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The effective interactions of dark matter with photons are fairly restricted. Yet both direct
detection as well as monochromatic γ ray signatures depend sensitively on the presence of such
interactions. For a Dirac fermion, electromagnetic dipoles are possible, but are very constrained.
For Majorana fermions, no such terms are allowed. We consider signals of an effective theory with
a Majorana dark matter particle and its couplings to photons. In the presence of a nearby excited
state, there is the possibility of a magnetic dipole transition (Magnetic inelastic Dark Matter or
MiDM), which yields both direct and indirect detection signals, and, intriguingly, yields essentially
the same size over a wide range of dipole strengths. Absent an excited state, the leading interaction
of WIMPs is similar to the Rayleigh scattering of low energy photons from neutral atoms, which
may be captured by an effective operator of dimension 7 of the form χ̄χFµνF

µν . While it can be
thought of as a phase of the Magnetic inelastic Dark Matter scenario where the excited state is
much heavier than the ground state, it can arise from other theories as well. We study the resulting
phenomenology of this scenario: gamma ray lines from the annihilation of WIMPs; nuclear recoils
in direct detection; and direct production of the WIMP pair in high-energy colliders. Considering
recent evidence in particular for a 130 GeV line from the galactic center, we discuss the detection
prospects at upcoming experiments.

PACS numbers: 12.60.Jv, 12.60.Cn, 12.60.Fr

I. INTRODUCTION

Weakly interacting massive particles (WIMPs) have
long been studied as potential candidates for the cold
dark matter observed in the Universe. The most well-
motivated and deservedly most well-studied WIMPs are
those that emerge in extensions of the Standard Model
associated with the seemingly unrelated problems of the
electroweak scale, such as supersymmetric extensions.
An orthogonal line of inquiry is motivated by the de-
ceptively elementary question of “how dark is Dark Mat-
ter?” Namely, what are the strongest constraints on the
interaction of dark matter with the electromagnetic field?
Numerous studies already exist and in particular the idea
of electric and magnetic dipole interactions have recently
attracted considerable attention [1–11]. In these models,
single photon exchange provides a possible direct detec-
tion signal, while annihilation into two photons might
provide an indirect detection signal (see e.g., [12]).

However, if dark matter is a Majorana fermion, then
these single-photon couplings through electromagnetic
dipoles do not exist - the dipole operator vanishes identi-
cally for Majorana fermions. For Dirac fermions, it is nat-
urally off-diagonal [13, 14]. For pseudo-Dirac fermions,
in which case the ground state is the dark matter candi-
date, the dipole interaction mediates transitions between
this ground state χ and an excited state χ∗. The authors
of Ref. [9] exploited this possibility to build a model,
dubbed Magnetic inelastic Dark Matter (MiDM), to ex-
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plain the DAMA results through dipole-dipole dominated
scattering. The interaction Lagrangian of MiDM is

L =
(µχ

2

)
χ̄∗σµνB

µνχ+ c.c., (1)

where µχ is the dipole strength, Bµν is the hypercharge
field-strength tensor, and σµν = i[γµ, γν ]/2. This cou-
pling contains within it the interaction with the electro-
magnetic field. We study the signatures of this model in
the first part of this paper.

In the limit that we take the excited state heavy, we
are left with a Majorana fermion, and we can again ask
the question “how dark is Dark Matter?”. Starting with
the MiDM Lagrangian above if the excited state, χ∗, is
much heavier than the energy available then it can be
integrated out to yield the interactions

L =
µ2
χ

2m
χ∗

(
χ̄χBµνB

µν + iχ̄γ5χBµνB̃
µν
)
, (2)

where B̃µν = 1
2ε
µναβBαβ and εµναβ is the Levi-Civita

symbol. Motivated by this form, in the second part of this
paper we will concentrate on the slightly more general
case for the interaction of DM with the electroweak field
strengths

L = 1
4Λ3

R

{
χ̄χ
(
cos θ

χ
BµνB

µν + sin θ
χ
TrWµνW

µν
)

(3)

+ i χ̄γ5χ
(

cos θ
χ
BµνB̃

µν + sin θ
χ
TrWµνW̃

µν
)}

.

Here θ
χ

quantifies the relative coupling to the field
strength of hypercharge in comparison to that of SU

W
(2)

and Λ
R

is some high scale related to the cut-off scale of
the theory. We will discuss UV realizations in a later
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section, but simple scenarios can arise either as a limit of
MiDM, or for instance integrating out a dilaton (or axi-
dilaton). The interactions of Eq. (3) are akin to the fa-
miliar interactions of photons with neutral atoms at long
wavelengths that lead to Rayleigh scattering. Hence we
dub this scenario Rayleigh Dark Matter (RayDM). This
could be the entirety of the DM interaction with the stan-
dard model, but it also serves as a reasonable form of the
effective operators responsible for γ lines in many mod-
els (even when they freeze out dominantly through other
channels). The special form of this interaction, which
necessitates at least two force mediators, requires a re-
consideration of the basic processes by which we hope
to detect dark matter and this constitutes a part of the
current work.

In this paper we set to explore these different possibil-
ities for the interaction of Majorana WIMPS with light.
The paper is organized as follows: In section II we dis-
cuss in detail the MiDM scenario including its signatures
in gamma rays as well as the prospects for seeing it in
direct detection experiments; In section III we explore
the phenomenology of RayDM; Section IV is devoted to
the prospects of collider searches for both MiDM as well
as RayDM; Finally, the main findings of this work are
summarized in the conclusions, section V. We caution
the reader that the clear separation between MiDM and
RayDM is not always appropriate. As we shall discuss
and emphasize below, there are certain aspects of the
phenomenology where the two scenarios and the opera-
tors involved cannot be logically separated.

II. MiDM

In this section we concentrate on the MiDM scenario,
but consider a slightly more general form of the magnetic
dipole interactions

L =
(µ

γ

2

)
χ̄∗σµνF

µνχ+
(µ

Z

2

)
χ̄∗σµνZ

µνχ+ c.c., (4)

where Fµν and Zµν are respectively the field strength
of the photon and Z boson, µγ and µZ are the corre-
sponding dipole strength, and χ and χ∗ are two Weyl
fermions. If the interaction above the electroweak scale
is entirely with the field strength of hypercharge then
µZ/µγ = − tan θ

W
. In what follows we explore the more

general possibility since one can entertain additional op-
erators with the field strength of SU

W
(2) that would re-

sult in a different ratio. An example of such an opera-
tor is the dimension 7 operator

(µγ
2

)
χ̄∗σµνχTr h†Wµνh.

However, considering that such operators are generically
further suppressed we expect the deviation away from
the relation µ

Z
/µ

γ
= − tan θ

W
to be small.

The phenomenology of this theory depends crucially
on the mass splitting between the two states, χ and χ∗.
When the mass splitting is large m

χ∗ − m
χ
& m

χ
the

phenomenology is similar to that of RayDM, which is
described in the next section. More generally, even for

a smaller splitting such that m
χ∗ & m

χ
/20 the heavier

state χ∗ is not present during the early universe freeze-
out of the lighter state χ. In this case, unless other
channels are available through new interactions, the relic
abundance is determined by the annihilation into photons
and vector-bosons, which typically requires larger dipole
strength. The prospects for direct detection in this case
are fairly gloomy, but collider constraints provide strong
and interesting bounds on this possibility as we describe
in section IV.

As a consequence, in this section we focus on the case
when the mass splitting is small. In particular, when the
mass splitting to the excited state vanishes or is smaller
than the kinetic energy of the WIMP in the halo ∆M =
m
χ∗ −mχ

∼ 100 keV the cross-section of scattering on
the nucleus is much larger and the corresponding rates
in direct detection experiments are phenomenologically
interesting.

Before moving onto the details, it is important to
make the phenomenological point: for thermally produced
MiDM, the direct and gamma-ray line indirect signatures
are roughly independent of the size of the dipole1. That
is to say, even if MiDM is a sub-dominant component of
the dark matter, the amplitude of these signals would be
unchanged.

This arises quite simply. The annihilation rate is
governed by the annihilation of WIMPs into fermion
pairs [15] which scales as µ2

χ. This implies that the num-

ber density of WIMPs scales as nχ ∼ µ−2
χ , i.e.,

ρMiDM = ρ0 ×
µ2

thermal

µ2
χ

, (5)

where µthermal is the dipole needed to achieve the ap-
propriate relic abundance that arises from a cross sec-
tion of 6 × 10−26cm3s−1. For a WIMP of mass mχ =

130 GeV we find µthermal ≈ 1.2×10−3µ
N

(2.0×10−3µ
N

)
for a dipole ratio of µ

Z
/µ

γ
= − tan θ

W
(µ

Z
/µ

γ
= 0).

Here µ
N

= 0.16 GeV−1 is the nuclear magneton. This
dipole strength corresponds to an annihilation rate into
gamma rays of σ(χχ → γγ) = 2.5 × 10−29 cm3/s
(1.6× 10−28 cm3/s ).

The collision rate in direct detection experiments scales
as nχσχN , thus

RDD ∝ nχµ2
χ =

ρ0

mχ

µ2
thermal

µ2
χ

× µ2
χ =

ρ0

mχ
µ2

thermal, (6)

where ρ0 ≈ 0.4 GeV/cm3 is the local density of a WIMP
comprising all of the dark matter. Such a scaling phe-
nomenon is well known in many WIMP models, that
when s-channel annihilation diagrams are directly linked

1 Since the breaking of hypercharge makes the phenomenology de-
pends in principle on both µγ as well as µZ , this statement as-
sumes the absence of any unexpectedly large difference in scale
between µZ and µγ .
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to t-channel scattering, the lower relic abundance is com-
pensated by the higher scattering cross section (see, e.g.,
[16])2.

A possibly more remarkable scaling is associated with
the γγ and γZ signatures. The cross section for these
processes is proportional to µ4

χ. Thus, the indirect γ-ray
rate scales as

Rγγ ∝ n2
χµ

4
χ =

ρ2
0

m2
χ

µ4
thermal

µ4
χ

× µ4
χ =

ρ2
0

m2
χ

µ4
thermal. (7)

Again, if the WIMP is thermal, the γγ signal is inde-
pendent of the size of the dipole, even if the fraction of
the dark matter is much smaller. There are important
caveats to this, as we shall discuss below, but they do not
change the fact that even for very large dipoles (yielding
under-abundant dark matter) the signals are at the same
level as that of a thermal dominant WIMP3.

However, such a scenario is excluded unless δ = mχ∗−
mχ & 1/2mχv

2 and the direct detection scattering is ei-
ther inelastic (if the excited state is accessible) or not
present (if it is not). Intriguingly, the size of the signals
would be appropriate for DAMA [17] (via the MiDM sce-
nario [9]) and approximately for the recently reported 130
GeV signal, given the astrophysical uncertainties [18–21].

A. Annihilation Rate and Relic Abundance

To understand these points in detail, let us consider
the precise values realized. When the excited state χ∗

is present, the annihilation into Standard Model fermion
pairs through γ/Z dominates. The annihilation cross-
section to leading order in velocity is given by

σ(χχ∗ → ff̄)v = αq2
fµ

2
γ

(
1 + 2vf

µZ

µ
γ

ξ(4m2
χ
) (8)

+ (v2
f + a2

f )
µ2

Z

µ2
γ

ξ2(4m2
χ
)
)
.

Here qf is the fermion’s electric charge, vf (af ) is the
ratio of its vector (axial-vector) coupling to the Z boson
to its electromagnetic coupling, and ξ(s) = s/(s −m2

Z).
In the above expression we took m

χ∗ = m
χ

since it is
only when the mass splitting is not too large that the
heavier state is relevant. The annihilation rates of the

2 We do not consider the implications of a CP violating inelas-
tic electric dipole moment here. Due to a velocity-unsuppressed
dipole-charge scattering (see e.g., [2]), the constraints in [15] con-
strain the dipole µχ . 10−8µN . At these levels the indirect sig-
nals would be negligible, unless the excited state is inaccessible.

3 Once µχ is large enough this scaling ceases because the annihi-
lation to gauge bosons dominates. For 130 GeV this occurs at
µχ & .05µN . At this size, we shall see that collider constraints
would exclude the scenario already.

lighter state into vector-bosons are

σ(χχ∗ → γγ)v =
m4
χ

4π

(
2µ2

γ

m
χ∗

)2
1(

1 +m2
χ
/m2

χ∗

)2 , (9)

σ(χχ∗ → γZ)v = 2
m4
χ

4π

(
2µ2

γ

m
χ∗

2µ2
Z

m
χ∗

)(
1− m2

Z

4m2
χ

)3

(10)

×
(

1 +
m2

Z

4m
χ
m
χ∗

)2

/

(
1 +

2m2
χ
−m2

Z

2m2
χ∗

)2

,

σ(χχ∗ → ZZ)v =
m4
χ

4π

(
2µ2

Z

m
χ∗

)2
(

1− m2
Z

m2
χ

)3/2

(11)

×
(

1 +
m2

Z

2mχmχ∗

)2

/

(
1 +

m2
χ
−m2

Z

m2
χ∗

)2

.

In the case of large mass splittings, we are effectively left
with a single species at freeze-out and its annihilation
into vector-bosons must therefore be sufficiently large so
as to yield σtotv ≈ 3×10−26cm3/s. This implies a rather
large dipole strength which is in tension with collider
searches for mono-photons discussed in section IV.

In the case of intermediate and small mass splittings,
the cosmological history is slightly different and the nec-
essary total annihilation rate is consequently altered.
Since the heavier state decays to the lighter state through
the dipole transition only after freeze-out, we effectively
have two species during freeze-out, each of which can
only annihilate on the other. The relic abundance neces-
sary at freeze-out is therefore only half its usual value4.
This implies that the total annihilation rate is larger
σtotv ≈ 6×10−26cm3/s. Interestingly, since this requires

a dipole strength larger by a factor of
√

2, this leads to an
increase of the annihilation rate into γγ and γZ of factor
by 4.

In two recent papers, Refs. [18, 19] reported on a
tentative gamma ray line in the Fermi/LAT data at
Eγ = 130 GeV, which has recently been confirmed by
Tempel et al. [20] and Su and Finkbeiner [21]. This result
can be accommodated within the MiDM scenario with
a WIMP mass m

χ
= 130 GeV leading to the gamma

ray line at Eγ = 130 GeV through χχ → γγ. It will
generically also result in an additional line of compara-
ble strength at Eγ = m

χ
− m2

Z/4mχ
= 114 GeV from

χχ→ γZ, which is consistent with the data (see also the
discussion in ref. [22])5. In Fig. 1 we plot the annihilation

4 This is true only as long as the heavier state’s lifetime is suffi-
ciently short so that present day DM is entirely composed of the
lighter state. For m

χ∗ − mχ & 100 keV the lifetime is shorter
than about a microsecond.

5 Alternatively, mχ = 144 GeV may give rise to the line at
Eγ = 130 GeV through the annihilation χχ → γZ. In this case
the annihilation to two photons would have to be somewhat sup-
pressed since no feature is observed at Eγ = 144 GeV. Such a
suppression is more natural in the RayDM scenario discussed in
the next section.
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FIG. 1. The total annihilation rate for mχ = m
χ∗ = 130 GeV

to fermion pairs, σ(χχ → γγ) in the MiDM scenario as a
function of the relative strength of the photon dipole to Z
dipole. The dipole itself is normalized to yield the annihilation
rate into γγ (blue band) and γZ (green band). The bands
span the range shown in units of 10−27cm3/s. The red vertical
line shows the relevant ratio of dipoles in the case of MiDM
interaction with hypercharge only.

rate into fermions as a function of the dipole ratio µ
Z
/µ

γ

for a WIMP mass of m
χ

= 130 GeV in the case of small
splitting m

χ
≈ m

χ∗ .
Surprisingly, when the dipole strength is normalized

to yield an annihilation rate into γγ (γZ) in the range
recently reported in refs. [19, 21], 0.3−1.3×10−27cm3/s,
the annihilation rate at freeze-out into ff̄ pairs near
the expected ratio of µ

Z
/µ

γ
= − tan θ

W
is only a fac-

tor of 3 − 7 (5 − 10) larger than the needed value of
6 × 10−26cm3/s. As we shall see in the next subsec-
tion this also yields a rate in direct detection experi-
ments which can be probed with existing experiments
and is surprisingly close to that reported by the DAMA
collaboration for m

χ
−m

χ∗ ≈ 100 keV. Evidently, this
surprising concordance is numerically not perfect, but is
sufficiently interesting given the large astrophysical un-
certainties.

B. Direct Detection of MiDM: Constraining
Cosmic Ray Gammas Underground

A WIMP with a magnetic dipole can scatter against a
nucleus’ own magnetic dipole as well as its charge. In the
case of elastic scattering the current limits from direct de-
tection experiments on a WIMP of mass mχ ≈ 130 GeV

and local mass density of 0.3 GeV/cm3 are at the level of
µX . 6× 10−5µ

N
(see e.g. [15]). This excludes annihila-

tion rates into di-photons at the level of σ(χχ→ γγ)v .
10−34 cm3/s, far below anything we can hope to mea-
sure anytime soon. Thus, current direct detection limits
robustly exclude the possibility of observing gamma ray
lines from magnetic dipoles annihilations independently
of the dipole strength.

A more promising possibility is offered by MiDM [9]
where the WIMP couples via a magnetic dipole to an
excited state χ∗. If the mass splitting is of order the ki-
netic energy of the WIMP in the halo ∆M = m

χ∗−mχ
≈

100 keV then it may undergo inelastic scattering against
the nucleus, but the corresponding rates in direct detec-
tion experiments are much reduced compared to the elas-
tic scattering discussed in the last paragraph. Thus, the
dipole strength can be larger and the annihilation rates
of WIMPs into gamma rays considerably enhanced. This
scenario then offers an interesting connection between
observations in gamma ray lines and direct detection ef-
forts that can be probed with current experiments. In
particular, as discussed in ref. [9] it may explain the sig-
nal claimed by the DAMA collaboration6 [17] for WIMP
masses of mχ ∼ 100 GeV and magnetic dipole strength

in the range µχ = 10−2−10−3µ
N

. Interestingly, for m
χ

=

130 GeV and µχ = 3 × 10−3µ
N

the annihilation rate of
WIMPs into gamma rays is σv(χχ→ γγ) ≈ 10−27cm3/s
which can accommodate the excess recently reported in
ref. [19, 21].

C. Variations on a theme: Model Dependences in
Indirect Signals

As we laid out in eq. 7, the γ-ray line signals should
be independent of the size of the dipole. The question
arises as to how robust the size of the gamma ray signal
will be to changes in the underlying model. Indeed, we
have already seen examples of this: an MiDM model that
only coupled to γ would be a thermal relic with µχ =
µthermal ∼ 2 × 10−3µ

N
, which leads to a γγ signal for a

signal size of 〈σv〉 ' 1.6 × 10−28cm3s−1 (normalized to
the case with Ωχ = ΩDM ). In contrast, in the presence
of a dipole with the hypercharge gauge boson, the needed
dipole for a thermal relic is roughly

√
3 smaller, leading

to an effective signal size of 〈σv〉 ' 2.5 × 10−29cm3s−1.
While the pure γ dipole is close enough to explain the
signal at 130 GeV, a dipole of hypercharge seems too
small except in very cuspy halos. Thus, we should inquire
whether there are any effects that modify this. As it
turns out, there are at least two simple elements without
enlarging the effective theory that can affect this.

The first effect is the presence of form factors. Since
the appropriate dipole scale is µχ & e/ TeV, it should
be resolved near the WIMP mass scale. The anni-
hilation into γγ samples a form factor with spacelike
q2 = −m2

χ, while the annihilation into charged pairs sam-

ples a form factor with timelike q2 = 4m2
χ. (The γZ

6 Recently, the KIMS collaboration has claimed to exclude the pos-
sibility by O(1) at 90% confidence [23]. However, this was a par-
ticular range of energies arising for a specific choice of quenching
factors, both on NaI and CsI. When combined with the absence
of a thorough discussion of energy resolutions (given that sig-
nal may leak into surrounding bins), the MiDM scenario appears
intact, although likely requires O(1) modulation fraction.



5

(a)

χ χ∗
X

X̃

γ

(b)

χ χ
X

X̃

γ γ

FIG. 2. (left) Loop diagram contributing to dipole operator for MiDM model. (right) Comparable diagram contributing the
Rayleigh operator.

signal samples form factors with q2 = ±(m2
χ − m2

z/2).)
If the form factor is being resolved at these momen-
tum transfers, then treating it as a contact interaction
is clearly wrong. Since q2 for the s-channel diagram
is four times larger than the t-channel, it is reason-
able that it could pick up a larger suppression factor.
In this case the dipole would have to be increased by
µ2
χ = µ2

thermal/F
2(4m2

χ). The resulting signal in γγ

would be increased by (F 2(−m2
χ)/F 2(4m2

χ))2. We note
that in this case, if the scale Λ of new physics is not
much higher than mχ, the Rayleigh operator we discuss
in section III may be generated as well, which could con-
structively interfere, enhancing the γγ rate.

It is worth dwelling on this last point for a mo-
ment. Generally, we should in fact expect the presence
of the Rayleigh operator whenever the dipole operator is
present. If the dipole is generated by a loop process as
shown in Fig. 2a then assuming a coupling λχXX̃, the
natural size for the dipole operator is

gY
λ2

16π2

1

MX
. (12)

By attaching a second external photon, the Rayleigh op-
erator is also generated through the diagram shown in
Fig. 2b with a natural size

g2
Y

λ2

16π2

1

M3
X

. (13)

Thus, annihilation to γγ through the RayDM process is a
one-loop process, while annihilation through the MiDM2

process is effectively two-loop. Thus RayDM annihilation
is relatively enhanced over MiDM2 by a factor of(

λ2

16π2

)−2 m2
χ

M2
X

. (14)

Even for mχ ∼ MX , if the theory is at all perturba-
tive, the Rayleigh contribution should dominate. If the
Rayleigh contribution to the amplitude is even a few
times larger than the MiDM2 contribution, the size of
the signal should be easily large enough to explain the
130 GeV signal. Thus, not only is it reasonable to believe

that the Rayleigh operator could contribute, it should be
a likely expectation.

A second possibility is the presence of CP violation.
While both CP-conserving magnetic and CP-violating
electric dipole moments produce s-wave γγ signals, only
the s-channel diagram via a magnetic dipole yields an
s-wave annihilation to charged fermions [15]. Thus,
with EDMs one can increase the present day γγ sig-
nal while producing only a p-wave suppressed annihila-
tion at freezeout into ff̄ . With only EDMs, assuming
a freezeout at T ≈ m

χ
/20, the annihilation into gauge

bosons dominates, and one has a signal cross section of
≈ 6 × 10−26 cm3s−1 (as it is a Dirac fermion at freeze-
out), exceeding the Fermi limits. Thus, while pure EDM
is excluded, a combination of EDM and MDM could pro-
duce the signal consistent with constraints. However, as
we have stated, in the presence of such a large EDM, the
direct detection limits would have excluded it unless the
excited state is completely inaccessible. So while the first
possibility still offer the prospect of discovery at upcom-
ing direct detection experiments, this second case seems
unlikely to be found underground.

III. RayDM

A. Searching for RayDM in Gamma Rays

The non-relativistic annihilation cross-section of
RayDM into the different electroweak vector-bosons is
sensitive only to the axial χ̄γ5χ components to leading
order in the velocity expansion. The differential cross-
section is given by

σ(χχ→ V V )v =
g2
V V

4π

m4
χ

Λ6
R

K
V V
, (15)
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with the kinematic functions K
V V

and couplings g
V V

de-
fined as

Kγγ = 1, gγγ = c
χ
c
W

2 + s
χ
s
W

2, (16)

KγZ = 2

(
1− m2

Z

4m2
χ

)3

, gγZ = (s
χ
− c

χ
)s

W
c
W
, (17)

K
ZZ

=

(
1− m2

Z

m2
χ

)3/2

, g
ZZ

= c
χ
s
W

2 + s
χ
c
W

2, (18)

K
WW

= 2

(
1− m2

W

m2
χ

)3/2

, g
WW

= sχ . (19)

Here c
χ

= cos θ
χ

and s
χ

= sin θ
χ

and c
W

and s
W

are
similarly defined with respect to the Weinberg angles.
When m

χ
is not too much smaller than Λ

R
we expect

some form-factor suppression to soften the behavior of
this cross-section.

In Fig. 3 we plot the annihilation cross-section of
χχ→ γγ as a function of the WIMP mass for several val-
ues of cos θ

χ
, the relative coupling to the field-strengths

in Eq. (3). Requiring the right relic abundance, which for
a Majorana fermion is obtained when the total annihila-
tion cross-section at freeze-out is 3×10−26cm3/s, we can
normalize the Rayleigh scale Λ

R
. For m

χ
= 130 GeV

this results in Λ
R

= 440 GeV (Λ
R

= 490 GeV) in the
case of cos θ

χ
= 1 (cos θ

χ
= 0). For a Dirac fermion

the necessary annihilation cross-section is 6×10−26cm3/s
and the Rayleigh scale is correspondingly a factor of 21/6

smaller. The resulting gamma rays are monochromatic
with Eγ = m

χ
. To qualitatively understand these re-

sults, we consider the limit where the WIMP mass is
much heavier than the vector-bosons’s. Then the expres-
sion for the total cross-section is particularly simple and
by equating it to the required cross-section from relic
abundance we can solve for Λ

R
in terms of the WIMP

mass and the angle θχ ,∑
V V ′

σ(χχ→ V V ′)v = 3× 10−26cm3/s (20)

⇒ Λ
R

= 600 GeV
( mχ

200 GeV

)2/3

(2− cos 2θ
χ
)

1
6 .

With this value of the Rayleigh scale the annihilation
rates into γγ and γZ are

σ(χχ→ γγ)v

3× 10−26cm3s−1
=

(
cW

2cχ + sW
2sχ
)2

2− cos 2θ
χ

(
Λth
R

Λ
R

)6

,(21)

1
2σ(χχ→ γZ)v

3× 10−26cm3s−1
=

c
W

2s
W

2(c
χ
− s

χ
)2

2− cos 2θχ

(
Λth
R

Λ
R

)6

.(22)

Here Λth
R

is the value of the Rayleigh scale that leads to
the correct relic abundance. As can be expected when the
Rayleigh operator is mostly associated with hypercharge
the total cross-section is very close to the cross-section
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0.1
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Γ
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27
cm

3 �s
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FIG. 3. The annihilation rate of WIMPs to di-photons,
σ(χχ→ γγ), as a function of the angle θχ for different choices
of the WIMP mass. For each mass choice the Rayleigh scale
ΛR is chosen so that the total annihilation cross-section yields
the correct relic abundance. Shown are mχ = 100 GeV (solid-
black), mχ = 130 GeV (dashed-red). The dotted-blue curve
depicts the asymptotic formula Eq. (21) which is independent
of mass.

for annihilation into a photon pair σtot ≈ σ(χχ → γγ),
which would result in too large a signal7. When the
Rayleigh operator is mostly associated with the non-
abelian SU

W
(2) part, the annihilation into photons is

suppressed compared with the total cross-section due
to the Weinberg angle and the χχ → W+W− channel.
More quantitatively, in the pure SU

W
(2) case, σgg/σtot ≈

1/28 and 1/2× σγZ/σtot ≈ 1/12. The photon-to-hadron
ratio (σγγ + 1/2σγZ)/(σtot − σγγ − 1/2σγZ) ≈ 1/7.6. In
the case of hypercharge RayDM the equivalent numbers
are σgg/σtot ≈ 1/1.4, 1/2×σγZ/σtot ≈ 1/7. The photon-
to-hadron ratio is ≈ 5, so no significant hadronic emission
is present in this case.

An additional process contributing to monochromatic
gamma ray signal is of course χχ → γZ with a lower
energy of Eγ = m

χ
− m2

Z/4mχ
. In Fig. 4 we plot the

annihilation rate associated with this channel as well as
its ratio to the di-photon rate. Depending on the DM
halo profile and the angle cos θ

χ
, both the γγ and γZ

rates are in the interesting range reported in ref. [19],
3 × 10−28 − 2 × 10−27cm3/s. This points to a fairly low
Rayleigh scale of Λ

R
≈ 500 GeV.

One might worry about the validity of this picture
given that the Rayleigh scale is rather low. We come back
to this point in section IV where this issue is particularly
important, however, for the purpose of non-relativistic
annihilation it is only necessary for the Rayleigh scale
to be somewhat larger than the WIMP mass. Never-
theless, since the WIMP mass is not much lower than
the Rayleigh scale, it may be appropriate to include a

7 Although, as we discuss in the conclusions, a subdominant DM
component would plausibly give the right signal.
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FIG. 4. The top pane is similar to Fig. 3 above, but for half
the annihilation rate into a photon and a Z boson, 1

2
σ(χχ→

γZ). In the bottom pane we plot the ratio of the annihilation
rate into γZ to that into γγ for mχ = 130 GeV as a function
of the angle θχ .

form-factor. Thinking about RayDM as MiDM2 allows
to resolve the 4-point interaction with the exchange of
the excited state χ∗. Consulting the corresponding an-
nihilation rates in MiDM, eqs. (9-11) we see for example
that the process χχ → γγ is diminished by a factor of
(1 +m2

χ
/m2

χ∗
)−2.

B. Direct Detection of RayDM

The scattering of RayDM against matter is compli-
cated by the fact that at least two force mediators have
to be exchanged. The exchange of two photons leads to
the least amount of suppression and so we concentrate
on this case and consider the Lagrangian

L =
gγγ
4Λ3

R

χ̄χ FµνF
µν . (23)

Two distinct processes are possible: χN → χN elastic
scattering through the loop shown in Fig. 5; χN → χN+
γ tree-level scattering. The latter channel is extremely
suppressed due to phase-space. The total cross-section
for the elastic channel was previously calculated in the
thorough work of ref. [2] in the approximation that the
nucleus is much heavier than the WIMP by considering

l + q/2 −l + q/2

P = p + l + q/2

p p′

k k′

FIG. 5. Elastic scattering of RayDM against the nucleus
through two photons exchange.

the scattering of the WIMP off the external electric field
generated by the nucleus. In appendix A we provide a
different derivation which leads to a more exact result
that is valid when the WIMP mass cannot be neglected
relative to that of the nucleus. At leading order in the
velocity expansion the amplitude for this process is given
by

iM =
iαZ2gγγ

4

Q0

Λ3
R

F
(
|q|2
Q2

0

)
ū(k′)u(k) ū(p′)u(p), (24)

where Z is the nucleus charge, α = 137−1 is the fine-
structure constant, Q0 is the nuclear coherence scale,
and the momentum transfer is related to the relative ve-
locity between the WIMP and the nucleus and the an-
gle of scattering θ in the centre of mass frame through
|q|2 = 2µ2v2(1 − cos θ). The function F(x) decreases
exponentially for high momentum transfers and is of or-
der unity near the origin, F(0) = 2/

√
π. The spin-

independent differential cross-section in the centre of
mass frame is then,

dσ

d cos θ
=
µ2
χN

2π

∣∣∣∣∣αZ2gγγ
4

Q0

Λ3
R

F
(
|q|2
Q2

0

)∣∣∣∣∣
2

. (25)

Here µχN is the nucleus-WIMP reduced mass. To a good
approximation we can use F

(∣∣q2
∣∣ /Q2

0

)
≈ F(0) and so

the total spin-independent cross-section per nucleon is
given by

σSI
p ≈

α2Z4g2
γγ

4π2A4

m2
N
Q2

0

Λ6
R

, (26)

where A is the nucleon number. This is an ex-
tremely small cross-section for an electroweak scale
WIMP. For example, taking the nuclear coherence scale

Q0 =
√

6
(
0.3 + 0.89A1/3

)−1
, the Rayleigh scale Λ

R
=

500 GeV, and setting gγγ = 1 yields σSI
p ≈ 10−49 cm2

for scattering on xenon. If the Rayleigh scale is consid-
erably lower, Λ

R
. 100 GeV then the scattering rates
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become appreciable. That requires much lighter WIMPs
than what we set to explore in this work and we leave it
for a future study to elucidate the prospects associated
with this part of parameter space.

IV. COLLIDER PHENOMENOLOGY

In MiDM, the production mode in colliders is simply
ff̄ → χχ∗ followed by the prompt decay of the heavier
state to a photon or a Z boson, as shown in Fig. 7(a). As
we emphasized throughout this paper, the phenomenol-
ogy of MiDM depends crucially on the mass difference
between the WIMP χ and the heavier state χ∗ and its
collider phenomenology is no exception. When the mass
splitting is small searching for MiDM in collider pro-
ceeds in the same fashion as searching for other WIMPs,
namely by looking for mono-jet or mono-photon events
from an unbalanced initial state radiation (see for ex-
ample the excellent recent works of [24–26]). When the
mass splitting is large the collider signatures of MiDM
are more similar to that of RayDM.

In RayDM, since the coupling to WIMPs requires at
least two vector-bosons, the collider signatures are some-
what different than usual. There are two different pro-
cesses that may be searched for: ff̄ → ff̄χχ through a
vector-boson or photon fusion; and ff̄ → χχV , through
an intermediate vector-boson, where V = γ,Z, or W±.
This last process, shown in Fig. 7(b), enjoys a larger
cross-section and results in the production of a photon
or an electroweak vector-boson in association with large
missing energy. We therefore concentrate on this pos-
sibility below. We begin by discussing the MiDM sce-
nario, followed by RayDM, and finally discuss the actual
constraints. General formulas for the differential cross-
sections in the different cases are given in appendix C.

A. MiDM

In MiDM the dominant mode is the production of
the heavier state in association with the WIMP through
ff̄ → γ/Z → χχ∗. After production, the heavier state
subsequently decays to the WIMP through the emission
of a photon or a vector-boson as shown in Fig. 7(a).
The differential cross-section for this process is given in
Eq. (C-8) in the appendix.

When the splitting between the excited state and the
ground state is much smaller than the mass ∆M � mχ

the resulting photon or vector-boson is too soft to be
searched for directly. Ref. [27] proposed some interesting
ideas for looking for iDM in colliders when the mass split-
ting is in the GeV range and the heavier state decays into
pions. More generally and without reliance on such spe-
cialized techniques, the collider phenomenology in this
case is identical to the usual case of WIMP pair produc-
tion, but through a dipole operator. It can be searched
for in a general way by tagging on initial state radia-

tion. This was nicely worked out in ref. [15] for mono-jet
searches in the case of degenerate states (m

χ∗ = m
χ
) for

both magnetic as well as electric dipoles. When the split-
ting is of order the mass and larger, the emitted photon or
vector-boson may be sufficiently energetic to be searched
for directly. This can be searched for without reliance
on initial state radiation hence enjoying a larger cross-
section. In this case collider searches for mono-photons
place strong constraints on this scenario as discussed be-
low in the final part of this section.

In Fig. 6 we plot the production cross-section for
MiDM as a function of the WIMP mass for several choices
of the parameters and the mass splittings. We recall that
in the case of small splitting where the relic abundance
is determined by the annihilation into fermions the γγ
signal is independent of the dipole strength whereas the
collider cross-section scales as the square of the dipole.
Thus, the cross-section shown in Fig. 6 should be in-
terpreted as the minimal cross-sections when the dipole
strength is normalized to yield the correct relic abun-
dance, µ = µthermal. For the same reason, the ratio
σ(pp→γ/Z→χχ∗)2

σv(χχ→γγ) is independent of the dipole strength for

a given mass and choice of µ
Z
/µ

γ
. It is given in Table I

and allows for a straightforward comparison between the
rates in astrophysical processes and the cross-sections in
colliders.

µZ/µγ = − tan θW µZ/µγ = cot θW

(mχ ,∆M)

(130 GeV, 0) (28 fb)2

10−28 cm3s−1
(0.4 pb)2

10−28 cm3s−1

(130 GeV, 100 GeV) (16 fb)2

10−28 cm3s−1
(0.2 pb)2

10−27 cm3s−1

(300 GeV, 0) (1.6 fb)2

10−28 cm3s−1
(23 fb)2

10−28 cm3s−1

(300 GeV, 100 GeV) (1.1 fb)2

10−28 cm3s−1
(15 fb)2

10−28 cm3s−1

TABLE I. For a given WIMP mass mχ and splitting ∆M =

m
χ∗ − mχ the ratio

σ(pp→γ/Z→χχ∗)2

σv(χχ→γγ) is independent of the

dipole strength and is displayed in this table for several
choices of the masses and couplings. The production cross-
section is calculated at leading order for the LHC with

√
s =

7 TeV.

B. RayDM

Collider searches for dark matter are inevitably tied
up in the embedding of dark matter into a complete the-
ory and RayDM is no exception. In this subsection we
discuss the possibility of directly producing WIMPs in
colliders in the RayDM scenario. As we shall see, the phe-
nomenology is sensitive to the UV physics that resolves
the Rayleigh operator and as a result is more model de-
pendent. This is in contrast to the phenomenology asso-
ciated with direct and indirect detection efforts discussed
in the previous sections which is insensitive to the details
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FIG. 6. Minimal production cross-section for MiDM, pp →
χχ∗, through γ/Z in the s-channel against the mass of the
WIMP. The lower (black) curves show the case of small
splitting mχ ≈ m

χ∗ for two choices of the dipoles’ ratio
µZ/µγ = − tan θW (solid) and µZ/µ = 0 (dotted). The
dipole strengths in this case are normalized to yield the cor-
rect relic abundance when the annihilation is dominantly into
fermion pairs, Eq. (8). While the γγ signal remains invari-
ant as the dipole strength increases, the collider cross-section
will increase as µ2

γ
. The upper blue curve depicts the case

when the mass splitting is large m
χ∗ − mχ = 100 GeV for

µZ/µγ = − tan θW . The dipole strength is normalized to yield
the correct relic abundance when the annihilation is domi-
nantly into vector-boson pairs, Eqs. (9-11).

of the UV physics. It is important to keep this contrast in
mind when considering the impact of collider constraints
on the previous sections (this issue also arises in other
models of DM, see [28] and references therein for some
related discussion).

In the case of RayDM, the differential cross-section for
ff̄ → χ̄χγ at center of mass energy

√
s � m

χ
through

an intermediate γ/Z is given by

1

σtot

dσ

dpT
=

20 pT
s

(
1− 4 p2

T

s

)3/2

, (27)

where pT is the transverse momentum of the photon in
the center-of-mass frame, and

σtot

(
ff̄ → χ̄χγ

)
=

α q2
f

3840π2

s2

Λ6
R

(28)

×
(
g2
γγ + 2gγγgγZvfξ(s) + g2

γZ(v2
f + a2

f )ξ2(s)
)
.

Here qf is the fermion’s electric charge, vf (af ) is the
ratio of its vector (axial-vector) coupling the Z boson to
its electromagnetic coupling, and ξ(s) = s/(s−m2

Z). We
note that the transverse momentum distribution is such
that most photons are fairly central, which is important
for the mono-photon searches. Similar relations can be
obtained for the production cross-section for ff̄ → χ̄χW .
In the limit where the WIMP mass and the W-boson
mass are both much smaller than the incoming center of
mass energy an identical distribution in pT results. This

motivates mono-W searches, looking for the final state
W± produced in association with the invisible χχ pair.

At LEP for example, where
√
s ≈ 200 GeV, one ob-

tains σtot ≈ 7 × 10−3 fb (500 GeV/Λ
R

)
6

for θ
χ

= 0.
This cross-section is much too low unless the Rayleigh
scale is brought down considerably. This is in good qual-
itative agreement with the very thorough investigation of
ref. [29] where bounds on unparticle production at LEP
were presented8.

At Tevatron and LHC, one must convolve the above ex-
pressions against the parton luminosity functions. The
resulting cross-section is larger, but for those values of
the Rayleigh scale where the cross-section is sufficiently
large to be interesting the theory requires a UV com-
pletion. One possible UV completion of RayDM is of
course MiDM in the case when the mass splitting is very
large. Integrating out the excited state χ∗ one recovers
the RayDM interactions. So schematically

MiDM2
m
χ∗�E

−−−−−−−→ RayDM. (29)

In this case the Rayleigh scale Λ
R

is connected with the
magnetic dipole µχ through Λ3

R
= m

χ∗/2µ
2
χ and one can

easily translate the results for MiDM in the previous sub-
section to the case of RayDM.

Another possible UV completion involves a scalar s and
a pseudoscalar a, which couple directly to the WIMP as
well as to the field-strengths of UY(1) and SU

W
(2). We

parametrize this theory with

L = 1
2∂µs∂

µs− 1
2m

2
ss

2 + 1
2∂µa∂

µa− 1
2m

2
aa

2 (30)

+ sχ̄χ+ aχ̄γ5χ+
cos θχ
4Λ

UV

sBµνB
µν +

cos θχ
4Λ

UV

aBµνB̃
µν

+
sin θ

χ

4ΛUV

sTrWµνW
µν +

sin θ
χ

4ΛUV

aTrWµνW̃
µν .

Here we have taken the Yukawa couplings of the scalars
to the WIMP to be order unity and used Λ

UV
to de-

note the scale of the dimension-5 operators. Integrating
out the scalars, s and a we generate the different op-
erators of RayDM. When the scalars are light enough
to be produced in colliders the dominant process shown
in Fig. 7(c) is ff̄ → V s(a) followed by the decay of s
(a) to a WIMP pair. We note that this example in fact
results in a more general version of RayDM where the
relative coupling of the scalar χ̄χ and pseudoscalar χ̄γ5χ
to the field strengths is arbitrary. This is important in
the case of comparing direct detection rates (which are
sensitive to the scalar piece) to indirect detection rates

8 The Rayleigh operator has scaling dimension of ∆ = 3 in the
notation of ref. [29], which was not considered by the authors
for good reasons. For ∆ = 2 they find that the unparticle scale
can be as low as 190 GeV. Attempting to extrapolate to ∆ = 3
is not very useful since the energy available is greater than the
cut-off scale and some UV completion is needed to resolve the
non-renormalizable Rayleigh operator.
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FIG. 7. The production of WIMPs at colliders is shown in
Fig. 7(b) for the RayDM scenario. When the Rayleigh scale
is comparable or lower than the energies involved in the colli-
sion, the Rayleigh operator must be resolved. In Fig. 7(a) we
show the corresponding process in the case where RayDM is
the result of integrating out a heavy excited state in MiDM.
In Fig. 7(c) we show the the process in the case where the
Rayleigh operator is resolved in terms of a new scalar. More
details on the UV completions are provided in the text.

(which are sensitive to the pseudoscalar piece). This dis-
tinction does not play an important role for the purpose
of collider phenomenology [24–26].

In this case, the distribution of the transverse momen-
tum of the photon in the center of mass frame is given
by

1

σtot

dσ

dpT
=

3 pT
s

(
(1− m2

s

s )2 +
2p2T
s

)
(

1− m2
s

s

)3
√

(1− m2
s

s )2 − 4p2T
s

.(31)

We note that this function is strongly peaked towards

the kinematical limit p
(max)
T =

√
s

2

(
1−m2

s/s
)
. This is

in sharp contrast to typical mono-photon signatures of
dark matter production where the photon originates from
initial state radiation and hence its pT is dominantly soft.
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FIG. 8. A plot of the production cross-section for the heavy
scalars in association with a photon, pp → γs(a) against the
annihilation rate of WIMPs to two photons. The mass of
the scalar is allowed to vary between 2mχ and ΛUV. The
cut-off scale is set to ΛUV = TeV, but since both the pro-
duction cross-section as well as the annihilation rate scale as
Λ−2

UV any other choice can be obtained with a simple rescal-
ing. The solid (dashed) curves correspond to mχ = 130 GeV
(mχ = 300 GeV) whereas the blue (black) curves correspond
to cos θχ = 1 (cos θχ = 0).

Here the total cross-section is given by

σtot

(
ff̄ → χ̄χγ

)
=

α q2
f

24Λ2
UV

(
1− m2

s

s

)3

(32)

×
(
g2
γγ + 2gγγgγZvfξ(s) + g2

γZ(v2
f + af )2ξ2(s)

)
.

The couplings and the function ξ(s) are defined after

Eq. (28) above. Similar expressions hold for the axial
scalar a. In Fig. 8 we plot the production cross-section
of a photon in association with one of the scalars against
the annihilation rate of WIMP into two photons.

C. Limits from Colliders

Limits on RayDM from colliders come primarily from
either mono-jet or mono-photon searches. In the case
of MiDM with a small splitting the production in col-
liders is observable only through the emission of a gluon
or photon from the initial state partons. Thus the most
constraining limits on this scenario come from mono-jet
searches. The most recent search from CMS [30] place a
limit of a few pb in the range m

χ
. 103 GeV (see Fig. 9).

This is not quite sufficient to exclude the interesting pro-
duction cross-sections in the MiDM scenario (see Fig. 6),
but it comes close. Consulting Tbl. I we see for example
that in the case of hypercharge dominated interactions
and WIMP mass of m

χ
∼ 100 GeV monojet searches at

the LHC can begin probing annihilation rates into di-
photons of the order of 10−26 − 10−27 cm3/s.
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FIG. 9. A plot of the collider constraints on the produc-
tion cross-section of a WIMP pair coming from CMS mono-
jet search [30] (solid-red) and CMS mono-photon search [31]
(dashed-red). The constraints from CDF monojet search [32]
are only slightly weaker compared with the CMS results. In
solid black we plot the expected production cross-section in
the case of MiDM with a small mass splitting and with a
dipole strength ten times larger than µthermal.

On the other hand, when the splitting is large (∆M &
100 GeV) the photon emitted from the excited state’s
decay is hard enough to be searched for directly. In that
case the relevant limits are the limits on σ(pp → /Eγ)
coming from mono-photon searches. These are much
more constraining and are at the level of σ(pp→ χχγ) .
14 fb for a WIMP mass below the TeV range [31]. As can
be seen from Fig. 6 this bound all but excludes MiDM
with large splittings. In the case of heavy scalar produc-
tion in association with a photon one can again compare
the production rate directly to the limits on σ(pp→ /Eγ)
since the resulting photon is hard. Since the production
cross-section in the case of scalars is generically lower
(see Fig. 8) the current constraints are not quite strong
enough to exclude this scenario, but they are now probing
the most interesting parts of parameter space.

V. CONCLUSIONS

The effective theory describing the interactions of a
Majorana WIMP with photons is of critical importance,
given that our best indirect detection searches come
through monoenergetic γ-ray lines, and direct detection
is clearly sensitive to scattering through a photon ex-
change. Interestingly, this effective theory is quite re-
stricted: in the presence of a nearby excited state, there
is the possibility of an interaction with electromagnetism
via a dipole transition to the excited state (or Magnetic
Inelastic Dark Matter or MiDM); in the absence of a
nearby state, the leading operator comes in the form
χχWµνW

µν or χχBµνB
µν or its the pseudoscalar and

CP violating equivalents. These two scenarios have re-
lated, but distinct phenomenology.

Remarkably, in the case of MiDM both the size of the
signal in direct detection and γγ+γZ signatures are in-
dependent of the size of the dipole, with the relic abun-
dance suppression precisely canceling out against the en-
hanced scattering and annihilation cross sections. This
offers a surprising concordance whereby the annihilation
rates into γγ is in the range to explain the tentative ex-
cess in gamma rays at around 130 GeV and possibly ex-
plain the DAMA annual modulation. MiDM predicts a
secondary line at around 114 GeV from γZ with a rel-
ative rate of about 1 : 3 compared with the γγ line at
130. Fermi should be able to test the γ ray signature
and, for small mass splitting m

χ∗ −mχ
≈ 100 keV, the

MiDM scenario also predicts collision rates with nuclei
that can now be tested at direct detection experiments.
The production rates in colliders are below the current
sensitivity of the LHC for thermal cross sections, but can
exclude some regions of parameter space where this par-
ticle constitutes only a fraction of the total dark matter.
The case of the thermal WIMP constituting all of the
dark matter should be observable in the near future. We
showed that given the scaling of the different quantities
involved, the concordance is in fact independent of the
dipole strength and is maintained even with an increased
dipole strength where MiDM forms only a fraction of the
total DM. Model-dependent corrections outside of the ef-
fective theory can change this result, however. Moreover,
constraints from colliders place an ultimate limit on such
an increase in the dipole to be no more than O(10).

In the case of RayDM it is also possible to simultane-
ously achieve the right relic abundance as well as rates in
the range now explored by gamma ray observations. But,
in contrast with MiDM, it favors stronger coupling to the
SU

W
(2) vector-bosons than to hypercharge. If RayDm is

describing only the interactions with photons, however,
and freezes out through some other channel, coupling to
hypercharge alone gives a good description of the data.
RayDM predicts a ratio of γZ to γγ of 1 : 5 when cou-
pling to hypercharge dominates, or about 5 : 2 in the
more likely case of dominant coupling to SU

W
(2). Un-

fortunately, the direct detection prospects in this case
are gloomy as the collision rates with nuclei due to two
photon exchange are much too small. In contrast, this
scenario offers interesting phenomenology in colliders in-
cluding mono-photon, mono-Z, and mono-W signatures
with rates that can now be probed at the LHC.

There are a few interesting variations on the scenar-
ios we have discussed. A particularly natural scenario is
MiDM+RayDM, where the γγ signal is naturally boosted
in an MiDM model by the presence of an additional hy-
percharge Rayleigh operator. Such an operator is gen-
erally present and would be expected to often dominate
the γγ signal from these models.

An alternative possibility is that some amount of
hypercharge-dominated RayDM is just a subdominant
component of the dark matter. Since the density scales
as ρ ∼ 〈σv〉−1

ann, the overall rate scales as ρ2〈σv〉ann ∼
〈σv〉−1

ann. Thus, rather than having all dark matter
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annihilate to γγ with a cross section 〈σv〉ann ∼ 3 ×
10−27cm3s−1, we could have a cross section ∼ 10 ×
〈σv〉thermal and yield the claimed γγ signal from a sub-
dominant component of dark matter.

While a number of opportunities exist to distinguish
the MiDM scenario from a RayDM scenario, there is
another important difference: in RayDM, in particular
when the dominant operator is χχWµνW

µν , there is a
sizable hadronic annihilation channel (via W ’s and Z’s)
compared to γγ. In contrast, for MiDM, the ff̄ channel
is not present in the late universe as it is only present for
χ∗χ annihilations rather than χχ. Limits on the contin-
uum photon emissions such as those from dwarf galaxies
[33, 34] or the galactic center [35–37] could potentially
distinguish these scenarios.

Ultimately, if a Majorana dark matter interacts signif-
icantly with light, there are a number of conclusions that

can be drawn right away. While direct detection signals
require a nearby state, collider signatures do not. The
era of data - approaching dark matter with direct, in-
direct and collider experiments, may be on the verge of
revealing its nature.
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Appendix A: Elastic Scattering due to two photons exchange

In this appendix we derive the amplitude for the elastic scattering of the WIMP on the nucleus due to two photons
exchange, Eq. (24). We begin by noting that there are several separate scales in the problem: Λ

R
, the high scale

associated with the Rayleigh operator; m
N

, and mχ , the masses of the nucleus and the WIMP, respectively; q2,

the momentum exchange, approximately 100 MeV; R
N

, the nuclear coherence size approximately 100 MeV; q0, ER,
µv2 - the kinetic energies involved, approximately 10 keV. By itself this diagram is logarithmically divergent, but
inclusion of the charge form-factor provides a natural cut-off at a momentum scale around R−1

N
. Therefore, the

momenta running in the loop are non-relativistic and we evaluate this diagram using known techniques from heavy
quark effective theory [38]. In appendix B we show that using this technique one can recover the results obtained in
ref. [39] where the second order Born cross-section was used to calculate the elastic channel of usual iDM [40]. We
begin by writing the momentum of the intermediate nucleus in the usual velocity expansion,

P = m
N
v + P̃ , (A-1)

where v = (1, ~v) is the 4-velocity of the nucleus. The propagator for the nucleus can be approximated as,

/P +m
N

P 2 −m2
N

≈ 1

P̃ · v + i0

1 + /v

2
, (A-2)

where (1+/v)/2 is the projector onto the two large components of the 4-spinor9. The projector causes the QED vertex
of the nucleus to simplify to iZevµ instead of the usual iZeγµ. This embodies the fact that in the non-relativistic
limit, the polarization of charged particles does not change under the exchange of a photon. Given the above, the
amplitude associated with this diagram at leading order in the velocity is given by

iM =
(
ū(k′) u(k)

)
Iµν(q2)

(
ū(p′) Γµν(v) u(p)

)
, (A-4)

with

Γµν(v) =

(
vµ2

(
1 + /v

2

)
vν2
)
, (A-5)

and

Iµ2ν2(q2) =
e2Z2gγγ

Λ3
R

∫
d4l

(2π)4

( −gµ1µ2

(l + q/2)2

)( −gν1ν2
(−l + q/2)2

)
×
((
−l2 + q2/4

)
gµ1ν1 − (l + q/2)µ1(−l + q/2)ν1

)
× 1

(p̃+ l + q/2) · v + i0
. (A-6)

9 In the diagram above, P = p + l + q/2 and since P̃ ∼ l ∼ q we
can write,

/p+ /l + /q/2 +mN

(p+ l + q/2)2 −m2
N

≈
1

(p+ l + q/2) · v + i0

1 + /v

2
(A-3)
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Here Iµ2ν2(q2) has dimensions of inverse mass square. Since we are interested only in the leading order in the velocity
only the time-like indices are important and we obtain

I00(q2) =
e2Z2gγγ

Λ3
R

∫
d4l

(2π)4

l2 − q2/4

D
× F

(∣∣∣l +
q

2

∣∣∣)F(
(∣∣∣−l +

q

2

∣∣∣) . (A-7)

Here, bold face letters denote 3-vectors, and we included the charge form-factor F(|q|) by hand. The denominator is

D = (l + q/2)2(−l + q/2)2(p̃0 + l0 + q0/2 + i0). (A-8)

In order to allow for exact evaluation of this integral we choose to work with the Helm form-factor, which is a function
of the momentum exchange q

F (|q|) = e−q
2/Q2

0 . (A-9)

Here Q0 =
√

6R−1
N

, and the nuclear radius is (see for example the excellent review by Salati [41])

R
N

= fm×
(

0.3 + 0.89A1/3
)
. (A-10)

Neglecting the overall constant in front, the integral of Eq. (A-7) can now be written as

I
00

(q2) ∝
∫

d4l

(2π)4

l2 − q2/4

D
× exp

(
− l2 + q2/4

Q2
0

)
. (A-11)

The denominator D, given in Eq. (A-8), is a factor of several separate propagators that can be combined together
using the usual Feynman parameter together with an HQET parameter with the dimensions of energy

1

D
=

∫ 1

0

dx

∫ ∞
0

dE 2

(E (p̃0
2 + l0 + q0/2) + l2 + q2/4 + (1− 2x)l · q + iε)

3 . (A-12)

Shifting the momentum variable lµ → lµ + 1
2 ((1− 2x)qµ + Eg0µ) we can write the integral as∫

dxdE d3l

(2π)3

∫
dl0

2π

N

((l0)2 −∆ + iε)
3 exp

(
− l2 − (1− 2x)l · q + (2− 4x+ 4x2)q2/4

Q2
0

)
,

where

N = 2
(
l2 − (1− 2x)l · q + x(x− 1)q2

)
, (A-13)

∆ = l2 +
E2

4
+ x(x− 1)q2 − E

(
p̃0

2 + xq0
)
. (A-14)

The mixing term in ∆ can be neglected as it is always much smaller than the other two terms. Either way, the integral
over l0 can be done exactly and yields ∫ ∞

−∞

dl0

2π

1

((l0)2 −∆ + iε)
3 = − 3i

16∆5/2
. (A-15)

The dependence of the form-factor on l ·q = |l||q| cos θ causes the integration over d3l to be slightly more complicated
than usual. We proceed by first doing the integral over cos θ followed by the integral over the dimensional Feynman
parameter E . We are left with two integrals, one over the Feynman parameter x and the other over the radial
component of the spatial momentum |l|. Defining the dimensionless variables l̃ = |l| /Q0 and q̃ = |q| /Q0 we arrive at
the result quoted in the text in Eq. (24)

iM =
iαZ2gγγ

4

Q0

Λ3
R

F
(∣∣q2

∣∣
Q2

0

)
ū(k′)u(k) ū(p′)u(p), (A-16)

where,

F (q̃) =
4

π

∫ 1

0

dx

∫ ∞
0

dl̃
l̃2

(l̃2 + (1− x)xq̃2)2
× exp

(
−l̃2 − q̃2( 1

2 − x+ x2)
)

(A-17)

×
(

cosh
(

(1− 2x)l̃q̃
)
− l̃2 − (1− x)xq̃2 + 1

(1− 2x)l̃q̃
sin
(

(1− 2x)l̃q̃
))

.
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Appendix B: Derivation of the elastic channel of iDM using HQET

The inelastic Dark Matter scenario of Ref. [40] involves a dark matter state χ that interacts with normal matter
only through a transition involving an excited state χ∗ separated in mass by ∆M . Ref. [39] considered the particular
case where the interaction with the SM is through a new massive U’(1) vector-boson that kinetically mixes with
hypercharge, a Holdom boson [42]. They computed for the first time the contribution to the elastic channel from the
second-order diagram shown in Fig. 10 in the case where the mass splitting is much larger than the kinetic energy
available, ∆M & MeV. In what follows, we reproduce this result using the HQET methods discussed in the text and
appendix A. For simplicity we ignore the charge form-factor.

Writing the four-momentum of the WIMP as k = m
χ
u+ k̃ with u = (1, ~u) being the 4-velocity, we can express the

momentum of the excited state as,

K = k − l − q/2 = m
χ
u+ k̃ − l − q/2. (B-1)

Since the mass splitting, ∆M is greater than the kinetic energy, the fermionic propagator of the excited state can be
written as,

/K +m
χ∗

K2 −m2
χ∗

≈ 1

∆M

1 + /u

2
. (B-2)

The propagator for the nucleus is as given in Eq. (A-2). Replacing γµ by four-velocities vµ in the vertices and
considering the leading order term in the velocity expansion the amplitude is given by

iM = (ū(k′) u(k)) I(q2) (ū u(p)) , (B-3)

with,

I(q2) = 2× 16π2κ2Z2αα′

∆M

∫
d4l

(2π)4

1

D
. (B-4)

Here the factor of 2 arises from a second diagram where the A′ lines cross and which contributes equally at this
order. Here κ is the kinetic mixing parameter, α′ = e

′2/4π is the U’(1) charge. D is the same denominator as
previously considered and presented in Eq. (A-8) except that the massless photon propagators are replaced by a
massive propagator (q2 + iε)−1 → (q2 −m2

A′ + iε)−1. Following the same steps as in appendix A, we introduce the
Feynman parameters x and E to combine the denominator, shift the loop momentum lµ → lµ+ 1

2 ((1− 2x)qµ + Eg0µ),

and then integrate over dl0,

I(q2) = −3i

4

(
16π2κ2Z2αα′

∆M

)∫ 1

0

dx

∫ ∞
0

dE
∫

d3l

(2π)3

1

(l2 + ∆′)
5/2

. (B-5)

Here ∆′ = E2/4 + x(x − 1)q2 + m2
A′ − E(p̃0 + xq0). Neglecting the term linear in E as before, all the integrals can

easily be done to yield

I(|q|) = − i

4π

(
16π2κ2Z2αα′

∆M

)
Arctan (|q|/2mA′)

|q|
mA′→0−→ 2π2Z2αα′κ2

|q|∆M . (B-6)

The differential cross-section in the CM frame is simply

dσ

dΩ
=

µ2

4π2
I2(|q|) =

4α2α′2Z4κ4µ2

q2∆M
Arctan

( |q|
2mA′

)2
mA′→0−→ π2αα′Z2κ2µ2

q2∆M
, (B-7)

which reproduces the result obtained in ref. [39] in the appropriate limit.

Appendix C: Differential Cross-Section Formulas for MiDM and RayDM Production at Colliders

In this appendix we give the formulas for the production cross-section and distributions for the process ff̄ → χ̄χV
where V = γ,Z,W± through the Rayleigh operators of Eq. (3) as well as related processes in UV completions of
RayDM. A convenient way of presenting the results is obtained by treating the χ̄χ system as having four-momentum
p4 and mass p2

4. The 2→ 3 phase-space factor can then be written as

dPS3

(
pfpf̄ → pV + pχ̄ + pχ

)
= dPS2

(
pfpf̄ → pV + p4

)
× dp2

4

2π
× dPS2 (p4 → pχ̄ + pχ) . (C-1)
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l + q/2 −l + q/2

P = p + l + q/2

N, p N, p′

χ, k χ, k′

χ∗

A′ A′

FIG. 10. The second Born amplitude for the process χN → χN through an intermediate excited state χ∗. A second diagram
with the A′ lines crossed contributes the same as this one.

Averaging (summing) over initial (final) polarization for the process shown in Fig. 7(b), and neglecting the incoming
particles’ masses, the matrix element squared is

1

4

∑
pol

|M|2 =
(g2
v + g2

a)g2
V V s p2

4

Λ6
R

1

2 (s−m2
V )

2 × (C-2)

[
a2
S

(
1− 4m2

χ
/p2

4

) (
m4
V + (s− p2

4)2 + 2m2
V (s− t) + 2(s− p2

4)t+ 2t2
)

+a2
A

(
m4
V + (s− p2

4)2 + 2(s− p2
4)t+ 2t2 − 2m2

V (s+ t)
) ]
,

where gv,a are the vector and axial couplings of V to f̄f , gV V are defined in Eq. (16), and the Mandelstam variables

s =
(
pf + pf̄

)2
, t = (pf − pV )

2
, and u = (pf − p4)

2
are defined as usual [43]. Here we kept explicit the separate

contributions from the scalar χ̄χFF (axial χ̄γ5χFF̃ ) piece by preceding it with aS (aA). This separation will prove
useful below when discussing the corresponding formulas in the UV completion of RayDM with heavy scalars. The
integral over dPS2 (p4 → pχ̄ + pχ) is straightforward and can be done in its entirety since the squared amplitude in
Eq. (C-2) contains no dependence on the χ̄χ system’s angular distribution. The integral over the azimuthal angle of
dPS2

(
pfpf̄ → pV + p4

)
can also be done and the differential cross-section is then given by

d2σ(ff̄ → χ̄χV )

d cos θ dp2
4

=
(g2
v + g2

a)g2
V V p2

4

2048π3Λ6
R

(s−m2
V )

2

(
1 + cos2 θ

)
×
√

1− 4m2
χ

p24

√
λ

(
1,
m2
V

s
,
p2

4

s

)
[
a2
S

(
1− 4m2

χ
/p2

4

)(
m4
V + (p2

4 − s)2 + 2m2
V

((
3− cos2 θ

1 + cos2 θ

)
s− p2

4

))

+a2
A

(
m4
V + (s− p2

4)2 − 2m2
V (p2

4 + s)
) ]
, (C-3)

where θ is the angle between the incoming fermion f and the vector V in the center-of-mass frame, and λ(x, y, z) =
x2 + y2 + z2 − 2xy − 2yz − 2zx is the usual kinematic function. The angular region is −1 ≤ cos θ < 1 and the mass

of the χ̄χ system is in the range 4m2
χ
< p2

4 <
(√
s−m2

V

)2
. The photon case is particularly simple and yields

d2σ(ff̄ → χ̄χγ)

d cos θdp2
4

=
αg2

γγ

512π2

p2
4

(
1 + cos2 θ

)
Λ6
R

√
1− 4m2

χ

p24

(
a2
A + a2

S

(
1− 4m2

χ
/p2

4

))(
1− p2

4

s

)3/2

. (C-4)

This can be integrated exactly to yield the total cross-section that is quoted in Eq. (28) for the case where
√
s� mχ .

What is often of more interest is the transverse momentum distribution of the vector boson. The transverse momentum
in the centre-of-mass frame is given by pT = pV sin θ and the momentum of the vector in the center-of-mass frame is

pV =
√
s

2 λ
1/2
(

1,
m2
V

s ,
p24
s

)
. This can be used to obtain the differential distribution

dσ

dpT
=

∫
dp2

4 d cos θ
d2σ

d cos θdp2
4

δ
(
pT (cos θ, p2

4)− pT
)
. (C-5)
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Needless to say, for hadronic colliders such as the LHC and the Tevatron these expressions have to be convolved
against the appropriate parton distribution functions. We have verified the formulas above against the Madgraph 4
package [44].

Similarly, in the case of heavy scalars, by putting the χ̄χ momentum on-shell p2
4 = m2

s we obtain the matrix-element
squared for the process ff̄ → γs through γ/Z

1

4

∑
pol

|M|2 =
πα q2

f

Λ2
UV

t2 + u2

s
×
(
g2
γγ + 2gγγgγZvfξ(s) + g2

γZ(v2
f + af )2ξ2(s)

)
. (C-6)

Here s, t, and u are the usual Mandelstam variables. Use of the relation

dσ

dpT
=

(
pT
p

1√
p2 − p2

T

)
dσ

d cos θ
, (C-7)

leads to the differential cross-section given by Eq. (31). Here p =
√
s

2

(
1− m2

s

s

)
is the momentum of the photon in the

center of mass frame. Similar expressions hold for the other distributions involving Z and W±.
Finally, in the case of MiDM, the production cross-section is given by

dσ(ff̄→χ̄χ)
d cos θ =

α q2
f µ

2
γ

8

(
1 + 2vf

µZ

µ
γ

ξ(s) + (v2
f + a2

f )
µ2

Z

µ2
γ

ξ2(s)

)
(C-8)

×

√√√√λ

(
1,
m2
χ

s
,
m2
χ∗

s

)
×
(

1− ∆M2

s

)(
sin2 θ +

(
m
χ

+m
χ∗

)2
s

(
1 + cos2 θ

))
,

where θ is the scattering angle in the centre of mass frame, and vγ,Z (aγ,Z ) is the vector (axial) coupling of the
corresponding vector-boson to the incoming fermions.
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