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We study the energy-momentum tensor of stable, meta-stable and unstable Q-balls in scalar field
theories with U(1) symmetry. We calculate properties such as charge, mass, mean square radii
and the constant d1 (“D-term”) as functions of the phase space angular velocity ω. We discuss the
limits when ω approaches the boundaries of the region in which solutions exist, and derive analytical
results for the quantities in these limits. The central result of this work is the rigorous proof that
d1 is strictly negative for all finite energy solutions in the Q-ball system.
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I. INTRODUCTION

The matrix elements of energy momentum tensor Tµν

(EMT) [1] contain basic information, such as mass [2]
and spin of the particle [3], and the constant d1. This
constant denotes the value of the corresponding form fac-
tor at zero-momentum transfer, and is the only experi-
mentally unknown “charge” associated with the EMT.
Its physical meaning was uncovered in [4] where it was
shown that d1 is related to the spatial distribution of in-
ternal forces. This is analog to the interpretation of the
electric form factor as the Fourier transform of the elec-
tric charge distribution [5] (and subject to the same type
of limitations [5, 6] due to relativistic corrections).
The EMT form factors can in principle be studied

through generalized parton distribution functions [7, 8]
accessible in hard exclusive reactions such as deeply vir-
tual Compton scattering [9–12]. In this work we shall
loosely refer to d1 as the D-term, although both coincide
strictly speaking only for asymptotically large renormal-
ization scales [13]. Theoretical studies of EMT form fac-
tors were presented in chiral perturbation theory, lattice
QCD, effective chiral field theories or models [13–23].
It is a striking observation that in all theoretical stud-

ies d1 was found negative — for pions, nucleons, nuclei.
Results from chiral soliton models [16–19] gave rise to the
suspicion the sign of d1 could be related to stability. The
naturally emerging questions are: could the negative sign
of d1 be a model-independent feature, a theorem? And,
is there really a relation between d1 and stability?
This work is devoted to the study of the EMT of Q-

balls [24, 25] with the aim to shed further light on these
questions. Q-balls are non-topological solitons in theories
with global Abelian [25] or non-Abelian [26] symmetries,
and have been discussed in a variety of approaches with a
wide range of applications in particle physics, cosmology,
and astrophysics [27–46].
The Q-ball equations of motions admit stable, meta-

stable and unstable solutions. This makes them an ideal
ground for our purposes. In this work we will be in-
terested in the ground state Q-ball solutions [25]. The

equations of motions admit also radial excitations [37]
which will be subject to a separate work [47].
The stability of Q-ball systems was studied in many

works [37–42]. But this is, to the best of our knowledge,
the first time this issue is addressed from the point of view
of the EMT. In particular, we present the first rigorous
proof in a dynamical system that d1 must be negative.
This supports the idea that the negative sign of d1 could
be a general feature. However, our results also show that
there is no relation between the sign of d1 and stability.
The outline of this work is as follows.
In Sec. II, after a brief review of Q-balls, we derive

the expressions for the energy density T00(r), pressure
and shear forces, p(r) and s(r), related to the stress ten-
sor Tik(r), and prove analytically that exact solutions
of the Q-ball equations of motions satisfy the Laue con-
dition

∫
∞

0 dr r2p(r) = 0 [48], which is a consequence of
the conservation of the EMT, and which we show to be
equivalent to the virial theorem [30]. This is analog to
the situation in soliton models of the nucleon [16–18].
In Sec. III we study Q-ball properties such as charge,

mass, mean square radii, and the D-term in a chosen
potential as functions of the angular velocity ω in the
U(1)-space in the region ωmin < ω < ωmax in which the
equations of motion admit finite energy solutions. An
interesting observation is that among the quantities we
study d1 varies most strongly with ω.
In Sec. IV and V we then focus on the behavior of the

Q-ball properties as ω approaches the boundaries of the
region in which finite energy solutions exist, i.e. the limits
ω → ωmin and ω → ωmax respectively. We derive in both
cases analytical results which describe the behavior the
different quantities in these limits and which are fully
supported by the numerical results.
In Sec. VI we formulate two independent proofs that d1

is strictly negative for all solutions in the Q-ball system,
and show that the sign of d1 is not related to stability.
The Sec. VII contains a summary of our findings and

the conclusions. Some technical details and supplemen-
tary results are discussed in the Appendix.
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II. Q-BALLS

We consider the relativistic field theory [25] of a com-
plex scalar field Φ(x) defined by the Lagrangian

L =
1

2
(∂µΦ

∗)(∂µΦ)− V . (1)

The potential V ≥ 0 is defined in terms of the positive
constants A, B, C (with 4AC > B2 to guarantee V > 0
for φ 6= 0) as follows

V = A (Φ∗Φ)−B (Φ∗Φ)2 + C (Φ∗Φ)3 . (2)

The Lagrangian is invariant under global U(1) symmetry
transformations Φ → Φ eiα, Φ∗ → Φ∗e−iα with α real.
This system admits non-topological soliton solutions [25]
which in the soliton rest frame are given by

Φ(t, ~x) = exp(iωt)φ(r) , r = |~x | . (3)

The Euler-Lagrange equations of the theory in (1) imply
for the radial field φ(r) the following differential equation
(here and in the following primes denote differentiation
with respect to the argument)

φ′′(r) +
2

r
φ′(r) + ω2φ− V ′(φ) = 0 , (4)

which is subject to the boundary conditions

φ(0) ≡ φ0 = const, φ′(0) = 0,

φ(r) → 0 for r → ∞ . (5)

The Noether theorem applied to the global U(1) sym-
metry implies the conserved charge

Q =

∫

d3x ρch(r) , ρch(r) = ω φ(r)2 . (6)

The sign of ω determines the sign of the charge Q. In the
following we assume ω > 0 without loss of generality. The
presence of a continuous global symmetry is essential for
the existence of the soliton. More precisely, finite energy
solutions exist for ω in the range

ω2
min < ω2 < ω2

max , (7)

with

ω2
min = min

φ

[
2V (φ)

φ2

]

= 2A

(

1− B2

4AC

)

> 0 ,

ω2
max = V ′′(φ)

∣
∣
∣
∣
φ=0

= 2A . (8)

From (4, 5) we obtain for φ(r) the following small- and
large-r behavior (the dots indicate subleading terms)

φ(r) = φ0 +

(

V ′(φ0)− ω2φ0

)
r2

6
+ . . . small r, (9)

φ(r) =
c∞
r

exp

(

−r
√

ω2
max − ω2

)

+ . . . large r. (10)

The constants φ0 and c∞ are known, of course, only after
solving the boundary value problem (4, 5).

A. Stability criteria

Solutions for ω satisfying the existence condition (7)
can be classified as (a) stable, (b) meta-stable, and (c)
unstable Q-balls, see e.g. [42] for an overview.
(a) If M denotes the mass of the soliton, and m the

mass of the field Φ, which is m =
√
2A = ωmax, then the

absolute stability condition can be expressed as [29]

M < mQ , m ≡ ωmax . (11)

(b) Meta-stable solutions do not satisfy (11) but are
stable with respect to small fluctuations, and satisfy a
weaker “classical stability condition” [24, 29] which can
be formulated in the equivalent ways

d

dω

(
M

Q

)

≥ 0 ⇔ dQ

dω
≤ 0 ⇔ d2M

dQ2
≤ 0 , (12)

i.e. a critical ωc (extreme charge Qc) exists at which the
slope (curvature) of the quantities in (12) changes.
(c) Solutions satisfying neither the stronger condition

(11) nor the weaker condition (12) are unstable.

B. The EMT of Q-balls

For the theory defined by the Lagrangian (1) the
canonical energy momentum tensor

Tµν =
∂L

∂(∂µΦ)
∂νΦ+

∂L
∂(∂µΦ∗)

∂νΦ
∗ − gµν L (13)

is symmetric and static. The energy density, which de-
fines the mass M =

∫
d3xT00, is given by

T00(r) =
1

2
ω2φ(r)2 +

1

2
φ′(r)2 + V (φ) . (14)

The T0k components vanish, i.e. the Q-ball has spin zero.
(Of course, Q-ball solutions can be assigned a non-zero
spin by means of appropriate projection techniques [49].)
Finally, the Tij components describe the stress tensor

Tij =

(
xixj

r2
− 1

3
δij

)

s(r) + δij p(r) (15)

with the distribution of the shear forces, s(r), and pres-
sure, p(r), given by

s(r) = φ′(r)2 (16)

p(r) =
1

2
ω2φ(r)2 − 1

6
φ′(r)2 − V (φ) . (17)

The dimensionless constant d1 is defined through the
stress tensor Tij [4], and can be expressed in terms of
s(r) and p(r) (cf. Sec. II C) as follows

d1 = − 4π

3
M

∫
∞

0

dr r4s(r) , (18)

= 5πM

∫
∞

0

dr r4p(r) . (19)

The large-r asymptotics (10) ensures that all integrals
(which define M , Q, d1, mean square radii, etc) exist.
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C. Consequences from conservation of EMT

For a static EMT ∂µTµν = 0 is equivalent to ∇iTij = 0
which, using the decomposition (15), implies [4]

2

r
s(r) +

2

3
s′(r) + p′(r) = 0 . (20)

In order to prove that (20) holds for Q-balls, we insert
s(r) and p(r) from Eqs. (16, 17) into (20), which yields

2

r
s(r) +

2

3
s′(r) + p′(r) (21)

= φ′(r)

(

φ′′(r) +
2

r
φ′(r) + ω2φ(r) − V ′(φ)

)

= 0

due to the equations of motion in Eq. (4).
From (20) one can derive the equivalent representa-

tions (18, 19) for d1 in terms of s(r) and p(r), and other
general relations [16]. For instance, multiplying (20) by
r3 and integrating (by parts) over r from zero to infinity
yields the “Laue condition” [48]

∞∫

0

dr r2p(r) = 0 . (22)

In order to prove (22) for Q-balls we integrate by parts
(primes denote derivatives with respect to the arguments,
the finite upper integration limit R is for later purposes)

R∫

0

dr r2 p(r) =

[

r3

3
p(r)

]R

0

−
R∫

0

dr
r3

3
p′(r) (23)

Next we notice that

p′(r) =

(

−1

3
φ′′(r) + ω2φ(r) − V ′(φ)

)

φ′(r)

= − 4

3
φ′(r)φ′′(r)− 2

r
φ′(r)2

= − 2

3r3

[

r3φ′(r)2
]
′

(24)

where we used ω2φ − V ′(φ) = −φ′′(r) − 2
r φ′(r) in the

first step which holds due to the equations of motion (4).
Hence, using s(r) = φ′(r)2, we obtain

R∫

0

dr r2 p(r) =

[

r3

3

(

p(r) +
2

3
s(r)

)]R

0

. (25)

The small- and large-r behavior of the solutions in (9)
guarantees that the lower and (after taking R → ∞)
upper integration limits in (25) vanish which proves (22).
It is instructive to prove (22) independently as follows.

Let φ(r) be a Q-ball solution with charge Q and mass
M , which we rewrite by means of (6, 14) in terms of the

“charge,” “surface,” and “potential energies” (where we
leave the number of dimensions D = 3 general)

M =
1

2
Ech +

1

2
Esurf + Epot (26)

Esurf =

∫

dDxφ′(r)2 , Epot =

∫

dDxV (φ) ,

I =

∫

dDxφ(r)2 , Ech =
Q2

I
. (27)

We consider dilatational variations φ(r) → φ(λr) of the
solutions with a positive parameter λ. Substituting in
the integrals in (27) ~x → λ~x yields

M(λ) =
1

2
Ech λD +

1

2
Esurf λ

2−D + Epot λ
−D . (28)

M ′(λ) = 0 and M ′′(λ) > 0 at λ = 1, because φ(λr) for
λ = 1 is a solution which minimizes the energy functional.
We obtain, using again (6) and the definitions in (27),

0
!
=

1

D

∂M(λ)

∂λ

∣
∣
∣
∣
λ=1

=
1

2
Ech +

2−D

2D
Esurf − Epot

=

∫

dDx

{
1

2
ω2φ(r)2 − D − 2

2D
φ′(r)2 − V (φ)

}

. (29)

For D = 3 we identify the expression (17) for p(r) in the
curly brackets of (29) which completes our alternative
proof of (22). Eq. (29) is known as virial theorem [30].
Notice that (29) can be used to eliminate, for instance,
the potential energy term from (26), leading to

M = ωQ+
1

D
Esurf . (30)

As a last application of (20) we integrate this equation
over r from zero to infinity. This yields the relation [16]

p(0) = 2

∞∫

0

dr
s(r)

r
, (31)

which provides a helpful cross check for numerical cal-
culations, and implies the following interesting relation:
inserting in (31) the expressions (16, 17) yields

1

2
ω2φ2

0 − V (φ0) = 2

∞∫

0

dr
φ′(r)2

r
. (32)

This is interesting, because the left-hand-side depends on
φ0 only while the right-hand-side is a functional of φ′(r)
where φ0 drops out. Below in Sec. III A we will discuss
the physical interpretation of (32).

D. Relations among Q-ball properties

Further interesting relations among different Q-ball
properties follow from combining (6, 14, 16, 17) as

T00(r) + p(r) = ω ρch(r) +
1

3
s(r) . (33)
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Integrating (33) over d3x we recover (30) for D = 3 (the
derivations are equivalent, but (30) elucidates the rela-
tion of the factor 1

3 to the dimensionality of the space).
Next, we define the “surface tension” γ and the mean
square radius 〈r2s〉 of the shear forces s(r) as follows

γ =

∞∫

0

dr s(r) , 〈r2s 〉 =

∞∫

0

dr r2s(r)

∞∫

0

dr s(r)

. (34)

Thus, the surface energy Esurf =
∫
d3x s(r), Eq. (27),

can be written as Esurf = 4π 〈r2s〉 γ which is what one
expects for a spherical object with a well-defined surface
and radius 〈r2s〉1/2. In Sec. IV we will see that these
notions make sense for Q-balls in a certain limit.
Finally, we weight (33) with r2, and integrate over d3x.

This allows to express d1 in terms of other properties as

d1 =
5

9

(

ωQM 〈r2Q〉 −M2 〈r2E〉
)

, (35)

with the mean square radii of energy and charge densities
defined as

〈r2E〉 =
∫
d3x r2 T00(r)
∫
d3xT00(r)

, 〈r2Q〉 =
∫
d3x r2 ρch(r)
∫
d3x ρch(r)

. (36)

E. Parameters and numerics

In our numerical study we fix the parameters as

A = 1.1 , B = 2.0 , C = 1.0 . (37)

(for which in [37] radial Q-ball excitations were found;
the latter originally motivated our study, but will be dis-
cussed in a separate work [47]). This yields the following
range of allowed ω-values

0.2 < ω2 < 2.2 . (38)

The parameter set (A, B, C) could be assigned physical
units, say (GeV2, GeV0, GeV−2). Then ω, M would be
given in GeV, mean square radii in GeV−2, etc. But for
simplicity we will work with dimensionless quantities.
The numerical method is as follows. For a given ω the

differential equation (4) is solved with slightly shifted ini-
tial conditions φ(ε) ≡ φε and φ′(ε) = 1

3 (V
′(φε)− ω2φε)ε

with numerical parameters ε in the range 10−10 to 10−4.
We checked that the results do not depend on ε. Finite
energy solution are found using the shooting method by
varying the initial value φε until φ(r) → 0 at large r.
The quality of the numerics is monitored by testing

that (i) the differential equation (20) holds, (ii) the Laue
condition (22) is valid, (iii) different expressions for d1 in
(18, 19, 35) yield the same result, (iv) the same value for
p(0) follows from (17, 31). We find a relative numerical
accuracy of O(10−6) or better.

III. GROUND STATE Q-BALLS

In this Section we discuss the ground state properties
of Q-balls in our potential (2) for different values of ω.

A. Effective potential Ueff and φ0

Identifying r → t and φ(r) → x(t), the equation of
motion (4) can be read [25] as the Newtonian equation

ẍ(t) = Ffric −∇Ueff(x) (39)

Ffric = −2

t
ẋ(t) , Ueff =

1

2
ω2 x2 − V (x) .

describing the motion of a particle of unit mass under
the influence of the time- and velocity-dependent friction
Ffric in the effective potential Ueff shown in Fig. 1. The
initial and boundary values (5) mean that at t = 0 the
particle starts from the position x0 with zero velocity,
and comes to rest in the origin x = 0 after infinite time.
Thus x(t) > 0 and the particle never stops at finite t.
This implies decreasing monotony of the ground state
fields, φ(r) > 0 and φ′(r) < 0 for 0 < r < ∞.
The pressure (17) is given at r = 0 by p(0) = Ueff(φ0)

and the condition (7) guarantees the existence of a region
of φ with Ueff(φ) > 0 [25]. This proves that

p(0) > 0 . (40)

Now also the physical interpretation of (32) is evident.
The left hand side of (32) is the initial potential energy.
The right hand side of (32) is the work W =

∫
Ffricdx

the particle does to overcome the friction before coming
to rest at x = 0 with zero effective potential energy.

0

0.5

1

0 0.5 1

U   eff(φ)

ω 2
min=0.2

0.3

0.55

0.8

1.0

1.25

1.8

ω 2
c

2.0

2.1
2.152.182.195

ω 2
max=2.2

φ

ω 2
abs

FIG. 1: The effective potentials Ueff (φ) = 1

2
ω2φ2 − V (φ) as

functions of φ for selected values of ω2 in the range (38). The
circles show the initial values φ0 for each ω2, which lie on a
curve starting and ending at the limiting values ω2

min = 0.2
and ω2

max = 2.2 (marked by open circles). The special values
ω2
c ≈ 1.9 and ω2

abs ≈ 1.55 are discussed in text.
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Solutions exist for all ω in the range ωmin < ω < ωmax.
With our numerical method, we were able to find solu-
tions in the subinterval 0.216 ≤ ω2 ≤ 2.195.
The effective potentials Ueff(φ) = 1

2 ω
2φ2 − V (φ) are

shown in Fig. 1 for selected ω including the limiting cases
ωmin and ωmax. On each of the Ueff(φ)-curves in Fig. 1 we
marked the initial conditions φ0 which solve the bound-
ary value problem (4, 5). The Ueff(φ0) for different ω
lie on a curve which exhibits a global maximum close to
ω2
abs ≈ 1.55, and changes the curvature around ω2

c ≈ 1.9
(these frequencies will be discussed in detail in Sec. III C).
This curve starts and ends at the limiting points

lim
ω→ωmax

φ0 = 0 , lim
ω→ωmin

φ0 =

√

B

2C
= 1 , (41)

with the potential Ueff(φ0) → 0 in both cases, see App. A.
Ueff(φ0) as function of φ0 is not unique for φ0 ≥ 1.

B. Solutions φ(r) and densities

In this section we describe the results for φ(r) and the
various densities. Some of our observations concerning
the behavior of the densities in the limits ω → ωmin,max

will be made more rigorous in Secs. IV and V.
The ground state solutions φ(r), which are uniquely

determined in terms of the initial values φ0 discussed in
the previous section, are shown in Fig. 2a as functions of
r for selected values of ω in the range 0.216 ≤ ω2 ≤ 2.195
our numerics can handle. We have chosen a logarithmic
r-scale to better show the features of all solutions in a
single plot. On a logarithmic scale the φ(r) are nearly
constant for r < 0.1, and have the small-r behavior (9).
Their large-r asymptotics agrees with (10).
With decreasing ω the solutions φ(r) remain nearly

constant at their initial values in a region 0 ≤ r < R0

and form increasingly long plateaus from which they then
drop down to their large-r asymptotics (10) over decreas-
ingly narrow transition regions with thicknesses ≪ R0.
Here R0 can be understood as the “size” of the Q-ball,
which will be defined below more accurately. In the limit
ω → ωmin the field φ(r) → φ0 Θ(R0 − r) where R0 → ∞
and φ0 → 1, see (41) and App. A. This behavior (“thin-
wall limit”) can be strictly derived [25]. In the oppo-
site limit, as ω increases, the solutions φ(r) become more
wide-spread and their magnitude decreases, see (41) and
App. A.
Fig. 2b shows the charge densities ρch(r) = ωφ(r)2

as functions of r. Also the charge densities exhibit for
small ω extended plateaus in the region 0 ≤ r <∼ R0

inside the Q-balls, and drop abruptly to zero outside. For
ω → ωmax the charge densities become more wide-spread
and their magnitudes show an overall decrease.
Fig. 2c shows the energy densities T00(r), which look

qualitatively similar to charge densities for ω >∼ 1. But
for ω <∼ 1 the energy densities start to develop a “bump”
around R0, and as ω approaches ωmin the bump becomes

0

0.5

1

0.1 1 10 100  

(a)φ(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.5

1

0.1 1 10 100  

(b)ρch(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.2

0.4

0.6

0.8

0.1 1 10 100  

(c)T00(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.550
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

-0.2

0

0.2

0.4

0.6

0.1 1 10 100  

(d)p(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.550
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.1

0.2

0.3

0.1 1 10 100  

(e)s(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

FIG. 2: Field φ(r), charge density ρch(r), energy density
T00(r), pressure p(r), shear force distribution s(r) vs. r for
Q-ball ground state solutions for selected values of ω.
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a characteristic “spike.” The reason for that is that for
ω >∼ 1 the Q-balls are “diffuse” objects, while for ω <∼
1 they start to develop a more and more well-defined
“edge.” In fact, as ω → ωmin the notions of a “surface”
and “surface tension” become better defined [25]. The
characteristic bump/spike structure in T00(r) at r ∼ R0

reflects the contribution of the surface energy. In the
limit ω → ωmax we find T00(r) → 0. In the limit ω →
ωmin we have T00(r) → const for 0 ≤ r < R0 with a
surface energy contribution proportional to δ(r−R0) with
R0 → ∞.
Fig. 2d shows the pressures p(r) as functions of r.

For all ground state solutions the pressures are posi-
tive “inside” and “negative” outside in agreement with
general expectations (79). We are now in the position
to provide an exact definition of the scale R0 as the
point where the pressure vanishes, i.e. p(R0) = 0 with
0 < R0 < ∞. The Laue condition is fulfilled because

the integrals
∫ R0

0 dr r2p(r) and
∫
∞

R0

dr r2p(r) have oppo-
site signs and precisely cancel. Numerically the sum of
these 2 contributions normalized with respect to the sum
of their moduli is of O(10−6) or smaller. In the limit
ω → ωmax we find p(r) → 0. For ω → ωmin we obtain
p(r) → const for 0 ≤ r < R0 with a surface energy contri-
bution proportional to − δ(r−R0) and a divergingQ-ball
size R0.
Fig. 2e shows the shear forces s(r) which are best suited

to discuss the concepts of “diffuseness” or “edge”. From
(9, 10) we see s(r) → 0 as r → 0 or r → ∞, and
from Eq. (16) we see it is an evidently positive quan-
tity, i.e. s(r) must have a global maximum somewhere.
To determine the position of this maximum consider
s′(r) = 2φ′(r)φ′′(r). Now due to the monotony property
of φ(r) discussed in Sec. III A, we have φ′(r) = 0 only at
r = 0 and at infinity. I.e. the maximum of s(r) coincides
with the point where φ′′(r) = 0. This change of curva-
ture occurs in the vicinity of the “edge” of the Q-ball,
and in the limit ω → ωmin precisely at r = R0 where s(r)
becomes proportional to a δ(r − R0) with a coefficient
related to the surface tension. As ω approaches ωmax the
shear force distribution becomes wider and wider, which
indicates a more and more diffuse “edge” of the Q-ball.

C. ωc and ωabs

The frequencies ωc and ωabs were discussed in the se-
quence of Eq. (12), and mentioned in the context of
Fig. 1. In this Section we discuss how they appear in
the numerical results. At the frequency ω = ωc ≈ 1.38

1. (M/Q)(ω) has a global maximum, Fig. 3a,

2. Q(ω) has a global minimum, Fig. 3b,

3. M(Q) has a branch point at Qc = Q(ωc), Fig. 3c.

The frequency ωc and charge Qc define classical stabil-
ity. For ω < ωc we have (M/Q)′(ω) > 0, and Q′(ω) < 0.

 1.4

 1.5

 1.1  1.2  1.3  1.4

M/Q (a)

ω  0

 10

 20

 30

 1.1  1.2  1.3  1.4

Q (b)

ω  0

 20

 40

 60

 0  20  40

M (c)

Q

FIG. 3: (a) M/Q as function of ω, with (M/Q)′(ω) > 0 in
the range ω < ωc ≈ 1.38 (solid line). (b) Q as function of ω,
with Q′(ω) < 0 for ω < ωc (solid line). (c) M vs. Q, with
M ′′(Q) < 0 in the branch denoted by the solid line. The solid
(dotted) lines correspond to the region of classically stable
(unstable) Q-balls, see Eq. (12).

-0.05

0

0.05

1.1 1.2 1.3 1.4

(M-mQ)/M

ω

FIG. 4: (M − mQ)/M as function of ω which exhibits a
maximum at ωc. For ω < ωabs we have M −mQ < 0 and the
Q-balls are absolutely stable. For ωabs < ω < ωc the Q-balls
are meta-stable, and for ωc < ω < ωmax they are unstable.
(M −mQ) approaches zero as ω → ωmax which is indicated
by the vertical line.

For Q > Qc we have M ′′(Q) < 0. These are equivalent
criteria for the stability of Q-balls against small fluctua-
tions. In Fig. 3 the branches of classically stable Q-balls
are shown as solid lines, while the unstable branches are
depicted as dotted lines.
Classical stability is a necessary but not sufficient con-

dition for stability. For a Q-ball to be absolutely stable it
is required M < mQ, see Eq. (11). Fig. 4 shows M−mQ
normalized with respect to M as function of ω. The
quantity (M −mQ)/M is negative for ω < ωabs ≈ 1.245
(and has a global maximum at ω = ωc which follows from
the fact that M(ω) and Q(ω) have extrema there). Thus,
for ω < ωabs the Q-balls are absolutely stable. In the re-
gion ωabs < ω < ωc they are meta-stable. For ω > ωc we
have unstable Q-balls.
In the limit ω → ωmax ≡ m one observes M → mQ,

see Fig. 4. This means the unstable Q-balls dissociate
into Q-clouds, i.e. into a gas of free quanta [28].
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FIG. 5: Ground state properties of Q-balls as functions of ω. (a) charge Q, Eq. (6). (b) mass M , defined before Eq. (14). (c)
constant d1, Eq. (18). (d) “surface tension” γ, Eq. (34). The mean square radii of (e) charge and (f) energy densities, Eq. (36),
and (h) shear forces, Eq. (34). (g) position R0 of the zero of the pressure. The values of densities in the centers of Q-balls for
(i) charge density, (j) energy density, (k) pressure, Eqs. (6, 14, 17). (l) The “surface energy” defined in (27). The special value
ωabs ≈ 1.245 (ωc ≈ 1.38) is marked by a square (star). The vertical lines indicate the limits ωmin ≈ 0.447 and ωmax ≈ 1.483.

D. Ground state properties

In this Section we study “global”Q-ball properties, ap-
propriate integrals of the “local” densities from Sec. III B.
The numerical results are shown in Fig. 5 which is orga-
nized as follows. The columns show as functions of ω
quantities associated with (from left to right) the dis-
tributions of charge, energy, pressure and shear forces.
Values of ωabs, ωc, ωmin/max are indicated in all plots.
Figs. 5a–d show Q, M , d1, γ. At ω = ωc charge Q(ω)

and mass M(ω) exhibit global minima, see (12), while in
the vicinity of ω ≈ ωc the “surface tension” γ(ω) exhibits
the largest curvature, and −d1(ω) a global minimum.
Figs. 5e–h show the different length scales of Q-balls:

square roots of the mean square radii of the charge and
energy densities and shear forces, Eqs. (34, 36), and R0

which is where p(r) changes sign. The behavior is quali-
tatively similar: all radii increase as ω → ωmin/max, and
have global minima around ω ≈ ωabs (for the minimum
of 〈r2s〉1/2 we cannot exclude that it is, within numerical
accuracy, exactly at ωabs).
Figs. 5i–k shows the charge density, energy density,

and pressure at the center of the Q-balls as functions of
ω. These quantities exhibit maxima around ωabs.
Since s(0) vanishes, it would make no sense to show

this quantity in analogy with Figs. 5i–k. Instead, in
Fig. 5l we show the “surface energy,” Eq. (27), as func-
tion of ω. As ω increases from ωmin to ωmax the sur-
face energy decreases monotonically, which is compatible
with the view that with increasing ω the Q-ball becomes
a more and more diffuse object, see Sec. III B, such that
the role of a “surface energy” become less and less impor-

tant. Esurf(ω) changes the curvature at the point ω = ωc

within numerical accuracy.
Some of the quantities vary strongly with ω, for in-

stance d1 extends over 12 orders of magnitude. This
is not surprising since we compare Q-balls with dif-
ferent masses and sizes. For each quantity one could
find “natural units” in order to make (from this point
of view) the comparisons quantitatively more meaning-
ful. The dimensionless constant d1 has the natural units
(mass×length)2. To see this notice that it can be ob-
tained from d1 = 1

3M
∫
d3x r2s(r), and

∫
d3x s(r) has di-

mension mass, since s(r) and T00(r) have the same di-
mensions. Thus, one choice of “natural units” to mea-
sure d1 could be M2〈r2i 〉 with i = s, E. In Fig. 6 we
see that in these units the constant d1 varies much more
moderately. In fact, for Q-balls of all ω we find that
0 < (−d1)/(M

2〈r2s 〉) < 0.3 holds.

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-d1/(M2<ri
2>)

ω2

i=E
i=s

FIG. 6: (−d1) in units of M2〈r2i 〉 (i = s,E) as function of ω2.
These units take into account the true dimensionality of d1.
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IV. THE LIMIT ω → ωmin

In this section we discuss Q-ball properties in the limit
ω → ωmin, the so-called “thin wall” limit. In this limit
the solutions describe objects of increasing size R with
uniform charge distribution for r < R, which drops to
zero over a narrow transition region (“thin wall”) [25].
In some sense the Q-balls resemble liquid drops.
In a liquid drop of the size R the pressure distribution

is p(r) = p0 Θ(R− r) − 1
3 p0Rδ(R − r) where p0 denotes

the constant pressure inside the drop. This p(r) satisfies
the Laue condition (22). The shear forces are given by
s(r) = γ δ(R−r), and the differential equation (20) leads
to the Young-Laplace relation γ = 1

2 p0R [50].
In the following we will “test” the predictions from

the liquid drop picture using our numerical results, and
derive analytically relations valid in the limit ω → ωmin.
In Fig. 2 we have seen that the solutions and densities

approach the expected liquid drop shapes, see Sec. III B.
Let us highlight here the shear force distribution. Fig. 7
shows s(r)R0/γ as function of r/R0 in the “edge region”
for selected ω close to ωmin. The curves are scaled such
that the areas under the graphs are normalized to unity.
Clearly, as ω approaches ωmin the shear force distribu-
tions peak more and more strongly in a narrow region
concentrated around r/R0 ≈ 1. The “edge region” makes
makes 5% and less of the size of the Q-ball, as expected.
That the Q-ball size diverges as ω → ωmin is apparent

from Figs. 5e–h. Our first quantitative expectation is
that both the radius R0 describing the position of the
zero of the pressure and 〈r2s〉1/2 characterize equally well
the position of the “edge” of the Q-ball. Hence we expect

0

20

40

60

80

0.95 1 1.05   

s(r) R0 γ-1

r/R0

ω2=0.216
ω2=0.220
ω2=0.224
ω2=0.230
ω2=0.2379
ω2=0.250

FIG. 7: s(r)R0/γ as function of r/R0 in the “edge region,”
for selected values of ω in the range 0.216 ≤ ω2 ≤ 0.25. The
curves are scaled such that the areas under the graphs are nor-
malized to unity. The figure shows that with ω2 approaching
ω2
min = 0.2 the shear forces approach their liquid drop limit
s(r) = γ δ(r − R0) where γ denotes the surface tension, and
R0 the position at which the pressure vanishes.

these radii to coincide for ω → ωmin, i.e.

lim
ω→ωmin

〈r2s 〉
R2

0

= 1 . (42)

The numerical results in Fig. 8a support Eq. (42).
In the following we choose 〈r2s〉1/2 as a reference length

scale for the size of the Q-ball in the liquid drop limit,
and define the “surface” and “volume” of a Q-ball as

As = 4 π 〈r2s〉 , Vs =
4 π

3
〈r2s 〉3/2 . (43)

The charge distribution becomes ρch(r) = ρ0Θ(R− r) in
the liquid drop limit, yielding 〈r2ch〉 = 3

5R
2 for the mean

square charge radius in Eq. (36). The situation is analog
for 〈r2E〉, although T00(r) has a δ-function-type “spike”
at r = R due to surface energy, as can be seen in Fig. 2c.
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FIG. 8: Q-ball properties as functions of ω2 in the limit
ω → ωmin. (a) the ratios R2

0/〈r2s〉, 〈r2Q〉/〈r2s〉, 〈r2E〉/〈r2s〉.
(b) M/(T00(0)Vs) and Q/(ρch(0)Vs). (c) 2γ/(p(0)〈r2s〉1/2) and
(− d1)/(M(M−ωQ)〈r2s〉). (d) ρch(0), T00(0), p(0). The solid,
dashed, dashed-dotted lines show our numerical results, which
approach the predicted limits marked by symbols. In Fig. 8d
the thin lines are the analytic results derived from Eq. (50).
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But the surface energy is proportional to R2, while the
contribution of the constant bulk matter density inside
the drop is proportional to R3, so the influence of the
spike can be neglected for a large drop. Hence, we expect

lim
ω→ωmin

〈r2ch〉
〈r2s〉

=
3

5
, lim

ω→ωmin

〈r2E〉
〈r2s 〉

=
3

5
, (44)

and the numerical results in Fig. 8a support this. For the
above discussed reasons we can furthermore expect

lim
ω→ωmin

M

T00(0)Vs
= 1 ,

lim
ω→ωmin

Q

ρch(0 )Vs
= 1 . (45)

which is also confirmed, see Fig. 8b.
Surface and surface tension γ are abstract notions for

arbitrary Q-balls which are defined through Eq. (34).
One way to check the usefulness of those definitions pro-
vides the Young-Laplace relation, which implies

lim
ω→ωmin

2γ

p0〈r2s〉1/2
= 1 . (46)

Notice that because of our definitions (34, 43) and (30),
we always have the relation

2γ

p0〈r2s 〉1/2
=

2(M − ωQ)

p0 Vs
. (47)

From (19) we obtain for a liquid drop ddrop1 = − 4π
3 MγR4.

Inserting here the expression for γ from (47) yields

lim
ω→ωmin

(−1)d1
M(M − ωQ)〈r2s〉

= 1 . (48)

Fig. 8c confirms both relations (46) and (48).
Next let us focus on the center properties of Q-balls.

For ω → ωmin the limiting value of the field φ(r) at r = 0
assumes the value φ2

const = B/(2C), see (41) and App. A.
For our potential and choice of parameters this means

lim
ω→ωmin

ρch(0) = ωmin φ
2
const =

√
0.2,

lim
ω→ωmin

T00(0) = ω2
min φ

2
const = 0.2 ,

lim
ω→ωmin

p(0) = 0 , (49)

which is supported by our results in Fig. 8d. The result
for p(0) is derived alternatively in App. B.
We can go a step further and derive predictions from

the liquid drop picture for the densities in (49) also for
ω 6= ωmin. This can be done because the probably most
important features for ω > ωmin are the finite size of
the Q-ball, and its diffuse “edge.” But these features
become important “far away” from the Q-ball center. So
one would expect the liquid drop approach to give useful
approximations for ρch(0), T00(0), and p(0) not only for
ω = ωmin but also for ω in some vicinity of ωmin.

The result for φconst(ω) follows from Eq. (A2) using
the plus sign, and can be written as

φ2
const(ω) =

B

C

(
1

3
+

1

6

√

1 +
6C

B2
(ω2 − ω2

min)

)

. (50)

Fig. 8d shows that (50) provides excellent approxima-
tions for the exact ω-dependencies of ρch(0), T00(0), p(0)
from up to ω2 <∼ 1. The reason for that can be seen in
Fig. 1. In our potential, the “particles” (in the “particle
motion” picture of Sec. III A) are released very close to
the respective maxima of Ueff , and this is what Eq. (50)
actually describes, see App. A.
This brings us to another test of the liquid drop pic-

ture: as ω → ωmin we expect the “edge” of the Q-ball to
become more and more well-defined. We have seen this
in Fig. 7, but this observation can be made quantitative
by defining the thickness of the edge region as

(∆r2s )
2 = 〈〈(r2 − 〈〈r2〉〉)2〉〉 = 〈〈r4〉〉 − 〈〈r2〉〉2 ≥ 0 (51)

where we introduced, c.f. App. C

〈〈rn〉〉 =
∫
∞

0 dr rns(r)
∫
∞

0
dr s(r)

. (52)

With this definition we can formulate the expectation
that in the “thin wall limit” the relative size of the “edge
region” vanishes

lim
ω→ωmin

∆r2s
〈r2s〉

→ 0 . (53)

This is supported by the numerical results, see Fig. 9.
Finally we turn our attention to the behavior of inte-

grated quantities for ω → ωmin. In this limit Q, M , d1
and the radii diverge, as shown in Fig. 5, although cer-
tain ratios of these quantities remain finite, and follow
the predictions from the liquid drop picture, see the dis-
cussion above. The key to understand quantitatively the
behavior of these quantities in the limit ω → ωmin is the
surface tension γ, the only “integrated” Q-ball property
which remains finite in this limit.

0

0.5

1

0 0.5 1 1.5 2

∆rs
2/<rs

2>

ω2

FIG. 9: The ratio ∆r2s/〈r2s〉 characterizing the relative size
of the “wall thickness,” as function of ω2 (solid line). In the
limit ω → ωmin (“thin-wall limit”) ∆r2s/〈r2s〉 → 0 (marked by
the symbol). The numerical results support this expectation.
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FIG. 10: Q-ball properties as functions of ω2 plotted in the
form X(ω2 − ω2

min)N . The respective quantities X, and their
scaling powers N , written as the pairs (X,N), are as follows:
(a) (γ, 0), (b) (〈r2s〉, 2), (c) (Q, 3), (d) (M, 3), (e) (d1, 7). The
triangles mark the analytical predictions from Eqs. (57, 59,
60, 61, 62).

The surface energy Esurf diverges because it is propor-
tional to the surface area, which diverges for ω → ωmin.
Taking out carefully these divergences allows one to de-
fine the surface tension, cf. Eq. (2.19) in [25], as

lim
ω→ωmin

γ = lim
ω→ωmin

φ0∫

0

dφ
√

2Û , (54)

where Û = V (φ) − 1
2ω

2φ2. Let us define

εmin =
√

ω2 − ω2
min > 0 . (55)

With the substitution φ → x = φ2 we obtain

φ0∫

0

dφ
√

2Û ≡ 1

2

φ2

0
(εmin)∫

0

dx

√

2C

(
B

2C
− x

)2

− ε2min (56)

For εmin 6= 0 the integrand is complex. Recalling that
for εmin → 0 we have φ2

0(εmin) → φ2
const = B/(2C), see

App. A, we obtain, for our parameters,

lim
ω→ωmin

γ =

√
C

2
√
2

(
B

2C

)2

=
1

2
√
2
, (57)

which agrees with the numerical results, see Fig. 10a.
Next we want to determine the behavior of the mean

square radius 〈r2s〉 in this limit. From Eq. (50) we obtain
for p(0), Eq. (17), the behavior

p(0) =
1

2
ω2φ2

0 − V (φ0) =
B

4C
ε2min +O(ε4min) , (58)

which we have seen in Fig. 8d and derived alternatively
in App. B. Combining this result with (46, 57) yields for
our potential

lim
εmin→0

ε4min 〈r2s 〉 =
B2

2C
= 2 , (59)

which is supported by the numerical results in Fig. 10b.
Analogously we obtain

lim
εmin→0

ε6minQ =
π

3
√
2

B4

C5/2
ωmin , (60)

lim
εmin→0

ε6minM =
π

3
√
2

B4

C5/2
ω2
min , (61)

lim
εmin→0

ε14min d1 = − π2

144

B10

C6
ω2
min . (62)

The numerical results in Figs. 10c–e fully support these
conclusions. We see that among the quantities in (57–62)
d1 has the most rapid rise for ω → ωmin, which explains
the observations in Fig. 5. Combining (59, 61, 62) yields

d1
M2〈r2s〉

= − 1

4

ε2min

ω2
min

+ . . . , (63)

where the dots indicate higher order terms. Eq. (63)
explains the observation made in Fig. 6, namely that d1
measured in its “natural units” vanishes in this limit.
The liquid drop analogy was very successful. One could

be tempted to drive it further than we did it here, e.g., by
giving the drop also a uniform charge distribution. The
resulting repulsive forces ensure stability, and a virial the-
orem analog to (29) can be derived. But the microscopic
details of the stabilizing dynamics are different from a
Q-ball, and we will not pursue this analogy further.
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V. THE LIMIT ω → ωmax

In this section we discuss the properties of Q-balls for
ω → ωmax. For certain potentials one obtains small and
stable Q-balls in this so-called “thick-wall” limit [30].
But in our potential for ω2 > ω2

c ≈ 1.9 the Q-balls are
unstable. For instance, the solution ω2 ≈ 2.192 with
Q = 42 and M ≈ 62.4 can decay into 2 absolutely sta-
ble Q-balls corresponding to ω2 ≈ 1.223 with Q = 21
and M ≈ 28.5, or into 3 absolutely stable Q-balls corre-
sponding to ω2 ≈ 1.466 with Q = 14 and M ≈ 20.4.1

Finally, as ω → ωmax in our potential, the solutions
get more and more spread out, and approach from above
M → mQ where m = ωmax is the mass of the quanta, see
Fig. 4. This means that the unstable Q-balls dissociate
into a gas of free quanta, a “Q-cloud” [28].
The aim of this section is to study analytically how

Q-ball properties behave for ω → ωmax. The key for
that is the large-r asymptotics of φ(r) derived in Eq. (10)
which shows that as long as ω2 < ω2

max the solutions φ(r)
decay at large r fast enough to ensure the convergence
of the integrals appearing in M , Q, or other properties.
Of course, the existence condition (7) requires ω to be
always smaller than ωmax. But we may study the scaling
of Q-ball properties as ω approaches ωmax from below.
Let us define

φasymp(r) =
c∞
r

e−εmaxr , εmax =
√

ω2
max − ω2 > 0,

(64)
which is the leading term in the large-r asymptotics of
φ(r) in (10). We consider first the charge Q in Eq. (6)

Q = 4π ω

∞∫

0

dr r2φ2(r)

≈ . . .+ 4π ω

∞∫

...

dr r2φ2
asymp(r)

= . . .+
4π ω c2

∞

εmax

∞∫

...

dx exp(−2x) , (65)

where in the second step we split the integral into an in-
ner (indicated by the three dots) and an outer part. It
is understood that this decomposition is done at a suffi-
ciently large radius R such that φ(r) can be well approxi-
mated by its asymptotic form (64) for r > R. In the third
step in (65) we made the substitution r → x = εmaxr.
From Eq. (65) we see what happens as εmax decreases.

The inner part indicated by the three dots in (65) gives a

1 Here we content ourselves to state that the decays are possible
energetically, but we are not concerned about their dynamics.
Notice also that in these examples integer charges were chosen.
But in general the charge Q is not quantized. Also “asymmetric”
decays into Q-balls of different charges are possible, but then less
energy is released.
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FIG. 11: The Q-ball properties d1, M , Q, R0, ri = 〈r2i 〉1/2
(i = E, Q, s), Esurf , γ as functions of εmax =

√
ω2
max − ω2.

The region in the plot covers the range 1.8 ≤ ω2 ≤ 2.195.
The small-εmax scaling of d1, M , Q, 〈r2Q〉1/2 and 〈r2E〉1/2 was
predicted analytically in Eqs. (66–69).

finite contribution to Q, but the outer contribution scales
like 1/εmax. Thus, we expect that with decreasing εmax

the product εmaxQ → const. This method though does
not allow us to determine the value of the constant. For
that a more careful analysis is needed, which we will re-
port elsewhere [47]. But in this way we correctly predict
that Q ∝ 1/εmax at small εmax, which is fully supported
by the numerical results, see Fig. 11.
Applying this method to other quantities we obtain

the results summarized below (all constants are positive
and different in each case)

lim
ε→0

εmaxQ = const, (66)

lim
ε→0

εmaxM = const, (67)

lim
ε→0

ε2max d1 = −const, (68)

lim
ε→0

ε2max 〈r2k〉 = const, k = Q, E, s, (69)

lim
ε→0

ε−1
maxEsurf = const , (70)

lim
ε→0

ε−3
max γ = const . (71)

The predictions (66–71) are fully supported by the nu-
merical results as shown in Fig. 11.
Notice that the results (69–71) for Esurf , γ, 〈r2s〉 are

numerical observations, because our method cannot be
applied to quantities vanishing with εmax → 0. In fact,
for instance the scaling of the outer contribution in the
integral (27) defining Esurf does imply Eq. (70). But our
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rough method would generically suggest that the contri-
bution of the inner region scales like ε0max and dominates.
A more careful analysis is needed to prove the prediction
(70), see [47]. The same reservations apply to the scaling
behavior of γ and 〈r2s〉, which are both connected to Esurf

via Eq. (34).
We observe numerically that the position R0 where

p(r) changes sign scales in the same way as the square
roots of the mean square radii in (69). Thus, indepen-
dently of whether we measure it in terms of R0 or the
〈r2i 〉1/2, the size of the solutions grows with εmax → 0.
The constant d1 diverges as 1/ε2max with decreasing

εmax, see Fig. 11. However, when measured in its natural
units it actually goes to zero as d1/(M

2〈r2s〉) ∝ ε2max as
we have seen previously in Fig. 6.
To summarize, as εmax → 0 mass, charge and size of

the Q-balls diverge as 1/εmax, see (66, 67, 69). Thus, the
mean charge and energy densities, which are proportional
to Q/(size)3 and M/(size)3, vanish like ε2max. Fig. 4 has
shown that the Q-balls are unstable, and their (positive)
binding energy M − mQ approaches zero (from above)
as εmax → 0. Hence, in this limit we obtain a dilute gas
of free Q-quanta as discussed in [28].

VI. THE SIGN OF d1

In this section we will show in several independent ways
that d1 is negative. In Sec. VIA we will use for that the
observation that for Q-balls s(r) happens to be positive
for 0 < r < ∞, and in Sec. VI B we will explain why s(r)
must be positive. In Sec. VIC we will prove that d1 < 0
using arguments based on p(r) and the Laue condition.
One may wonder why several proofs are needed. In-

deed, the EMT conservation dictates that s(r) and p(r)
are connected by the differential equation (20), which is
the origin of the equivalent presentations (18, 19) for d1 in
terms of s(r) and p(r) [16], and we have explicitly proven
that our expressions for s(r) and p(r) satisfy (20). So, if
one is able to conclude from s(r) the sign of d1, then it
must be possible to draw the same conclusion also from
p(r). Therefore, at first glance it may seem sufficient to
conclude the sign of d1 in one way, and below we will see
that for Q-balls it is much easier to use s(r) for that.
However, concluding the sign of d1 from s(r) alone

bears some danger, because from any “input” s(r) one
obtains via (20) a function p(r) which automatically2 sat-
isfies the Laue condition (22) [16]. So one may well en-
counter an approach with s(r) ≥ 0 and conclude d1 < 0
without being sure one really deals with a correct so-
lution of the equations of motion and a true minimum

2 The differential equation (20) allows one to determine p(r) from
a given input function s(r) only up to an integration constant.
But the latter can be fixed by demanding that for a well-localized
finite-energy object p(r) → 0 as r → ∞. In a similar way one
can determine s(r) from a given input function p(r).

of the energy functional. But the other way round, the
pressure is ultimately related to the issue of stability by
Eq. (22), which we have shown to be equivalent to the
virial theorem (29). A proof that d1 < 0 on the basis of
p(r) is therefore in general on a much more solid ground.

A. Arguments based on s(r) and inequalities

In this section we will show that d1 < 0 using argu-
ments based on the shear force distribution. The argu-
ment is trivial and makes use of the observation that
manifestly s(r) = φ′(r)2 ≥ 0 ∀ r.
In Eq. (18) we have seen that d1 is given by (− 4

3πM)

times the integral over r4s(r) over r from zero to infinity.
Since s(r) ≥ 0 this immediately implies d1 ≤ 0. This
inequality can be improved by recalling that φ′(r) < 0
for 0 < r < ∞, see Sec. III A. Therefore d1 < 0 which
completes the proof.
The fact that s(r) ≥ 0 can be further explored to derive

an inequality showing that d1 must be negative. Using
(51, 52) we have d1 = − 4π

3 M γ 〈〈r4〉〉 and 〈r2s〉 = 〈〈r2〉〉
and can rewrite the constant d1 as

− d1
M2〈r2s 〉

=
M − ωQ

M

(

1 +

(
∆r2s
〈r2s 〉

)2
)

. (72)

Notice we implicitly benefited from the fact that s(r) ≥ 0,
when introducing the averages 〈〈rn〉〉 in (52). Next we
explore that Esurf =

∫
d3r s(r) > 0, and with ωQ > 0 we

conclude from (30) that 0 < M − ωQ < M . Using the
latter inequality in (72) finally implies that

0 < − d1
M2〈r2s 〉

< 1 +

(
∆r2s
〈r2s〉

)2

. (73)

This proves that (− d1) > 0. As a byproduct Eq. (73)
provides also an upper bound on (−d1) but in terms of
∆r2s/〈r2s〉. At this point it is not obvious whether this
quantity is bound from above, though numerically we
observe this to be the case in Fig 9. That ∆r2s/〈r2s〉 is
indeed bound from above will be shown in [47].
For completeness let us mention the following more

useful upper bound on the magnitude of (−d1). The
starting point is Eq. (35) where we neglect the positive
quantity ωQM 〈r2Q〉 = M ω2

∫
d3r r2φ(r)2. This yields

the bound

− d1
M2〈r2E〉

<
5

9
, (74)

which is satisfied by the numerical results, see Fig. 6.
We checked that this is the strongest inequality one can
derive involving 〈r2E〉 as length scale. The inequality (74)
is atrractive because it provides an upper bound on (−d1)
in “its natural units” solely in terms of quantities related
to the energy density T00(r).
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B. Arguments based on the particle interpretation

In the previous section we explored the observation
that s(r) happens to be positive for 0 < r < ∞ for Q-
balls. Here we will show this must be the case.
For that we use the particle interpretation picture [25]

discussed in Sec. III A. The Newtonian equation (39) de-
scribing the motion of a unit mass particle moving in the
effective potential Ueff = 1

2ω
2 x2 − V (x) under the fric-

tion Ffric = − 2
t ẋ(t) follows from the Langrange-function

L(ẋ, x) and Rayleigh’s dissipation function F(ẋ),

L(ẋ, x) =
1

2
ẋ(t)2 − Ueff(x), F(ẋ) =

1

t
ẋ(t)2 , (75)

according to

d

dt

(
∂L

∂ẋ

)

− ∂L

∂x
= − ∂F

∂ẋ
. (76)

The physical meaning of Rayleigh’s dissipation function
F(ẋ) is that it describes the rate at which the system
dissipates its energy E due to the frictional force, namely

dE

dt
=

d

dt

(

∂ẋ
∂L

∂ẋ
− L

)

= −2F ≤ 0 ∀ t , (77)

which must be negative because the system dissipates
energy. This means that F(ẋ) ≥ 0 ∀ t.
If we recall that x(t) and t in the particle interpretation

picture correspond to φ(r) and r, we instantly see that
F(ẋ) corresponds to 1

r s(r). Since F(ẋ) ≥ 0 this proves
that the distribution of shear forces s(r) ≥ 0.

C. Arguments based on the pressure p(r)

In this section we will prove that d1 is negative, basing
our arguments on the pressure distribution.
Let us first demonstrate that for ω satisfying the ex-

istence condition (7) the pressure is positive at small r,
and negative at large r. In Sec. III A we have proven
p(0) > 0, and for reasons of continuity p(r) > 0 also in
some vicinity of the origin. At large-r we derive from
(10) the following asymptotics for the pressure

p(r) = − (ω2
max−ω2)

2 c2
∞

3 r2
exp

(

−2 r
√

ω2
max − ω2

)

+ . . .

(78)
where the dots indicate subleading terms. Clearly, for all
ω satisfying the existence condition (7), the pressure is
negative at large r. To summarize, we have

p(r) > 0 for small r,

p(r) < 0 for large r. (79)

This implies that p(r) must change the sign an odd num-
ber of times. Of course, p(r) must change sign at least
to comply with the Laue condition (22). From physical

point of view, we expect p(r) to be positive in the center
(which implies repulsive forces directed towards outside)
and negative outside (attractive forces towards inside),
as we derived in (79). A stable solution arises when the
repulsive and attractive forces exactly balance each other
according to (22). This physically intuitive pattern was
observed also in soliton models of the nucleon [16–19].
For a ground state one may expect the pressure distri-

bution to change sign only once, see Fig. 2d. If we assume
p(r) to change sign one and only one time, this immedi-
ately implies that d1 is negative. Fig. 12 illustrates the
argument. The left panel of Fig. 12 visualizes the Laue
condition (22): the shaded areas above and below the x-
axis are equal and exactly compensate each other. Thus,
due to the Laue condition (22) we have

R0∫

0

dr R2
0 r

2

︸ ︷︷ ︸

> r4

p(r) = −
∞∫

R0

dr R2
0 r

2

︸ ︷︷ ︸

< r4

p(r)

⇒
R0∫

0

dr r4p(r) < −
∞∫

R0

dr r4p(r) (80)

which means
∫
∞

0
dr r4p(r) < 0, and d1 must be negative,

as can be seen in the right panel of Fig. 12.
If we knew p(r) has one zero only, the proof that d1 < 0

would be complete here. It is intuitive to assume that the
pressure distribution of a ground state changes sign only
once according to (79). However, here we will provide
a general argument which is valid not only for ground
states.
For that we need the following lemma. For any solution

of the Q-ball equations of motion we have

R∫

0

dr r2 p(r) > 0 for 0 < R < ∞. (81)

To prove (81) we make use of the result (25) derived in
Sec. II C and explore the particle interpretation picture
of the Q-ball equations of motion. For that we notice
that p(r) + 2

3 s(r), the right-hand-side of (25), is positive
∀ r < ∞ because
(

p(r)+
2

3
s(r)

)

=
1

2
φ′(r)2

︸ ︷︷ ︸

Ekin

+
1

2
ω2φ(r)2 − V (φ)
︸ ︷︷ ︸

Ueff

. (82)

In other words, p(r) + 2
3 s(r) corresponds to the total,

kinetic plus potential, energy of the particle at a given
time t (with t ↔ r). The total energy of the particle must
be larger than zero ∀ t < ∞, because at any finite time
t the particle still needs to do work against the friction
in order to arrive, after infinite time, at the origin x = 0
(with x ↔ φ). This means that the integral in (25) is
positive and proves Eq. (81).
To understand this result intuitively, we remark that

if the integral (81) could become zero at some finite R,
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FIG. 12: r2p(r) and r4p(r) as functions of r for selected ω. For
better comparison, r is given in units of the radius R0 where
p(r) changes sign, and the normalization factors aN are such
that the curves reach unity at their global maxima. The left
(right) panel shows the integrand of the Laue condition (the
integrand of d1, Eq. (19), up the prefactor 5πM). The figure
illustrates why d1 is negative. Integrating the curves in the
left panel yields zero due to (19). Weighting the curves by an
additional factor of r2 and integrating then yields a negative
result for d1, see right panel.

then the fields would stabilize themselves in a subinterval
r ∈ [0, R]. Then, setting the fields outside that interval
to zero, would yield a stable solution with lower mass
(because T00(r) ≥ 0 also in the omitted region), in con-
tradiction to the expectation that a given set of initial
value data leads to a unique minimum of the action.
We have now all ingredients for the proof that d1 < 0

based on pressure and the Laue condition, namely (79)
and (81). The proof is as follows.
Eq. (79) means p(r) must change sign an odd number

N of times. Let Ri with i = 1, . . . , N denote the radii
where this happens with 0 < R1 < R2 < . . . < RN < ∞.
Notice that we do not include points where p(r) could
have zeros without changing sign.
The Laue condition (22) can then be written as

R1∫

0

dr r2p(r) +

R2∫

R1

dr r2p(r) + . . .+

∞∫

RN

dr r2p(r) = 0 . (83)

By construction p(r) ≥ 0 in the first, third, . . . integrals,

and p(r) ≤ 0 in the second, fourth, . . . last integrals. We
will now replace each of the terms in (83) by a smaller
term, and show in this way that

∫
∞

0 dr r4p(r) < 0.
Step 1. We consider the first 2 terms in (83). In the

first (second) term p(r) is positive (negative). Therefore

R1∫

0

dr r2p(r) ≥ 1

R2
1

R1∫

0

dr r4p(r) ,

R2∫

R1

dr r2p(r) ≥ 1

R2
1

R2∫

R1

dr r4p(r) . (84)

Adding up the 2 inequalities in (84) we obtain

R2∫

0

dr r2p(r) ≥ 1

R2
1

R2∫

0

dr r4p(r) . (85)

If there is only one change of sign, then we take the limit
R2 → ∞ and recover the situation of Eq. (80), and our
proof is complete here. If p(r) changes sign more than
once, i.e. N ≥ 3, then we have to continue our proof and
include further contributions in step 2.

Step 2. Notice that
∫ R2

0 dr r4p(r) > 0 for R2 < ∞ due
to (81). Moreover R1 < R3 < ∞. Therefore

R2∫

0

dr r2p(r) ≥ 1

R2
1

R2∫

0

dr r4p(r) >
1

R2
3

R2∫

0

dr r4p(r) . (86)

In the next two intervals p(r) ≥ 0 for r ∈ [R2, R3], and
p(r) ≤ 0 for r ∈ [R3, R4]. Therefore, in analogy to (84),

R3∫

R2

dr r2p(r) ≥ 1

R2
3

R3∫

R2

dr r4p(r) ,

R4∫

R3

dr r2p(r) ≥ 1

R2
3

R4∫

R3

dr r4p(r) . (87)

Combining (86) and the results in (87) we obtain

R4∫

0

dr r2p(r) >
1

R2
3

R4∫

0

dr r4p(r) . (88)

If p(r) changes sign exactly N = 3 times, then we take in
(88) the limit R4 → ∞ and our proof is completed here.
If p(r) changes sign more often, then we repeat step 2.
Last step. If p(r) changes the sign N = 2k + 1 times

(recall that N is odd, and RN < ∞), then we repeat
successively the 2nd step k-times, until we arrive at

∞∫

0

dr r2p(r) >
1

R2
N

∞∫

0

dr r4p(r) . (89)

Now, the first integral vanishes due to the Laue condition
(22), and using the definition (19) giving d1 in terms of
the pressure, we conclude from (89) the desired result
that d1 must be negative.
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D. Stability and d1

Above we have proven d1 < 0 exploring the Laue con-
dition which is satisfied by all solutions, minimizing the
energy functional, see Sec. II C. It is important to stress
that thereby we did not use the stability considerations
discussed in Sec. II A. All solutions correspond to min-
ima of the energy functional and therefore must have
d1 < 0. Whether the minima are global or local, and
whether they describe stable, meta-stable or unstable Q-
balls plays no role for the sign of d1. Fig. 12 illustrates
this point: the solutions in Figs. 12a, b, c are respec-
tively stable, metastable and unstable. But in all cases
d1 is negative, as shown in Figs. 12d–e.

VII. CONCLUSIONS

We have presented a study of Q-balls in a scalar field
theory with U(1) symmetry, and investigated the prop-
erties of Q-balls as functions of the angular velocity ω.
While Q-ball stability was studied in literature before
[37–42], to best of our knowledge this is the first study
in which this issue is addressed from the point of view of
the EMT, and the constant d1. All solutions presented
in this work were exact solutions of the equations of mo-
tion. Particular focus was put on the behavior of Q-ball
properties for ω approaching the boundaries ωmin,max of
the region in which solutions exist.
For ω → ωmin the Q-balls occupy increasingly large

volumes filled with Q-ball matter of nearly constant den-
sity [25]. We have shown that in this limit the Q-ball
properties follow the predictions of the liquid drop pic-
ture. Certain Q-ball properties such as charge Q, mass
M , mean square radii, and d1 diverge as ω → ωmin. We
derived analytically the limits for these and other proper-
ties, which are fully supported by our numerical results.
In the opposite limit ω → ωmax the solutions become

unstable and approach the “Q-cloud limit” [28]. Also in
this limit some properties diverge. We derived analyt-
ically the scaling behavior of these quantities as ω ap-
proaches ωmax. Further results will be reported in [47].
It is remarkable that, among all properties we studied,
d1 diverges most strongly as ω → ωmin,max.
The conservation of the EMT implies among others the

Laue condition [4, 48] which states that the pressure must
satisfy

∫
∞

0
dr r2p(r) = 0, which we have proven explicitly

in two independent ways. One of the proofs is equivalent
to the virial theorem.
The central result of this work is that the constant d1

is strictly negative for all Q-ball solutions,

d1 < 0 , (90)

for which we have provided 2 explicit analytical proofs.
One proof involved the relation of d1 to s(r), and made
use of the Newtonian particle interpretation of the Q-
ball equations of motion [25] in which the shear force

distribution s(r) is related to the Rayleigh dissipation
function describing the frictional forces. Since the New-
tonian system dissipates energy due to friction, s(r) must
be positive for 0 < r < ∞. This implies d1 < 0.
The other proof explored the relation of d1 to p(r),

and made use of the Laue condition. We have shown,
using the equations of motion, that p(r) is positive in
the center of the Q-ball (which corresponds to repulsion)
and negative at large r (which corresponds to attraction).
This means p(r) must change the sign an odd number of
times, and we have formulated a general proof valid for
any Q-ball solution with a pressure with an arbitrary
number of zeros. We observed that for ground states
p(r) changes sign only once, but for radial excitations of
Q-balls one encounters more complex structures [47].
The proof of (90) based on p(r) elucidates that for Q-

balls the negative sign of d1 is a consequence of the Laue
condition. The last important insight of our study is that
d1 < 0 holds not only for stable solutions. In the Q-ball
system d1 < 0 holds also for meta-stable and unstable
solutions, for which no study of d1 has been previously
presented in literature. This indicates that d1 < 0 could
hold for all particles, irrespective of whether they are
stable or unstable. Since d1 is not known experimentally
for any particle, this is already an important information.
Interesting open questions are whether d1 of rotating

Q-balls [37, 38] is also negative, and how quantum fluc-
tuations [51] modify the picture of d1. It would be also
interesting to see how d1 is altered for Q-balls coupled
to fermionic fields, which allows them to ’evaporate’ [27].
The ultimate goal would be to generalize the proofs given
in this work to quantum field theories, and to apply them
to the description of hadrons. So far, in all theoretical
studies d1 was always found negative, for pions [13], nu-
cleons [15–19], and nuclei [4, 20, 21]. Also lattice QCD
calculations yield a negative quark contribution to the d1
of nucleon, though the gluon contribution and hence the
total d1 are not yet known [14]. First experimental re-
sults are compatible with d1 being negative [52] but this
observation is not yet conclusive [53], and future data
will provide further insights [54].
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Appendix A: Stationary solutions

In this Appendix we discuss stationary solutions of the
equations of motion (4, 5) of the type φ(r) = φconst ∀r.
Though they do not obey the boundary condition (5) at
infinity, these solutions are nevertheless of interest.
If φ(r) = φconst the boundary conditions at r = 0 in

(5) hold, and the equation of motion (4) becomes

ω2φconst − V ′(φconst) (A1)
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=

(

ω2 − 2A+ 4Bφ2
const − 6Cφ4

const

)

φconst = 0.

The trivial solution φconst = 0 describes the vacuum.
Further (for ωmin ≤ ω ≤ ωmax always real) solutions are

φ2
const =

B

3C
±
(

B2

9C2
+

ω2 − 2A

6C

)1/2

. (A2)

Because L in (1) is symmetric under φ → −φ it is suffi-
cient to focus on the non-negative solutions.
In the particle interpretation picture the two positive

stationary solutions in (A2) have the following meaning.
The solution with the minus-sign in (A2) corresponds to
the situation that the particle is at t = 0 precisely in
the local minimum of the effective potential in Fig. 1 and
will stay there forever. The solution with the plus-sign
in (A2) corresponds to the (not stable) situation that the
particle is at t = 0 precisely in the global maximum of the
effective potential in Fig. 1 and will stay there forever.
As ω → ωmin we obtain φ2

const = B/(6C) from (A2),
which corresponds to the (not interesting for us) situation
where the particle stays forever in the minimum of Ueff ,
and the (much more interesting) solution

φ2
const →

B

2C
= 1 as ω → ωmin , (A3)

which corresponds to the situation with the particle
placed at the maximum of Ueff(φ) which for ω approach-
ing ωmin from above is just above zero. This situation is
of interest, because as ω → ωmin the particle has to be
placed very close to this maximum of Ueff(φ), and “wait”
there long enough such that its small initial potential en-
ergy Ueff(φ) is sufficient to overcome the time-dependent
friction which decreases with time [25].
As ω → ωmax we obtain from (A2) the solutions

φ2
const = 0 and φ2

const = (2B)/(3C). When ω = ωmax

the effective potential does not dip below zero at all, i.e.
it is not possible to release the particle from any φ0 > 0
so it would stop in the origin [25]. The only solution is
φ2
const = 0. However, from (A2) that solution develops in

the limit ω → ωmax from the minimum of Ueff which is
below zero. But for any regular solution with ω < ωmax

the potential at the starting point Ueff(φ0) > 0. There-
fore, the stationary solution φ2

const = 0 obtained here is
not continuously connected to the limiting value for φ0

stated in Eq. (41).

Appendix B: Bounds on the pressure

The pressure at the origin is just p(0) = Ueff(φ0) and
this is positive, Eq. (40), because for any regular solution
the effective potential of the particle at the starting point
must be positive. In this Appendix we will show that
the pressure is also bound from above. From (5, 17) we
obtain

p(0) =
1

2
ω2φ2

0

(

1− 2V (φ0)

ω2 φ2
0

)

. (B1)

Using (8) we notice that ∀φ(r) (including φ(r) at r = 0)

2V (φ)

φ2
≥ min

φ

[
2V (φ)

φ2

]

≡ ω2
min . (B2)

Inserting (B2) in (B1) and including also the lower bound
from Eq. (40) we obtain

0 < p(0) ≤ 1

2
(ω2 − ω2

min)φ
2
0 . (B3)

An important application of the upper bound in (B3) is
that it allows to verify independently the result for p(0)
in the limit ω → ωmin quoted in (49). We remark that
the upper bound in (B3) is for ωmin < ω < ωmax always a
real inequality and saturated only in the limit ω → ωmin.

Appendix C: Generating functional for 〈〈rn〉〉

In Sec. IV we defined the 〈〈rn〉〉 in (52), which allowed
us to express compactly 〈r2s 〉 = 〈〈r2〉〉 and the measure
for the wall width (∆r2s )

2 = 〈〈r4〉〉 − 〈〈r2〉〉2. Another
interesting application, if we continue to negative n, is
p(0) = 2 γ 〈〈r−1〉〉. This allows us to express the result
obtained in (46) as

lim
ω→ωmin

〈〈r−1〉〉 〈〈r2〉〉1/2 = 1. (C1)

The result in Eq. (C1) can be understood and interpreted
by recalling that s(r) → γ δ(r−R) in the liquid drop limit
which is equivalent to ω → ωmin, see Sec. IV.
The positivity of the shear forces, which was crucial in

Secs. VIA and VIB, allows us to introduce the functional

F (λ) =

∞∫

0

dr s(r) exp(−λr2) (C2)

which is a generating functional for 〈〈rn〉〉 for even n

F (λ) = F (0)

∞∑

n=0

(−1)n

n!
〈〈r2n〉〉 λn (C3)

The surface tension is just γ = F (0), the surface energy
is Esurf = −4πF ′(0) and d1 = − 4π

3 M F ′′(0). The mean
square radius of the shear forces, and the measure of the
wall width ∆r2s can be expressed as

〈r2s 〉 = −
[
∂

∂λ
log F (λ)

]

λ=0

, (C4)

(∆r2s)
2 =

[
∂2

∂λ2
log F (λ)

]

λ=0

. (C5)

We remark that each integral over s(r) can be traded
for an integral over p(r) by exploring the differential
equation (20). For instance, γ = 3

4

∫
∞

0 dr p(r) and

〈r2s 〉 = − 6

∫
∞

0
dr r2p(r) log r
∫
∞

0
dr p(r)

. (C6)

These and further relations were derived in [16] and can
be used as cross checks for the numerics.
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