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Abstract

We consider the transitions from the Zb(10610) and Zb(10650) resonances to the

states of bottomonium with emission of a pion. The Zb resonances are viewed as

‘molecular’ objects of a large spatial size made of heavy B(∗) mesons, while the states

of bottomonium are considered to be compact, so that an application of the leading

(dipole) term in the QCD multipole expansion is assumed to be justified. In this way

we calculate the ratios of the decay rates to the final states Υ(nS)π with n = 1, 2, 3,

and the ratio of the decay rates to hb(kP )π with k = 1 and 2. We find our estimates

in a reasonable agreement with recent experimental data.



The isovector ‘twin’ resonances Zb = Zb(10610) and Z ′

b = Zb(10650), recently found

by the Belle Collaboration [1] near the respective thresholds B∗B̄ and B∗B̄∗, are naturally

interpreted [2, 3, 4, 5] as molecular states made of the heavy meson-antimeson pairs. Each

of the two new resonances is observed through the decay to either Υ(nS) π with n = 1, 2, or

3, or to hb(kP ) π with k = 1 or 2. Moreover, the decays to the states of ortho- and para-

bottomonium are found to have comparable strength with no suppression of either of them

by the heavy quark spin symmetry. This behavior is natural within the interpretation of

the Zb resonances as being molecular S-wave states of the heavy mesons: Zb ∼ B∗B̄ − B̄∗B

and Z ′

b ∼ B∗B̄∗, since the total spin of the bb̄ quark pair within a meson system is not

fixed [2]. Although at present the type of the threshold singularity in the heavy meson -

antimeson channel (bound, virtual, or resonant state) corresponding to the Zb peaks is not

known, it appears clear that the Zb peaks result from a strong dynamics of very slowly

moving mesons near the threshold. The notion that the heavy b and b̄ quarks at the Zb

resonances are moving at distances longer than the characteristic size of bottomonium is

also in a qualitative agreement with the recently available data [6] on the yield of different

radial excitations of bottomonium in the decays of these resonances to Υ(nS) π and hb(kP ) π.

Namely, the yield does not diminish with the number of excitation in spite of kinematical

suppression for production of heavier states. This implies, at a qualitative level, that the

overlap of the bottomonium states with a widely separated heavy quark pair in the initial

state increases with the excitation number due to larger spatial size of the excited states.

The purpose of this paper is to suggest an approach to calculating the relative rates of

decay of the Zb resonances to various radial excitations of bottomonium with emission of light

mesons, and thus to quantify the theoretical estimates of the relative strength of the observed

transitions Z
(′)
b → Υ(nS) π and Z

(′)
b → hb(kP ) π. We assume that the bottomonium bb̄

system in the final state is pure color singlet and is sufficiently compact, so that its interaction

with soft gluon field can be considered within the multipole expansion in QCD [7, 8] with the

leading term being the chromo-electric dipole. The transition of the heavy bb̄ pair from the

initial ‘molecular’ state to bottomonium is due to this interaction at short distances whose

scale is set by the bottomonium size, while the (soft) gluon field induces the transition of

the light quark-antiquark-gluon components of the initial ‘molecule’ to the light hadron(s)

in the final state. In this picture the specific form of the heavy bb̄ ‘overlap’ amplitude is set

by the wave function of the initial state, the chromo-electric dipole interaction, and the wave

function of the bottomonium state. Therefore, given a model for the latter wave function
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for various radial excitations, one can evaluate the relative strength of the transitions to

those excitated states of bottomonium. In our estimates in this paper we use the simple

model with the Cornell potential [9]. As for the initial state wave function of the bb̄ pair we

use the short-distance part of that for a slowly moving pair. Moreover, the chromo-electric

interaction links the color singlet finite state to a color-octet initial bb̄ pair. Clearly, such

state is present in a molecular heavy meson-antimeson system. Indeed, in the colorless B or

B∗ mesons the color of the b quark is correlated with the color of the light antiquark. Then

in a well separated meson-antimeson system the color of b̄ in the meson is fully uncorrelated

with that of b in the antimeson, so that a color-octet bb̄ pair is present with the statistical

weight 8/9 and the statistical weight of a colorless bb̄ state is 1/9. At short distances there

is a weak (Coulomb-like) repulsion between b and b̄ in the color octet state. Although

suppressed by the color factor 1/(N2
c − 1) = 1/8 the effect of this repulsion is noticeable

at a small momentum of the heavy quarks, and we take it into account. Furthermore, it is

important for the discussed approach that, even though the orbital angular momentum of

the heavy mesons in a molecular system can be fixed (S wave in the Zb resonances), the

orbital angular momentum of the bb̄ pair in such system is generally not fixed [2, 3] due to

the motion inside the mesons. Thus the chromo-electric dipole transitions to the S-wave

Υ(nS) of bottomonium proceed from the P -wave state of the initial bb̄ pair, while those

transitions to the P -wave hb(kP ) levels are dominantly from the initial bb̄ S-wave pair, since

the wave function for a D-wave is suppressed at short distances.

In the calculation in this paper we use the Hamiltonian for the chromo-electric dipole

interaction in the form

HE1 = −
1

2
ξa ~r · ~Ea(0) , (1)

where ξa = ta1− ta2 is the difference of the color generators acting on the quark and antiquark

(e.g. ta1 = λa/2 with λa being the Gell-Mann matrices), ~r is the vector for relative position

of the heavy quark and the antiquark. Finally, ~E is the chromo-electric gluon field strength.

We therefore write the amplitudes of the discussed decays in the form

〈Υ(nS) π|HE1|Zb〉 = CS AnS Eπ (~Z · ~Υ)

〈hb(kP ) π|HE1|Zb〉 = CP AkP

(

~pπ · [~Z ×~h]
)

, (2)

where Eπ (~pπ) is the pion energy (momentum), ~Z, ~Υ, and ~h are the polarization amplitudes

of the initial and final resonances, and CS, CP are constants that do not depend on the

excitation number of the final state, while this dependence is contained in the amplitudes
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AnS and AkP describing the overlap integrals with the dipole interaction (1):

AnS =
∫

RnS(r) r R
(8)
P (r) r2 dr , (3)

AkP =
∫

RkP (r) r R
(8)
S (r) r2 dr . (4)

In the latter expressions RnS (RkP ) are the radial wave functions of the bottomonium S (P )

wave states and R
(8)
S (R

(8)
P ) are the radial wave functions of the color-octet bb̄ pair at small

momentum above the threshold in the corresponding partial wave.

It can be noted that the constants CS and CP encode the information about the ampli-

tudes for the bb̄ pair to be in the corresponding color and orbital state as well as the amplitude

for the conversion by the gluon operator ~E of the initial light quark-antiquark-gluon ‘envi-

ronment’ into the final pion. Clearly, these constants are beyond present theoretical control,

and for this reason it is not possible within the present approach to establish a quantitative

relation between transitions to S- and P -wave states of bottomonium. The only guidance

on the behavior of the light-hadron part of the amplitudes in Eq.(2) is provided by the soft-

pion properties, which mandate the factor Eπ in the transitions to Υ(nS) and the factor ~pπ

in the transitions to hb(kP ) [2]. Once these factors are accounted for as in Eq.(2), all the

dependence on the excitation number of the specific final bottomonium state is contained in

the overlap integrals (3) and (4).

In order to evaluate the latter overlap integrals we use the potential model of heavy

quarkonium with the Cornell potential [9]

V = −
κ

r
+

r

a2
(5)

with κ = 0.52 and a = 2.34GeV−1, and calculate numerically the eigenfunctions RnS and

RkP (we also set mb = 5GeV). We further consider the relative momentum q of the b and

b̄ quarks in the initial state as small. In the limit, where the Coulomb-like repulsion in the

octet state is neglected, in the limit of small q the radial function in the S-wave state can

be considered as constant R
(8)
S (r) ≈ const, while that in the P can be set as proportional to

r: R
(8)
P (r) ≈ const r. (Clearly, the overall normalization of these functions is not important

for calculation of the ratios of the amplitudes AnS with different n and the ratios of AkP

with k = 1 and 2.) In what follows we consider the modification of the overlap integrals in

Eqs. (3) and (4) by the short-dsitance effect of the Coulomb-like repulsion between b and b̄

in the color octet state. This repulsion is described by the potential

V8(r) =
κ8

r
, (6)
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and we use in our estimates the value of the coefficient κ8 related to that in the color singlet

(Eq.(5)) as in a one gluon exchange: κ8 = κ/8 = 0.065.

One point related to the Coulomb-like repulsion that can be mentioned is that if the

potential (6) was applicable at all distances then the continuum wave functions would vanish

in the limit q → 0 at any finite r due to impenetrability (from long distances) of the Coulomb

barrier at zero energy. However neither the expression (6) is applicable at long distances, nor

the momentum q is set to be literally zero. At longer distances the motion in the molecular

state is described by that of heavy mesons, rather than individual heavy quarks, and also the

typical values of q in the considered problem are small but finite and are set by the inverse size

of the molecule. The overlap integrals are determined by the behavior of the wave function of

the bb̄ quark pair at short distances, i.e. at the characteristic size of bottomonium. At these

distances the r dependence of the small-momentum wave function can still be calculated in

the potential (6), while the normalization of the wave function is determined by the long-

range modification of the interaction (6). Since the normalization of the functions cancels in

the discussed here ratios of the amplitudes, one can use in a calculation of the integrals in

Eqs. (3) and (4) either the small momentum limit of the continuum wave functions in terms

of their short-distance expansion:

R
(8)
S = 1 +

κ8mb

2
r +O(r2) , R

(8)
P = r

[

1 +
κ8mb

4
r +O(r2)

]

(7)

(these terms do not depend on q), or introduce a small but finite q, and use the exact

Coulomb functions (see e.g. in the textbook [10])

R
(8)
S = const eiqr 1F1

(

1 + i
mb κ8

2q
; 2;−2i q r

)

, R
(8)
P = const r eiqr 1F1

(

2 + i
mb κ8

2q
; 4;−2i q r

)

(8)

with 1F1(a; b; z) being the Kummer confluent hypergeometric function. We apply both ap-

proaches and find that they result in similar estimates of the ratios of the considered overlap

amplitudes. In particular we find that these ratios only weakly depend on q at q < 200MeV,

as is expected as long as q is not much larger than mb κ8/2 ≈ 160MeV.

The numerical results of our calculation and the experimental data are presented in the

Tables 1 and 2. One can readily see that our estimates are within the range allowed by the

current data. It is clear however, that there is much room for improvement of the data as

well as for refinement of the theoretical approach. In particular, on the theoretical side, the

specific numbers are fully dependent on the model wave functions for the bottomonium states
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Table 1: Ratios of decay rates for Zb(10610)

Ratio κ8 = 0 Eqs. (7) Eqs. (8), q = 0÷ 0.2GeV Experiment [6]

Γ[Zb→Υ(1S)π]
Γ[Zb→Υ(2S)π]

0.11 0.09 0.10÷ 0.11 0.073± 0.029

Γ[Zb→Υ(3S)π]
Γ[Zb→Υ(2S)π]

0.62 0.74 0.70÷ 0.60 0.49± 0.19

Γ[Zb→hb(2P )π]
Γ[Zb→hb(1P )π]

0.58 0.78 0.72÷ 0.63 1.54± 0.95

Table 2: Ratios of decay rates for Zb(10650)

Ratio κ8 = 0 Eqs. (7) Eqs. (8), q = 0÷ 0.2GeV Experiment [6]
Γ[Z′

b
→Υ(1S)π]

Γ[Z′

b
→Υ(2S)π]

0.10 0.08 0.09÷ 0.10 0.10± 0.04
Γ[Z′

b
→Υ(3S)π]

Γ[Z′

b
→Υ(2S)π]

0.86 1.02 0.97÷ 0.83 0.68± 0.24
Γ[Z′

b
→hb(2P )π]

Γ[Z′

b
→hb(1P )π]

0.73 0.99 0.91÷ 0.80 1.99± 1.11

and on a general picture of the motion in a near threshold ‘molecule’. Once more precise

data might become available this may contribute to a better understanding of the structure

of both bottomonium and of the molecular states of heavy mesons. Also, in our estimates we

used a soft-pion approximation, and ignored any effects of a possible form factor depending

on the momentum of the pion, which effects can be especially significant in the transitions

to the final state Υ(1S)π. Such effects may arise from the unknown at present amplitude of

the conversion of the light component of the meson-antimeson pair to pion (in the factors

CS and CP ) as well as from the recoil factors in the dipole matrix elements AnS and AkP .

The recoil factor is in fact determined by the process of conversion, namely by the fraction

of the pion momentum transferred to individual heavy quark or antiquark as opposed to the

recoil against the pair bb̄ as a whole. (This is different from e.g. a photon emission, where

the entire photon momentum is transferred to an individual quark or antiquark.) We are not

aware at present of a proper way of including and estimating these momentum-dependent

factors, and for this reason we chose to neglect these altogether. The fact that our numerical

result for the relative yield of Υ(1S)π is in a reasonable agreement with the data appears to

indicate that the form factor effect should not be dramatic. It can be also noted, that in the

absence of recoil related effects and in the limit of heavy quark spin symmetry the amplitudes

AnS and AkP (as well as, naturally, the coefficients CS and CP ) for the Zb(10610) resonance

should be the same as for the Zb(10650). Thus any difference in the transition rates from

5



Zb(10610) and Zb(10650) is purely kinematical, due to the slightly different masses of the

resonances. Clearly this difference is most prominent for the transition to the highest mass

bottomonium states Υ(3S) and hb(2P ), which explains the ratios of the entries in the Tables

2 and 1, e.g.

Γ[Z ′

b → Υ(3S)π]/Γ[Z ′

b → Υ(2S)π]

Γ[Zb → Υ(3S)π]/Γ[Zb → Υ(2S)π]
≈ 1.38

Γ[Z ′

b → hb(2P )π]/Γ[Z ′

b → hb(1P )π]

Γ[Zb → hb(2P )π]/Γ[Zb → hb(1P )π]
≈ 1.26 .

(9)

Any deviations from these ratios, if observed, would signal a presence of recoil effects and/or

an additional breaking of the heavy quark spin symmetry in the transition amplitudes.

One can also readily notice that our estimates for the yield of hb(2P ) relative to that

of hb(1P ) are about twice smaller than the central values of the experimental data and

the agreement is only due to the currently large experimental uncertainty. If future more

precise data would change this to a meaningful disagreement, this could possibly point to a

considerable deviation from the simple potential model used in our estimates, or indicate an

enhanced contribution of dipole transitions to the P -wave bottomonium from a continuum

D-wave of the color-octet bb̄ pair.
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