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We discuss the role that Higgs coupling measurements can play in differentiating supersymmetric
extensions of the Standard Model. Fitting current LHC data to the Higgs couplings, we find that
the likelihood fit shows a preference in the direction of suppressed (enhanced) bottom (top) quark
couplings. In the minimal supersymmetric Standard Model, we demonstrate that for tanβ > 1, there
is tension in achieving such fermion couplings due to the structure of the Higgs quartic couplings.
In anticipation of interpreting supersymmetric models with future data, we determine a single
straightforward condition required to access the region of coupling space preferred by current data.

I. INTRODUCTION

The LHC is poised to accurately determine the mech-
anism of electroweak symmetry breaking, building upon
the recent discovery of a new Higgs-like state near 125
GeV [1, 2]. Should this new state prove to be an elemen-
tary scalar, supersymmetry (SUSY) remains the princi-
pal candidate for stabilizing the electroweak hierarchy.
However, the minimal supersymmetric Standard Model
(MSSM) is somewhat strained to explain a Higgs at 125
GeV, requiring significant enhancement of the tree-level
Higgs mass that is in tension with naturalness. Here, we
emphasize that the structure of the MSSM also tightly
constrains the possible tree-level couplings of the Higgs.
If the production and decay modes of the Higgs deviate
from Standard Model predictions, it would not only be
an indication of new physics, but may also decisively fa-
vor or disfavor the MSSM well before other states are
discovered. To this end, the measurement of Higgs cou-
plings provide a sensitive and immediate probe of physics
above the weak scale.

In this work we perform a model-independent fit of
Higgs couplings using current LHC data, focusing on im-
plications for theories with two Higgs doublets. We find
that the MSSM is facing tension with certain elements of
the data. At issue is the structure of its quartic Higgs po-
tential, leading to a generic preference for enhanced cou-
pling to down-type fermions. Indeed, the tree-level po-
tential mandates such enhancement whenever tanβ > 1
and we find even at loop-level that achieving significant
suppression is atypical. By analyzing the quartic terms
in full generality, we show that this conclusion can be
avoided and pinpoint parameter space for the MSSM and
simple alternatives to accommodate suppressed couplings
to down-type fermions.

II. STATUS OF HIGGS MEASUREMENTS

We begin by establishing the relevant conventions for a
type-II two Higgs doublet model (2HDM) like the MSSM.

The mass eigenstates of the neutral CP-even states are(
h0

H0

)
=
√

2

(
− sinα cosα
cosα sinα

)(
ReH0

d

ReH0
u

)
, (1)

with mixing angle α ∈ [−π/2, π/2]. The couplings of the
light eigenstate h0 to SM fields are then given by

a ≡ ghV V
gSM
hV V

= sin(β − α), (2)

ct ≡
ghtt̄
gSM
htt̄

=
cosα

sinβ
, cb ≡

ghbb̄
gSM
hbb̄

= − sinα

cosβ
, (3)

which we will refer to as the gauge coupling, and the up
and down-type Yukawa couplings, respectively. A full
discussion can be found for instance in [3]. Thus the
2HDM has access to two distinct regions in the positive
quadrant of Yukawa couplings, as illustrated in Fig. 1.
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FIG. 1: The two regions accessible in a generic type-II 2HDM.
Down-type couplings are enhanced when up-type are sup-
pressed and vice versa. For the MSSM and simple extensions,
the lower region is largely inaccessible when tanβ > 1.

We now discuss the current experimental status of
these Higgs couplings, which we will show can have an
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important impact on various SUSY scenarios. As has
been noted in recent literature, the likelihoods of the
hinted state near 125 GeV viewed in the space spanned by
(sinα, tanβ) are concentrated near the decoupling limit
(cf. [4]) where α→ β − π/2 and all couplings take their
SM values. Using current ATLAS [1] and CMS [2] results
we demonstrate this in Fig. 2 using exclusive best fit in-
formation, following the statistical method of [5] and as-
suming that loop-induced decays are dominated by their
contributions from SM fields (as will be done through-
out); alternative statistical methods yield consistent re-
sults [4, 6]. We note, however, that slight deviations from
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FIG. 2: Likelihoods drawn from Higgs searches at ATLAS and
CMS assuming that new loop-induced decays to SM states are
small. The likelihood peaks below the decoupling contour,
where down-type Yukawa couplings are suppressed.

the decoupling limit contour of Fig. 2 can amount to sig-
nificant changes in the Yukawas; for instance the lower
limit of the 68% CL contour corresponds to cb ' 0.7 for
tanβ & 2. Furthermore, flat priors in this space give in-
equitable treatment of vu and vd. Examining the space
of the Yukawas is therefore important in its own right.

Analyzing the preferences of the Yukawa couplings
can be done by constructing likelihoods in the space
(a, cb, ct) and marginalizing over the vector coupling, a;
we show these results in Fig. 3. The likelihood in this
space has significant support only when a & 0.6, and in
this range we find that the best fit values for the fermion
couplings always occur with ct near its SM value and
cb suppressed as shown in Table I; such a preference is
further supported by the fits to fermion couplings re-
cently reported by the ATLAS collaboration [7]. Inciden-
tally, the preference for suppressed down-type couplings
is maintained even if the combined fit includes Tevatron
data, which has shown indications of increased rates in
h → bb̄ [8]. The best fit for cb in the type-II space in-
creases by O(10%) with the inclusion of the Tevatron
data, but still prefers values < 1 as indicated in Fig. 3.

As we will discuss in the next section, this preference for
suppression of down-type couplings causes tension in the
MSSM, which preferentially populates the up-suppressed
region when tanβ > 1.

a values (ĉt, ĉb)

0 ≤ a < 0.2 (2.4, 0.17)

0.2 ≤ a < 0.4 (1.0, 0.1)

0.4 ≤ a < 0.6 (1.0, 0.44)

0.6 ≤ a < 0.8 (1.0, 0.62)

0.8 ≤ a ≤ 1 (1.0, 0.89)

TABLE I: Best fit points (ĉt, ĉb) in the type-II parameter
space for different slices of the vector coupling, a. For all val-
ues of this coupling, the down-type Yukawa are preferentially
suppressed.
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FIG. 3: Likelihoods constructed in the three-dimensional
space of gauge and Yukawa couplings of the Higgs, marginal-
izing over the gauge coupling in the range 0 ≤ a ≤ 1. The
colored contours show the space preferred by LHC data and
the dashed red lines show how the fit is affected by the inclu-
sion of Tevatron data. The two unshaded regions are those
accessible in a type-II 2HDM; for tanβ > 1, the MSSM is
typically constrained to the up-suppressed region (cf. Fig 1).

III. GENERAL TYPE-II 2HDM ANALYSIS

We now consider the fermion couplings that occur in
the general type-II 2HDM, identifying the conditions to
have down-suppression. For the MSSM at tree level, we
will find that it is impossible to have down-suppression
for tanβ > 1 and gain insight on why at loop level, down-
suppression is pushed to a specific region of supersymme-
try breaking parameter space.
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Before proceeding, we pause to remark on the strong
evidence from ancillary considerations that tanβ > 1
in the MSSM. Simple perturbativity of Higgs-top inter-
actions requires tanβ & 0.3, while more conservatively
avoiding Landau poles in the top yukawa below the uni-
fication scale imposes tanβ & 1.5. But the Higgs mass
itself may provide the strongest lower bound on tanβ
in the MSSM; even provided a favorable tuning of stop
masses and A-terms, the MSSM requires tanβ & 5 to
generate a Higgs mass near 125 GeV without additional
contributions from new degrees of freedom [9]. Taking
tanβ < 1 to be essentially excluded, we can focus on
the 2HDM dynamics that is required to achieve down-
suppression for tanβ > 1.

A. General Quartic Structure

The possibility of increasing parametric freedom in the
MSSM by coupling SUSY Higgses to new fields has been
studied extensively. Such thinking is certainly attractive
with respect to the mass of the lightest Higgs, as the
hinted state at 125 GeV would require significant tuning
within the MSSM. Given the fits to LHC data presented
above, it is equally useful to consider how such new para-
metric freedom could alter MSSM fermion couplings as
a function of tanβ.

We first consider the general structure of a type-II
2HDM, and determine the conditions under which down-
type Yukawa couplings might be significantly suppressed
at large tanβ. We begin with the generic quartic terms
that will contribute to the potential for the neutral fields:

∆V = λ1

∣∣H0
u

∣∣4 + λ2

∣∣H0
d

∣∣4 − 2λ3

∣∣H0
u

∣∣2 ∣∣H0
d

∣∣2
+
[
λ4

∣∣H0
u

∣∣2H0
uH

0
d + λ5

∣∣H0
d

∣∣2H0
uH

0
d (4)

+λ6(H0
uH

0
d)2 + c.c.

]
.

Note that our conventions differ from others used in the
literature. In Eq. (4), the MSSM is recovered by taking

λ1 = λ2 = λ3 =
1

8
(g2 + g′2); λ4 = λ5 = λ6 = 0. (5)

As far as the phenomenology of the CP-even states is
concerned, the effects of λ3,6 can be encoded with a single
coupling; we redefine these such that we can consider only
λ3 in determining the vacuum structure.

From Eq. (3), we see that suppressing the h0 coupling
to bottom quarks requires |sinα| < cosβ, or equivalently
| tanα| < 1/ tanβ. For tanβ > 1, we may translate
this into a relatively compact condition on the quartic
couplings. The derivation of this condition is detailed in
the Appendix, where we find

λ1 sin2 β − λ2 cos2 β − cos(2β)λ3

+
sin 3β

2 cosβ
λ4 +

cos 3β

2 sinβ
λ5 < 0. (6)

For λ4,5 = 0, the condition can be expressed simply:

(λ1 + λ3) sin2 β < (λ2 + λ3) cos2 β. (7)

This illustrates clearly why the quartic structure of the
MSSM at tree-level forbids suppression of the down-type
Yukawas for tanβ > 1.

At loop-level in the MSSM, tanβ & 5 is necesary for a
Higgs mass of 125 GeV. Suppression then requires

λ1 + λ3 −
λ4

2
tanβ . 0, (8)

from which we see a need for corrections that reduce λ1,3

and enhance λ4. The dominant corrections in the MSSM
come from the top sector, which ignoring the logarithms
lnmt̃/mt, are given by [10]

δλ1 =
3y4
t

16π2
(Āt

2 − Āt
4
/12), δλ3 =

3y4
t µ̄

2

64π2
(Āt

2 − 2),

δλ4 =
y4
t µ̄

32π2
(Āt

3 − 6Āt), (9)

where µ̄ = µ/mt̃ and Āt = At/mt̃ and definitions of A-
terms follow those of [11]. One first finds that δλ1 > 0
provided Āt is not too large. In fact, at maximal mix-
ing, where the corrections to the physical Higgs mass are
maximized, one requires Āt = ±

√
6+µ̄/ tanβ. Obtaining

such a large trilinear term is challenging for many super-
symmetry breaking scenarios; this issue and the Higgs
mass itself thus suggest that δλ1 is positive, hurting the
required inequality. The δλ3 term is positive near maxi-
mal mixing, but can be negative for small Āt. However,
the overall coefficient is small, so one requires µ̄� Āt to
help satisfy the inequality. Finally, δλ4 can be positive
for small Āt if the sign of µ̄ is opposite that of Āt. Inter-
estingly, its size is suppressed near maximal mixing, but
can be helped by the tanβ enhancement in the inequal-
ity. Through this δλ4 term, we see why the αeff scenario
[12, 13] requires large tanβ and negative µ̄Āt (assuming

Āt <
√

6) in order to achieve suppressed couplings to the
bottom quark. These arguments are not strongly sensi-
tive to the neglected logarithmic corrections ∝ lnmt̃/mt,
as the terms in Eq. (9) are the matching terms from in-
tegrating out the top squarks. The neglected logarithms
are the small corrections coming from renormalization
group running down to the top mass, which are sup-
pressed by an additional loop factor. The one important
exception is the top quark yukawa contribution to δλ1,
whose leading logarithmic correction also favors δλ1 > 0.

At large tanβ there are also significant contributions
proportional to yb, but these act identically to the cor-
rections in Eq. (9) with t→ b, δλ1 → δλ2, δλ4 → δλ5; in
particular the leading correction to δλ3 from yb has the
same parametric behavior as that from yt. The bottom
correction to the tanβ enhanced term λ4 is proportional
to µ̄3Āb, so one prefers to have this µ̄Āb > 0. For ex-
ceptionally large values of tanβ (tanβ & 50), there are
further corrections due to loop-induced couplings that vi-
olate the type-II 2HDM structure, giving a bottom quark
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mass from Hu. These terms depend on other details of
the soft spectrum such as the gluino mass, but can also
help in suppressing the bottom coupling.

Even with the full LHC 2012 data set, uncertainties
on fermion couplings are projected to be O(50%) [14], so
the preference for down-suppression could change. With
this in mind, we note the range of down-type couplings
that would be consistent with representative mass ranges
of the other Higgs scalars, if such states should be dis-
covered. Examining H0, for instance, we have scanned
the parameter space including stop contributions to the
up-type quartic in order to generate mh > mZ (we ne-
glect scenarios with large A-terms): constraining the
light Higgs to lie in the range 120 GeV ≤ mh ≤ 130 GeV,
we find the coupling ranges

mH0 < 300 GeV, cb > 1.3;

300 GeV < mH0 < 500 GeV, cb ∈ [1.1, 1.3];

500 GeV < mH0 , cb ∈ [1, 1.1].

These conclusions remain consistent at the two-loop level
computed using FeynHiggs [15][29]. Such relationships
can help to assess proposals for additional light scalars,
for instance as recently discussed in [16]. Finally, we note
that our analysis has focused on the 2HDM potential and
neglected possible loop contributions to Higgs couplings
from new light states such as top partners. However as
discussed in [13], corrections from light stops and sbot-
toms are unlikely to improve the current fit, since the en-
hancement in the γγ branching ratio is counteracted by a
suppression in the gluon fusion production of the Higgs.
The conclusion of a suppressed γγ rate is generally true
of staus and charginos, apart from the exceptional case
of maximally-mixed staus [13].

B. New Dynamics for Down-Suppression

In order to accommodate suppressed down-like cou-
plings at large tanβ, we now turn to the introduction of
new dynamics to the Higgs potential. These may arise in
the form of additional chiral superfields with couplings
to the Higgs or additional gauge fields under which the
Higgses are charged. In the latter case, conventional
D-term corrections [17] contribute symmetrically to the
quartic, maintaining the relation λ1 = λ2 = λ3; gener-
ating asymmetric corrections requires the Higgses to be
distinguished by the gauge interactions as in [18]. While
an appealing possibility, this has extensive ramifications
for flavor and we will not pursue such gauge corrections
further here.

The set of possible new matter fields with marginal
couplings to the Higgs is constrained by gauge invari-
ance to include only singlets, doublets, and triplets of
SU(2)W . Singlets may couple to HuHd; doublets sep-
arately to Hu, Hd; and triplets to HuHu and HdHd

as in [19]. The singlet choice is a defining element of
the NMSSM and various incarnations (e.g. Fat Higgs,

λSUSY, etc), where one includes

∆W = λSHuHd + f(S) (10)

where f(S) may include various marginal superpotential
terms for S such as tadpole (e.g., Fat Higgs), quadratic
(S-MSSM [20]), or cubic (NMSSM) interactions. The
interaction Eq. (10) yields an F -term contribution to
the Higgs quartic that depends on λ and can thus con-
tribute significantly to the Higgs mass. In the case of the
NMSSM, f(S) = κS3 and the singlet S acquires a vev.
If the soft mass of the singlet is large, doublet-singlet
mixing is small and the primary change in the Higgs po-
tential comes from the quartic correction δλ3 = −|λ|2/2
[21]. This quartic coupling can flip the sign of λ3, mak-
ing it much easier to satisfy Eq. (6). Alternately, we
may consider the case when the entire supermultiplet S
is massive and may be integrated out above the elec-
troweak scale [22]. If the singlet acquires a large super-
symmetric mass MS , the leading quartic correction is

δλ4 = δλ5 = −λ2 µ∗

MS
where µ is an explicit superpoten-

tial mass term for HuHd. If µ∗ < 0, these are particularly
helpful in Eq. (6). If the singlet also acquires a sizable
Bµ-type nonsupersymmetric mass m̃S , this results in a
correction to the quartic of the form δλ6 = −λ2 m̃S

2MS
. Fi-

nally, when the singlet is relatively light there may be
considerable doublet-singlet mixing in the mass eigen-
state h0, and it is no longer sufficient to consider the
2HDM potential alone. This mixing suppresses all tree-
level couplings of h0 and favors cb, ct < 1, though it may
preferentially suppress the coupling cb [23].

In the case of new hypercharge (Y = ±1) triplets, cou-
plings may be introduced via interactions of the form

∆W = λTTHuHu + λT̄ T̄HdHd + f(T, T̄ ) . (11)

If the scalar triplets are heavy due to a large soft mass,
their primary correction to the Higgs potential is of the
form δλ1 = |λT |2, δλ2 = |λT̄ |2. Alternately, when T, T̄ ac-
quire a large supersymmetric mass MT , the leading quar-

tic correction is of the form δλ4 = δλ5 = −2λTλT̄
µ∗

MS
,

while in the presence of a significant Bµ-type soft mass
m̃T there is a correction δλ6 = −λTλT̄ m̃T

MT
[22].

The final option is to include couplings to new dou-
blets. In contrast with the singlet and triplet cases, this
is done linearly in the superpotential, i.e.

∆W = λuHuOu + λdHdOd, (12)

where the operators Ou,d can emerge as composite ob-
jects from some new strong dynamics; cf. [24, 25]. Here
the couplings λu,d fix β, while the (positive) Higgs soft
masses can be used to freely tune α along with the Higgs
mass itself; the two angles are fully independent in this
case. The region of cb-ct that is closed for the large tanβ
MSSM is thus reopened, with the possibility of realizing
e.g. cb → 0, ct → 1 even in the limit tanβ →∞. The re-
sulting phenomenology could then differ drastically from
the MSSM [26], and would provide relief if future data
single out a region of enhanced up-type couplings.



5

IV. CONCLUSIONS

In this paper, we have performed a model-independent
fit of current LHC data to the three-dimensional param-
eter space of tree-level Higgs couplings. Our fit shows an
interesting preference for deviation from Standard Model
Higgs values in the direction of suppressed (enhanced)
bottom (top) quark couplings under the assumption that
new charged and colored states are sufficiently heavy so
as to induce contributions in h → gg and h → γγ that
are relatively small compared to their SM values. These
results are preliminary due to limited statistics, but con-
firming such nonstandard fermion couplings would have
important implications. Our general type-II 2HDM anal-
ysis shows that such couplings are difficult to achieve
in the MSSM for tanβ > 1, due to its tree level Higgs
quartic potential, requiring loop corrections pointing to
particular corners of supersymmetry breaking parameter
space.

As fits improve with increasing statistics, they will
provide a lower bound on the mass of additional scalars
in the MSSM and may suggest that viable super-
symmetric theories of electroweak symmetry breaking
involve additional degrees of freedom beyond two Higgs
doublets. To this end, our analysis was used to pinpoint
extensions of the supersymmetric Higgs sector that en-
able bottom suppressed couplings. In addition, beyond
supersymmetry, our conclusions relating the structure of
the 2HDM potential to the couplings of the Higgs are
very general and may prove useful in interpreting future
measurements of Higgs properties.

Acknowledgments— We thank R. Contino, M. Luty, and
S. Thomas for particularly useful discussions on these
topics. NC is supported by NSF grant PHY-0907744,
DOE grant DE-FG02-96ER40959, and the Institute for
Advanced Study.

Appendix A: Derivation of Condition for
Down-Suppression

To obtain a limit on the quartic couplings, we may
express tanα in terms of the mass-squared matrix for
the fluctuations via

tanα =
M2
uu −m2

h

M2
du

=
−A+

√
A2 +B2

B
(A1)

where

A ≡M2
dd −M2

uu, B ≡ 2M2
du. (A2)

These, in turn, may be written as

A = A0 −m2
A cos 2β, B = B0 −m2

A sin 2β (A3)
where A0, B0 have no mA dependence and take the form

A0/v
2 =

[
2λ2 cos2 β − 2λ1 sin2 β − λ4

2
(sin 2β + tanβ)

+
λ5

2
(sin 2β + cotβ)

]
(A4)

B0/v
2 = −4λ3 sinβ cosβ + 3λ4 sin2 β + 3λ5 cos2 β (A5)

We can see from Eq. (A3) that in the limit of large mA,
tanα∞ = −1/ tanβ, corresponding to the usual decou-
pling limit, α = β − π/2. There are no extrema in tanα
in the relevant range of m2

A ∈ [0,∞], but there may be
discontinuities if B vanishes. Since B∞ < 0, B will cross
zero only if B0 > 0. This crossing point occurs when
m2
A = B0/ sin 2β. At this point, Across = A0−B0 cot 2β.

If Across > 0, then tanαcross = 0 and by continuity
there will be a region of suppressed coupling to bottom
quarks. However, if Across < 0, tanα = sign(B) × ∞
at the crossing. Thus, by continuity, the requirements
to have a region of suppressed bottom quark coupling
(| tanα| < 1/ tanβ), are

1. If B0 < 0, then tanα0 > −1/ tanβ

2. If B0 > 0 and Across < 0 then tanα0 < 1/ tanβ

3. If B0 > 0 and Across > 0 there is always a sup-
pressed region

Case 1 occurs when tanα0 > −1/ tanβ; this requires

− A0

|B0|
+

√(
A0

|B0|

)2

+ 1

 < 1/ tanβ (A6)

or
A0

|B0|
>

1

2
(tanβ − cotβ). (A7)

Case 2 is never satisfied when tanβ > 1. To see this,
assume B0 > 0, in which case Across = A0 − B0 cot 2β.
In Case 2 we also have Across < 0, which requires that
A0/|B0| < cot 2β. However, tanα0 < 1/ tanβ requires
that A0/|B0| > 1

2 (tanβ − cotβ). These are compatible

inequalities if 1
2 (tanβ− cotβ) < cot 2β. This compatibil-

ity only occurs for tanβ < 1. Thus, Case 2 is impossible
to realize for tanβ > 1.

Case 3 occurs when B0 > 0 and A0/|B0| > cot 2β =
− 1

2 (tanβ− cotβ). Thus combined with Case 1, suppres-
sion of the bottom quark coupling for tanβ > 1 requires

A0 > −
B0

2
(tanβ − cotβ) (A8)

which translates into the following condition on the quar-
tic couplings:

λ1 sin2 β − λ2 cos2 β − cos(2β)λ3

+
sin 3β

2 cosβ
λ4 +

cos 3β

2 sinβ
λ5 < 0. (A9)

This general condition agrees with the leading term as
one takes the decoupling limit, as explored in [21, 27, 28].
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