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We study the deconfining phase transition at nonzero temperature in a SU(N) gauge theory, using
a matrix model which was analyzed previously at small N . We show that the model is soluble at
infinite N , and exhibits a Gross-Witten-Wadia (GWW) transition. In some ways, the deconfining
phase transition is of first order: at a temperature Td, the Polyakov loop jumps discontinuously
from 0 to 1

2
, and there is a nonzero latent heat ∼ N2. In other ways, the transition is of second

order: e.g., the specific heat diverges as C ∼ 1/(T −Td)3/5 when T → T+
d . Other critical exponents

satisfy the usual scaling relations of a second order phase transition. In the presence of a nonzero
background field h for the Polyakov loop, there is a phase transition at the temperature Th where
the value of the loop = 1

2
, with Th < Td. Since ∂C/∂T ∼ 1/(T − Th)1/2 as T → T+

h , this transition
is of third order. These properties, closely analogous to those on a femto-sphere at zero coupling,
suggest that in infinite volume, the GWW transition may be an infrared stable fixed point of a
SU(∞) gauge theory.

The properties of the deconfining phase transition for
a SU(N) gauge theory at nonzero temperature are of
fundamental interest. At small N , this transition can
only be understood through numerical simulations on the
lattice [1]. Large N can be studied through numerical
simulations [2] and in reduced models [3]. In the pure
glue theory, this transition can be modeled through an
effective model, such as a matrix model [4–10].

One limit in which the theory can be solved analyti-
cally is by putting it on a sphere of femto-scale dimen-
sions [11–15]. An effective theory is constructed directly
by integrating out all modes with nonzero momentum,
and gives a matrix model which is soluble at large N [16–
19]. As a function of temperature, it exhibits a Gross-
Witten-Wadia (GWW) transition [20]. That is, it ex-
hibits aspects of both first order and second order phase
transitions; thus it can be termed “critical first order”
[15]. Since the theory has finite spatial volume, however,
there is only a true phase transition at infinite N . Thus
on a femtosphere, the GWW transition appears to be
mere curiosity.

Matrix models have been developed as an effective the-
ory for deconfinement in four spacetime dimensions (and
infinite volume). These models, which involve zero [6],
one [7], and two parameters [8, 9], are soluble analytically
for two and three colors, and numerically for four or more
colors. In this paper we show that these models are also
soluble analytically for infinite N . Most unexpectedly,
we find that the model exhibits a GWW transition, very
similar to that on a femtosphere. This is surprising be-
cause on a femtosphere, the matrix model is dominated
by the Vandermonde determinant, and looks nothing like
the matrix models of Refs. [6–9].
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This leads us to speculate that the GWW transition
may not be an artifact of a femtosphere, but might be an
infrared stable fixed point for SU(∞) gauge theories in
infinite volume. In Sec. (IV) we estimate how large N
must be to see signs of the GWW transition at infinite
N .

I. ZERO BACKGROUND FIELD

We expand about a constant background field for
the vector potential, Aij0 = (2πT/g) δij qi, where i, j =
1 . . . N . This A0 field is a diagonal SU(N) matrix, and

so
∑N
i=1 qi = 0. The thermal Wilson line is the ma-

trix L = exp(2πiq); its trace is the Polyakov loop in
the fundamental representation, `1 = trL/N . At any
N , this represents a possible ansatz for the region where
the expectation value of the Polyakov loop is less than
unity. This region has been termed the “semi” quark
gluon plasma (QGP) [5]. At infinite N , this ansatz is the
simplest possible for the master field in the semi-QGP.

The potential we take is a sum of two terms,

Ṽeff(q) = − d1(T ) Ṽ1(q) + d2(T ) Ṽ2(q) , (1)

where

Ṽn(q) =

Nc∑
i,j=1

|qi − qj |n(1− |qi − qj |)n . (2)

The term ∼ Ṽ2(q) is generated perturbatively at one loop

order; that ∼ Ṽ1(q) is added to drive the transition to
the confined phase. Previously, the functions d1 and d2

were chosen as d1(T ) = (2π2/15) c1 T
2T 2
d and d2(T ) =

2π2/3 (T 4 − c2 T 2T 2
d ) , where Td is the temperature for

deconfinement [7–9]. These matrix models also included
terms independent of the q’s, ∼ c3 T 2 T 2

d and ∼ B T 4
d .
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The values of these parameters were chosen to agree
with results from numerical simulations on the lattice
[7–9]. As we show, however, when N is infinite, at the
transition temperature the nature of the solution is in-
dependent not only of the values of these parameters,
but even of the choice of the functions d1(T ) and d2(T )
(modulo modest assumptions, given later).

The matrix model in Eqs. (1) and (2) is rather different
from that on a femtosphere [11–15]. On a femtosphere
the dominant term driving confinement is the Vander-
monde determinant, ∼ Πi,j log | exp(2πiqi)−exp(2πiqj)|;
in the present model it is the terms ∼ Ṽn(q). The log-
arithmic singularities of the Vandermonde determinant
are stronger than those of the from the absolute values

∼ |qi − qj |n in the ∼ Ṽn(q).
To treat infinite N , we introduce the variable x = i/N ,

so that qi → q(x), and the potential is an integral over
x. It is useful to introduce the eigenvalue density, ρ(q) =
dx/dq [16]. The integrals over x then become integrals
over q, weighted by ρ(q). The eigenvalue density must
be positive, and by definition is normalized to∫ q0

−q0
dq ρ(q) = 1 . (3)

Polyakov loops are traces of powers of the thermal Wilson
line,

`j =
1

N
trLj =

∫ q0

−q0
dq ρ(q) cos(2πjq) . (4)

As noted before, the first Polyakov loop, `1, is that in the
fundamental representation. For j ≥ 2, the relationship
of the `j to Polyakov loops in irreducible representations
is more involved [5], but all `j are gauge invariant, and
so physical quantities.

By a global O(2) rotation we can assume that the ex-
pectation value of `1 is real. Consequently, we take ρ(q)
to be even in q, ρ(q) = ρ(−q). Anticipating the results,
we also assume that the integral over q does not run the
full range from − 1

2 to 1
2 , but only over a limited range,

from −q0 to +q0.
Going to integrals over q, we can take out overall fac-

tors of N2 from the potentials, with Ṽn(q) = N2 Vn(q),
where

Vn(q) =

∫
dq

∫
dq′ ρ(q) ρ(q′)|q−q′|n(1−|q−q′|)n . (5)

In this expression and henceforth, all integrals over q run
from −q0 to +q0, as in Eqs. (3) and (4).

We then define Ṽeff(q) = N2Veff(q), where Veff =
−d1V1 + d2V2. Solving the model at infinite N , then,
is just a matter of finding the (minimal) stationary point
of Veff(q) with respect to the qi’s.

The equations of motion follow by differentiating the
potential in Eq. (1) with respect to qi, and then taking
the large N limit. Doing so, we find

0 = [d1 + d2] q − d1

2

∫
dq′ρ(q′) sign(q − q′)

+d2

∫
dq′ρ(q′)

[
−3(q − q′)|q − q′|+ 2(q − q′)3

]
, (6)

where sign(x) = ±1 for x ≷ 0. For simplicity we write
d1(T ) and d2(T ) just as d1 and d2.

To solve the equation of motion in Eq. (6), we follow
Jurkiewicz and Zalewski [19] and use the following trick.
What is difficult is that Eq. (6) is an integral equation
for ρ(q). To reduce this to a differential equation, take
∂/∂q of Eq. (6),

0 = d1 + d2 − d1 ρ(q) (7)

+6 d2

∫
dq′ρ(q′)

[
−(q − q′)sign(q − q′) + (q − q′)2

]
.

Notice that this does not give us the second variation of
the potential with respect to an arbitrary variation of q,
which is related to the mass squared. Instead, we take
the derivative of the equation of motion, with respect to
a solution of the same.

We then continue until we eliminate any integral over
q′. Taking ∂/∂q of Eq. (7) gives

d1
dρ(q)

dq
= 6 d2

∫
dq′ρ(q′) [−sign(q − q′) + 2(q − q′)] .

(8)
Lastly, by taking one final derivative, we obtain

d2

dq2
ρ(q) + d2 [ρ(q)− 1] = 0 . (9)

In this expression we introduce the ratio d2(T ) =
12 d2(T )/d1(T ). We assume that like the solution at
small N [7–9], that d(T ) increases with T , and d(T )→∞
as T → ∞. We note that the only detailed property of
d(T ) which we require is that its expansion about Td is
linear in T − Td. This is a minimal assumption which is
standard in mean field theory.

We thus need to solve Eqs. (6) - (9), subject to the
condition of Eq. (3). The solution of Eq. (9) is trivial,

ρ(q) = 1 + b cos(d q) , q : −q0 → q0 , (10)

where b is a constant to be determined. We assume that
ρ(q) = 0 for |q| > q0. We have checked numerically that a
multi gap solution [19], where ρ(q) 6= 0 over a set of gaps
in q, does not minimize the potential; see the discussion
at the end of Sec. (III).

When q0 <
1
2 , ρ(q0) 6= 0, and the solution drops discon-

tinuously to zero at the endpoints. This stepwise discon-
tinuity is charactertistic of the model, and presumably
reflects the singularities from the absolute values in the
potential.

The eigenvalue density in Eq. (10) is simpler than that
in the GWW model [11–15, 17–19], where

ρGW (q) =
1

2
cos(πq)

[
1− sin2(πq)

sin2(πq0)

]1/2

. (11)
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For any q0, this vanishes at the endpoints, ρGW (±q0) =
0, while at the transition, q0 = 1

2 . Due to the Vander-
monde determinant in the potential, the density ρGW (q)
has a nontrivial analytic structure in the complex q-
plane, while ρ(q) does not. Since the Vandermonde po-
tential is so different from Veff , though, it is natural to
find that ρGW (q) is unlike ρ(q) in Eq. (10).

Eq. (10) solves Eq. (8) without further constraint. To
solve the remaining equations, remember that all inte-
grals run from −q0 → q0. The normalization condition
of Eq. (3) gives b sin(d q0) = d( 1

2 − q0). After some alge-
bra, one can show that Eqs. (6) and (7) are equivalent,
with the solution

cot(d q0) =
d

3

(
1

2
− q0

)
− 1

d (1/2− q0)
, (12)

and

b2 =
d4

9

(
1

2
− q0

)4

+
d2

3

(
1

2
− q0

)2

+ 1 . (13)

Thus in the end, we only have to solve two coupled al-
gebraic equations, Eqs. (12) and (13), for q0 and b as
functions of d = d(T ).

At low temperature, d is small, and the theory is in the
confined phase, where b = 0 and q0 = 1

2 . The eigenvalue
density is constant, ρ(q) = 1, and all Polyakov loops van-
ish, `j = 0. Thus the confined phase is characterized by
the maximal repulsion of eigenvalues. The GWW model
also has a constant eigenvalue density in the confined
phase, which is expected, as only a constant eigenvalue
density gives `j = 0 for all loops.

In the limit of high temperature d→∞. The solution
is q0 = 6/d2 and b = d2/12. The eigenvalue density
is ρ ≈ d2/12, which becomes a delta-function δ(q) for
infinite d. That is, at high temperatures all eigenvalues
coalesce into the origin, and all Polyakov loops equal one,
`j = 1.

As the temperature and so d(T ) is lowered, the tran-
sition occurs when q0 = 1

2 , for which d(Td) = 2π. At the
transition point, the eigenvalue density is

ρ(q) = 1 + cos(2πq) ; T = Td . (14)

From Eq. (4),

`1(T+
d ) =

1

2
, `j(Td) = 0 , j ≥ 2 . (15)

Thus at the transition, only the Polyakov loop in the
fundamental representation is nonzero, equal to 1

2 .

What is unforeseen is that at T+
d , the eigenvalue den-

sity in the present model, Eq. (14), coincides identically
with that in the GWW model, Eq. (11). Consequently,
properties exactly at T+

d , such as the expectation values
of the `j , are the same in the two models. Since they
differ away from Td, other properties are similar, but not
necessarily identical.

Consider the behavior in the deconfined phase just
above the transition point, taking d = 2π(1 + δd). Solv-
ing for δq and b in the limit of small δd, one finds that
`1 − 1/2 ∼ δd2/5; for j ≥ 2, `j ∼ δd. Assuming that
δd ∼ Td − T ,

`1(T )− 1

2
∼ (Td − T )β , β =

2

5
. (16)

That is, near the transition `1(T ) exhibits a power like
behavior which is characteristic of a second order phase
transition — although `1(T+

d ) 6= 0.
For arbitrary d, after some algebra one finds that at qs0,

the solution of Eqs. (12) and (13), the potential equals

Veff(qs0)− V conf
eff = − d2

16

15

(
1

2
− qs0

)5

. (17)

The potential in the confined phase is V conf
eff = Veff( 1

2 ) =
−d1/6 + d2/30. In these matrix models, the pressure
is p(T ) = −Veff(qs0) + V conf

eff . This subtraction ensures
that the pressure, and the associated energy density, are
suppressed by ∼ 1/N2 in the confined phase. In the
models of Ref. [7, 8], V conf

eff (q) is given by a constant
independent of q, the term ∼ c3. Expanding about Td,

Veff(q0)− V conf
eff +

48d2

π4
δd ∼ δd7/5 + . . . (18)

Assuming that δd ∼ T − Td, as is true of the functions
in Refs. [7–9], the leading term ∼ δd shows that the first
derivative of the pressure with respect to temperature,
which is related to the energy density e(T ), is nonzero
at T+

d . Since the pressure and the energy density are
suppressed by ∼ 1/N2 in the confined phase, the latent
heat is nonzero and ∼ N2, ∼ e(T+

d ).
Using the explicit forms for d1(T ) and d2(T ), we find

that the latent heat is e(T+
d )/(N2T 4

d ) = 1/π2 ∼ .10...
This is about four times smaller than the lattice results
of Ref. [2] who find ∼ 0.39 for the same quantity. The
lattice results can be accomodated by adding a term like
a MIT bag constant to the model [8]. Such a term is
∼ T 4

d but independent of the q’s, and so only changes the
latent heat, but does not affect any other result.

The second term in Eq. (18) shows that the second
derivative of the pressure with respect to temperature
diverges as T → T+

d ,

∂2

∂T 2
p(T ) ∼ 1

(T − Td)α
, α =

3

5
. (19)

This is the usual divergence of the specific heat for a
second order phase transition.

II. NONZERO BACKGROUND FIELD, T = Td

Background fields can be added for each loop `j . In
this paper we just consider a background field for the
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simplest loop, `1, since only that is nonzero at Td, Eq.
(15). We add

Vh(q) = − d1

(2π)2
h `1 (20)

to the potential Veff(q), and find the solution as before.
After taking three derivatives of the equation of motion,
with respect to a solution, we obtain the analogy of Eq.
(9),

d2

dq2
ρ(q) + d2 [ρ(q)− 1] + (2π)2 h cos(2πq) = 0 . (21)

This equation is valid for any d. It is necessary to treat
the case of Td, where d = 2π, seperately from T 6= Td.

In this section we consider the point of phase transi-
tion, where d = 2π. The solution of Eq. (21) is

ρ(q) = 1 + b cos(2π q)− π h q sin(2πq) , (22)

where q : −q0 → q0. Notice that the h-dependent term
q sin(2πq) arises because when T = Td, Eq. (21) repre-
sents a driven oscillator at the resonance frequency. The
value of the constants b and q0 now depend upon both
d(T ) and the background field, h.

The analogy of Eq. (8) is solved by Eq. (22). The
normalization condition, Eq. (3), plus the analogy of Eq.
(7), gives two equations for b and q0; as before, Eq. (6)
does not give a new condition.

When h 6= 0, the explicit form of the analogy of Eq.
(3) is elementary, but that of Eq. (7) is rather ungainly.
We thus present the results of the solution in the limit
of small background field, h � 1. In this limit, at the
minimum the h-dependence of the potential is

Veff(qs0, h) +
d1

8π2
h ∼ h7/5 + . . . . (23)

The expectation value of the loop `1 is `1 − 1
2 ∼ h2/5.

so that the critical exponent δ = 5/2. This shows that
the critical exponents satisfy the usual Griffths scaling
relation, 2− α = β(1 + δ).

The effective potential, as a function of `1, is computed
by taking the Legendre transform,

Γ(`1) = Veff(h) +
d1

(2π)2
h1`1 . (24)

Expanding the potential at T+
d , Γ(`1) ∼ (`1− 1

2 )7/2. This
is in contrast to the femtosphere, where the potential
behaves as ∼ (`1 − 1

2 )3 about the similar point [12, 15].

Expanding at T−d gives the expansion of the potential
about `1 = 0. One can show, and we verify in the next
section, that this potential vanishes. This implies that
the potential has an unusual form: it is zero from `1 :
0→ 1

2 , and then turns on as ∼ (`1 − 1
2 )7/2. Graphically,

this potential is like that on the femtosphere; see, e.g.,
Fig. (1) of Ref. [15].

III. NONZERO BACKGROUND FIELD, T 6= Td

Consider now the theory in a nonzero background field
for `1, Eq. (20), away from the transition, so d 6= 2π. The
eigenvalue density again solves Eq. (21). The solution is
simpler when d 6= 2π, and is just the sum of the solution
for h = 0 and an h-dependent term,

ρ(q) = 1 + b cos(d q) +
1

1− (d/2π)2
h cos(2πq) . (25)

The solution follows as previously, and we simply sum-
marize the results.

We first consider the confined phase, defined to be the
solution for which q0 = 1

2 and b = 0. After Legendre
transformation, the effective potential is

Γ(`1) =

(
1− d2

4π2

)
1

π2
`21 . (26)

This shows that in the confined phase, when d < 2π the
mass squared of the `1 loop is positive, as expected. It
also shows that this mass vanishes at Td when h = 0; this
justifies the statements about the potential at the end of
the previous section.

Consider a special value of d, d2
h = 4π2(1 − h); the

corresponding temperature is defined to be Th, d(Th) =
dh. At this temperature, the eigenvalue density of Eq.
(25) coincides exactly with that at the transition in zero
background field, Eq. (14). Notably, the values of the
loop at h 6= 0 and T = Th are the same as for h = 0 and
T = Td: `1(Th) = 1

2 , with `j = 0 for j ≥ 2, Eq. (15).
Thus we may suspect that something special happens at
T = Th. For example, the confined phase is only an
acceptable solution when T < Th, as only then is the
eigenvalue density positive definite.

This suggests that a phase transition occurs at dh. To
show this, we compute for about this value of d, taking
d2 = d2

h + 4π2 h δd. Solving the model as before in the

limit of small δd, we find Veff(h) − V conf
eff (h) ∼ δd5/2.

Taking δd ∼ Th − T , we find that the third derivative
of the pressure, with respect to temperature, diverges at
Th,

∂3

∂T 3
p(T ) ∼ 1

(T − Th)1/2
, T → T+

h . (27)

In zero background field, then, there is a critical first
order transition at a temperature Td. Turning on a back-
ground field ∼ h `1, the first order transition is immedi-
ately wiped out for any h 6= 0. Even so, there remains a
third order phase transition, at a temperature Th < Td,
where the expectation value of the loop `1 = 1

2 . This
behavior is the same as on a femtosphere [12, 14, 15].

In principle one can also add a background field for any
loop, `j for j ≥ 2. It is direct to derive the equations of
motion and obtain a solution for the eigenvalue density.
Obtaining the minimum of the potential is not elemen-
tary, though. The original model of Gross and Witten
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[17] involves the Vandermonde determinant plus a term
∼ |trL|2. The solution for the eigenvalue density is a
function which is nonzero on one interval, between −q0

and q0. Jurkiewicz and Zalewski [19] showed that when
terms such as |trL2|2 are added to the GWW model,
that in general it involves functions which are nonzero
on more than one interval. We have checked numerically
that when only h1 6= 0, that such multi-gap solutions do
not minimize the potential. We do find, however, that
multi-gap solutions do minimize the potential in the pres-
ence of background fields for `j when j ≥ 2. Since only
`1 6= 0 at Td and Th, we defer the problem of background
`j for j ≥ 2.

IV. FINITE N

The model can be solved numerically at finite N . This
confirms, as expected on general grounds [8], that the
deconfining transition is of first order for any N ≥ 3. It
also shows that the critical behavior found at infinite N
is smoothed out at large but finite N .

Using the numerical solution of the model, in the Fig-
ure we show the behavior of the specific heat, divided by
N2 − 1, for different values of N . To see the putative
divergence of the specific heat at infinite N , rather large
values of N are necessary, N ≥ 40.

This Figure also shows that the increase in the specific
heat only manifests itself very close to the transition,
within ∼ 0.2% of Td. At present, direct numerical simu-
lations on the lattice treat moderate values of N ∼ 4−10
[2]. For most quantities there seems to be a weak varia-
tion with N .

The present matrix model suggests that very near Td,
a novel phase transition may occur at large N . The val-
ues of N at which critical first order behavior arise can
presumably be studied only in reduced models [3].

This begs the important question: in infinite volume,
does the GWW transition occur for SU(∞) [21]? On the
femtosphere, there is a GWW transition at zero coupling
[12], which becomes an ordinary first order transition at
small but nonzero coupling [13]. Similarly, in the pres-
ence of additional couplings, such as in the presence of
additional couplings, such as (|trL|2)2, the GWW transi-
tion becomes an ordinary first order transition [15]. Un-
fortunately, we have not been able to solve the present
model in the presence of additional couplings. Thus it is
possible that as on a femtosphere, the presence of addi-

tional couplings washes out the GWW transition.
On a femtosphere, though, correlation lengths cannot

be larger than the radius of the sphere. In infinite vol-
ume, however, as a second order phase transition is ap-
proached correlation lengths diverge and coupling con-
stants flow under the action of the renormalization group.

This leads us to conclude with a conjecture. We find it
remarkable that two very different theories, the present
model and that with a Vandermonde determinant, both
exhibit a GWW transition at Td. Perhaps in infinite spa-

Nc=3
Nc=15
Nc=25
Nc=45

c v
/T

3  (N
2 -1

)
10

20

30

40

50

T/Td
1.000 1.001 1.002

FIG. 1. Plot of the specific heat, divided by (N2 − 1)T 3, for
different values of N .

tial volume, the GWW transition is an infrared stable
fixed point of a SU(∞) gauge theory at nonzero temper-
ature. Since the GWW transition is not a standard sec-
ond order transition, the analysis of the renormalization
group is not trivial. Nevertheless, the study of reduced
models [3], such as of the specific heat in the Figure, can
directly test this conjecture. After all, gauge theories are
remarkable things, and can surprise us.
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