universe has evolved from a lower entropy state.

One might think that we actually “witnessed” that the state evolved as we came into being

and grew. The interpretation of this fact, however, needs care—all we know is that our memory

states are such that they are consistent with those obtained by interacting with environments that

evolve from lower to higher entropy states. Similarly, we usually consider that our universe has

evolved from the early big-bang, but all we really know is that the current state of the universe is

consistent with the hypothesis that it has evolved from a lower entropy, big-bang state. As we have

seen in the previous subsection, what these observations are really telling us is that in our universe

different parts of physical configurations are correlated in certain (very) special ways. They do not

mean that the multiverse state |Ψ(t)〉 must be evolving.

The question of whether a physical system is viewed as evolving or not, therefore, can be

determined by asking questions about a “current” configuration, i.e. configuration at a fixed value

of t. If the configuration is consistent with the hypothesis that the system has evolved from a

lower entropy state, then we interpret it as the system evolving—it is not necessary that the state

itself is actually changing with t. To do such a determination, it is enough to use the formula of

Eq. (9), in which conditions A and B act at the same moment. In fact, in quantum mechanics,

when we obtain information about a system we do that indirectly by observing imprints in the

environment left by the system [15], so this is almost exactly what we do in reality when we study

the “history” of a system.

Summarizing, the observed flow of time does not require that the multiverse state is actually

changing with t. It simply requires that the resulting probabilities satisfy the two conditions

described in the previous subsection: (A) and (B). The probability formula in which conditions A

and B both act at the same moment can be used to answer any physical questions, including those

about a system that we interpret as dynamically evolving.

4 Selection Conditions and Operators

We now start exploring possible selection conditions that can be imposed on the multiverse state.

As stated in the introduction, we consider that the laws of quantum mechanics are not violated
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(Hypothesis I), which forces the multiverse state to exist for all values of t: from −∞ to +∞.

This implies that, once a selection condition is given at a particular moment, which we take as

t = 0, then the state is uniquely determined by solving the Schrödinger equation both forward and

backward in t.

In this section, we ask the following question: can the selection condition be given in Hilbert

space HQG without referring to any quantum operator? If this is possible, then it would imply

that the form of the selection condition, written purely in terms of quantum states, must be basis

independent, since we cannot specify a basis without knowledge of operators and how they act

on elements in the Hilbert space. (Note that Hilbert space itself does not contain any physical

information except for its dimension, i.e. any complex Hilbert spaces having the same dimension

are identical with each other.) We will see that there is only one possible selection condition

satisfying this criterion, and that it is observationally excluded. We will therefore learn that the

expression for the selection condition in HQG must involve some information about the quantum

operators.

4.1 The selection condition without an operator

Suppose that the multiverse is in a pure state, and that the selection condition at t = 0 is given

by

|Ψ(0)〉 =
∑

i

ci |αi〉 , (10)

where |αi〉 represents a complete, orthonormal basis for the elements in HQG, and ci are fixed

coefficients characterizing the selection condition. Can the expression in Eq. (10)—including the

values of ci—be basis independent?

Consider that we perform an arbitrary basis change

|αi〉 =
∑

j

Uij

∣

∣α′
j

〉

, (11)

where Uij is an arbitrary unitary matrix. In the new basis, the expression in Eq. (10) is written

as |Ψ(0)〉 =
∑

i c
′
i |α

′
i〉, where the new coefficients c′i are given by c′i =

∑

j cjUji. In order for the

form of the selection condition to be basis independent, we need to have

ci = c′i =
∑

j

cjUji (12)

for an arbitrary Uij . This condition cannot be satisfied unless ci = 0 for all i. Therefore, it is not

possible to write a selection condition without referring to any quantum operator if the multiverse

state is pure.
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Suppose now that the multiverse is in an intrinsically mixed state, which takes the form

ρ(0) =
∑

i,j

dij |αi〉 〈αj| (13)

at t = 0, where dij is a positive semi-definite Hermitian matrix. The basis change in Eq. (11) then

leads to ρ(0) =
∑

i d
′
ij |α

′
i〉
〈

α′
j

∣

∣, where the new coefficients are given by d′ij =
∑

k,l UikdklU
∗
jl. In

order for the selection condition to be basis independent, we must have

dij = d′ij =
∑

k,l

UikdklU
∗
jl (14)

for an arbitrary Uij . This has the unique solution (up to the overall coefficient):

dij ∝ δij . (15)

We thus find that the requirement is satisfied if the multiverse state is specified by

ρ(0) ∝
∑

i

|αi〉 〈αi| , (16)

namely if the multiverse is in the maximally mixed state in HQG at t = 0.

4.2 Can the multiverse be in the maximally mixed state?

Once the selection condition is given by Eq. (16), the multiverse state ρ(t) for arbitrary t can be

obtained using the evolution equation

ρ(t) = U(t, 0) ρ(0)U(0, t). (17)

Since ρ(0) is proportional to the unit matrix in HQG, however, this gives

ρ(t) = ρ(0), (18)

i.e. the multiverse is in the maximally mixed state at all times.

Equations (16) and (18) imply that all the possible states in HQG corresponding to our universe

are equally probable. This is exactly the possibility that is observationally excluded by corollary (∗)

in Section 3.1. Since we have arrived at this conclusion only by assuming that the selection

condition is written without referring to a quantum operator in HQG, we learn that the condition

must in fact involve a quantum operator. The significance of this result lies in the fact that in

quantum mechanics, operators are the objects that contain information about the system—the

condition imposed on the multiverse state must reflect the structure of the system.
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5 The Static Quantum Multiverse

What operators can be used in the condition imposed on the multiverse state? Since the multi-

verse contains many universes in which low energy physical laws differ, they cannot be “vacuum

specific” operators. In this section, we identify candidate operators—those generating reference

frame changes and that generating evolution.

We then impose the requirement that physical predictions are independent of a reference frame

one chooses to describe the multiverse (Hypothesis II in the introduction). We will see that

this implies that the multiverse state is independent of t, i.e. it must be static. As discussed in

Section 3.2, this does not necessarily contradict observation. (The consistency with the observed

flow of time will be discussed further in Section 6.) We will also see that with Hypothesis I,

Hypothesis II can be viewed as a consequence of requiring that the multiverse is in an eigenstate

of global energy and boost operators with zero eigenvalues.

5.1 Reference frame changes

Recall that in the framework of Refs. [1, 2], quantum states allowing for spacetime interpretation,

i.e. elements of H ⊂ HQG, represent only the spacetime regions inside and on the (stretched)

apparent horizons as viewed from a fixed reference frame associated with a fixed reference point

p. What happens if we change the reference frame?

Consider a state representing a configuration in de Sitter space. If we perform a spatial trans-

lation, which is equivalent to shifting the location of p, then it will necessarily mix the degrees

of freedom inside and on the horizon because the state is defined only in the restricted spacetime

region. This is precisely the phenomenon we call the observer dependence of the horizon: (some

of) the degrees of freedom associated with internal space for one observer are described as those

associated with the horizon by another. Next, consider a state which will later form a black hole,

with p staying outside of the black hole horizon. Such a state will not contain the spacetime

region inside the black hole horizon because it will be outside p’s horizon. Now, imagine that

we change the reference frame by performing a boost at an early time so that p will be inside

the black hole horizon at late times. In this new frame, the state at late times does contain the

spacetime region inside the black hole horizon, although now it does not contain Hawking radiation

quanta escaping to the future null infinity, which were included in the state before performing the

reference frame change. This is exactly the phenomenon of black hole complementarity [7]. The

present framework, therefore, allows us to understand the two phenomena described above in a

unified manner as special cases of general reference frame changes [2]; in particular, the concept of

spacetime depends on the reference frame.

As any symmetry transformation, reference frame changes must be represented by unitary
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transformations acting on Hilbert space HQG. What is the set of generators representing these

transformations, and what is the algebra they satisfy?

In the limit GN → 0, the set of transformations associated with the reference frame changes

and a shift of the origin of t (time translation) is reduced to the standard Poincaré transformations,

which is analogous to the fact that the standard Poincaré group is reduced to the Galilean group

in the limit c→ ∞ [2]. Here, GN and c are Newton’s constant and the speed of light, respectively.

In the case of the reduction associated with c→ ∞, the structure of infinitesimal transformations

changes. This is seen clearly in the Poincaré algebra:

[J[ij], J[kl]] = i
(

δikJ[jl] − δilJ[jk] − δjkJ[il] + δjlJ[ik]
)

,

[J[ij], Kk] = i (δikKj − δjkKi) , [Ki, Kj ] = − i
c2
J[ij],

[J[ij], Pk] = i (δikPj − δjkPi) , [Ki, Pj] =
i
c2
δijH, [Pi, Pj] = 0,

[J[ij], H ] = [Pi, H ] = [H,H ] = 0, [Ki, H ] = iPi,

(19)

where J[ij], Ki, and Pi are the generators of spatial rotations, boosts, and spatial translations,

respectively, and we have exhibited c explicitly. This algebra is reduced to a different algebra, i.e.

that of the Galilean group, as c→ ∞:

[J[ij], J[kl]] = i
(

δikJ[jl] − δilJ[jk] − δjkJ[il] + δjlJ[ik]
)

,

[J[ij], Kk] = i (δikKj − δjkKi) , [Ki, Kj] = 0,

[J[ij], Pk] = i (δikPj − δjkPi) , [Ki, Pj] = iδijM, [Pi, Pj ] = 0,

[J[ij], H ] = [Pi, H ] = [H,H ] = 0, [Ki, H ] = iPi,

(20)

where we have rescaled H → c2M + H to allow for the possibility that the original H has a

constant piece that goes as c2. Can the algebra corresponding to the reference frame changes and

time translation have extra terms beyond Eq. (19) that disappears in the limit GN → 0?

One can immediately see that it cannot. The generators of the reference frame changes consist

of J[ij], Ki, and Pi, while that of time translation is H . Taking natural units, the mass dimensions

of these generators are [J[ij]] = [Ki] = 0 and [Pi] = [H ] = 1, while that of Newton’s constant is

[GN ] = −d + 2, where d is the number of spacetime dimensions. It is then easy to find that for

d ≥ 4, where gravity is dynamical, there is no term one can add to the commutators in Eq. (19)

that is linear in generators and has a positive integer power of GN .
3 The algebra for the reference

frame changes and time translation, therefore, is the same as that of the Poincaré transformations

in Eq. (19). The effect of nonzero GN appears as the reduction of the Hilbert space, but not in

the transformation generators of the Poincaré group.

3For d = 3, one can add terms ∆[J,Ki] = iγGNPi and ∆[K1,K2] = −iγGNH , where J ≡ J[12] and γ is a real
constant, without violating Jacobi identities. The significance of this is not clear.
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5.2 Selecting the multiverse state

Let us now require that predictions do not depend on the reference frame one chooses to describe

the multiverse (Hypothesis II). Physically, this implies that there is neither absolute center nor

the frame of absolute rest in the multiverse.

Formally, our requirement can be stated as follows. Suppose we want to make physical predic-

tions using projection operators OX , e.g. X = A, A∩B, and so on. The relevant matrix elements

are then 〈Ψ(t)| OX |Ψ(t)〉. Now, consider a multiverse state as viewed from a different reference

frame: |Ψ′(t)〉 = S |Ψ(t)〉, where S is the unitary operator representing the corresponding reference

frame change. Our requirement is then

〈Ψ(t)| OX |Ψ(t)〉 = 〈Ψ′(t)| OX |Ψ′(t)〉 (21)

for arbitrary S and OX . Note that the operator in the right-hand side is not O′
X = SOXS

†, but

the same OX as in the left-hand side. This equation, therefore, has a nontrivial physical content,

imposing constraints on the multiverse state. (If we had O′
X in the right-hand side, then the

equation would simply represent a basis change, and thus would be trivial.)

In order to satisfy Eq. (21), the multiverse state must satisfy S |Ψ(t)〉 ∝ |Ψ(t)〉, so that it must

be a simultaneous eigenstate of operators J[ij], Ki and Pi.
4 One can then easily see from Eq. (19)

that this requires that the multiverse state is also an eigenstate of H , and that the eigenvalues

under J[ij], Ki, Pi, and H are all zero. The fact that the multiverse state is an eigenstate of H

with zero eigenvalue means that
d

dt
|Ψ(t)〉 = 0, (22)

i.e. the multiverse state is static! We can therefore write it simply as |Ψ〉 ≡ |Ψ(t)〉 = |Ψ(0)〉. The

conditions coming from Hypothesis II can then be summarized as

J[ij] |Ψ〉 = Ki |Ψ〉 = Pi |Ψ〉 = H |Ψ〉 = 0. (23)

This provides selection conditions for the multiverse state.

In fact, given Hypothesis I, the conditions in Eq. (23) follow from a standard procedure of

quantizing a system with redundancies [16], if we assume that the multiverse state is invariant

under the action of global energy and boost operators. In this procedure, any gauge redundancy,

including general coordinate transformations, appears as a supplementary condition imposed on

quantum states, which eliminates unphysical degrees of freedom from the states. Starting from

4It is, in principle, possible that the predictions are reference frame independent because the multiverse is in an
intrinsically mixed state that satisfies Sρ(t)S† = ρ(t) at all t but each component |ψi(t)〉 in ρ(t) is not a simultaneous
eigenstate of all the S’s. This is, however, the case only if ρ(t) is the maximally mixed state in HQG (because of
Schur’s lemma), which is observationally excluded as we saw in Section 4.2. We must therefore require that each
pure-state component leads to reference-frame independent predictions even if the multiverse is in a mixed state.
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a consistent, general covariant quantum theory of gravity (which is presumably string theory),

the states are subject to a huge number of supplementary conditions, some of which will be

used to reduce the number of degrees of freedom from that implied by local field theory to that

suggested by the holographic principle, as in Eq. (4). (This implies that the number of constraints

is much larger than that of the standard constraints associated with classical general coordinate

transformations [17].) In this bigger (more redundant) picture, the framework of Refs. [1, 2]

corresponds to the scheme in which all the gauge redundancies are explicitly fixed, except for the

ones associated with the reference frame changes. These residual redundancies, i.e. those of the

reference frame changes, must then have their own supplementary conditions imposed on the states

living in HQG.

To illustrate this in a simple example, let us consider a spacetime that admits rectilinear

coordinates xi in a constant t hypersurface. In terms of Hamiltonian and momentum densities,

H(x) and Pi(x), the Hilbert space HQG then corresponds to the space of states in which the

constraints of the form
∫

xixjH(x) d3x |Ψ〉 =

∫

xixjxkH(x) d3x |Ψ〉 = · · ·

=

∫

xixjPk(x) d
3x |Ψ〉 =

∫

xixjxkPl(x) d
3x |Ψ〉 = · · · = 0, (24)

as well as those associated with holography and complementarity, are already imposed; namely,

the states in HQG satisfy these constraints by construction. On the other hand, the constraints of

the form
∫

H(x) d3x |Ψ〉 =

∫

xiH(x) d3x |Ψ〉 =

∫

Pi(x) d
3x |Ψ〉 =

∫

xiPj(x) d
3x |Ψ〉 = 0 (25)

are not imposed to obtain HQG, so they must still be imposed on the states in HQG. Now, the

generators of time translation and the reference frame changes are given by

H =
∫

H(x) d3x+ ǫ, Pi =
∫

Pi(x) d
3x+ pi,

Ki =
∫

xiH(x) d3x+ ki, J[ij] =
∫

(xiPj(x)− xjPi(x))d
3x+ j[ij],

(26)

where we have included global energy ǫ and momentum pi operators (and the corresponding quan-

tities in Ki and J[ij]) that represent possible contributions from surface terms. Such terms can

indeed arise in asymptotically Minkowski space, and play the role of what we consider the total

energy and momentum of the system [18].

Note that it is the effect of global energy ǫ that allows for any evolution of states in t in quantum

gravity, because

|Ψ(t1)〉 = e−iH(t1−t2) |Ψ(t2)〉 = e−iǫ(t1−t2) |Ψ(t2)〉 , (27)
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so unless |Ψ(t)〉 is a superposition of terms that give different values of ǫ, the state is stationary. In

this picture, our Hypothesis II corresponds to the assumption that the multiverse is an eigenstate

of ǫ and ki with vanishing eigenvalues:

ǫ |Ψ〉 = ki |Ψ〉 = 0, (28)

in which case we immediately see that |Ψ〉 also has zero eigenvalues under pi and j[ij], and that

Eq. (23) follows from the constraints in Eq. (25) (and vice versa). An important point is that for a

state in HQG, the surface terms reside on the (stretched) apparent horizon, so that Eq. (28) is the

assumption about the structure of the theory on this surface. This is in the intrinsically quantum

gravitational regime, over which we currently do not have good theoretical control.

The selection of possible multiverse states, therefore, is boiled down to solving the infinite-

dimensional matrix equations in Eq. (23). Here, we assume that there is no other selection con-

dition, i.e. Eq. (23) is enough to fully select the system. (We assume that other supplementary

conditions, e.g. those associated with standard gauge symmetries, are already taken care of. Also,

since all the redundancies associated with gravity other than those corresponding to the reference

frame changes are supposed to be fixed in the present framework [1], there are no more conditions

arising from considerations of gravity.) We look for solutions to Eq. (23) of the form

|Ψ〉 =
∑

i

ci |αi〉 ,
∑

i

|ci|
2 <∞, (29)

where |αi〉 represents a complete, orthonormal basis in HQG, so that the sums of i run to in-

finity; see Eq. (7). The normalizability condition here is imposed for the following (usual) rea-

son. Suppose there are normalizable solutions |ΨI〉 (I = 1, · · · , N) satisfying Eq. (29), as well

as non-normalizable solutions |ΨI〉 (I = N + 1, · · · , K). The non-normalizable solutions will

have coefficients which strongly diverge as the dimensions of corresponding Hilbert subspaces

HM become large. This is because the process transforming an element of HM to that of HM′

with dimHM′ < dimHM becomes highly suppressed as dimHM gets large (because of Eq. (7)).

Let us now imagine regulating the sums of i as
∑

i →
∑n

i=1, in which case we can normal-

ize all the solutions so that 〈ΨI |ΨJ〉 = δIJ for I, J = 1, · · · , K. We can then consider state

ρ =
∑K

I,J=1 dIJ |ΨI〉 〈ΨJ | with arbitrary finite positive semi-definite Hermitian matrix dIJ , and

calculate probabilities arising from ρ using a projection operator that selects (a finite number of)

configurations compatible with some condition X : OX =
∑

i∈X |αi〉 〈αi|. The resulting proba-

bilities are the same as those arising from ρ′ =
∑N

I,J=1 dIJ |ΨI〉 〈ΨJ |, i.e. the state obtained by

eliminating all the non-normalizable solutions from ρ, up to terms disappearing for n→ ∞. (Note

that the non-normalizable solutions have nonvanishing coefficients only for terms representing

space with infinitely small energy densities or singularities. Since such states do not host any

“observer”—or any physical information processing—with a finite probability, they can be ignored

18



when we discuss predictions for observation, i.e. they are not selected by OX used to ask questions

about observation.) Therefore, the non-normalizable solutions can all be dropped from physical

considerations.

The Hilbert space relevant for the multiverse HMultiverse, then, is spanned by the normalizable

solutions to Eq. (23), and so is much smaller than HQG:

HMultiverse ⊂ HQG, dimHMultiverse ≪ dimHQG. (30)

We note that this situation is analogous to usual quantum mechanical systems, e.g. a hydrogen

atom. In the hydrogen atom, the state factor corresponding to a radial wavefunction c(r) can

be written as |ψ〉 =
∫∞

0
dr c(r) |r〉. The only states relevant to physics of the hydrogen atom are

those satisfying the normalizability condition
∫∞

0
dr |c(r)|2 < ∞ in the Hilbert space spanned by

|r〉. The other, non-normalizable solutions (which behave as ln c(r) ∼ r at large r) are irrelevant.

The situation in the quantum multiverse is similar. The non-normalizable solutions have infinitely

strong supports in supersymmetric Minkowski vacua or singularity worlds, which have infinite-

dimensional Hilbert spaces. These solutions, therefore, are irrelevant in making predictions in a

“realistic world,” i.e. in a universe that has nonzero free energy. The only relevant states are those

that are normalizable in the Hilbert space of quantum gravity, HQG. For a schematic drawing of

this analogy, see Fig. 2.

5.3 The static multiverse states in HQG

We now discuss how our conditions Eqs. (22, 29) can be compatible with Eq. (8), which says that a

generic multiverse state in HQG will evolve into a superposition of supersymmetric Minkowski and

singularity states as t→ ∞. In order for Eq. (22) to be satisfied, the coefficients ci of all the terms

in |Ψ(t)〉 = |Ψ〉 must be constant when expanded in components |αi〉. In a basis in which |αi〉

in H have well-defined semi-classical configurations, the evolution operator exp(−iHt) (and thus

H as well) is not diagonal. Therefore, the processes in Eq. (8) will occur for generic |Ψ(t)〉, but

they must exactly be canceled by some “inverse processes” in |Ψ〉. In particular, in order for the

normalization condition in Eq. (29) to be satisfied, this must occur before the state is dissipated

into infinite-dimensional Hilbert space.

Let us consider a physical configuration in a Minkowski universe in which there is a bubble

wall surrounding us, which, however, is contracting toward us rather than expanding away. Such

a configuration, which is exactly the time reversal of a usual expanding bubble configuration, is

physically allowed, as the fundamental equation of the theory is symmetric under t→ −t. Usually,

we do not consider this kind of configuration as it is only an exponentially small subset of all the

configurations allowed by the theory; in particular, there is only an exponentially small probability

for forming such a configuration starting from a generic, e.g. thermal, state. We are, however,
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The hydrogen atom The quantum multiverse

Figure 2: A schematic depiction of the analogy between the hydrogen atom and the quantum
multiverse. In the case of the hydrogen atom, the only relevant states are those that satisfy the
Schrödinger equation and are normalizable in the Hilbert space spanned by |r〉 (solid line); the non-
normalizable modes are irrelevant (dashed line). In the quantum multiverse, the relevant states
are those that satisfy Eq. (23) and are normalizable in Hilbert space HQG (solid line); the non-
normalizable modes, which have diverging coefficients for supersymmetric Minkowski or singularity
states, are irrelevant (dashed line).

now considering very special states, i.e. the states that satisfy Eqs. (22, 29), and in these states

such configurations could balance the “loss” of semi-classically unstable states in Eq. (8). For

example, the entire multiverse state is so “fine-tuned” that a reheating that occurs in a Minkowski

universe produces exactly the configuration that puts the system back to (a superposition of)

states in unstable vacua. Similar processes must also occur for singularities. Note that since these

processes are exponentially suppressed under normal circumstances, they are invisible in the usual

semi-classical analysis.

The states given by Eq. (29) are the ones in which all these and other processes are balanced.5

Since the inverse processes are unlikely to occur at the zero density, these states will explore only a

finite-dimensional portion of Minkowski vacua (see the discussion at the end of Section 2.1). The

number of independent states, therefore, may well be finite: dimHMultiverse <∞.

In fact, the existence of such a solution is highly nontrivial, which we simply assume here.

As discussed above, it violates naive semi-classical intuition when it comes to the points which

prevent coefficients from diverging in infinite dimensional space, i.e., a system evolving into stable

5There is also the possibility that some (or all) of the states given by Eq. (29) do not contain any Minkowski or
singularity components. This does not affect any of our discussions below.
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Minkowski space or being absorbed into singularities. On the other hand, apparent “evolution”

felt by an internal observer (i.e. probability flux in the static state) can still be normal except at

these points, because it is still controlled by usual Hamiltonian. In fact, this situation is similar to

the conventional Wheeler-DeWitt treatment of a closed universe [17], in which the wavefunction

(corresponding to the multiverse state here) is postulated to have vanishing coefficients when the

system hits singularities, while naive semi-classical intuition says that they must diverge there

because the singularities are “sinks” of the evolution.

The sizes of various elements in H represented as a matrix acting on HQG differ significantly;

in fact, they are expected to differ exponentially, or even double-exponentially, as some of the

processes are highly suppressed. This implies that the values of |ci|’s in Eq. (29) will also vary

significantly. The resulting states |Ψ〉, therefore, are not excluded by corollary (∗) in Section 3.1,

and allow for observers living in meta-stable universes to see “normal” cosmology obeying usual

semi-classical intuition. The structure of |Ψ〉, and its consistency with observation, will be discussed

further in Section 6.

5.4 Predictions in the static quantum multiverse

The number of independent normalizable solutions to Eq. (23) will depend on the structure of the

multiverse, i.e. issue (a) in Section 2.3. In particular, the existence of a solution requires H to

take a certain special form (so that it has at least one normalizable, zero-eigenvalue eigenvector),

which we assume to be the case. Suppose there are N such solutions |ΨI〉 (I = 1, · · · , N =

dimHMultiverse <∞). How can the physical predictions be made?

If N = 1, the multiverse state is simply |Ψ〉 ≡ |Ψ1〉. The probabilities are then given by the

generalized Born rule, Eq. (9), but now without the t integrals. (They simply give a constant

factor
∫ +∞

−∞
dt, which cancels between the numerator and denominator.) The final formula is given

by Eq. (2), which we reproduce here:

P (B|A) =
〈Ψ| OA∩B |Ψ〉

〈Ψ| OA |Ψ〉
.

As discussed in Section 3.2, this formula can be used to answer any physical questions, including

those about a system that we view as dynamically evolving.

In the case that N > 1, any multiverse states of the form |Ψ〉 =
∑N

I=1 cI |ΨI〉 or ρ =
∑N

I,J=1 dIJ |ΨI〉 〈ΨJ | are allowed. In the absence of more information (or selection conditions),

it is natural to assume that the multiverse is in the maximally mixed state

ρ =
1

N

N
∑

I=1

|ΨI〉 〈ΨI | , (31)
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where we have taken |ΨI〉’s to be orthonormal. This state is invariant under the basis change

|ΨI〉 → UIJ |ΨJ〉, and is reduced to |Ψ〉 = |Ψ1〉 for N = 1. The probabilities are given by the

mixed-state version of Eq. (2):

P (B|A) =
Tr [ρOA∩B]

Tr [ρOA]
. (32)

Note that Eq. (31), i.e. the maximally mixed state in HMultiverse, is different from Eq. (16), i.e.

the maximally mixed state in HQG, in which the sum runs over all the possible states in HQG

including the ones that do not satisfy Eq. (23). The state in Eq. (31), therefore, is not excluded

by corollary (∗) in Section 3.1.

6 Consistency with Observation

In this section we discuss the consistency of the present scenario with observation, specifically

the observed arrow of time. Our approach here will be to allow for making assumptions on the

structures of H and HQG (unless they are inconsistent with what we already know about string

theory), and to see if the scenario is consistent. We do not claim that all of these assumptions are

absolutely necessary—our purpose here is to argue that, despite its naive appearance, the scenario

is not excluded by observation. More detailed analysis/modeling of the landscape will be left for

future work.

6.1 The structure of HQG

Solutions to Eq. (23) depend on the structure ofHQG as well as the form ofH (and other operators).

Here we assume that HQG contains only “cosmologically relevant” states. The minimally required

set of HM’s that must be included in H, i.e. in the right-hand side of Eq. (5), will then be those

of FRW universes corresponding to all the possible vacua in the theory (and their straightforward

generalizations, e.g. those of FRW universes with black holes). Not all spacetime must be contained

in H; for example, H need not contain a stable anti-de Sitter space without a singularity, which

might only be a mathematical idealization because it does not arise through dynamical evolution

in the FRW universes.

For each vacuum I of the theory, the number of states associated with an FRW universe in I

is estimated as

NI =

exp(AI,max/2)
∑

n=exp(AI,min/2)

n ≃
1

2
eAI,max , (33)

where AI,min and AI,max are the minimum and maximum areas of the apparent horizon in this

universe, and we have used AI,max ≫ AI,min in the last equation. While possible deformations of the

apparent horizon, e.g. by the existence of black holes, can have corrections to the explicit expression,
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we expect that the above estimate gives a qualitatively correct result: lnNI ≈ O(AI,max). The

area AI,max is given by the inverse of the absolute value of the vacuum energy density (in Planck

units) AI,max ∼ 1/|ρΛ,I |, since in a de Sitter universe the apparent horizon approaches the event

horizon at late times, while in an anti-de Sitter universe it has the maximum area when p hits the

singularity at t ∼ 1/|ρΛ,I |
1/2. We therefore find

lnNI ∼
1

|ρΛ,I |
. (34)

This implies that the number of states associated with a vacuum with ρΛ,I 6= 0 is finite.

6.2 The arrow of time in the static multiverse

We now consider a solution to the equation H |Ψ〉 = 0, a part of the conditions in Eq. (23). We

can view this equation as requiring that |Ψ〉 is in a stationary state in HQG. (In fact, the equation

is stronger than that, since the eigenvalue of H must be zero.) In particular, it implies that the

probability current creating states in vacuum I must be balanced with that destroying those for

each I (in fact, each state in I). At the semi-classical level, this condition is impossible to satisfy

for terminal vacua. As discussed in Section 5.3, however, our state is special, obtained after solving

the “quantization condition” H |Ψ〉 = 0, so that it can also be satisfied for these vacua.

Let us now consider vacuum J that can support any observer, either an ordinary observer or a

Boltzmann brain. We will argue that the arrow of time is predicted if the following three conditions

are met for all possible J ’s:

(I) Transitions to states in J from those in other vacua are mainly through the states having low

coarse-grained entropies in J , i.e. elements of HM with ln dimHM ≪ AJ,max.

(II) Subsequent evolution in vacuum J produces ordinary observers with probability ǫJ , which

may be suppressed exponentially but not double-exponentially.

(III) The rate of producing Boltzmann brains ΓBB,J in vacuum J , which is double-exponentially

suppressed (see, e.g. [19]), is smaller than the decay rate ΓJ of the vacuum itself.

Namely, if the structure of H is such that it satisfies all these conditions, then the scenario is

compatible with observation. (The “transitions” and “evolution” here, of course, refer to the

apparent ones in |Ψ〉, which is in itself static.)

To see this, let us consider the distribution of the size of the coefficients |cJi | of various terms

in |Ψ〉 corresponding to the states in vacuum J ,
∣

∣αJ
i

〉

. For this purpose, we define the quantity P J
τ

corresponding to the probability for a universe to be at FRW time tFRW between τ and τ + dτ :

P J
τ dτ =

∑

i|τ<tFRW<τ+dτ

|cJi |
2, (35)
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where tFRW should be specified by physical configurations in
∣

∣αJ
i

〉

. The distribution of P J
τ then

follows from the definition of ΓJ :

P J
τ = P J

0 e
−ΓJ τ , (36)

where we have assumed that the transitions to states in J occur at τ = 0 either through Coleman-

De Luccia [20] or Hawking-Moss [21] processes (or their inverses), although our conclusion is

insensitive to this assumption. Note that in these cases it is indeed natural to expect that states just

after the transitions are the ones having low coarse-grained entropies, i.e. inHM with ln dimHM ≪

AJ,max, because both the start and end points of the Coleman-De Luccia tunneling in field space are

away from local minima (if the false vacuum has a positive vacuum energy), and the Hawking-Moss

transition is a thermal process occurring through the field climbing up the potential barrier [22].

Now, the definitions of ǫJ and ΓBB,J in (II) and (III) above imply that if we compute the

probability of |Ψ〉 containing ordinary observers (OO) or Boltzmann brains (BB) in vacuum J

using the corresponding projection operators OOO,J and OBB,J , then we obtain

〈Ψ| OOO,J |Ψ〉 ∼ ǫJP
J
0 , (37)

〈Ψ| OBB,J |Ψ〉 ∼ ΓBB,J

∫

P J
τ dτ =

ΓBB,J

ΓJ

P J
0 . (38)

Here, the projection operators select observers in a specific range of location and velocity with

respect to p, although the results do not depend on the chosen location or velocity because of

Eq. (23). Under conditions (II) and (III), this gives

〈Ψ| OBB,J |Ψ〉

〈Ψ| OOO,J |Ψ〉
∼

ΓBB,J

ǫJΓJ
≪ 1, (39)

where we have used the fact that ΓBB,J is double-exponentially suppressed while ǫJ is not. (In fact,

we only need ǫJ > ΓBB,J/ΓJ to obtain this result, so ǫJ may be double-exponentially suppressed.)

We therefore find that the overwhelming majority of observers are indeed ordinary observers, and

thus perceive time’s arrow (as discussed in Section 4.2).

Perhaps not surprisingly, the conditions described above are similar to the ones obtained in

Ref. [14] in the context of the evolving multiverse, despite the fact that the overall physical pictures

are rather different. One distinct feature of the present scenario in this respect is that since there is

no “initial vacuum,” the absolute nonexistence of Boltzmann brains in such a vacuum (ΓBB,∗ = 0 in

the notation of Ref. [14]) need not be imposed. In any case, as discussed in Ref. [14], the conditions

described above, in particular (I), are likely to be satisfied in the string landscape. It is, therefore,

quite promising that the scenario discussed in this paper is indeed consistent with observation in

the realistic string theory setup.
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7 Discussions

In this paper we have studied the multiverse in the quantum mechanical framework recently pro-

posed in Refs. [1, 2]. By requiring that the laws of quantum mechanics are not violated (Hy-

pothesis I) and that physical predictions do not depend on the reference frame one chooses to

described the multiverse (Hypothesis II), we have found that the multiverse state must be static;

in particular, the multiverse does not have a beginning or end.

Despite its naive appearance, the scenario does not contradict observation, including the fact

that we observe that time flows in a definite direction. The arrow of time is simply an emergent

phenomenon that is occurring in the branch (terms) corresponding to our universe in the static

multiverse state—the terms that would be obtained by evolving the system from lower entropy

states have much larger coefficients than the terms that cannot. The scenario is summarized by

the selection conditions in Eq. (23), imposed on the states in HQG. With these conditions, any

multiversal questions can be answered using the Born rule, Eq. (2) or (32), without any additional

input, once the explicit form of the operators such as H is known. This scenario, therefore, provides

a completion of the framework of the quantum multiverse in Refs. [1, 2].

The supplementary condition of the form H |Ψ〉 = 0 has certainly been considered before—

indeed, this is nothing but the well-known Wheeler-DeWitt equation [17]. The scenario presented

here, however, differs from standard applications of this equation in several important ways:

• The redundancies associated with gravity are much larger than what are usually imagined.

In particular, they reduce the Hilbert space in such a way that it contains only the spacetime

region within the reference point’s (stretched) apparent horizon [1, 2]. This is important to

avoid ambiguities associated with eternally inflating spacetime. The ultimate origin of these

large redundancies will, presumably, be string theory.

• We apply the supplementary conditions corresponding to the whole set of time translation

and reference frame changes with zero global charges, even if the universe is not closed. Since

spacetime is defined only within the apparent horizon, this requires the assumption on the

structure of the theory on this surface, which is intrinsically quantum mechanical. Note that

it is this assumption that is responsible for the static nature of the multiverse state, which in

turn excludes the possibility for the multiverse to have a beginning or end.

• We analyze the consequences of the supplementary conditions at the microscopic level. This

selects very special states that are not visible in the analysis at the semi-classical level. In

fact, normalizable solutions to the conditions correspond to the states in which the processes

of Eq. (8) are balanced with the inverse processes, which put the system back from terminal

vacua to unstable vacua.
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It is quite satisfying that such simple requirements as Hypotheses I and II lead to a consistent and

predictive scheme for the entire multiverse.

Finally, it is instructive to draw a close analogy between the situation in the quantum multiverse

described here and that in the standard, hydrogen atom. As is well known, the hydrogen atom

cannot be correctly described using classical mechanics. Any orbit of the electron is unstable with

respect to the emission of synchrotron radiation. Even if we artificially ignore the emission, the

electron can orbit the nucleus at an arbitrary radius, unable to explain the discrete spectral lines.

The solution to these problems is intrinsically quantum mechanical, i.e. quantum mechanics is

responsible for the very existence of the hydrogen atom, not just providing a correction to the

classical picture.

The situation in the quantum multiverse is similar. At the semi-classical level, the multiverse is

unstable to the decay to terminal states, such as supersymmetric Minkowski vacua and singularities.

Even if we artificially ignore the process of vacuum decays, it would lead to phenomena such as

Poincaré recurrence, contradicting observation (the dominance of Boltzmann brains). The picture

presented here says that the solution to these problems is intrinsically quantum mechanical—one

cannot see it in the usual semi-classical analysis. The multiverse state is very special: a normalizable

state satisfying the “quantization conditions” of Eq. (23), as in the case of the hydrogen atom.

In the case of the hydrogen atom, these conditions make the dimension of Hilbert space from

continuous infinity ψ(r, θ, ϕ) to countable infinity (n, l,m). In the quantum multiverse, they will

presumably make it from countable infinity to finite: dimHQG → dimHMultiverse.

After all, quantum mechanics treats the multiverse very similarly to the hydrogen atom. Our

job is then to figure out the precise structure of the multiverse, a system which we are a part of.

Hopefully, further progress in string theory will serve this purpose.
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