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Abstract

We suppose that there is new physics (NP) in b̄ → s̄ transitions, and examine its
effect on the angular distribution of B0

q → V1V2 (q = d, s), where V1,2 are vector
mesons. We find that, in the presence of such NP, the formulae relating the param-
eters of the untagged, time-integrated angular distribution to certain observables
(polarization fractions, CP-violating triple-product asymmetries, CP-conserving in-
terference term) must be modified from their standard-model forms. This modifica-
tion is due in part to a nonzero B0

q -B̄
0
q width difference, which is significant only for

B0
s decays. We re-analyze the B0

s → φφ data to see the effect of these modifications.
As ∆Γs/2Γs ∼ 10%, there are O(10%) changes in the derived observables. These
are not large, but may be important given that one is looking for signals of NP. In
addition, if the NP contributes to the b̄→ s̄ decay, the measurement of the untagged
time-dependent angular distribution provides enough information to extract all the
NP parameters.
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1 Introduction

As recently as a year ago, there were several hints of physics beyond the stan-
dard model (SM) in b̄ → s̄ transitions. For example, the CDF [1] and DØ [2]
Collaborations measured the CP asymmetry in B0

s → J/ψφ, and found a hint for
indirect (mixing-induced) CP violation. This is counter to the expectation of the
SM, which predicts this CP violation to be ≃ 0. In general, this result was inter-
preted as evidence for a nonzero value of the weak phase of B0

s -B̄
0
s mixing (2βs),

and the contributions of various new-physics (NP) models to the Bs mixing phase
were explored [3, 4, 5, 6, 7, 8, 9]. It was also pointed out that NP in the decay
b̄ → s̄cc̄ could also play an important role [10]. In addition, the SM predicts that
the measured indirect CP asymmetry in b̄ → s̄ss̄ penguin decays should gener-
ally be equal to that found in charmonium decays such as B0

d → J/ψKS. How-
ever, it was found that these two quantities were not identical for several decays
[11]. As a third example, the CDF Collaboration reported the measurement of
B(B0

s → µ+µ−) = (1.8+1.1
−0.9) × 10−8 [12]. This is larger than the SM prediction for

this branching ratio, which is B(B0
s → µ+µ−) = (3.35 ± 0.32) × 10−9 [13]. There

were a number of other effects – in all cases, the disagreement with the SM was not
large, ≤ 2σ. Still, it was intriguing that all appear in b̄→ s̄ transitions.

In addition, the DØ Collaboration reported an anomalously large CP-violating
like-sign dimuon charge asymmetry in the B system. In Ref. [14], the asymmetry
was found to be

Ab
sl = −(9.57± 2.51± 1.46)× 10−3 , (1)

which is a 3.2σ deviation from the SM prediction, Ab,SM
sl = (−2.3+0.5

−0.6) × 10−4 [15].
In fact, the updated measurement [16] exhibits an even larger discrepancy:

Ab
sl = −(7.87± 1.72± 0.93)× 10−3 , (2)

a 3.9σ deviation. This suggests NP in B0
d-B̄

0
d and/or B0

s -B̄
0
s mixing.

This was quantified in Ref. [17]. Here, NP only in B0
q -B̄

0
q (q = d, s) mixing was

considered (i.e. inM q
12); NP in the decay was excluded. Three different NP scenarios

were examined. In all cases a fit was performed to all data that is affected by NP in
B0

q -B̄
0
q mixing. This includes BR(B → τν), whose measured value disagrees with

the SM fit prediction [18], and possibly points to NP in B0
d-B̄

0
d mixing. The details

of the conclusions depend on the NP scenario, but a NP contribution to B0
q -B̄

0
q

mixing of up to 40% is possible. We therefore see that, at this time, NP in b̄ → s̄
transitions was entirely conceivable.

However, with recent measurements, many of the NP hints have largely dis-
appeared, or at least been reduced. First, LHCb has measured the indirect CP
asymmetry in B0

s → J/ψφ, and finds φcc̄s
s ≃ 0, in agreement with the SM4 [19].

4βs ≡ arg [−(V ∗

tb
Vts)/(V

∗

cb
Vcs)]. For the measured B0

s -B̄
0
s mixing phase, it is common to use the

symbol φcc̄s
s

, which is equal to −2βs in the SM.
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Specifically, they measure φcc̄s
s = (−0.06 ± 5.77 (stat) ± 1.54 (syst))◦. Still, the er-

rors are large enough that NP cannot be excluded. Second, with the latest indirect
CP asymmetry data, the Heavy Flavor Averaging Group (HFAG) [20] finds that
the B0

d-B̄
0
d mixing phase sin 2β is measured to be (i) 0.68 ± 0.02 in charmonium

decays, and (ii) 0.64 ± 0.03 in b̄ → s̄ss̄ penguin decays. These numbers are quite
similar, so that no real discrepancy can be claimed. On the other hand, several of
the b̄ → s̄ss̄ decays have additional contributions with a different weak phase, and
so HFAG urges that the “naive average” in (ii) be used with extreme caution. Third,
the recent LHCb update does not confirm the CDF B0

s → µ+µ− result [21]. They
improve the present upper bound to B(B0

s → µ+µ−) ≤ 4.5 (3.8)×10−9 at 95% C.L.
(90% C.L.), in agreement with the SM. Most of the other effects have similarly gone
away, or are simply not large enough to be compelling.

On the other hand, the DØ measurement of an anomalously large Ab
sl is still

present. However, there have been direct measurements of the semileptonic charge
asymmetry in B0

s [22, 23] and B
0
d [24] decays. While these results show no significant

deviation from the SM predictions, the errors are large enough that they are also
not in contradiction with the DØ measurement.

Ref. [25] presents an update of the analysis of Ref. [17], including the latest
LHCb results. It is found that the SM is still disfavoured, by 2.4σ. However, in
contrast to Ref. [17], the problem cannot now be rectified by NP in Md,s

12 alone. But

if one also allows NP contributions to Γd,s
12 (i.e. the width differences), the data can

be accomodated.
The bottom line is that, at present, the status of b̄ → s̄ NP is uncertain. The

effect of such NP cannot be very large, but a smaller effect is still possible. In this
paper we make the assumption that NP is present in b̄→ s̄ transitions. However, in
addition to taking into account its effect on Bs mixing, which is what is convention-
ally done, we also consider its effect on b̄→ s̄ decays. The main aim is to examine the
effect of b̄ → s̄ NP on the angular distribution of B0

q → V1V2 (q = d, s), where V1,2
are vector mesons. In particular, we consider final states which are self-conjugate,
so that both B0

q and B̄0
q can decay to V1V2, generating indirect (mixing-induced)

CP-violating effects.
There are three classes of B0

q decays which can be affected by b̄ → s̄ NP:

1. B0
s decays with b̄→ s̄,

2. B0
d decays with b̄→ s̄,

3. B0
s decays with b̄→ d̄.

Our analysis is completely general and can be applied to any of these classes. How-
ever, we also focus specifically on B0

s → φφ. There are two reasons. First, this is a
pure b̄→ s̄ penguin decay, and so there can well be NP contributions to any of the
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loop-level penguin decay amplitudes5. Second, the untagged angular distribution
of the decay has already been measured by the CDF [27] and LHCb [28] Collab-
orations, and so their results can be (re)interpreted in the context of b̄ → s̄ NP
contributions.

The result of this analysis – and this is the main point of the paper – is as
follows. The parameters of the untagged, time-integrated angular distribution can be
measured experimentally. Certain observables can be derived from these parameters.
However, in the presence of NP, the formulae which relate the observables and
parameters are modified compared to their SM forms. There are six terms (i = 1-6)
in the angular distribution, and we correspondingly find six observables for which
the relation between the experimental data and theoretical parameters must be
modified. For i = 1-3 they are the polarization fractions, for i = 4,6 they are the
CP-violating triple-product asymmetries, and i = 5 corresponds to a CP-conserving
observable. The modifications for the polarization fractions are particularly striking.
Here there are corrections to the SM formulae that are proportional to the width
difference in the B0

q -B̄
0
q system. Now, the width difference ∆Γ is sizeable only for

B0
s decays6. Thus, the formulae modifications due to NP are important only for

class-(1) and (3) decays, which include B0
s → φφ. ∆Γs/2Γs ∼ 10%, so that the

modifications lead to O(10%) changes in the derived observables. These are not
large, but may be important given that one is looking for signals of NP.

Another result is that, if the untagged, time-dependent angular distribution can
be measured, 12 observables can be obtained. If the NP contributes to the b̄→ s̄ de-
cay, there are fewer than 12 unknown NP parameters. Thus, all of these parameters
can be extracted from the angular distribution. This may allow the identification of
the NP.

We begin in Sec. 2 by presenting the most general B0
d,s → V1V2 angular distri-

bution, allowing for NP in the mixing and/or the decay. We consider the angular
distribution for several different scenarios: at t = 0 (Sec. 2.2.1), time-dependent
(Sec. 2.2.2), untagged time-dependent (Sec. 2.3), untagged time-integrated (Sec. 2.4).
In Sec. 3 we examine the untagged time-dependent and time-integrated distributions
for B0

s → φφ within the SM. The study of B0
s → φφ is extended to the SM + NP

in Sec. 4. We discuss observables such as the polarization fractions, CP-violating
triple-product asymmetries and the CP-conserving interference term, and note the
changes in the formulae used for their extraction necessitated by the inclusion of
b̄ → s̄ NP. We also show that all the unknown NP parameters in the b̄ → s̄ decay
can be determined from the measurement of the untagged, time-dependent angular
distribution. In Sec. 5 we present a numerical reanalysis of the B0

s → φφ data al-
lowing for the possibility of b̄ → s̄ NP contributions in the decay. We conclude in

5B0

s
→ φφ and B0

s
→ J/ψφ were examined in Ref. [26], but only NP in B0

s
-B̄0

s
mixing was

considered, not NP in the decay.
6There are many theoretical methods that rely on a sizeable ∆Γs. Two recent examples are

given by Refs. [29, 30].
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Sec. 6.

2 B → V1V2 Angular Distribution

2.1 Generalities

The most general Lorentz-covariant amplitude for the decay B(p) → V1(k1, ε1) +
V2(k2, ε2) is given by [31, 32]

M = a ε∗1 · ε∗2 +
b

m2
B

(p · ε∗1)(p · ε∗2) + i
c

m2
B

ǫµνρσp
µqνε∗ρ1 ε

∗σ
2 , (3)

where q ≡ k1 − k2. The quantities a, b and c are complex and contain in general
both CP-conserving strong phases and CP-violating weak phases. In B → V1V2
decays, the final state can have total spin 0, 1 or 2, which correspond to the V1
and V2 having relative orbital angular momentum l = 0 (s wave), l = 1 (p wave),
or l = 2 (d wave), respectively. The a and b terms correspond to combinations
of the parity-even s- and d-wave amplitudes, while the c term corresponds to the
parity-odd p-wave amplitude.

In order to obtain the angular distribution for B → V1V2, one uses the linear
polarization basis. Here, one decomposes the decay amplitude into components in
which the polarizations of the final-state vector mesons are either longitudinal (A0),
or transverse to their directions of motion and parallel (A‖) or perpendicular (A⊥)
to one another. The transversity amplitudes Ah (h = 0, ‖,⊥) are related to a, b and
c of Eq. (3) via [32]

A‖ =
√
2a , A0 = −ax− m1m2

m2
B

b(x2 − 1) , A⊥ = 2
√
2
m1m2

m2
B

c
√
x2 − 1 , (4)

where x = k1 · k2/(m1m2) (m1 and m2 are the masses of V1 and V2, respectively.).
The amplitude for B̄(p) → V̄1(k1, ε1) + V̄2(k2, ε2) can be obtained by operating

on Eq. (3) with CP. This yields

M̄ = ā ε∗1 · ε∗2 +
b̄

m2
B

(p · ε∗1)(p · ε∗2)− i
c̄

m2
B

ǫµνρσp
µqνε∗ρ1 ε

∗σ
2 , (5)

in which ā, b̄ and c̄ are equal to a, b and c, respectively, except that the weak phases
are of opposite sign. The above equation can be obtained from Eq. (3) by changing
a → ā, b → b̄ and c → −c̄. Similarly, one defines Ā0, Ā‖, and Ā⊥, which are equal
to A0, A‖, and A⊥, respectively, but with weak phases of opposite sign.

2.2 B0

d,s → V1V2

As mentioned in the introduction, we are interested in the decays B0
q → V1V2 (q =

d, s), in which both B0
q and B̄0

q can decay to V1V2. Due to B0
q -B̄

0
q mixing, the
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amplitude is time dependent. Assuming that V1,2 both decay into two pseudoscalars,
i.e. V1 → P1P

′
1, V2 → P2P

′
2, the angular distribution is given in terms of the vector

~ω = (cos θ1, cos θ2,Φ) [33, 34]:

d4Γ(t)

dtd~ω
=

9

32π

6
∑

i=1

Ki(t)fi(~ω) . (6)

Here, θ1 (θ2) is the angle between the directions of motion of the P1 (P2) in the V1
(V2) rest frame and the V1 (V2) in the B rest frame, and Φ is the angle between
the normals to the planes defined by P1P

′
1 and P2P

′
2 in the B rest frame. The

angular-dependent terms are given by

f1(~ω) = 4 cos2 θ1 cos
2 θ2 , f2(~ω) = 2 sin2 θ1 sin

2 θ2 cos
2Φ ,

f3(~ω) = 2 sin2 θ1 sin
2 θ2 sin

2Φ , f4(~ω) = −2 sin2 θ1 sin
2 θ2 sin 2Φ ,

f5(~ω) =
√
2 sin 2θ1 sin 2θ2 cos Φ , f6(~ω) = −

√
2 sin 2θ1 sin 2θ2 sin Φ . (7)

2.2.1 t = 0

At t = 0, the Ki are

K1 = |A0|2 , K2 = |A‖|2 , K3 = |A⊥|2 ,

K4 = Im(A⊥A
∗
‖) , K5 = Re(A‖A

∗
0) , K6 = Im(A⊥A

∗
0) . (8)

The angular distribution for the CP-conjugate decay B̄0
q → V1V2 is the same as that

given above with the replacements Ki → K̄i, and Ah → Āh.
The quantities K4 and K6 are particularly interesting. They are related to the

ǫµνρσp
µqνε∗ρ1 ε

∗σ
2 term of Eq. (3), which is proportional to ~q ·(~ε1×~ε2) in the rest frame

of the B. This is the triple product (TP). The TP is odd under both parity and
time reversal, and thus constitutes a potential signal of CP violation. However, here
one has to be a bit careful. As noted above, the Ah possess both weak (CP-odd)
and strong (CP-even) phases. Thus, K4 and/or K6 can be nonzero even if the weak
phases vanish. In order to obtain a true signal of CP violation, one has to compare
the B and B̄ decays. Now, K̄4 is the same as K4, except that (i) the weak phases
change sign, and (ii) there is an overall relative minus sign due to the presence of
Ā⊥/A⊥, and similarly for K̄6 and K6. This implies that the true (CP-violating) TP’s
are given by the untagged observables K4 + K̄4 and K6 + K̄6. There are also fake
(CP-conserving) TP’s, due only to strong phases of the the Ah’s, given by K4 − K̄4

and K6 − K̄6.
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2.2.2 Time dependence

In order to calculate the Ki(t), one proceeds as follows. Due to B0
q -B̄

0
q mixing, the

time evolution of the states
∣

∣B0
q (t)

〉

and
∣

∣B̄0
q (t)

〉

can be described by the relations
[35]

∣

∣B0
q (t)

〉

= g+(t)
∣

∣B0
q

〉

+
q

p
g−(t)

∣

∣B̄0
q

〉

,

∣

∣B̄0
q (t)

〉

=
p

q
g−(t)

∣

∣B0
q

〉

+ g+(t)
∣

∣B̄0
q

〉

, (9)

where q/p = e−iφq . Here, φq is the phase of B0
q -B̄

0
q mixing. In the SM, we have

φd = 2β = (42.8±1.6)◦ from charmonium decays [20]. Also, assuming no NP in the
decay, the LHCb Collaboration measures φs = (−0.06±5.77 (stat)±1.54 (syst))◦ in
B0

s → J/ψφ [19]. Although this agrees with the SM prediction of φs ≃ 0, the errors
are still large enough that NP in the decay and/or mixing cannot be excluded.

In the above, we have

g+(t) =
1

2

(

e−(iML+ΓL/2)t + e−(iMH+ΓH/2)t
)

,

g−(t) =
1

2

(

e−(iML+ΓL/2)t − e−(iMH+ΓH/2)t
)

, (10)

where L and H indicate the light and heavy states, respectively. The average mass
and width, and the mass and width differences of the B-meson eigenstates are defined
by

m =
MH +ML

2
, Γ =

ΓL + ΓH

2
,

∆m = MH −ML , ∆Γ = ΓL − ΓH .
(11)

∆m is positive by definition. For B0
d mesons, ΓL ≃ ΓH , so that ∆Γd = 0. How-

ever, for B0
s mesons, ∆Γs is reasonably large: |∆Γs| = 0.116 ± 0.018 (stat) ±

0.006 (syst) ps−1 [19]. In our convention the SM prediction for ∆Γs is positive,
and it has been recently confirmed experimentally that ∆Γs > 0 [36].

The time dependence of the transversity amplitudes Ah is due to B0
q -B̄

0
q mixing.

For the decay to a final state f we have

Ah(t) = 〈f |B0
q (t)〉h =

[

g+(t)Ah + ηh q/p g−(t) Āh

]

,

Āh(t) = 〈f |B̄0
q (t)〉h =

[

p/q g−(t)Ah + ηh g+(t) Āh

]

, (12)

where Ah = 〈f |B0
q〉h, Āh = 〈f |B̄0

q 〉h, and η0,‖ = 1, η⊥ = −1. In calculating the
Ki(t), the following relations are useful:

|g±(t)|2 =
1

2
e−Γt

(

cosh (∆Γ/2)t ± cos∆mt
)

,
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g∗+(t)g−(t) =
1

2
e−Γt

(

− sinh (∆Γ/2)t + i sin∆mt
)

. (13)

The expressions for the time-dependent functions Ki(t) are given by

K1(t) = |A0(t)|2 =
1

2
e−Γt

[(

|A0|2 + |Ā0|2
)

cosh (∆Γ/2)t

+
(

|A0|2 − |Ā0|2
)

cos∆mt

− 2Re(A∗
0Ā0) (cosφq sinh (∆Γ/2)t− sinφq sin∆mt)

− 2Im(A∗
0Ā0) (cos φq sin∆mt + sin φq sinh (∆Γ/2)t)

]

,

K2(t) = |A‖(t)|2 =
1

2
e−Γt

[(

|A‖|2 + |Ā‖|2
)

cosh (∆Γ/2)t

+
(

|A‖|2 − |Ā‖|2
)

cos∆mt

− 2Re(A∗
‖Ā‖) (cosφq sinh (∆Γ/2)t− sinφq sin∆mt)

− 2Im(A∗
‖Ā‖) (cos φq sin∆mt + sin φq sinh (∆Γ/2)t)

]

,

K3(t) = |A⊥(t)|2 =
1

2
e−Γt

[(

|A⊥|2 + |Ā⊥|2
)

cosh (∆Γ/2)t

+
(

|A⊥|2 − |Ā⊥|2
)

cos∆mt

+ 2Re(A∗
⊥Ā⊥) (cosφq sinh (∆Γ/2)t− sin φq sin∆mt)

+ 2Im(A∗
⊥Ā⊥) (cosφq sin∆mt + sinφq sinh (∆Γ/2)t)

]

,

K4(t) = Im(A⊥(t)A
∗
‖(t)) =

1

2
e−Γt

[(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

cosh (∆Γ/2)t

+
(

Im(A⊥A
∗
‖) + Im(Ā⊥Ā

∗
‖)
)

cos∆mt

+
(

Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)
)

(− sinh (∆Γ/2)t cosφq + sin∆mt sin φq)

+
(

Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)
)

(− sinh (∆Γ/2)t sin φq − sin∆mt cosφq)
]

,

K5(t) = Re(A‖(t)A
∗
0(t)) =

1

2
e−Γt

[(

Re(A‖A
∗
0) + Re(Ā‖Ā

∗
0)
)

cosh (∆Γ/2)t

+
(

Re(A‖A
∗
0)− Re(Ā‖Ā

∗
0)
)

cos∆mt

8



+
(

Re(A‖Ā
∗
0) + Re(Ā‖A

∗
0)
)

(− sinh (∆Γ/2)t cosφq + sin∆mt sinφq)

+
(

Im(A‖Ā
∗
0)− Im(Ā‖A

∗
0)
)

(sinh (∆Γ/2)t sin φq + sin∆mt cos φq)
]

,

K6(t) = Im(A⊥(t)A
∗
0(t)) =

1

2
e−Γt

[(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

cosh (∆Γ/2)t

+
(

Im(A⊥A
∗
0) + Im(Ā⊥Ā

∗
0)
)

cos∆mt (14)

+
(

Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)
)

(− sinh (∆Γ/2)t cosφq + sin∆mt sin φq)

+
(

Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)
)

(− sinh (∆Γ/2)t sin φq − sin∆mt cosφq)
]

.

The expressions for the time-dependent K̄i(t)’s can be obtained from the Ki(t)’s
by changing the sign of the weak phases in both the decay (Ah ↔ ηhĀh) and the
mixing (φq → −φq).

2.3 Untagged decays

In the previous subsections, we presented the angular distribution for the case in
which the initial decay meson is tagged, so that one can distinguish the B0

q and B̄0
q

decays. In practice, however, tagging is difficult. Thus, as a first step, experiments
will examine the untagged decay, and this is considered here.

The untagged time-dependent angular distribution is given by

d4(ΓBq + ΓB̄q)

dtd~ω
=

9

32π

6
∑

i=1

(Ki(t) + K̄i(t))fi(~ω) , (15)

where the untagged observables can be found using Eq. (14):

K1(t) + K̄1(t) = e−Γt
[(

|A0|2 + |Ā0|2
)

cosh (∆Γ/2)t

− 2
(

Re(A∗
0Ā0) cosφq + Im(A∗

0Ā0) sinφq

)

sinh (∆Γ/2)t
]

,

K2(t) + K̄2(t) = e−Γt
[(

|A‖|2 + |Ā‖|2
)

cosh (∆Γ/2)t

− 2
(

Re(A∗
‖Ā‖) cosφq + Im(A∗

‖Ā‖) sinφq

)

sinh (∆Γ/2)t
]

,

K3(t) + K̄3(t) = e−Γt
[(

|A⊥|2 + |Ā⊥|2
)

cosh (∆Γ/2)t

+ 2
(

Re(A∗
⊥Ā⊥) cosφq + Im(A∗

⊥Ā⊥) sinφq

)

sinh (∆Γ/2)t
]

,
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K4(t) + K̄4(t) = e−Γt
[(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

cosh (∆Γ/2)t

−
(

(Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)) cosφq

+ (Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)) sinφq

)

sinh (∆Γ/2)t
]

,

K5(t) + K̄5(t) = e−Γt
[(

Re(A‖A
∗
0) + Re(Ā‖Ā

∗
0)
)

cosh (∆Γ/2)t

−
(

(Re(A‖Ā
∗
0) + Re(Ā‖A

∗
0)) cosφq

− (Im(A‖Ā
∗
0)− Im(Ā‖A

∗
0)] sinφq

)

sinh (∆Γ/2)t
]

,

K6(t) + K̄6(t) = e−Γt
[(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

cosh (∆Γ/2)t

−
(

(Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)) cosφq

+ (Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)) sinφq

)

sinh (∆Γ/2)t
]

. (16)

Note that the CP properties of all the terms are respected. For example, the
Ki(t) + K̄i(t) (i = 1, 2, 3, 5) are supposed to be CP-even. But they contain terms
proportional to sinφq, which is CP-odd. This is accounted for because, in all cases,
sinφq is multipled by a term involving the helicity amplitudes which is also CP-odd.
Similarly, cosφq (CP-even) is multipled by a helicity-amplitude term which is also
CP-even. The upshot is that the Ki(t) + K̄i(t) (i = 1, 2, 3, 5) are indeed CP-even.
And it is straightforward to verify that the Ki(t) + K̄i(t) (i = 4, 6) are CP-odd.

The key point here is the following. The individual Ki’s and K̄i’s [Eq. (14)]
depend on four functions of time: e−Γt cos∆mt, e−Γt sin∆mt, e−Γt cosh (∆Γ/2)t,
and e−Γt sinh (∆Γ/2)t. However, in the expressions above, the dependence on the
functions e−Γt cos∆mt and e−Γt sin∆mt cancels, so that the untagged observables
depend only on e−Γt cosh (∆Γ/2)t and e−Γt sinh (∆Γ/2)t. For B0

d mesons, ∆Γ = 0,
so that the untagged observables are equal to e−Γt× simple sums of functions of
the Ai and Āi. On the other hand, since ∆Γ 6= 0 for B0

s mesons, the untagged
observables are now complicated functions of the Ai and Āi.

In addition, we have

e−Γt cosh (∆Γ/2)t =
1

2

(

e−ΓLt + e−ΓH t
)

, e−Γt sinh (∆Γ/2)t =
1

2

(

e−ΓLt − e−ΓH t
)

.

(17)
If the e−ΓLt/2 and e−ΓHt/2 terms can be distinguished experimentally, which is doable
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for B0
s decays, the untagged time-dependent angular distribution provides 12 observ-

ables, 2 for each Ki(t)+ K̄i(t). Thus, B
0
s → V1V2 decays are particularly interesting.

2.4 Time-integrated untagged distribution

As noted in the previous subsection, because ∆Γ 6= 0 for B0
s mesons, B0

s decays can
be treated without tagging. The time-integrated untagged angular distribution can
be obtained by integrating the Ki(t) + K̄i(t) observables over time:

d3〈Γ(B0
s → f)〉
d~ω

=
9

32π

6
∑

i=1

〈Ki〉fi(~ω) , (18)

where

〈Γ(B0
s → f)〉 = 1

2

∫ ∞

0

dt(ΓBs + ΓB̄s) ,

〈Ki〉 =
1

2

∫ ∞

0

dt(Ki(t) + K̄i(t)) . (19)

One can obtain the 〈Ki〉’s from Eq. (16):

〈K1〉 =
τBs

2(1− y2s)

[(

|A0|2 + |Ā0|2
)

− 2
(

Re(A∗
0Ā0) cosφs + Im(A∗

0Ā0) sinφs

)

ys

]

,

〈K2〉 =
τBs

2(1− y2s)

[(

|A‖|2 + |Ā‖|2
)

− 2
(

Re(A∗
‖Ā‖) cosφs + Im(A∗

‖Ā‖) sinφs

)

ys

]

,

〈K3〉 =
τBs

2(1− y2s)

[(

|A⊥|2 + |Ā⊥|2
)

+ 2
(

Re(A∗
⊥Ā⊥) cosφs + Im(A∗

⊥Ā⊥) sinφs

)

ys

]

,

〈K4〉 =
τBs

2(1− y2s)

[(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

−
(

(Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)) cosφs

+ (Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)) sinφs

)

ys

]

,

〈K5〉 =
τBs

2(1− y2s)

[(

Re(A‖A
∗
0) + Re(Ā‖Ā

∗
0)
)

−
(

(Re(A‖Ā
∗
0) + Re(Ā‖A

∗
0)) cosφs

− (Im(A‖Ā
∗
0)− Im(Ā‖A

∗
0)) sinφs

)

ys

]

,

〈K6〉 =
τBs

2(1− y2s)

[(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

−
(

(Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)) cosφs

11



+ (Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)) sinφs

)

ys

]

, (20)

where ys ≡ ∆Γs/2Γs.
At this stage, one clearly sees the effect of a nonzero ∆Γs (or ys). For B

0
d decays,

∆Γd = 0, so there are no terms proportional to yd ≡ ∆Γd/2Γd in the 〈Ki〉. Indeed,
the 〈Ki〉 take the same form as the (Ki(t) + K̄i(t))|t=0 [Eq. (8)]. However, this
does not hold for B0

s decays. Because of the nonzero ys, the 〈Ki〉, which are time-
integrated quantities, take a different form than they did at t = 0. And this means
that, if general b̄→ s̄ NP is considered, the formulae relating certain observables to
the 〈Ki〉 must necessarily include terms proportional to ys. As we will see, this holds
specifically for the polarization fractions, CP-violating triple-product asymmetries,
and the CP-conserving interference term.

2.5 Effective lifetime

In general, the expressions for Ki(t) + K̄i(t) [Eq. (16)] and 〈Ki〉 [Eq. (20)] have the
form

Ki(t) + K̄i(t) = 2e−Γt
[

Ach
i cosh (∆Γ/2)t+Ash

i sinh (∆Γ/2)t
]

,

〈Ki〉 =
τBs

(1− y2s)

[

Ach
i +Ash

i ys

]

, (21)

where the experimental observables (dependent on the Ki) are on the left-hand side,
and the theoretical expressions (dependent on Ach

i and Ash
i ) are on the right-hand

side. (We have implicitly assumed that ∆Γ 6= 0, which implies a B0
s decay.) Ach

i and
Ash

i can be related to the experimental observables via the effective lifetime [29]:

τ eff,iBs
=

∫∞

0
t(Ki(t) + K̄i(t))dt

∫∞

0
(Ki(t) + K̄i(t))dt

=
τBs

(1− y2s)

(1 + 2Ai
∆Γys + y2s)

(1 +Ai
∆Γys)

, (22)

where Ai
∆Γ ≡ Ash

i /Ach
i .

Using Eqs. (21) and (22), one can relate the Ach
i to the 〈Ki〉:

Ach
i =

〈Ki〉
τBs

(

2− τ eff,iBs

τBs

(1− y2s)
)

. (23)

The Ash
i can be obtained from Ai

∆Γ.
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3 B0
s → φφ – SM

The results of the previous section are completely general. In this section we focus
on the angular distribution of the pure b̄ → s̄ penguin decay B0

s → φφ within the
SM.

In the SM, the amplitude for B0
s → φφ can be written

A(B0
s → φφ) = λ

(s)
t P ′

t + λ(s)c P ′
c + λ(s)u P ′

u

= λ
(s)
t P ′

tc + λ(s)u P ′
uc , (24)

where λ
(s)
q ≡ V ∗

qbVqs. (As this is a b̄ → s̄ transition, the diagrams are written with
primes.) In the second line, we have used the unitarity of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix (λ
(s)
u +λ

(s)
c +λ

(s)
t = 0) to eliminate the c-quark contribution:

P ′
tc ≡ P ′

t − P ′
c, P

′
uc ≡ P ′

u − P ′
c.

Now, |λ(s)t | and |λ(s)u | are O(λ2) and O(λ4), respectively, where λ = 0.23 is the

sine of the Cabibbo angle. This suggests that the λ
(s)
u P ′

uc term can be neglected

compared to λ
(s)
t P ′

tc. However, if one does this, one must be consistent and neglect

all O(λ4) terms. In particular, Im(λ
(s)
t ) is O(λ4), and so it too can be neglected. But

since 2βs = − arg
(

(q/p)(Ā/A)
)

, one also has βs = 0 because (q/p) = (Ā/A) = 1 in

the limit where λ
(s)
t is real. Thus, in the approximation of neglecting all quantities

of O(λ4), there are no nonzero weak phases in B0
s → φφ, either in the mixing or in

the decay.

3.1 Untagged distribution

In the approximation of neglecting all weak phases in B0
s → φφ, the untagged

observables [Eq. (16)] are

(K1(t) + K̄1(t))SM = e−Γt
[

2|A0|2
(

cosh (∆Γ/2)t− sinh (∆Γ/2)t
)]

,

(K2(t) + K̄2(t))SM = e−Γt
[

2|A‖|2
(

cosh (∆Γ/2)t− sinh (∆Γ/2)t
)]

,

(K3(t) + K̄3(t))SM = e−Γt
[

2|A⊥|2
(

cosh (∆Γ/2)t+ sinh (∆Γ/2)t
)]

,

(K4(t) + K̄4(t))SM = 0 ,

(K5(t) + K̄5(t))SM = e−Γt
[

2Re(A‖A
∗
0)
(

cosh (∆Γ/2)t− sinh (∆Γ/2)t
)]

,

(K6(t) + K̄6(t))SM = 0 . (25)
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We have Ash
i = ∓Ach

i [Eq. (21)], where the minus sign is for i = 1, 2, 5, the plus sign
for i = 3, and both quantities vanish when i = 4, 6. The effective lifetimes are then
predicted to be

τ eff,iBs,SM
=

τBs

(1 + ys)
, i = 1, 2, 5 , τ eff,iBs,SM

=
τBs

(1− ys)
, i = 3 . (26)

If the measurement of an effective lifetime differs from the SM prediction, this will
be a sign for NP [29].

The SM untagged time-dependent angular distribution for B0
s → φφ takes the

form

d4(ΓBs + ΓB̄s)

dtd~ω
=

9

32π

[

FL(q
2, ~ω)KL(t) + FH(q

2, ~ω)KH(t)
]

, (27)

where the angular and time-dependent terms are

FL(~ω) =
[

|A0|2f1(~ω) + |A‖|2f2(~ω) + |A0||A‖| cos (δ‖ − δ0)f5(~ω)
]

,

FH(~ω) = |A⊥|2 ,

KL(t) = 2e−ΓLt = 2e−Γt
(

cosh (∆Γ/2)t− sinh (∆Γ/2)t
)

,

KH(t) = 2e−ΓH t = 2e−Γt
(

cosh (∆Γ/2)t+ sinh (∆Γ/2)t
)

, (28)

in which (δ‖ − δ0) = arg(A‖A
∗
0).

Thus, if the e−ΓLt/2 and e−ΓH t/2 terms in the time-dependent angular distribution
[see Eq. (17)] can be distinguished experimentally, the |Ah| and cos (δ‖ − δ0) can be
measured. However, as we will see in the next subsection, these observables can be
obtained from time-integrated measurements.

3.2 Untagged time-integrated distribution

In the SM, the observables in the time-integrated untagged distribution are

〈K1〉 =
τBs

1 + ys
|A0|2 , 〈K2〉 =

τBs

1 + ys
|A‖|2

〈K3〉 =
τBs

1− ys
|A⊥|2 , 〈K4〉 = 0 ,

〈K5〉 =
τBs

1 + ys
|A0||A‖| cos (δ‖ − δ0) , 〈K6〉 = 0 . (29)

We have ys = 0.088 ± 0.014 and τ−1
Bs

= (0.6580 ± 0.0085) ps−1 [19, 29]. With this
knowledge, the |Ah| and cos (δ‖ − δ0) can be extracted from the above measurements.
This is what CDF and LHCb have presented [27, 28].
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3.3 Polarization Fractions

With no weak phases in the decay, we have Ah = Āh, and the |Ah|2 can be measured
in the untagged time-integrated distribution [Eq. (29)]. The polarization fractions
are given by

f0 =
|A0|2

|A0|2 + |A‖|2 + |A⊥|2
,

f‖ =
|A‖|2

|A0|2 + |A‖|2 + |A⊥|2
,

f⊥ =
|A⊥|2

|A0|2 + |A‖|2 + |A⊥|2
, (30)

with total polarization ftot = f0 + f‖ + f⊥ = 1.
Now, in the presence of NP the distribution changes, and so the experimental

measurements have to be reinterpreted. We address this issue in the next section.

4 B0
s
→ φφ – SM + NP

In this section, we consider NP contributions to B0
s → φφ, in the mixing and/or in

the decay.

4.1 Polarization Fractions

The polarization fractions can be written as

f0 =
|A0|2 + |Ā0|2

|A0|2 + |Ā0|2 + |A‖|2 + |Ā‖|2 + |A⊥|2 + |Ā⊥|2
=

Ach
1

∑

i=1,2,3Ach
i

,

f‖ =
|A‖|2 + |Ā‖|2

|A0|2 + |Ā0|2 + |A‖|2 + |Ā‖|2 + |A⊥|2 + |Ā⊥|2
=

Ach
2

∑

i=1,2,3Ach
i

,

f⊥ =
|A⊥|2 + |Ā⊥|2

|A0|2 + |Ā0|2 + |A‖|2 + |Ā‖|2 + |A⊥|2 + |Ā⊥|2
=

Ach
3

∑

i=1,2,3Ach
i

. (31)

In the above, the fh are written in terms of the |Ah|2 and |Āh|2. However,
as noted above, what is measured experimentally in the time-integrated untagged
distribution are the 〈Ki〉. It is therefore necessary to express the fh in terms of the
〈Ki〉. This is done as follows. Using Eq. (23), one can write

Ach
i =

〈Ki〉
τBs

(1 + ηiys)Yi , i = 1, 2, 3 , (32)
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where the quantity Yi is related to τ eff,iBs
or Ai

∆Γ:

Yi =
1

(1 + ηiys)

(

2− τ eff,iBs

τBs

(1− y2s)
)

=
(1− ηiys)

(1 +Ai
∆Γys)

, (33)

with η1,2 = 1, and η3 = −1. From Eq. (20) we have Ai
∆Γ = Ash

i /Ach
i =



















−2
(

Re(A∗
0Ā0) cosφs + Im(A∗

0Ā0) sinφs

)

/
(

|A0|2 + |Ā0|2
)

, i = 1 ,

−2
(

Re(A∗
‖Ā‖) cosφs + Im(A∗

‖Ā‖) sinφs

)

/
(

|A‖|2 + |Ā‖|2
)

, i = 2 ,

2
(

Re(A∗
⊥Ā⊥) cosφs + Im(A∗

⊥Ā⊥) sinφs

)

/
(

|A⊥|2 + |Ā⊥|2
)

, i = 3 .

(34)

In the SM, the weak phases of the Ah vanish and φs = 0, so that Ai
∆Γ = ±1 (the

minus sign is for i = 1, 2, and the plus sign is for i = 3). This implies that Y1,2,3 = 1,
so that the polarization fractions are

fSM
0 =

〈K1〉(1 + ys)

〈K1〉(1 + ys) + 〈K2〉(1 + ys) + 〈K3〉(1− ys)
,

fSM
‖ =

〈K2〉(1 + ys)

〈K1〉(1 + ys) + 〈K2〉(1 + ys) + 〈K3〉(1− ys)
,

fSM
⊥ =

〈K3〉(1− ys)

〈K1〉(1 + ys) + 〈K2〉(1 + ys) + 〈K3〉(1− ys)
. (35)

Note that these are consistent with Eq. (29). However, if there is NP in the mixing
and/or the decay, we have Y1,2,3 6= 1, so that the polarization fractions take the form

f0 =
〈K1〉(1 + ys)Y1

〈K1〉(1 + ys)Y1 + 〈K2〉(1 + ys)Y2 + 〈K3〉(1− ys)Y3
,

f‖ =
〈K2〉(1 + ys)Y2

〈K1〉(1 + ys)Y1 + 〈K2〉(1 + ys)Y2 + 〈K3〉(1− ys)Y3
,

f⊥ =
〈K3〉(1− ys)Y3

〈K1〉(1 + ys)Y1 + 〈K2〉(1 + ys)Y2 + 〈K3〉(1− ys)Y3
. (36)

The fh are expressed completely in terms of measured quantities. The 〈Ki〉’s are
obtained from the untagged angular distribution, and one can calculate the Yi using
the measured effective lifetimes. If the effective lifetimes have not been measured
then, Ai

∆Γ can be varied within a certain range to get a range for the Yi.
Thus, to obtain the correct polarization fractions in the presence of NP, Eq. (36),

which includes factors of Yi, must be used. This is one of the main points of the

16



paper. However, experiments have used Eq. (35), so they have effectively excluded
NP. If this possibility is allowed, the analysis must be redone and we discuss this in
Sec. 5.

The difference between Eqs. (35) and (36) is related to the difference Yi−1. One
can see from Eq. (33) that Yi − 1 → 0 in the limit that ys → 0. This indicates that
fh − fSM

h = O(ys). Since ys = 0.088± 0.014, this corresponds to a correction to the
polarization fractions of O(10%). This is not large, but it may be important given
that the measurements hope to identify the presence of NP.

4.2 Other Observables

In Sec. 2.2, we noted that the angular distribution of the decay B0
q → V1V2 (q =

d, s) is proportional to
∑6

i=1Ki(t)fi(~ω), where ~ω = (cos θ1, cos θ2,Φ) [Eq. (6)]. In
the previous subsection, we discussed polarization fractions, observables which are
dependent on 〈Ki〉, i = 1, 2, 3. We now turn to i = 4, 6.

In the present case, K4 and K6 are related to the triple products (TP’s) in
B0

s → φφ. The expressions for the untagged observables in B0
d,s → V1V2 are given

in Eq. (16). For convenience, Ki(t) + K̄i(t) (i = 4, 6) are repeated below:

K4(t) + K̄4(t) = e−Γst
[(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

cosh (∆Γs/2)t

−
(

(Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)) cosφs

+ (Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)) sinφs

)

sinh (∆Γs/2)t
]

,

K6(t) + K̄6(t) = e−Γst
[(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

cosh (∆Γs/2)t

−
(

(Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)) cosφs

+ (Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)) sinφs

)

sinh (∆Γs/2)t
]

. (37)

Now, as discussed earlier, in the SM the weak phases in B0
s → φφ, both in the mixing

and in the decay, are all approximately zero, so that K4(t)+K̄4(t) and K6(t)+K̄6(t)
vanish. Thus, if one finds evidence for a nonzero TP, this is a clear sign of NP.

Suppose first that there is NP, with a nonzero weak phase, only in the mixing. In
this case, the first two terms in each of Ki(t)+K̄i(t) (i = 4, 6) are zero, but the third
is nonzero. This is a particularly interesting situation, as it corresponds to a TP
generated through mixing. It arises only because ∆Γs is nonzero; mixing-induced
TP’s cannot be produced in B0

d decays. And, although ∆Γs 6= 0, it is still not large,
so that the associated TP is also rather small.
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The second possibility is that there is NP, with a nonzero weak phase, only in
the decay. In this case, the first two terms in each of Ki(t) + K̄i(t) (i = 4, 6),
proportional to cosh (∆Γs/2)t and cosφs = 1, are nonzero, but the third is zero.
And of course one can have NP in both the mixing and the decay. If a TP is seen,
its source can be determined through its time dependence.

Both Ki(t) + K̄i(t) (i = 4, 6) are CP-violating, so they correspond to true TP’s.
They can be nonzero only if there are two interfering amplitudes with a relative
weak phase. If there is NP in the mixing, the amplitudes are A(B0

s → φφ) and
A(B0

s → B̄0
s → φφ); if there is NP in the decay, the amplitudes are A(B0

s → φφ)SM
and A(B0

s → φφ)NP . In addition, in order to produce a TP, the two interfering
amplitudes must be kinematically different [32]. For the case of NP in the decay,
this is satisfied straightforwardly. But for NP in the mixing, how are B0

s → φφ and
B0

s → B̄0
s → φφ kinematically different? The point is that mixing-induced TP’s are

generated due to a nonzero ∆Γs. That is, although B0
s → φφ is a penguin decay,

B̄0
s → φφ occurs via a mechanism which contributes to ∆Γs. For example, one

possibility is the B0
s → B̄0

s transition via the intermediate states D∗+
s D∗−

s [37], with
the B̄0

s decaying to φφ. The B0
s and B̄0

s decays are clearly kinematically different.
We now turn to the measurement of TP’s. Here we focus on the time-integrated

untagged observables, 〈Ki〉. We have 〈Ki〉 ∝ Ach
i + Ash

i ys [Eq. (21)]. Specifically,
the 〈K4,6〉 are given in Eq. (20):

〈K4〉 =
τBs

2(1− y2s)

[(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

−
(

(Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)) cosφs

+ (Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)) sinφs

)

ys

]

,

〈K6〉 =
τBs

2(1− y2s)

[(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

−
(

(Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)) cosφs

+ (Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)) sinφs

)

ys

]

. (38)

The TP’s in the untagged distribution can be measured by constructing asymmetries
involving the angular variables. We start by integrating Eq. (18) over θ1 and θ2 to
obtain the differential rate:

d〈Γ(B0
q → V1V2)〉
dΦ

=
1

2π

[

〈K1〉+ 2〈K2〉 cos2Φ+ 2〈K3〉 sin2Φ− 2〈K4〉 sin 2Φ
]

.(39)

Note that the time-integrated untagged decay rate can be obtained by integrating
out the azimuthal angle Φ:

〈Γ(B0
q → V1V2)〉 =

[

〈K1〉+ 〈K2〉+ 〈K3〉
]

. (40)

Following Ref. [26] we can define asymmetries to measure the TP’s. We begin
with i = 4, for which f4(~ω) = −2 sin2 θ1 sin

2 θ2 sin 2Φ. We define u ≡ sin 2Φ. The
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TP asymmetry between the number of decays involving positive and negative values
of u is given by [26, 32]

Au =
1

2

[〈Γ(B0
s → φφ), u > 0〉 − 〈Γ(B0

s → φφ), u < 0〉
〈Γ(B0

s → φφ), u > 0〉+ 〈Γ(B0
s → φφ), u < 0〉

]

= −2

π
[A(2)

T ]exp , [A(2)
T ]exp =

〈K4〉
〈Γ(B0

s → φφ)〉 . (41)

As noted above, if Au 6= 0 is found, this would clearly indicate NP. However, we

would like to know the relation between [A(2)
T ]exp and the theoretical expression for

the TP in Eq. (38). The measured TP [A(2)
T ]exp is related to [A(2)

T ]theo via

[A(2)
T ]exp = [A(2)

T ]theo
τBs

〈Γ(B0
s → φφ)〉

(1 + A
(4)
∆Γys)

(1− y2s)
, (42)

where A
(4)
∆Γ = Ash

4 /Ach
4 and

[A(2)
T ]theo = Ach

4 =
1

2

(

Im(A⊥A
∗
‖)− Im(Ā⊥Ā

∗
‖)
)

. (43)

If we define the dimensionless theoretical TP as

T P2 ≡ [A(2)
T ]theo

τBs

〈Γ(B0
s → φφ)〉 , (44)

Eq. (42) details the corrections to the naive relation [A(2)
T ]exp = T P2 due to a nonzero

(NP) Ash
4 . (In the SM, [A(2)

T ]theo = 0, so the relation is trivial.)

For i = 6 we have f6(~ω) = −
√
2 sin 2θ1 sin 2θ2 sin Φ. We define

v ≡ sign(cos θ1 cos θ2) sinΦ, which has the following associated TP asymmetry [26]:

Av =
1

2

[〈Γ(B0
s → φφ), v > 0〉 − 〈Γ(B0

s → φφ), v < 0〉
〈Γ(B0

s → φφ), v > 0〉+ 〈Γ(B0
s → φφ), v < 0〉

]

= −
√
2

π
[A(1)

T ]exp , [A(1)
T ]exp =

〈K6〉
〈Γ(B0

s → φφ)〉 . (45)

Then

[A(1)
T ]exp = [A(1)

T ]theo
τBs

〈Γ(B0
s → φφ)〉

(1 + A
(6)
∆Γys)

(1− y2s)
, (46)

where A
(6)
∆Γ = Ash

6 /Ach
6 and

[A(1)
T ]theo = Ach

6 =
1

2

(

Im(A⊥A
∗
0)− Im(Ā⊥Ā

∗
0)
)

. (47)
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We can again define the dimensionless theoretical TP as

T P1 ≡ [A(1)
T ]theo

τBs

〈Γ(B0
s → φφ)〉 . (48)

Eq. (46) gives the corrections to the naive relation [A(1)
T ]exp = T P1.

Finally, we turn to i = 5, which corresponds to a CP-conserving observable.
From Eq. (20),

〈K5〉 =
τBs

2(1− y2s)

[(

Re(A‖A
∗
0) + Re(Ā‖Ā

∗
0)
)

−
(

(Re(A‖Ā
∗
0) + Re(Ā‖A

∗
0)) cosφs

− (Im(A‖Ā
∗
0)− Im(Ā‖A

∗
0)) sinφs

)

ys

]

. (49)

We have f5(~ω) =
√
2 sin 2θ1 sin 2θ2 cos Φ, so we define w ≡ sign(cos θ1 cos θ2) cosΦ

The associated asymmetry is

Aw =
1

2

[〈Γ(B0
s → φφ), w > 0〉 − 〈Γ(B0

s → φφ), w < 0〉
〈Γ(B0

s → φφ), w > 0〉+ 〈Γ(B0
s → φφ), w < 0〉

]

=

√
2

π
[A(5)]exp , [A(5)]exp = 〈K5〉/〈Γ(B0

s → φφ)〉 . (50)

We have

[A(5)]exp = [A(5)]theo
τBs

〈Γ(B0
s → φφ)〉

(1 + A
(5)
∆Γys)

(1− y2s)

= [A(5)]theo
τBs

〈Γ(B0
s → φφ)〉

(

2− τ eff,5Bs

τBs

(1− y2s)
)

, (51)

where A
(5)
∆Γ = Ash

5 /Ach
5 , the effective lifetime τ eff,5Bs

is defined in Eq. (22), and

[A(5)]theo = Ach
5 =

1

2

(

Re(A‖A
∗
0) + Re(Ā‖Ā

∗
0)
)

. (52)

4.3 NP Parameters

12 observables can be measured from the time-dependent untagged angular distri-
bution (Sec. 2.3). With these, one can identify if NP is present in the mixing and/or
the decay. However, we will also want to identify its properties. To be specific, if
there is NP in the decay amplitude, it will be important to measure the various NP
parameters. With this in mind, the question is: how many theoretical unknowns are
there in the most general SM + NP B0

s → φφ amplitude? If there are fewer than
12, then we can extract all the unknowns.

In writing the SM + NP B0
s → φφ amplitude, we have the following points:
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• The SM weak phases are ≃ 0.

• Assuming that the NP amplitudes satisfy |ANP
h | < |ASM

h |, the NP strong
phases are negligible [38]. This means that if there are many NP amplitudes,
they can all be combined into a single term with an effective magnitude and
weak phase.

• In the heavy-quark limit, we have ASM
⊥ = −ASM

‖ [39].

Taking these points into account, the most general SM + NP B0
s → φφ helicity

amplitude can then be written

Ah = |ASM
h |eiδSM

h + |ANP
h |eiφh . (53)

There are a total of 11 unknown theoretical parameters – 5 magnitudes (2 SM, 3
NP), 2 SM strong phases, 3 NP weak phases, and the mixing phase φs. In principle,
these can all be extracted from the 12 observables.

However, note that Eq. (53) includes a different NP weak phase φh for each
helicity amplitude. But in many NP models the weak phases are helicity indepen-
dent. In this case there is only one NP weak phase φ, and the number of theoretical
unknowns is reduced to 9. This is a model-dependent result, but it is still very
general.

Finally, if the NP is purely left-handed or right-handed, then ANP
⊥ = ∓ANP

‖ [40],
which further reduces the number of theoretical unknowns by one.

In all cases, assuming the time-dependent untagged angular distribution can be
measured, there are more observables than unknowns, and so we will be able to
extract all the NP parameters in the decay. In this way, we may be able to identify
the type of NP that is present.

5 Numerical Analysis

Recently, the CDF and LHCb Collaborations have reported measurements for the
polarization amplitudes, the strong-phase difference between A‖ and A0, and the
triple-product asymmetries in B0

s → φφ. The LHCb results [28] are summarized
in Table 1. The values are in good agreement with those reported by the CDF
Collaboration [27].

The experiments have measured the 〈Ki〉 and constructed the polarization frac-
tions assuming the SM. As discussed previously, if one allows for the possibility of
NP in b̄ → s̄ transitions, this analysis must be modified. This is done below.

We denote the measured value of ys as ys0. From Eq. (29) we have

〈K1〉 =
τBs

1 + ys
|A0|2 =

τBs

1 + ys0
|A0|2ys=ys0 ,
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Observable Measurement
|A0|2exp 0.365± 0.022 (stat)± 0.012 (syst)
|A⊥|2exp 0.291± 0.024 (stat)± 0.010 (syst)
|A‖|2exp 0.344± 0.024 (stat)± 0.014 (syst)

cos(δ‖ − δ0) −0.844± 0.068 (stat)± 0.029 (syst)
Au −0.055± 0.036 (stat)± 0.018 (syst)
Av 0.010± 0.036 (stat)± 0.018 (syst)

Table 1: Measured polarization amplitudes, strong-phase difference, and triple-
product asymmetries in B0

s → φφ [28]. The sum of the |Ah|2exp terms is constrained
to unity.

〈K2〉 =
τBs

1 + ys
|A‖|2 =

τBs

1 + ys0
|A‖|2ys=ys0

,

〈K3〉 =
τBs

1− ys
|A⊥|2 =

τBs

1− ys0
|A⊥|2ys=ys0 . (54)

The experimental measurements in Table 1 are then

|A0|2exp =
|A0|2ys=ys0

|A0|2ys=ys0
+ |A‖|2ys=ys0

+ |A⊥|2ys=ys0

,

|A‖|2exp =
|A‖|2ys=ys0

|A0|2ys=ys0
+ |A‖|2ys=ys0

+ |A⊥|2ys=ys0

,

|A⊥|2exp =
|A⊥|2ys=ys0

|A0|2ys=ys0
+ |A‖|2ys=ys0

+ |A⊥|2ys=ys0

. (55)

One can now calculate the polarization fractions in the SM as a function of ys.
Inputting the expressions for the 〈Ki〉 from Eq. (54) into Eq. (35), and using Eq. (55),
we obtain

fSM
0 =

|A0|2exp 1+ys
1+ys0

|A0|2exp 1+ys
1+ys0

+ |A‖|2exp 1+ys
1+ys0

+ |A⊥|2exp 1−ys
1−ys0

,

fSM
‖ =

|A‖|2exp 1+ys
1+ys0

|A0|2exp 1+ys
1+ys0

+ |A‖|2exp 1+ys
1+ys0

+ |A⊥|2exp 1−ys
1−ys0

,

fSM
⊥ =

|A⊥|2exp 1−ys
1−ys0

|A0|2exp 1+ys
1+ys0

+ |A‖|2exp 1+ys
1+ys0

+ |A⊥|2exp 1−ys
1−ys0

. (56)
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Hence the |Ai|2exp in Table 1 are just the fSM
i defined in Eq. (56) with ys = ys0.

The true polarization fractions can then be obtained by inputting the expressions
for the 〈Ki〉 from Eq. (54) into Eq. (36), and using Eq. (55):

f0 =
|A0|2exp 1+ys

1+ys0
Y1

|A0|2exp 1+ys
1+ys0

Y1 + |A‖|2exp 1+ys
1+ys0

Y2 + |A⊥|2exp 1−ys
1−ys0

Y3
,

f‖ =
|A‖|2exp 1+ys

1+ys0
Y2

|A0|2exp 1+ys
1+ys0

Y1 + |A‖|2exp 1+ys
1+ys0

Y2 + |A⊥|2exp 1−ys
1−ys0

Y3
,

f⊥ =
|A⊥|2exp 1−ys

1−ys0
Y3

|A0|2exp 1+ys
1+ys0

Y1 + |A‖|2exp 1+ys
1+ys0

Y2 + |A⊥|2exp 1−ys
1−ys0

Y3
. (57)

In Fig. 1 we plot the dependence of the polarization fractions f0, f‖ and f⊥ as a
function of ys. This figure is read as follows. In all plots the horizontal region
represents the experimental result, in which [|A|2h=0,‖,⊥]exp is allowed to vary by

±1σ (see Table 1). Also, the vertical bands correspond to ys, with ±1σ (green)
or ±3σ (yellow) errors. In the SM we have Yi = 1, corresponding to (A1

∆Γ =
−1, A2

∆Γ = −1, A3
∆Γ = 1) [Eq. (34)]. In order to illustrate the effect of NP, we take

(A1
∆Γ = 1, A2

∆Γ = −1, A3
∆Γ = −1) (red line) or (A1

∆Γ = −1, A2
∆Γ = 1, A2

∆Γ = 1) (blue
line). For these values of Ai

∆Γ, we have Yi 6= 1. Consider first f0. In the SM the
experimental measurement implies 0.33 ≤ f0 ≤ 0.40. However, with NP, the value
of f0 can lie outside this range – for example, on the red line it can be as small
as 0.29. The behavior is similar for f‖ and f⊥. This shows explicitly that, in the
presence of NP, the B0

s → φφ polarization fractions can be changed from their SM
values by O(10%) for the current value of ys.

The relation between Au and [A(2)
T ]theo is given in Eqs. (41) and (42); that be-

tween Av and [A(1)
T ]theo is given in Eqs. (45) and (46). These can be rewritten

as

[A(2)
T ]theo

τBs

〈Γ(B0
s → φφ)〉 = −π

2
Au

(1− y2s)

(1 + A
(4)
∆Γys)

,

[A(1)
T ]theo

τBs

〈Γ(B0
s → φφ)〉 = − π√

2
Av

(1− y2s)

(1 + A
(6)
∆Γys)

. (58)

In Fig. 2 we plot the dependence of the theoretical TP’s [A
(2)
T ]theo τBs

/〈Γ(B0
s → φφ)〉

and [A
(1)
T ]theo τBs

/〈Γ(B0
s → φφ)〉 as a function of ys. The dashed black lines corre-

spond to the central values of Au (left) and Av (right) with A
4(6)
∆Γ = 0. The vertical

bands correspond to ys, with ±1σ (green) or ±3σ (yellow) errors. In the red and

blue regions, we take A
4(6)
∆Γ = ±1, respectively, and allow Au (left) and Av (right)

to vary by ±1σ (see Table 1). It is clear from these figures that, in the presence
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Figure 1: The dependence of the theoretical polarization fractions f0, f‖ and f⊥ on

the decay width parameter ys for different values of A1,2,3
∆Γ . The red line corresponds

to (A1
∆Γ = 1, A2

∆Γ = −1, A3
∆Γ = −1), while the blue line has (A1

∆Γ = −1, A2
∆Γ =

1, A2
∆Γ = 1). In all plots the experimental result [|A|2h=0,‖,⊥]exp (horizontal region)

is allowed to vary by ±1σ (see Table 1). The vertical bands correspond to ys, with
±1σ (green) or ±3σ (yellow) errors.

of NP, the values of the theoretical TP’s can differ significantly from the measured
asymmetries. (This is not surprising since the TP’s vanish in the SM.)

Finally, for i = 5, we have estimated the measured value of the CP-conserving
observable as follows:

[A(5)]exp = |A0|exp |A‖|exp cos(δ‖ − δ0) = −0.299± 0.030 . (59)

The relation between [A(5)]exp and [A(5)]theo is given by [see Eq. (51)]

[A(5)]theo
τBs

〈Γ(B0
s → φφ)〉 = [A(5)]exp

(1− y2s)

(1 + A
(5)
∆Γys)

. (60)

In Fig. 3 we plot the dependence of [A(5)]theoτBs
/〈Γ(B0

s → φφ)〉 as a function of ys.
As before, the value of this quantity can differ from Eq. (59) by as much as O(10%)
for the current value of ys.

6 Conclusions

The main goal of studying the B system is to find evidence for physics beyond the
standard model (SM). One possibility is new physics (NP) in b̄→ s̄ transitions. At
present its status is uncertain. It seems unlikely that the effect of such NP can be
very large, but a smaller effect is still possible. In this paper, we consider b̄ → s̄
NP. However, in contrast to what is usually done, i.e. considering only NP in B0

s -B̄
0
s

mixing, here we also allow NP in the decay. In particular, we examine the effect of
such NP on the angular distribution of B0

q → V1V2 (q = d, s), where V1,2 are vector
mesons.
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Figure 2: The dependence of the theoretical TP’s [A
(2)
T ]theoτBs

/〈Γ(B0
s → φφ)〉 (left)

and [A
(1)
T ]theoτBs

/〈Γ(B0
s → φφ)〉 (right) on ys for different values of A4(6)

∆Γ . In the red

and blue regions, we take A
4(6)
∆Γ = ±1, respectively. Also, Au (left) and Av (right)

are allowed to vary by ±1σ (see Table 1). The dashed black lines correspond to

the central values of Au (left) and Av (right) with A
4(6)
∆Γ = 0. The vertical bands

correspond to ys, with ±1σ (green) or ±3σ (yellow) errors.

Our principal result is the following. The parameters of the untagged, time-
integrated angular distribution can be measured experimentally, and certain ob-
servables can be derived from these parameters. However, in the presence of NP,
the formulae which relate the parameters to the observables must be modified from
their SM forms. We find six observables for which the relation between the experi-
mental data and theoretical parameters must be modified, corresponding to the six
terms (i = 1-6) in the angular distribution. For i = 1-3 they are the polarization
fractions, for i = 4,6 they are the CP-violating triple-product asymmetries, and i = 5
corresponds to a CP-conserving observable. The modifications for the polarization
fractions are most interesting. These are due in part to the nonzero width difference
in the B0

q -B̄
0
q system, and so are important only for B0

s decays. In particular, there

can be important effects on the pure b̄→ s̄ penguin decay B0
s → φφ.

In light of this, we re-analyze the B0
s → φφ data to see the effect of these

modifications. ∆Γs/2Γs ∼ 10%, so that the modifications of the formulae lead to
O(10%) changes in the polarization fractions. These are not large, but may be
important given that one is looking for signals of NP.

Finally, if the NP contributes to the b̄→ s̄ decay, we show that the measurement
of the untagged time-dependent angular distribution provides enough information –
12 observables – to extract all the NP parameters.
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Figure 3: The dependence of [A
(5)
T ]theoτBs

/〈Γ(B0
s → φφ)〉 on ys for different values

of A5
∆Γ. In the red and blue regions, we take A5

∆Γ = ±1, respectively. Also, [A(5)]exp
is allowed to vary by ±1σ [see Eq. (59)]. The dashed black line corresponds to the
central value of [A(5)]exp with A5

∆Γ = 0. The vertical bands correspond to ys, with
±1σ (green) or ±3σ (yellow) errors.
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