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Abstract

The LHC has started to constrain supersymmetry-breaking parameters by setting

bounds on possible colored particles at the weak scale. Moreover, constraints from Higgs

physics, flavor physics, the anomalous magnetic moment of the muon, as well as from

searches at LEP and the Tevatron have set additional bounds on these parameters. Renor-

malization Group Invariants (RGIs) provide a very useful way of representing the allowed

parameter space by making direct connection with the values of these parameters at the

messenger scale. Using a general approach, based on the pMSSM parametrization of the

soft supersymmetry-breaking parameters, we analyze the current experimental constraints

to determine the probability distributions for the RGIs. As examples of their application,

we use these distributions to analyze the question of Gaugino Mass Unification and to

probabilistically determine the parameters of General and Minimal Gauge Mediation with

arbitrary Higgs mass parameters at the Messenger Scale.
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1 Introduction

The Standard Model (SM) provides an excellent description of all experimentally measured

observables at present. Mass generation relies on the Higgs mechanism, which is based on

the introduction of an elementary scalar field transforming in the fundamental representation

of the SU(2)L group. The vacuum expectation value (vev) of this scalar field sets the weak

scale, which is then proportional to the magnitude of the square root of the negative squared

mass parameter in the scalar Higgs potential [1],[2]. The SM provides no explanation for the

magnitude of this mass parameter, which is sensitive via radiative corrections to new physics

at high scales.

The Minimal Supersymmetric Extension of the Standard Model (MSSM) has most of the

virtues of the SM [3]–[5]. Apart from a loop factor, the magnitude of the Higgs mass parameter

is determined by the size of the supersymmetry-breaking parameters of the third generation

squarks. These also determine the value of the SM-like Higgs mass at the loop level. Values of

the third generation squark masses of about 1 TeV lead to SM-like Higgs masses in the 115–

130 GeV range [6]– [15]. Hence, recent hints of a Higgs mass of about 125 GeV are consistent

with MSSM predictions [16].

The supersymmetry-breaking mass parameters depend on the unknown mechanism of super-

symmetry breaking and on the messenger scale, at which supersymmetry breaking is transmit-

ted to the observable sector. Recent experimental bounds from the LHC set strong constraints

on colored particles at the TeV scale, and therefore on the parameters of minimal models of

supersymmetry breaking.

Several works have studied the relationship of the supersymmetric mass parameters between

the messenger scale and the weak scale [17]–[32]. It would be very useful to have a method that

allowed us to set bounds on the supersymmetry-breaking parameters at the messenger scale,

independent of the unknown supersymmetry-breaking scheme and of the unknown value of the

messenger scale. Renormalization Group Invariants (RGIs) [33]–[41] provide such a method.

Determination of the value of the RGIs at the TeV scale sets their values at the messenger scale.

One can then use the information provided by the RGIs to set constraints on general classes

of models [39],[41]. An exhaustive analysis of the RGIs for different supersymmetry-breaking

scenarios is performed in Ref. [42].

The effects of various preLHC and LHC results on the phenomenological MSSM (pMSSM)

parameter space have been studied in detail in Refs. [21]–[27]. In this article, we use the pMSSM

parametrization of the soft supersymmetry-breaking parameters [21] to determine the current

probability distribution of the RGIs at the TeV scale. We shall compare the situation before

and after constraints from the LHC are imposed.

To illustrate the power of this framework, we will use the pMSSM RGI probability distri-

butions to analyze three particular issues:

• Possible scale of Gaugino Mass Unification.
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• Messenger scale parameters in a realization of General Gauge Mediation.

• Messenger scale parameters associated with Minimal Gauge Mediation.

The probabilistic interpretation of the RGIs can be applied to other quantities of interest in

the MSSM using for example the analysis presented in Ref. [42].

In section 2 we list the RGIs to be used in this paper, outlining the methodology to be used in

our analyses. We then compute the RGI probability distributions obtained by imposing current

experimental constraints. In section 3 we study the question of Gaugino Mass Unification and

the consistency of the scale of this Gaugino Mass Unification with experimental constraints.

In section 4 we look at General Gauge Mediation and determine the probability distribution of

the relevant parameters of this model. Section 5 discusses the probability distributions for the

Minimal Gauge Mediated parameters. We reserve section 6 for our conclusions. Details about

our probability analysis are given in Appendix A. Appendix B gives the specific definition of the

pMSSM. Appendix C gives the inverted relationships between the soft masses of the pMSSM

and the RGIs. Appendix D lists these in the case of flavor-blind models.

2 RG Invariants: Probabilistic Interpretation

2.1 RGI-pMSSM Basis

There are 14 relevant RGIs, analyzed in Ref. [39],[41], involving the soft supersymmetry-

breaking parameters, which we will use as the basis of our current work. These are summarized

at one-loop accuracy in Table I; two-loop corrections were studied in Ref. [39] and shown

to be of order of a few percent or less. Moreover, there are 2 RGIs relating only the gauge

couplings (Ig2 and Ig3), which we can use to redefine the other 12 RGIs in terms of just the

soft masses and the scale. These soft masses, ignoring possible small flavor dependence of the

sfermion and Higgs mass parameters, are given by a total of 17 scalar masses plus 3 gaugino

masses. One can make the additional well-motivated assumption of degeneracy for the first

and second generation sfermion mass parameters. In such a case, one is left with 12 scalar

masses. Therefore, the 12 RGIs, which are linearly independent, can be inverted to give 12 soft

supersymmetry-breaking masses in terms of these RGIs as a function of 3 given soft masses.

In the pMSSM, apart from the 15 soft supersymmetry-breaking parameters discussed above,

there are 3 soft supersymmetry-breaking parameters, Af (f = t, b, τ), denoting the mixing of

the left- and right-handed third generation sfermions, and tanβ, the ratio of the Higgs vevs (or

equivalently the soft supersymmetry-breaking parameter Bµ). These 19 parameters then give

the complete basis for the pMSSM.

The Higgs soft supersymmetry-breaking parameters may be determined, up to loop correc-

tions, as a function of the Higgsino mass parameter, µ, the CP-odd Higgs mass, mA, and tan β.
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Table I: 1-Loop RG Invariants in the MSSM

RGI Definition in Terms of Soft Masses MGM(M) GGM(M) CMSSM+NUHM(M)

DB13
2(m2

Q̃1

−m2

Q̃3

)−m2

ũ1
+m2

ũ3
−m2

d̃1
+m2

d̃3
0 0 0

DL13
2(m2

L̃1

−m2

L̃3

)−m2

ẽ1
+m2

ẽ3
0 0 0

Dχ1
3(3m2

d̃1
− 2(m2

Q̃1

−m2

L̃1

)−m2

ũ1
)−m2

ẽ1
0 0 5m2

0

DY13H

m2

Q̃1

− 2m2

ũ1
+m2

d̃1
−m2

L̃1

+m2

ẽ1

− 10

13

(

m2

Q̃3

− 2m2

ũ3
+m2

d̃3
−m2

L̃3

+m2

ẽ3
+m2

Hu
−m2

Hd

) − 10

13
(δu − δd) − 10

13
(δu − δd) − 10

13
(δu − δd)

DZ 3(m2

d̃3
−m2

d̃1
) + 2(m2

L̃3

−m2

Hd
) −2δd −2δd −2δd

IY α

(

m2

Hu
−m2

Hd
+

∑

gen(m
2

Q̃
− 2m2

ũ +m2

d̃
−m2

L̃
+m2

ẽ)
)

/g2
1

(δu − δd) /g
2

1
(δu − δd) /g

2

1
(δu − δd) /g

2

1

IBi
Mi/θ2i B Bi m1/2/θ

2

i

IM1
M2

1
− 33

8
(m2

d̃1
−m2

ũ1
−m2

ẽ1
) 38

5
g4
1
B2 g4

1

(

B2

1
+ 33

10
A1

)

m2

1/2
+ 33

8
m2

0

IM2
M2

2
+ 1

24

(

9(m2

d̃1
−m2

ũ1
) + 16m2

L̃1

−m2

ẽ1

)

2g4
2
B2 g4

2

(

B2

2
+ 1

2
A2

)

m2

1/2
+ 5

8
m2

0

IM3
M2

3
− 3

16
(5m2

d̃1
+m2

ũ1
−m2

ẽ1
) −2g4

3
B2 g4

3

(

B2

3
− 3

2
A3

)

m2

1/2
− 15

16
m2

0

Ig2 1/g2
1
− 33/(5g2

2
) ≈ −10.9 ≈ −10.9 ≈ −10.9

Ig3 1/g2
1
+ 11/(5g2

3
) ≈ 6.2 ≈ 6.2 ≈ 6.2
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The tree-level expressions for µ and mA in terms of mHu and mHd
are given by:

(2.1)µ2 =
m2

Hu
tan2 β −m2

Hd

(1− tan2 β)
− 1

2
m2

Z ,

(2.2)m2
A =

(m2
Hu

−m2
Hd
)

cos 2β
−m2

Z .

These can be inverted to give the Higgs soft supersymmetry-breaking mass parameters:

(2.3)m2
Hu

=
1

2

[

(1 + cos 2β)m2
A +m2

Z cos 2β − 2µ2
]

,

(2.4)m2
Hd

=
1

2

[

(1− cos 2β)m2
A −m2

Z cos 2β − 2µ2
]

.

Using the above relations, one can define a 1-to-1 correspondence between the 19 pMSSM

parameters and the 12 RGIs, complemented by µ, mA, tanβ, the 3 mixing parameters At, Ab

and Aτ and one third generation squark mass parameter, for instance mQ3
. The expressions

for the soft masses in terms of the RGIs are given in Appendix C.

2.2 Methodology

In Ref. [25], the probability distributions of the 19 pMSSM parameters were computed, an-

alyzing the differences between the results for these distributions considering some preLHC

measurements (listed in Table II) and after including various 1 fb−1 LHC results (listed in

Table III). We refer the reader to Ref. [25] for specific details about the likelihood analysis. We

shall use the set of pMSSM points and their corresponding preLHC and LHC likelihoods from

Ref. [25] and obtain the probability distributions for the RGIs in Table I projected to 5 fb−1 of

LHC data.

In Ref. [25], a flat prior for the all the soft supersymmetry-breaking parameters was used.

The scalar masses were varied between 0 and 3 TeV. The gaugino masses and the µ parameter

were scanned between -3 and 3 TeV, and the mixing parameters, Af , were scanned from -7 to

7 TeV. The range of tanβ considered was 2 to 60.

The RGIs, are functions of the soft mass parameters and therefore a flat prior for the later

does not imply a flat prior for the RGIs. In particular, even in the simplest cases, the fact that

the parameters have boundary values imply that certain regions are preferred. As an example,

consider the subtraction of two mass-squared parameters,

f(a, b) = m2
a −m2

b . (2.5)

If both ma and mb have a uniform distribution between 0 and 3 TeV, it is clear that the

probability of f(a, b) ≃ ±(3 TeV)2 will be much smaller than the probability of f(a, b) ≃ 0.

This is because in the former case one of the mass parameters has to be equal to 0 while the
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Table II: The pre-LHC experimental results that are the basis of our pMSSM parameter scan

using Markov Chain Monte Carlo (MCMC) sampling. We re-weight a posteriori with the limit

BR(Bs → µµ) ≤ 1.08×10−8 at 95% CL [43]. However, this hardly has any effect. In evaluating

the Higgs mass limit, we apply a Gauss-distributed theoretical uncertainty with σ = 1.5 GeV

to the mh computed by SoftSUSY.

i Observable Experimental result Likelihood function

µi Di L(Di|µi)

1 BR(b → sγ) (3.55± 0.34)× 10−4 [44, 45] Gaussian

2 BR(Bs → µµ) ≤ 4.7× 10−8 [46] 1/(1 + exp(µ2−D2

0.01D2
))

3 R(Bu → τν) 1.66± 0.54 [46] Gaussian

4 ∆aµ (28.7± 8.0)× 10−10 [e+e−] [47] Weighted Gaussian average

(19.5± 8.3)× 10−10 [τ+τ−] [47]

5 mt 173.3± 1.1 GeV [48] Gaussian

6 mb(mb) 4.19+0.18
−0.06 GeV[46] Two-sided Gaussian

7 αs(MZ) 0.1176± 0.002 [49] Gaussian

LEP&Tevatron mh sampled from Gauss(mh, 1.5)

8 mh (HiggsBounds [50]) L8 = 1 if allowed.

L8 = 10−9 if excluded.

9 sparticle LEP L9 = 1 if allowed

masses Neutral LSP (MicrOMEGAs [51]) L9 = 10−9 if excluded

other is 3 TeV, while the later situation comprises of all cases in which ma ≃ mb, independent of

their value. Therefore, in order to determine the probability distributions of the invariants (and

other functions considered later), one should normalize them such that they can be compared

to a flat prior for the functions under consideration and not for the masses. In order to do

this, we have re-scaled the experimentally weighted probability distributions of the RGIs by

the probability distributions for these quantities obtained by varying the mass parameters

with a flat uniform distribution in the region originally scanned. We will refer to the later

distributions as the “Flat Un-weighted” distributions. The details of the exact procedure are

given in Appendix A.

The results are shown in Figs. 1 and 2. The shaded green region represents the flat un-

weighted distribution for the RGI being considered. For the IBi
s, which depend only on, and

are linearly proportional to the gaugino masses, this distribution is flat (apart from a small

variation with the gauge couplings). However, for the other RGIs, these distributions acquire

definite features. The green line represents the probability distribution obtained considering

only the pre-LHC constraints listed in Table II. These depend heavily on the constraints on

the weak eigenstates coming from LEP and (gµ − 2), the bounds on the CP-odd and charged
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Table III: LHC measurements used in the current study. The αT variable is effective in suppress-

ing background from light-quark QCD. SS 2ℓ, and OS 2ℓ denote same-sign and opposite-sign

dileptons, respectively. The αT [52], SS [53], and OS [54] results were published by the CMS

Collaboration. We re-weight a posteriori with the limit BR(Bs → µµ) ≤ 4.5×10−9 at 95% CL

[55]. This has an effect only on DZ , which depends on the Higgs mass parameter m2
Hd
. We also

update the Higgs bounds, imposing the constraints from the CMS di-photon searches [56], which

do not have a strong effect on the probability distribution of the soft supersymmetry-breaking

parameters.

j Analysis and search region Observed event count Data-driven SM

(values in GeV) (Nj) BG estimate

(Bj ± δBj)

1 αT hadronic, 275 ≤ HT < 325 782 787.4+31.5
−22.3

2 αT hadronic, 325 ≤ HT < 375 321 310.4+8.4
−12.4

3 αT hadronic, 375 ≤ HT < 475 196 202.1+8.6
−9.4

4 αT hadronic, 475 ≤ HT < 575 62 60.4+4.2
−3.0

5 αT hadronic, 575 ≤ HT < 675 21 20.3+1.8
−1.1

6 αT hadronic, 675 ≤ HT < 775 6 7.7+0.8
−0.5

7 αT hadronic, 775 ≤ HT < 875 3 3.2+0.4
−0.2

8 αT hadronic, 875 ≤ HT 1 2.8+0.4
−0.2

9 SS 2ℓ, HT > 400, E/T > 120 1 2.3± 1.2

10 OS 2ℓ, HT > 300, E/T > 275 8 4.2± 1.3

Observable Experimental result Likelihood function

11 BR(Bs → µµ) ≤ 4.5× 10−9 [55] 1/(1 + exp(µ11−D11

0.01D11
))

12 mh
σ(H→γγ)

σ(H→γγ)SM
[56] L12 = 1 if allowed.

L12 = 10−9 if excluded.

Higgs masses and third generation masses coming from the BR(b → sγ) and the LEP/Tevatron

Higgs results. The red line, instead, represents the probability distributions obtained after the

LHC results are considered (Table III).

The details on the computation of the final resultant distribution we label as “p(θ|Exp.)
Reweighted” are given explicitly in Appendix A. However, the method can be simply understood

by noting that, as discussed in Appendix A, the ratio of the difference of any 2 probabilities

with the flat distribution, (p1 − pf )/(p2 − pf ), is preserved when the scan range on the original

masses is changed. Therefore, we first subtract the probability distribution determined after

the LHC measurements (red line) from the one obtained with the flat masses prior (shaded

green) and then shift this distribution by the minimum, setting the minimum at zero. Once

this is done, we re-scale the distribution such that the total probability is 1. This then gives
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the dashed black line denoting our final resultant distribution. This distribution is flat in

regions not scanned or impacted by experiment and enhances and reflects the actual effect of

the experiments on the RGIs. Larger values of this distribution highlight the regions where

experimental input has increased the likelihood and values less than the flat probability show

regions where experiments disfavor model space.

Due to this method of re-scaling and subtracting the probabilities, one has to be careful

when using these distributions to calculate resultant quantities of interest (as will be done, for

example, when calculating product probabilities). One needs to convert the distribution back

to a true probability via the scale factor SF (labeled “SF” in plots) defined in Appendix A:

p(θ|post-LHC) = p(θ|F lat) +
1

SF
[p(θ|Exp.) Reweighted − p(θ|F lat)] , (2.6)

where p(θ|F lat) = 1/(no. bins). Unless otherwise noted, no. bins = 100 in all plots, implying

p(θ|F lat) = 0.01.

2.3 Results

Here we will discuss the probability distributions presented in Figs. 1 and 2 for the different

RG Invariants. We don’t analyze DY13H
and DYα since these two depend on almost all the soft

masses and the current experimental bounds on these combinations are too weak to show an

effect on the probability distributions.

The first three distributions displayed in Fig. 1 are for the three IBi
which are equal to

the gaugino masses divided by the square of the corresponding gauge coupling, Mi/g
2
i . The

LEP constraints on charginos, sleptons and gluinos, together with the requirement of a neutral

particle to be the lightest supersymmetric one, lead to a preference towards low values of the

bino mass, M1, increasing the probability for small IB1
. The LHC modifies this distribution

indirectly, through the updated bounds on the gluino and squark masses. This is due to the

requirement of having a neutral particle as the LSP: When at least one of the squarks and/or

the gluino is light, one neutralino or a sneutrino is forced to be even lighter. Of all the neutral

particles, the bino is the only one that is not related to the mass of other charged particles

and therefore is not pushed to larger values. Hence, the bino can be very light increasing

its probability of being the LSP. For heavier squarks and gluinos, the neutral particles can

be heavier and consequently the bino mass probability distribution moves to larger values.

Regarding IB2
, the LEP constraints on chargino masses, together with the bounds on (gµ−2)

restrict small values of M2, while leading to a preference for values of M2 near the weak

scale. The LHC does not significantly modify this constraint. Since we have not implemented

the Tevatron bounds on the squark and gluino masses, the pre-LHC constraints on IB3
are

dominated by the indirect effect of requiring that a gluino cannot be the LSP, which therefore

disfavor the region of small values of this quantity. The LHC SUSY searches further constrain

values of M3 up to ∼1 TeV, which is clearly shown in the IB3
distribution.
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Figure 1: Distribution of the RGIs before and after the LHC constraints are added (green

and red lines), flat distribution (shaded green) and subtracted probability distribution (dashed

black line).
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Figure 2: Distribution of the RGIs before and after the LHC constraints are added (green

and red lines), flat distribution (shaded green) and subtracted probability distribution (dashed

black line).
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Looking at IM1
, also displayed in Fig. 1, the lower bound on the slepton and squark masses

from LEP disfavor the lowest values of this RGI. The LHC further strengthens this trend by

increasing the bounds on the squark masses. IM2
is strongly shifted to lower values by (gµ−2),

which leads to a preference towards small values of M2 and the left-handed slepton masses. The

LHC data does not modify this trend in any significant way. Finally, for IM3
, the previously

discussed bounds on the gluino (and similar bounds on the squark) masses, push them to larger

values, leading to a preference towards non-zero values of this RGI. The LHC, with significantly

larger bounds on the gluino mass, leads to a further preference towards larger values of this

RGI. The asymmetry between positive and negative values comes from the fact that the gluino

has a larger cross section and is constrained to be heavy even in the case in which only the

third generation squarks are lighter than the gluinos. Individual squark species, on the other

hand have lower cross sections and therefore have a higher probability of being lighter in the

pMSSM [25].

In order to understand the behavior of the other four invariants displayed in Fig. 2, it is

convenient to analyze the results of Ref. [25]. The bound on the Higgs mass leads to a preference

for larger values of the third generation masses, beyond the bounds on the first and second

generation masses obtained at the Tevatron. Since the Higgs mass bounds are approximately

symmetric in their dependence onmQ3
andmu3

and the negative weight ofmQ3
on DB13

is twice

as large as the positive one of mu3
, we see a preference towards negative values of DB13

. The

LHC SUSY searches have not yet changed this tendency in a significant way. Regarding DL13
,

the preference towards small values of (gµ−2) lead to a preference towards small left-handed

second generation sleptons, beyond the LEP constraints, and therefore towards lower values of

this RGI. The LHC, again, does not have a strong impact on this distribution. Lower values of

the left-handed slepton masses also affect the pre-LHC distribution of Dχ1
, pushing it to lower

values. At the LHC, there is a somewhat stronger constraint on the left-handed squarks with

respect to the right-handed ones, leading to slightly lower values of Dχ1
. Finally, DZ is strongly

dominated by the bounds on the CP-odd Higgs mass coming from Bs → µµ, which push m2
Hd

to larger values and DZ to lower ones.

3 Gaugino Mass Unification

Gaugino Mass unification is a common feature of models in which supersymmetry breaking

occurs at scales larger than the GUT scale. In such a case, up to threshold corrections, one

should expect that due to the extended gauge structure, the gaugino masses associated with

the SU(3)c, SU(2)L and U(1)Y unify at the GUT scale.

At scales lower than the GUT scale, however, threshold corrections can be large and could

lead to quite different values of the three gaugino masses. This happens, in particular, if the

gaugino masses receive large contributions induced by gravitational interactions governed by

the scale anomaly. These contributions are proportional to the β function coefficients of the

10



respective gauge couplings.

Further contributions to the gaugino masses may come from gauge mediation, induced by

messengers charged under the SM gauge groups and with direct coupling to the supersymmetry-

breaking sector. In minimal models, the gauge-mediated gaugino mass contributions at the

messenger mass scale are proportional to the value of the square of the gauge couplings at the

same scale.

The simplest contributions to the gaugino masses at the messenger scale are then given by

Mi = A βi g
2
i +B g2i θ(M

2
mess −Q2) +

M1/2

g2GUT

g2i (3.7)

where the coefficients A, B and M1/2 parameterize the anomaly-mediated, minimal gauge-

mediated and minimal SUGRA-mediated contributions to the gaugino masses. We have in-

serted a θ function to denote the fact that the gauge mediated contribution is only relevant at

energy scales, Q, below the messenger mass scale, Mmess.

The condition of gaugino mass unification can be written in terms of RGIs. Indeed, assuming

that the gaugino masses unify at some scale, Munif ,

β2IB1
− β1IB2

β2

g2
1

− β1

g2
2

= Mg ,

β3IB1
− β1IB3

β3

g2
1

− β1

g2
3

= Mg , (3.8)

where βi = {33/5, 1,−3} for i = {1, 2, 3}, gi are the gauge couplings at the gaugino mass

unification scale and Mg is the common gaugino mass. The denominators in the above equation

are nothing but Ig2 and −3Ig3 , respectively. The value of the gauge couplings at the gaugino

unification scale may be obtained by just dividing the above expressions by the corresponding

IBi
invariant. In particular [39],

g21(Munif) =
β2 − β1IB2

/IB1

Ig2
≃ β2 − β1IB2

/IB1

2(β2 − β1)

g21(Munif) =
β3 − β1IB3

/IB1

−3Ig3
≃ β3 − β1IB3

/IB1

2(β3 − β1)
(3.9)

where we have used the fact that g2GUT ≃ 1/2. From the equality of the first and second line in

Eq. (3.9), one can see that gaugino mass unification requires that

(β3 − β2)IB1
− (β3 − β1)IB2

+ (β2 − β1)IB3
= 0, (3.10)

or, inserting the numerical values of the βi coefficients [39],

12IB2
− 5IB1

− 7IB3
= 0. (3.11)

Using the expression for the gaugino mass, Eq. 3.7, we get that at the weak scale,

IBi
= A βi +

(

B +M1/2/g
2
GUT

)

= A βi + C (3.12)
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where we have joined the scale and gauge mediated contributions, C ≡
(

B +M1/2/g
2
GUT

)

, since

they cannot be distinguished at low energies. Note that this is similar to the case of Mirage

mediation [57] [58] [59]. Observe that the condition given in Eq. (3.10) is always satisfied in

this case.

Interestingly enough, inserting Eq. 3.12 in both the expressions for g21(Munif) in Eq. (3.9),

the same equation is obtained, giving the necessary condition for the unification of gaugino

masses at some scale,

g21(Munif) ≃
1

2
× C

C + Aβ1
. (3.13)

In addition, the above expression is independent of β2,3.

In general, for positive values of A and C, depending on which supersymmetry-breaking

mechanism is dominant, the apparent gaugino unification scale can vary from the infrared to

the GUT scale. In order for gaugino mass unification to take place at a physical scale, however,

we need that 0.5 ≥ g21(Munif) ≥ 0.2, which sets interesting constraints on the values of A and

C. For A = 0, one gets that unification is at the GUT scale. For C = 0, instead, one obtains

that unification occurs for g21(Munif) ≃ 0, which is an un-physical value, and for which IB1

diverges unless the gaugino mass also vanishes. Let us remark, however, that the unification

of gaugino masses obtained by extrapolating the RG evolution into un-physical scale values,

at which the physical spectrum is not the MSSM one, could still say something relevant about

the supersymmetry-breaking mechanism. For example, the unphysical g21(Munif) ≃ 0 for C = 0

is the expected apparent unification value in anomaly mediation scenarios. It is therefore very

interesting to use the above expressions, Eq. (3.9), to check the consistency of gaugino mass

unification, and to obtain information about the scale at which it may occur.

Let us elaborate further on the above point. Although we computed the gaugino unification

scale by using g21, we could have used any other gauge coupling, and the condition in Eq. (3.13)

would be the same, with g21 and β1 replaced by the corresponding g2i and βi. The fact that the

conditions one obtains are consistent with each other can be obtained by rewriting Eq. (3.13)

for any g2i , in the following way

1

g2i (Munif)
= 2

(

1 +
A

C
βi

)

. (3.14)

This has the correct form for the evolution equation for the gauge couplings from the scale

MGUT , where 1/g2i = 2, to other energies, provided we interpret

log

(

MGUT

Munif

)

= 16π2A

C
, (3.15)

or, equivalently

Munif = MGUT exp

(

−16π2A

C

)

,

≃ MGUT exp

[

−8π2

βi

(

1

g2i (Munif)
− 2

)]

. (3.16)
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Figure 3: Distributions of the value of the gauge coupling g21 at the Gaugino Mass unification

scale before and after LHC constraints (green and red lines), flat distribution (shaded green)

and subtracted probability distribution (dashed black line). no. bins = 50 for these plots,

implying p(θ|F lat) = 0.02.

Since β3 is negative, for large values of A/C, the effective scale, Qunif , may be below the QCD

Landau pole and therefore g23, from Eq. (3.14) becomes negative, and so clearly un-physical.

Negative values of g21,2 may also be obtained for negative values of A or C.

In order to analyze the experimental impact on the scale of Gaugino Mass Unification, we

have studied the two possible independent determinations of g21(Munif) coming from the ratios

IB2
/IB1

and IB3
/IB1

, Eq. (3.9), respectively. If gaugino masses unify at a certain scale, those

two determinations should lead to the same value of g21(Munif). Since the unification scale is

not necessarily the messenger scale, we have only restricted the value of the gauge coupling,

g21(Munif), to lie between 0 and 1.

Fig. 3 represents the probability distributions of g21(Munif) obtained by the two ways de-

scribed above (Eq. 3.9). The green, red and black curves and the shaded green area have the

same interpretation as the one in Figs. 1 and 2. The results are very interesting, since values of

the gauge coupling of about its weak scale value g21(Munif) ≃ 0.2, are clearly disfavored, while

unification at the GUT scale g21(Munif) ≃ 0.5 or at values consistent with anomaly mediation

g21(Munif) ≃ 0 are somewhat preferred.

Fig. 4 shows a two-dimensional representation of these results, comparing the results for

g21(Munif) obtained by the two different equations. The left panel shows the results after LHC

constraints are used and the right panel shows the difference between pre- and post-LHC.

Dark (light) blue is strongly (weakly) disfavored, while the green regions provide an acceptable

description. Yellow (red ) is weakly (strongly) preferred. The black diagonal line shows the

(equal) values that should be obtained for Gaugino Mass Unification to be realized. From
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Figure 4: Probability Distributions for the gauge coupling, g21, at the Gaugino Mass unification

scale. Left: After LHC constraints. Right: Difference between pre and post LHC probabilities.

There are 50 bins for each axis in these plots, implying p(θ|F lat) = 0.4× 10−3.

the right panel in this figure, we see that the LHC has had a pretty significant effect on the

expectation of Munif . We clearly see that scales of order 108 − 1015 GeV have become more

favored, whereas there is a clear depletion of probability near the weak scale.

Fig. 5 shows the final product probability distribution for g21(Munif) of the two distributions

in Fig. 3, demanding that both expression in Eq. 3.9 agree. The result, not surprisingly, leads

to a current preference towards small values of g21(Munif) or values of g
2
1(Munif) >

∼ 0.4.

4 General Gauge Mediation

Gauge mediated SUSY-breaking is generically defined as a model in which supersymmetry

breaking is transmitted to the observable sector via gauge interactions, leading therefore to

flavor-blind parameters [60]–[65]. In Ref. [66] General Gauge Mediation (GGM) was defined

as any theory in which all SUSY-breaking effects decouple from the MSSM in the limit of

vanishing MSSM gauge couplings.

The soft sfermion masses in GGM can be parameterized by a set of three parameters, Ai,

m2
f̃
=

3
∑

i=1

g4iCi(f)Ai , (4.17)

where the sum runs over the gauge groups of the MSSM. Here Ci(f) is the quadratic Casimir

of the superfield f under the gauge group i, which, for a fundamental representation of SU(N)

takes the value Ci(f) = (N2 − 1)/2N , while for U(1), C1(f) = Y 2/4 . Observe that we are
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Figure 5: Final product probability distributions of the value of the gauge coupling g21 at the

Gaugino Mass unification scale, demanding that both determinations of g21 shown in Fig. 3

agree and apparent Gaugino Mass Unification takes place at the scale Munif . The number of

bins is taken to be 50 for this plot, implying p(θ|F lat) = 0.02.
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implicitly working with a normalization of the gauge couplings consistent with their unification

at the GUT scale, so g21 = 5g21(SM)/3, and Y 2/4 = 3/5× (Q− T3)
2.

The gaugino masses are expressed in terms of three more parameters, Bi, given by

Mi = g2iBi . (4.18)

In order to generate a Higgsino mass parameter, µ, and soft term, Bµ, of the correct order,

gauge mediation may need to be supplemented by additional SUSY-breaking contributions in

the Higgs sector. Therefore, we assume that in the case of the soft Higgs masses, the expression

given in Eq. (4.17) may be modified,

m2
Hu

= m2
L̃3

+ δu ,

m2
Hd

= m2
L̃3

+ δd . (4.19)

.

Due to flavor independence, DB13
and DL13

vanish in GGM. Moreover, the RGI Dχ1
also

vanishes, as can be easily checked using its definition in Table I. The invariant DZ presents

a simple dependence on the mass parameters and provides information on δd. Therefore, the

probability distribution for δd in GGM can be read directly from the one of DZ presented before

in Fig. 2. Of the other RGIs, there are six that probe the high-scale mass parameters of pure

GGM, namely the IBi
s and the IMi

s. We shall mostly concentrate on those invariants in this

section.

As mentioned in Section 2.3, we exclude the other two invariants, IYα and DY13H
as they

depend on too many parameters and currently it is difficult to obtain meaningful information

from them. Observe, that, eventually, the invariants DY13H
and IY α can be used to determine

the gauge couplings at the high scale and also probe possible non-universal corrections to the

Higgs soft masses [39].

As emphasize above, we shall concentrate on the RGIs with explicit dependence on the gaug-

ino mass parameters to extract information about the Ai and Bi. From the IBi
we immediately

obtain

Bi = IBi
, (4.20)

and these distributions can be seen in Fig. 1.

In order to obtain information on the Ai, both IBi
and IMi

must be used:

A1 =
10

33

(

IM1

g41
− I2B1

)

,

A2 = 2

(

IM2

g42
− I2B2

)

,

A3 = −2

3

(

IM3

g43
− I2B3

)

, (4.21)

where the gi are the gauge couplings at the messenger scale, M .
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The probability distributions for the Ai for three different values of the messenger scale are

given in Fig. 6. The shaded green area, as well as the green, red and black lines have the same

interpretation as in Figs. 1 and 2.

From Fig. 6, it is clear that positive and sizable values of A1 are preferred, independent

of the messenger scale. On the other hand, values of A2 close to zero are somewhat favored,

although sizable values are equally likely. Finally, A3 can be small and negative, but positive

and sizable values are equally or more likely than the negative ones. One can check, that if

the values of the A3 are the ones associated with the regions of maximal likelihood, which

correspond to negative values of this parameter, and assume A2 to be small, the boundary

condition for the left-handed squarks square mass parameters would be negative, unless the

largest values of A1 at each messenger scale are selected. These boundary conditions, together

with the ones for the Bi, would then lead to somewhat light left-handed sfermions compared

to the right-handed ones.

5 Minimal Gauge Mediation

Minimal Gauge Mediation (MGM) is a particular gauge mediated model in which the soft

supersymmetry-breaking parameters are obtained through the interaction of messenger parti-

cles that transform under the 5 + 5̄ representation of SU(5). The general assumption is that

these messengers acquire mass via their interaction with a singlet superfield. When this su-

perfield acquires a vev, it fixes the messenger scale, and its F-term, FS, fixes the scale of soft

supersymmetry-breaking parameters through the identity

Mi =
g2i

16π2

FS

S
. (5.22)

Hence in minimal gauge mediated models

Bi = B =
FS

16π2S
, (5.23)

with i = 1, 2, 3. Moreover, the scalar masses at the messenger scale are obtained at the two-loop

level and acquire the value

m2
f̃
=

3
∑

i=1

2
g4i (M)

(16π2)2
Ci(f)

F 2
S

S2
. (5.24)

Hence, in MGM

Ai = A =
2F 2

S

(16π2S)2
= 2B2 . (5.25)

Therefore, minimal gauge mediation is a model with just two parameters, B and the mes-

senger scale, M (g2 and g3 can be written in terms of g1 through the RGIs Ig2 and Ig3, which

is then just a function of M).
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Figure 6: Distribution of the GGM parameters Ai before and after the LHC constraints are

added (green and red lines), flat distribution (shaded green) and subtracted probability distri-

bution (dashed black line). The three set of values are associated with different values of the

messenger scale, M = 105, 108 and M = 1012 TeV. For the first and last row, no. bins = 50

giving p(θ|F lat) = 0.02.
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In order to determine the probability distribution for the parameters B and g21(M), we use

the ones of the IMi
s and the IBi

s. From Table I, we see that the IMi
must fulfill the following

relations

IM1
− 38g41(M)B2

5
= 0,

IM2
− 2g42(M)B2 = 0,

IM3
+ 2g43(M)B2 = 0, (5.26)

which together with the equations IBi
= B define a system of 6 equations with only 2 unknowns.

For every value of IBi
one can obtain a value of B that leads, from the 3 equations in Eq. (5.26),

to 9 independent values of g21(M). In addition, these 3 equation lead to 3 different sets of

simultaneous equations that can be solved for B and g21(M) independently. This leads to

another 6 solutions for B and 3 for g21(M), leading to a total of 9 solutions for B and 12 for

g21(M).

The set of 9 solutions that we use to compute the probability distributions for B are:

B1 = IB1
, (5.27)

B2 = IB2
, (5.28)

B3 = IB3
, (5.29)

B4,5 = ∓5Ig2
(

33IM1

√

IM2
+
√
95
√

IM1
IM2

)

√
2(1089IM1

− 95IM2
)

, (5.30)

B6,7 = ∓5Ig3
(

11IM1

√

−IM3
+
√
95
√

IM1
IM3

)

√
2(121IM1

+ 95IM3
)

, (5.31)

B8,9 = ∓ 5(Ig2 − Ig3)IM2

√

−IM3

11
√
2
(

IM2
+ 3

√

IM2

√

−IM3

) (5.32)

The corresponding set of 12 solutions for the gauge coupling at the messenger scale, g21(M)

are instead given by:
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g211 =

(

−33
√

IM1
+
√
95
√

IM2

)

Ig2
√

95IM2

, (5.33)

g212 =

(

−11
√

IM1
−

√
95
√

−IM3

)

Ig3
√

−95IM3

, (5.34)

g213 =

(√

IM2
+ 3

√

−IM3

)

(

Ig2
√

IM2
+ 3Ig3

√

−IM3

) , (5.35)

g214 =

√

5IM1

38I2B1

, (5.36)

g215 =

√

5IM1

38I2B2

, (5.37)

g216 =

√

5IM1

38I2B3

, (5.38)

g217 =
5
√

IM2

(

33
√
2IB1

+ 5Ig2
√

IM2

) , (5.39)

g218 =
5
√

IM2

(

33
√
2IB2

+ 5Ig2
√

IM2

) , (5.40)

g219 =
5
√

IM2

(

33
√
2IB3

+ 5Ig2
√

IM2

) , (5.41)

(5.42)

g2110 =
5
√

−IM3

(

11
√
2IB1

− 5Ig3
√

−IM3

) , (5.43)

g2111 =
5
√

−IM3

(

11
√
2IB2

− 5Ig3
√

−IM3

) , (5.44)

g2112 =
5
√

−IM3

(

11
√
2IB3

− 5Ig3
√

−IM3

) . (5.45)

The probabilities corresponding to each of these are plotted in Figs. 8-10.

Observe that, as is apparent from Eq. (5.26) and Table I, MGM is associated with negative

values of IM3
and positive values of IM1,2 . As can be seen from Fig. 1, these values of the RGIs

are not the most likely ones consistent with the present constraints. However, wether a given

model is likely or not is a very scan dependent question and hence we will not address that

here. Instead, the probability distributions for the MGM parameters are computed for those

configurations for which these conditions are fulfilled. The final distribution is obtained by

multiplication of the independent probabilities of the 9 Bi and 12 g21i(M) solutions given in

Eqs. 5.27-5.45. The results are depicted in Fig. 7.
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Figure 8: Distribution for the MGM parameter B before and after the LHC constraints are

added (green and red lines), flat distribution (shaded green) and subtracted probability distribu-

tion (dashed black line). The different sets are associated with different probability distributions

listed in Eqs. 5.27.
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Figure 9: Distribution of the gauge coupling, g21, at the messenger scale before and after the

LHC constraints are added (green and red lines), flat distribution (shaded green) and subtracted

probability distribution (dashed black line). The different sets are associated with different

probability distributions given in Eqs. 5.45.
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Figure 10: Distribution of the gauge coupling, g21, at the messenger scale before and after

the LHC constraints are added (green and red lines), flat distribution (shaded green) and

subtracted probability distribution (dashed black line). The different sets are associated with

different probability distributions given in Eqs. 5.45.

The messenger scale may be obtained from the value of the gauge coupling at this scale

by using Eq. (3.16), replacing Munif by Mmess. However, in contrast to the gaugino mass

unification scale, the messenger scale is always a physical scale and therefore expected to take

values between tens of TeV and the GUT scale, or equivalently, gauge coupling values of

0.2 <
∼ g21(Mmess) <

∼ 0.5. Fig. (7) shows that values of the gauge couplings g21(Mmess) >
∼ 0.6 tend to

be preferred, which lie outside the physical region. Considering only the physical range, values

of the messenger scale close to the GUT scale are slightly preferred. The most probable values

of the parameter B are about 1.25 TeV and 4.25 TeV. Using the relation Mi = g2iB and the

values of the gauge couplings at the weak scale, Mmess ≃ 1.25 TeV would lead to a bino mass

of the order of 250 GeV, a wino mass of about 500 GeV and a gluino mass of about 1.5 TeV.

The larger value of B would lead to gaugino masses 3.5 times heavier than these ones.

6 Conclusions

Supersymmetric extensions of the Standard Model provide a relationship between the weak

scale and the scale of the supersymmetry-breaking parameters, rendering it stable under quan-

tum corrections. In the MSSM, the SM-like Higgs particle is predicted to be light. The fast

decoupling of the supersymmetric particles from the precision electroweak observables make

the MSSM predictions consistent with those of the SM with a light Higgs, in full consistency

with what current data seems to suggest. However, no direct hint of supersymmetric particles

has been observed experimentally and hence no information of the structure and origin of the

supersymmetry-breaking parameters is provided by current experiments, apart from perhaps

the indirect hints provided by the anomalous magnetic moment and the Higgs mass range.

Once additional information from direct searches becomes available, a method to determine
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the structure of supersymmetry-breaking parameters at the messenger scale, as well at the

messenger scale itself would be desirable. RGIs provide such a method, establishing a direct

relationship between the observables at the weak scale and the messenger scale parameters.

In this article we have studied the probability distributions of a set of RGIs in the MSSM

arising from symmetry arguments. The distributions are analyzed at the TeV scale by making

use of the constraints coming from flavor physics, LEP and Tevatron searches, Higgs physics

and the anomalous magnetic moment of the muon, and separately from those, by constraints

provided by the LHC. We have used a flat prior for the soft supersymmetry-breaking masses,

using a pMSSM approach. The current constraints already provide interesting features in the

probability distributions.

As an example of the application of the RGIs, we have used them to analyze the question

of Gaugino Mass Unification and also the possible realization of General and Minimal Gauge

Mediation. The methods described here are quite general and may be applied to analyze the

ultraviolet properties of the MSSM parameters in other interesting supersymmetery-breaking

scenarios.

We noticed that the scale of Gaugino Mass Unification is not necessarily identified with the

messenger scale, but it can provide non-trivial information on the realization of minimal models

of supersymmetry breaking. GGM provides a well-motivated example of flavor independent,

supersymmetry-breaking models. The probability distributions for the GGM parameters can

be determined from those of the RGIs and present some interesting features as well. They also

lead to information on possible non-universal Higgs mass parameters at the messenger scale.

The determination of the messenger scale in GGM through RGIs demands the measurement

of both the first and third generation fermion masses as well as the Higgs masses, and hence

it is not practical at this moment. We also analyze the more simplistic subset of models given

by MGM. Since the entire model space of MGM is determined by only 2 parameters, we are

able to extract information about the possible scale of SUSY particles as well as the messenger

scale in this scenario.

It would be interesting to perform a similar analysis in other supersymmetric extensions of

the SM, like the NMSSM or models with extended U(1) gauge sectors, in which the required

125 GeV Higgs mass may be obtained without the need of very heavy stops. In these models,

electroweak symmetry breaking may be realized more naturally without large fine tuning. The

renormalization group invariants for some of these extensions are given, for instance, in Ref. [34].

It is clear that although the analysis we describe already has interesting features, the prob-

ability distributions of the RGIs will become particularly useful when the LHC starts revealing

the presence of supersymmetric particles at the weak scale. In such a case, the probability

distribution of the RGIs will become sharper and will start showing important features of the

supersymmetry-breaking mass parameters at the messenger scale. Due to the higher cross sec-

tions for the production of supersymmetric particles, the higher luminosities and the higher

energy reach, the 8 TeV run this year will lead to relevant constraints on the supersymmetric
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particle masses. It could also lead to the first hint of the presence of supersymmetry, beyond

the indirect ones associated with Higgs search results. It will be therefore very interesting to

repeat the analysis of the RGI distributions once the 2012 results are available.
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Appendices

A Probability Re-weighting and Re-scaling

We are interested in a quantity which quantitative reflects the probability distributions of gen-

eral functions of the masses, given the probability distributions for the masses themselves. The

Markov Chain Monte Carlo (MCMC) method is used to scan over the pMSSM parameters in

the range considered to be probed at the LHC. For each point corresponding to a model, a

likelihood is computed, given certain experimental constraints. Since the MCMC technique

scans the given parameter space along the isocontours of likelihood due to preLHC constraints

listed in Table II, the ratio of the number of points scanned for any given value of a parameter

to the total number of points gives the probability for that parameter value. This probability

for a given point can then be re-weighted by the postLHC likelihoods to compute the current

probabilities. We note however that the boundaries defining the pMSSM region scanned, in-

troduce an artificial effect in the resulting probability distributions. In the following, we will

describe a method that can be used for eliminating this effect. In this method, we make the

assumption that the LHC (as well as the pre-LHC) measurements will not be able to shed any

light on the pMSSM parameter regions that are not scanned due to kinematic constraints, and

assign a flat probability to these insensitive regions outside the scan boundary.

Let us consider a two dimensional probability distribution p(x, y|O) of parameters x and y

defined in a box where the variables x and y vary in the ranges {x1, x2}, {y1, y2}, given some

observables O. Assume that x and y have flat priors corresponding to the soft parameters that

were scanned over in the MCMC. We are then interested in the probability distribution of some

function, θ(x, y), given O: p(θ(x, y)|O). As explained in Section 2.2, the naive computation of

this probability, especially using a flat prior pf0(x, y) = constant, will heavily reflect the size

of the box alongside any other inherent probability distribution of this function. The aim is

to define a probability p(θ(x, y)|O) such that, if there is no condition on θ(x, y), then a flat

distribution is obtained for p0(θ(x, y)). Any variations of this flatness should be something that
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reflects the actual variation of the probability due to the effect of O rather than the effect of

having a bounded box, as is the case in the example given in Section 2.1.

Let us assume that the box contains a bins in x and b bins in y. The flat distributions are

defined such that in the absence of any additional condition:

pf0(x) =
1

a
(A.46)

pf0(y) =
1

b
(A.47)

pf0(x, y) =
1

ab
(A.48)

pf0(θi) =
∑

All{x,y}:θ(x,y)=θi

pf0(x, y) (A.49)

Note that pf0(θ) is defined as the distribution that would be obtained for θ(x, y) if x and y

have flat priors. This is the distribution that is referred to in the text as “p(θ|FlatUnweighted)”.
This distribution itself is generally not flat, but will have a distinct shape reflecting the boundary

conditions of the original x, y variables. Analogously, the probability for θ(x, y) given O is

p(θi|O) =
∑

All{x,y}:θ(x,y)=θi

p(x, y|O) , (A.50)

where this is referred to as “p(θ|pre/postLHC)” in the text. An easy way to normalize this

probability to obtain a flat distribution for the function θ(x, y) in the absence of non-trivial

conditions is to weight each bin, θi, by 1/pf0(θi):

pA(θi|O) ∝ p(θi|O)

pf0(θi)
. (A.51)

The superscript A denotes the fact that this effectively gives the average probability per unique

{x, y} combination for each θi. However, this has the effect of washing out small effects on the

probability distribution from O, when θi is such that a large number of unique combinations

of {x, y} contribute to a given value of θ(x, y).

We propose an alternative method. First, instead of taking the ratio we shall consider the

difference: p(θi|O)−pf0(θi). Clearly this quantity is not always positive and cannot be identified

with a probability distribution. It has, however, the property that it becomes positive whenever

the probability of θi is enhanced by the observations O and negative in the opposite case. We

shall, hence, define a renormalized distribution pR(θi|O) in the following way

pf0(θm) = Max
[

pf0(θi)
]

(A.52)

pR(θi|O) ∝ p(θi|O) +
[

pf0(θm)− pf0(θi)
]

, (A.53)

which is always positive since p(θi|O) is positive and so is the quantity between brackets. The

above quantity, Eq. (A.53) has a clear interpretation : Let us first stress that, by definition, θm
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is such that it has the largest number of unique combinations of {x, y} contributing to it, with

x and y varying with a flat distribution in the box. Let’s call ki the number of combinations

corresponding to θi. Therefore, all θi have a smaller number than θm, ki < km. This is

reflecting the fact that for i 6= m, the range of the original variables scanned over, x and y,

did not include all the combinations necessary to weight the i bin of θ the same as m. We

have made the argument that the values of x and y not scanned are ones that will not be

affected by LHC measurements. Hence we propose that these combinations are given the same

weight as pf0(θi)/ki = 1/ab. This leads, after proper normalization, to nothing more than the

last term, between square brackets, in Eq. (A.53), and hence the quantity pR(θi|O) reflects the

actual probability distribution of θi given O, taking away the effect of the range of the original

scan. For this quantity to represent a probability distribution in the strict sense, it must be

normalized to 1. Since p(θi|O) and pf0(θi) are quantities which are normalized to 1, assuming

that the function θi is evaluated in l different bins, the normalization factor is nothing more

than C = 1/(pf0(θm)l). Hence the properly normalized probability distribution for θ is given

by:

pR(θi|O) =
1

pf0(θm) l

{

p(θi|O) +
[

pf0(θm)− pf0(θi)
]}

. (A.54)

We can see that this behaves the way we expect it to, by noting that when O has not impacted

the probability of θ, i.e. p(θi|O) = pf0(θi), p
R(θi|O) = 1/l, so we obtain a flat distribution. On

the other hand, if the pf0(θi) is a constant, meaning that θi has a flat distribution in the same

flat basis as the original variables x and y, then pf0(θi) = pf0(θm) = 1/l and we recovers p(θi|O)

without any modification, as we should.

In order to emphasize the impact of the experimental constraints in a more clear way,

however, we have gone a step further. Since we assumed that the probability outside the range

we scanned is flat, the ratio of the difference of any two probabilities from flat, (pR(θi|O) −
1/l)/(pR(θj |O) − 1/l), will remain invariant if we extended the range of the original scan,

increasing the box size. Therefore, this quantity is than also invariant under an overall rescaling

of the differences with the flat probability.

Let us assume that there is a non-trivial impact of experiments on the RGI distributions,

namely pR(θi|O) 6= 1/l for at least one i. Considering

pR(θn|O) = Min
[

pR(θi|O)
]

(A.55)

we define a scale factor, SF , such that the difference of this minimum with 1/l is scaled to be

1/l :

SF

(

1

l
− pR(θn|O)

)

=
1

l
(A.56)

=⇒ SF−1 = 1− pR(θn|O)l. (A.57)
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We use the scale factor above to define a modified distribution

pSS(θi|O) =
1

l
+ SF

[

pR(θi|O)− 1

l

]

, (A.58)

=
1

pf0(θm)l

{

pf0(θm) + SF
[

p(θi|O)− pf0(θi)
]}

. (A.59)

Once the scale factor SF is given, it is easy to translate this modified distribution, Eq. (A.59) to

the original one, Eq. (A.54). The quantity pSS(θi|O) has the virtue that when for a particular

bin pR(θi|O) = 1/l, meaning O has had no impact on the θi probability, one obtains p
SS(θi|O) =

1/l. On the other hand when pR(θi|O) = pR(θn|O), meaning when O has maximally decreased

the probability for that θi, p
SS(θi|O) = 0.

The fact that pSS(θi|O) will be invariant under a change in scan range of the original

variables can be seen by inspecting Eq. A.58 and noting that under a change of scan range,

pSS(θi|O) = 1/l when pR(θi|O) = 1/l and by definition pSS(θn|O) = 0.

Even though pSS(θi|O) cannot be technically defined as a probability, it quantitatively re-

flects the actual impact of O on the probability distribution of θ in a way which is independent

of the artificial impact of scanning a finite region, and, as stressed above may be easily con-

nected with pR(θi|O), Eq. (A.54). We ran extensive numerical checks to make sure that this

quantity indeed behaves in the expected manner. We have therefore used pSS(θi|O) to repre-

sent the probability distribution of the RGIs, giving the associated scale factor SF for every

RGI distribution. In the text, in order to be more explicit about the meaning of these dis-

tributions, p(θ|O) was renamed “p(θ|pre/post-LHC)”, while pSS(θ|O) was renamed “p(θ|Exp)

Reweighted”.

B pMSSM Parametrization

The pMSSM, a 19-dimensional realization [67] of the R-parity conserving MSSM with param-

eters defined at the SUSY scale, MSUSY =
√
mt̃1mt̃2 , employs only a few plausible assumptions

motivated by experiment: there are no new CP phases, the sfermion mass matrices and trilinear

couplings are flavor-diagonal, the first two generations of sfermions are degenerate and their

trilinear couplings are negligible. In addition, we assume that the lightest supersymmetric par-

ticle (LSP) is the lightest neutralino, χ̃0
1. We thus arrive at a proxy for the MSSM characterized

by 19 real, weak-scale, SUSY Lagrangian parameters:

• 3 gaugino mass parameters M1, M2, and M3;

• the ratio of the Higgs vevs, tan β = v2/v1;

• the higgsino mass parameter, µ, and the pseudo-scalar Higgs mass, mA;

• 10 sfermion mass parameters mF̃ , where F̃ = Q̃1, Ũ1, D̃1, L̃1, Ẽ1, Q̃3, Ũ3, D̃3, L̃3, Ẽ3

(imposing mQ̃1
≡ mQ̃2

, mL̃1
≡ mL̃2

, etc.); and
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• 3 trilinear couplings At, Ab and Aτ ,

in addition to the SM parameters.

For each pMSSM point, SoftSUSY3.1.6 [68] was used to compute the SUSY spectrum,

SuperIsov3.0 [69] was used to compute the low-energy constraints, micrOMEGAs2.4 [51] was

used for the SUSY mass limits, and HiggsBounds2.0.0 [50] for the limit on the h0 mass1.

Moreover, SUSYHIT (SDECAY1.3b, HDECAY3.4) [70] was used to produce SUSY and Higgs

decay tables, and micrOMEGAs2.4 [51] to compute the LSP relic density and direct detection

cross sections. The various codes were interfaced using the SUSY Les Houches Accord [71].

C Soft Mass Parameters and RGIs

As mentioned in Section 2, one can make use of the RGIs and three independent masses to

determine all other soft breaking masses. As an example, we write down 2 sets of solutions

with different unknown masses. All the masses and gauge couplings are at the same scale. The

gaugino masses in both cases are given by

Mi = IBi
g2i i = 1, 2, 3. (C.60)

We write the first set of solutions in terms of 3 third generation masses: mQ3
, mu3

and me3 ,

(C.61)
m2

H2
=

DB13

2
− DZ

2
− 5IM1

66
+

3IM2

2
+

4IM3

3
−DL13

− 247DY13H

220

+
Dχ1

40
+

3IYαg
2
1

22
+

5

66
I2B1

g41 −
3

2
I2B2

g42 −
4

3
I2B3

g43 +
3m2

u3

2
,

(C.62)
m2

Hd
=

3DB13

2
− DZ

2
+

2IM1

33
− 3IM2

+
4IM3

3
− DL13

2
− 13DY13H

44
+

3Dχ1

8

− 5IYαg
2
1

22
− 2

33
I2B1

g41 + 3I2B2
g42 −

4

3
I2B3

g43 +
m2

e3

2
+ 3m2

Q3
− 3m2

u3

2
,

m2
d3

= DB13
+

IM1

11
− 3IM2

− 13DY13H

165
+

3Dχ1

10
− 2IYαg

2
1

33
− 1

11
I2B1

g41 + 3I2B2
g42 + 2m2

Q3
−m2

u3
,

(C.63)

(C.64)m2
Q1

=
1

3960

(

20IM1
+ 5940IM2

− 3520IM3
+ 78DY13H

− 627Dχ1
+ 60IYαg

2
1 − 20I2B1

g41

− 5940I2B2
g42 + 3520I2B3

g43
)

,

1In evaluating the Higgs mass limit, a Gauss-distributed theoretical uncertainty of σ = 1.5 GeV was applied

to the mh computed with SoftSUSY, cf. row 8 in Table II and row 12 in Table III.
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(C.65)m2
L3

=
1

220

(

−10IM1
+ 330IM2

− 110DL13
− 26DY13H

− 11Dχ1
− 20IYαg

2
1 + 10I2B1

g41

− 330I2B2
g42 + 110m2

e3

)

,

(C.66)m2
L1

=
1

440

(

20IM1
+ 660IM2

− 26DY13H
− 11Dχ1

− 20g21
(

IYα + I2B1
g21
)

− 660I2B2
g42
)

,

(C.67)m2
d1 =

1

1980

(

40IM1
− 1760IM3

+ 78DY13H
+ 33Dχ1

+ 60IYαg
2
1 − 40I2B1

g41 + 1760I2B3
g43
)

,

(C.68)m2
u1

=
1

990

(

80IM1
− 880IM3

− 78DY13H
− 33Dχ1

− 60IYαg
2
1 − 80I2B1

g41 + 880I2B3
g43
)

,

(C.69)m2
e1

=
1

220

(

40IM1
+ 26DY13H

+ 11Dχ1
+ 20IYαg

2
1 − 40I2B1

g41
)

Alternatively, the second set of solutions is given in terms of the 2 soft masses for the Higgs,

mHu and mHd
, and a third generation squark mass, mQ3

:

(C.70)
m2

u3
= −DB13

3
+

DZ

3
+

5IM1

99
− IM2

− 8IM3

9
+

2DL13

3
+

247DY13H

330

− Dχ1

60
− IYαg

2
1

11
− 5

99
I2B1

g41 + I2B2
g42 +

8

9
I2B3

g43 +
2m2

Hu

3
,

(C.71)
m2

e3
= −4DB13

+ 2DZ +
IM1

33
+ 3IM2

− 16IM3

3
+ 3DL13

+
156DY13H

55
− 4Dχ1

5

+
2IYαg

2
1

11
− 1

33
I2B1

g41 − 3I2B2
g42 +

16

3
I2B3

g43 + 2m2
Hd

+ 2m2
Hu

− 6m2
Q3
,

(C.72)m2
Q1

=
1

3960

(

20IM1
+ 5940IM2

− 3520IM3
+ 78DY13H

− 627Dχ1
+ 60IYαg

2
1 − 20I2B1

g41

− 5940I2B2
g42 + 3520I2B3

g43
)

,

(C.73)
m2

d3 =
4DB13

3
− DZ

3
+

4IM1

99
− 2IM2

+
8IM3

9
− 2DL13

3
− 91DY13H

110
+

19Dχ1

60

+
IYαg

2
1

33
− 4

99
I2B1

g41 + 2I2B2
g42 −

8

9
I2B3

g43 −
2m2

Hu

3
+ 2m2

Q3
,

(C.74)
m2

L3
= −2DB13

+DZ − IM1

33
+ 3IM2

− 8IM3

3
+DL13

+
13DY13H

10

− 9Dχ1

20
+

1

33
I2B1

g41 − 3I2B2
g42 +

8

3
I2B3

g43 +m2
Hd

+m2
Hu

− 3m2
Q3
,
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(C.75)m2
L1

=
1

440

(

20IM1
+ 660IM2

− 26DY13H
− 11Dχ1

− 20g21
(

IYα + I2B1
g21
)

− 660I2B2
g42
)

,

(C.76)m2
d1

=
1

1980

(

40IM1
− 1760IM3

+ 78DY13H
+ 33Dχ1

+ 60IYαg
2
1 − 40I2B1

g41 + 1760I2B3
g43
)

,

(C.77)m2
u1

=
1

990

(

80IM1
− 880IM3

− 78DY13H
− 33Dχ1

− 60IYαg
2
1 − 80I2B1

g41 + 880I2B3
g43
)

,

(C.78)m2
e1 =

1

220

(

40IM1
+ 26DY13H

+ 11Dχ1
+ 20IYαg

2
1 − 40I2B1

g41
)

D Flavor-Blind Models

The most immediate consequence of flavor-blindness is the vanishing of DB13
and DL13

. There-

fore these invariants provide us with a direct test of the flavor-independent hypothesis with

a minimal set of measurements. More precisely, they allow this hypothesis to be ruled out:

measuring DB13
6= 0 or DL13

6= 0 at the low scale implies high-scale family non-universality;

however, as noted in Ref. [33], measuring DB13
= 0 and DL13

= 0 at the low scale does not

necessarily indicate high-scale universality.

Current experimental data from flavor physics strongly motivates a flavor-universal medi-

ation mechanism for SUSY-breaking. Accordingly, if DB13
and DL13

are found to vanish, it is

reasonable to proceed a step further and attempt to extract constraints on the high-scale values

of the flavor-blind MSSM soft parameters from the RGIs.

The 7 scalar and 3 gaugino soft mass parameters in the flavor-blind MSSM can be expressed

uniquely in terms of the 10 invariants Dχ1
through IM3

listed in Table I. These are listed in

Eqs. (C.60) and (D.79)-(D.85). Note that these relations depend on the 3 gauge couplings and

further all couplings and soft parameters are assumed to be given at the messenger scale:

m2
L̃
= − 1

440
(26DY13H

+ 11Dχ1
+ 20((g41I

2
B1

+ 33g42I
2
B2
)− (IM1

+ 33IM2
) + g21IY α)) , (D.79)

m2
Hd

= m2
L̃
− 1

2
DZ , (D.80)

m2
Hu

= m2
L̃
− 1

2
DZ − 13

11
DY13H

+
g21
11

IY α , (D.81)

m2
ẽ =

1

220
(26DY13H

+ 11Dχ1
− 20(2(g41I

2
B1

− IM1
)− g21IY α)) , (D.82)

m2
ũ = − 1

990
(78DY13H

+ 33Dχ1
+ 20(4((g41I

2
B1

− 11g43I
2
B3
)− (IM1

− 11IM3
)) + 3g21IY α)) ,

(D.83)

m2
d̃

=
1

1980
(78DY13H

+ 33Dχ1
− 20(2((g41I

2
B1

− 44g43I
2
B3
)− (IM1

− 44IM3
))− 3g21IY α)) ,

(D.84)

m2
Q̃1

=
1

3960
(78DY13H

− 627Dχ1

−20((g41I
2
B1

+ 297g42I
2
B2

− 176g43I
2
B3
)− (IM1

+ 297IM2
− 176IM3

)− 3g21IY α)) .(D.85)
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Using the invariants Ig2 and Ig3 these may be expressed entirely in terms of g1. Equivalently,

one can reduce the degrees of freedom at the high scale to a single parameter, which can be taken

to be the value of that scale. In particular this permits tests of more restrictive flavor-universal

models such as mSUGRA, taking g1 at the GUT scale.
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