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Abstract

If low-energy supersymmetry is realized in nature, a seemingly contrived hierarchy in
the squark mass spectrum appears to be required. We show that composite supersym-
metric theories at the bottom of the conformal window can automatically yield the
spectrum that is suggested by experimental data and naturalness. With a non-tuned
choice of parameters, the only superpartners below one TeV will be the partners of the
Higgs, the electroweak gauge bosons, the left-handed top and bottom, and the right-
handed top, which are precisely the particles needed to make weak scale supersymmetry
breaking natural. In the model considered here, these correspond to composite (or par-
tially composite) degrees of freedom via Seiberg duality, while the other MSSM fields,
with their heavier superpartners, are elementary. The key observation is that at or
near the edge of the conformal window, soft supersymmetry breaking scalar and gaug-
ino masses are transmitted only to fundamental particles at leading order. With the
potential that arises from the duality, a Higgs with a 125 GeV mass, with nearly SM
production rates, is naturally accommodated without tuning. The lightest ordinary
superpartner is either the lightest stop or the lightest neutralino. If it is the stop, it
is natural for it to be almost degenerate with the top, in which case it decays to top
by emitting a very soft gravitino, making it quite difficult to find this mode at the
LHC and more challenging to find SUSY in general, yielding a simple realization of
the stealth supersymmetry idea. We analyze four benchmark spectra in detail.



1 Introduction

Supersymmetry potentially provides a complete theory of electroweak symmetry breaking,
eliminating the hierarchy problem for the Higgs mass. But in a way supersymmetry is too
efficient in suppressing the Higgs mass: the natural mass for a SUSY Higgs is often below
100 GeV so that large radiative corrections become essential. The simplest versions of the
supersymmetric extension of the Standard Model (SM) are now being severely challenged:
the Higgs sector must be fine tuned at the sub-percent level in order to push the Higgs
mass sufficiently far above the Z mass, and the non-observation of missing energy events
at the LHC [1, 2] puts impressive bounds on squark and gluino masses. In popular versions
of the Minimal Supersymmetric Standard Model (MSSM) with degenerate squarks, these
masses are now constrained to be above 1 TeV. Minimizing fine-tuning in light of this data
requires that the stop squark is lighter than the first and second generation squarks [3–6],
leading to yet another hierarchy within SUSY models. The aim of this paper is to present
a model where both the squark mass hierarchy and the little hierarchy are solved naturally
via compositeness.

Compositeness is an intriguing idea for electroweak symmetry breaking: strong dynam-
ics could either directly break electroweak symmetry or produce a composite Higgs boson
without a hierarchy problem. Flavor poses the biggest challenges for such models, but com-
positeness might actually explain the much greater mass of the the top quark: if the t and
Higgs are composite while other quarks are not, then their Yukawa coupling is generically
order one, while the other Yukawa couplings must be generated by higher dimensions oper-
ators. A fully composite SM (like that proposed by Abbott and Farhi [7]) is not expected
to yield weakly interacting W s and Zs. However we have learned from warped extra di-
mensional models (which may be duals of approximately conformal 4D theories), like the
Randall-Sundrum (RS) model [8], that large anomalous dimensions can save the composite
Higgs scenario at the price of having both an elementary and a composite sector present,
and having the t quark only partially composite (along with the W and Z). Even for these
models, some fine tuning is nonetheless required to make the composite Higgs much lighter
than the composite W ′.

Since the problems of SUSY and of compositeness are complementary, it seems natural
to try to combine the two to produce one complete, natural model of EWSB at the TeV
scale. In general this might seem artifical but existing Seiberg dualities automatically feature
both. We will see in the models we consider that not only do we get the best features of
both models, but also that supersymmetry breaking decouples at leading order from the IR
composite states, somewhat analogously to what happens with UV supersymmetry breaking
in RS-type models, leading to a natural hierarchy in the superpartner spectrum that readily
accommodates current constraints.

Other ideas that have been explored include refs. [9–12], in which strong SUSY dynamics
trigger electroweak symmetric breaking by producing a composite Higgs that obtains a VEV.
Generically if the model reduces to the MSSM when the strong SUSY scale is taken to be
much larger than the electroweak scale then the problems of the MSSM are reproduced.
If, however, the model reduces to the Next-to-Minimal Supersymmetric Standard Model
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(NMSSM) when the strong SUSY scale is taken to be large, then the Higgs mass can be
much larger [9–12] than in the MSSM or even the NMSSM. This is because the cubic coupling
between the composite singlet and composite Higgs doublets, which tends to increase the
Higgs mass, can be much larger than in the NMSSM since its Landau pole merely signals the
existence of the strong SUSY dynamics that generated the cubic coupling of the composites
in the first place. This will be true for our model as well (as in [11]) and allows for sufficiently
heavy Higgses.

Following the SUSY compositeness idea further, one must account for SUSY breaking.
In this paper we show that (perhaps unexpectedly) the composite superpartners can remain
light while the elementary superpartners can be heavy. One elegant idea for addressing
SUSY breaking is to have strong SUSY dynamics break SUSY as well [12,13]. Such models
are referred to as single sector models. In this case however, the composites of the strong
SUSY sector have large SUSY breaking masses. Avoiding fine-tuning calls for a light stop, t̃,
so in these single sector models the t quark must be elementary, and thus the Higgs should
be elementary as well in order to get a large t quark mass. Thus if we want a relatively light
composite t̃ as well as a composite t and Higgs, SUSY breaking must come from outside
the strong sector that produces composites. In this case, the leading contributions to the
composite soft masses are calculable [14–18] when the Seiberg dual is weakly coupled in the
infrared.

Generically the results are discouraging [14] since the squared soft masses of the mesons
and dual quarks add to zero, so at least some of the composites will be tachyonic. However,
at the boundary of the conformal window, the leading contributions to soft masses vanish.
This suggests an interesting hierarchy of soft breaking masses: the composites (like the Hig-
gsinos, t̃L, b̃L, and t̃R) are much lighter than the other superpartners. If the W and Z are also
partially composite, then their superpartners can also be lighter than the elementary super-
partners. Note that these are exactly the particles that are needed to cancel the quadratic
divergence in the Higgs mass. In this case the (approximately conformal) strong dynamics
shields the composites from large supersymmetry breaking. On the other hand the little
hierarchy problem of composite Higgses is resolved here via supersymmetry: the Higgs is a
dual quark of Seiberg duality that can be much lighter than the compositeness scale because
of supersymmetry. Moreover, because of the form of the potential that arises from Seiberg
duality, the typical mass is of order the Higgs VEV without the usual MSSM suppression
by a gauge coupling. Therefore in this model it is possible to accommodate a Higgs mass of
125 GeV without any tuning, while the production and decay rates of the Higgs will be close
to SM values. In fact, the recently presented hints for a 125 GeV Higgs from ATLAS [19]
and CMS [20] might even be further evidence that a viable supersymmetric theory should
incorporate a low-scale cutoff, such as the compositeness scale presented here. The resulting
spectrum is reminscent of the “more minimal supersymmetric standard model” idea of [21].
It can also be viewed as an explicit four-dimensional implementation of the warped extra
dimensional supersymmetric models of [22–24].

In this paper we analyze such models, which arise as dual composite gauge theories at
the edge of the conformal window. These models have (partially) composite Higgs, t, W
and Z and can address three problems at once: the hierarchy of Yukawa couplings, the little
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hierarchy of the Higgs mass, and the hierarchy of the squark soft masses. The same composite
states that are needed for a dynamical Yukawa coupling are the ones needed to protect the
Higgs mass. Such an unconventional superpartner spectrum has important consequences for
SUSY searches at the LHC.

A limiting case is a nearly degenerate t-t̃ sector [25] that could be naturally produced
by compositeness. In this case all superpartners decay via the NLSP t̃ and not much miss-
ing energy. Models with new approximately degenerate superpartners that end the decay
chains of Standard Model superpartners have been termed stealth SUSY models [26] pre-
cisely because of this lack of missing energy signatures. In generic stealth SUSY models,
the approximate degeneracy is caused by a suppression of the coupling of the new states to
the SUSY breaking sector. In the composite models we are discussing here, the suppres-
sion arises precisely because the states are composites of the strong SUSY dynamics, and
the almost conformal strong dynamics screens SUSY breaking: the anomalous dimensions
of the supersymmetry breaking terms suppress them up to possible threshold corrections.
The threshold corrections are determined by holomorphy and also vanish in the conformal
window.

Interestingly, the recently proposed [11] Minimal Composite Supersymmetric Standard
Model (MCSSM) has just these composite degrees of freedom and sits on the edge of the
conformal window, so it provides a benchmark model for exploring this scenario and we focus
on that model in this paper. Through most of the paper we will assume a low-scale mediation
scenario, for which the prime example is gauge mediation. Many of the problems of gauge
mediation simply do not arise here, since we can break electroweak symmetry in the SUSY
limit there is no Bµ problem, while singlet soft breaking terms are easily obtained since the
singlet is a composite. We also consider one example of a possible high scale supersymmetry
breaking model as well.

Some of the key ideas here can be understood in analogy to the RS picture, where
composites are localized near an IR brane, while the elementary fields are on the UV brane.
The insensitivity of composites to SUSY breaking is simply captured by a small overlap of
the IR localized composites with the UV localized SUSY breaking [22]. The other main
ingredient is partial compositeness, which solves the major problems of fully composite
theories. This is another very familiar feature of realistic RS models, corresponding to
(almost) flat wave functions [27] for the W and Z.

The paper is organized as follows. First we discuss how external SUSY breaking feeds
through to the composites of Seiberg duality. In section 3 we review the MCSSM [11],
which is the simplest model with composite Higgses, t’s and partially composite W s and
Zs. In section 4 we estimate the sizes of realistic parameters for the MCSSM, discuss
the electroweak symmetry breaking potential, and present the mass matrices for the light
sparticles. In section 5 we discuss the phenomenology by focusing on four benchmark spectra.
Two of them have t̃ NLSP’s, and one of these two has the lightest t̃ almost degenerate with
the t as in [26] and therefore can be kinematically accessible to the current LHC run while
nonetheless avoiding detection so far, while the other has a somewhat heavier t̃ below 300
GeV. The other two spectra are more conventional with neutralino NLSP’s, one of which
corresponds to a gauge mediated spectrum. All four of the spectra have tan β ∼ 1, and tan β
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can even be smaller than 1.

2 Soft Breaking Terms for Composites

Before we present the concrete composite SUSY model that solves both the little hierarchy
problem and predicts light t̃’s, we first address the question of the magnitudes of the soft
breaking terms in composite SUSY models. Since these will essentially determine the char-
acteristics of the spectrum, this is the critical feature of this class of models. We will assume
that the strong dynamics can be captured via Seiberg duality, and ask the question of how
UV soft breaking terms for the elementary (“electric”) degrees of freedom get transmitted
to the composite (“magnetic”) degrees of freedom. We apply the method of analytic contin-
uation into superspace [15–17] to find the mapping of soft breaking terms under duality. We
start with the Lagrangian for the electric quarks Q, Q̄ of an electric SU(N) gauge theory
with F flavors of these quarks.

We want to compare the soft mass for some spectator “elementary” degrees of freedom
that do not have strong interactions with the soft masses of the composites in the IR. From
the RS picture, we expect that composites (localized in the IR) will be insensitive to soft
SUSY breaking in the UV, while the elementary fields should be sensitive. Indeed the soft
breaking masses for the elementary fields undergo a perturbative RG running between the
UV and IR scales characterized by small perturbative anomalous dimensions

m2
el(µ) = m2

UV

(µ
Λ

)O(α)

, (2.1)

up to perturbative threshold corrections. The composite fields can in principle have both
non-perturbative finite terms and non-perturbative anomalous dimensions

m2
comp(µ) = m2

IR +m2
UV

(µ
Λ

)γ
, (2.2)

This equation is schematic, when γ is a function of µ, then the RGE solution has the form
of an exponential of an integral of γ(µ). Unlike the running term, the interpretation of
the finite threshold term m2

IR is not immediately obvious in the RS picture. When the
dual theory is weakly coupled in the IR, the finite term, m2

IR, can be calculated [14, 16]
using holomorphy. Meanwhile, the existence of a well-behaved Seiberg dual requires that
the anomalous dimension, γ(µ) is positive, and for a weakly coupled dual, γ(µ) ∼ O(1)
at or just below the strong coupling scale1. A large positive anomalous dimension rapidly
drives the second term in (2.2) to zero. This analysis extends into the conformal window
as well [17], where it further can be shown [18] that mIR = 0. This simply means that the
fixed point is attractive, and these soft mass terms are irrelevant and vanish at the fixed

1It has been recently pointed out in [29] that in SUSY QCD for F ≤ 3/2N the eventual approach in the
deep IR is only logarithmic due to the appearance of accidental symmetries. For the applications considered
here the only relevant issue is that there is a sufficiently large region with power-law running to ensure the
suppression of the soft breaking terms.
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point. As a consequence, one expects mIR to also vanish just at the boundary between the
conformal window and the free magnetic phase. At the bottom end of the conformal window
γ(µ) is still O(1) but is perturbative at the top of the window, which means that at the
top of the window the approach to the fixed point can be very slow, and in this case one
exits the RGE long before the fixed point is approached. In the free magnetic phase similar
conclusions hold, but with mIR 6= 0 in general, as one can see from the low-energy effective
Kähler potential [16]. As we shall see, the two approaches agree at the bottom edge of the
conformal window.

Next we will explicitly show the calculation form2
IR in the weakly coupled, “free-magnetic”

phase. We will also include a small supersymmetric mass (matrix) µf for the electric quarks,
much smaller than the dynamical scale of the theory. One of these will correspond to the
term triggering electroweak symmetry breaking, which in this model will happen even in
the absence of supersymmetry breaking, but via the composite dynamics. Thus one needs
to assume that the relevant µf is related to the magnitude of the Higgs VEV v, and this
parameter is what sets the electroweak scale. Although we do not explain this choice of
parameter, we expect that in a more complete model of supersymmetry breaking this can
be related to the soft supersymmetry breaking scale as well.

The effects of the soft SUSY breaking terms for the elementary fields are incorporated
into the Lagrangian by using the real and chiral spurions Z and U with non-zero θ compo-
nents [14–17]:

L =

∫
d4θ
(
Q†ZeVQ+ Q̄†ZeV Q̄

)
+

∫
d2θ
(
UWαWα + µfQ̄Q

)
+ h.c. . (2.3)

To introduce a soft squark mass mUV , a gaugino mass mλ, and a soft-breaking B term
(with m2

UV ∼ m2
λ ∼ B) we Taylor expand the spurions in superspace coordinates:

Z = 1− θ2B − θ̄2B − θ2θ̄2(m2
UV − |B|2) (2.4)

U =
1

2g2
− i θYM

16π2
+ θ2mλ

g2
, (2.5)

where we have also included the CP violating parameter θYM (not to be confused with the
superspace coordinate). The spurion U is related to the holomorphic strong scale Λh which
acts as a chiral superfield spurion that is also an RG invariant:

Λh = µ e−16π2U(µ)/b (2.6)

where b is the one-loop β-function coefficient b = 3N − F and µ is the RG scale. In the
model presented in the next section we will choose N = 4 and F = 6.

We can also include these spurions in the composite description since the structure of
the low-energy theory is constrained by symmetries including an anomalous axial U(1) sym-
metry. In other words Z and U are also spurions of the anomalous axial U(1). Under axial
transformations, where the rotation parameter is promoted to a chiral superfield A, we have

Q → eAQ , Q̄ → eAQ̄ (2.7)

Z → e−A−A
†
, Λh → e2F/bAΛh (2.8)
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It is convenient to introduce a redundant scale that is invariant under axial transformations

Λ2 = Λ†hZ
2F/bΛh (2.9)

which is also a SUSY breaking spurion

log
Λ

µ
=
−8π2

bg2
+
−8π2mλ

bg2
(θ2 + θ̄2)− F

b
m2
UV θ

2θ̄2 . (2.10)

This Λ is the invariant scale that can be used for dimensional analysis once the anomalous
U(1) charge is fixed.

In the composite theory, ”magnetic” states transform under the dual gauge SU(F −N)
gauge group, and include the meson M and dual quarks q, q̄. Due to the operator mapping

QQ̄ ↔M , QN ↔ qF−N , Q̄N ↔ q̄F−N (2.11)

we have the following axial transformations for the composite states:

q → eAN/(F−N)q (2.12)

q̄ → eAN/(F−N)q̄ (2.13)

M → e2AM . (2.14)

Since the dual composite theory is in the weakly coupled phase we can write an approximately
canonical Kähler potential. Requiring SUSY and axial invariance and using dimensional
analysis we find the dual Lagrangian

L =

∫
d4θ

[
M †Z2M

Λ2
+
q†ZN/(F−N)eṼ q

Λ(4N−2F )/(F−N)
+
q̄†ZN/(F−N)eṼ q̄

Λ(4N−2F )/(F−N)

]

+

∫
d2θ

[
UW̃αW̃α +

yMqq̄

Λ
b/(F−N)
h

+ µfM

]
+ h.c. (2.15)

We can read off the soft masses near the infrared fixed point [16,17] for the composites from
the Kähler term by Taylor expanding in superspace:

m2
M = 2

3N − 2F

b
m2
UV , m2

q = −3N − 2F

b
m2
UV (2.16)

Generically these results spell trouble for composite models: some of the dual quark or meson
soft breaking masses should be tachyonic, and this would apply for the entire multiplet.
However, for the case when F = 3N/2, that is at the lower end of the conformal window these
leading calculable terms vanish. This is exactly the right region for the model considered
later in this paper (F = 4, N = 6). In this case the leading terms will come from the
second term in (2.2) corresponding to the fact that we do not run all the way to µ = 0 but
stop at a scale given by (2.2) µ2 ∼ m2

UV µ/Λ, so that the corrections are O (m4
UV /Λ

2) which
can also be seen as the effects of higher order terms in the Kähler potential suppressed by
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additional powers of Λ [16]. The perturbative dual gauge group corrections are included in
this estimate. In addition to power corrections, there are also perturbative corrections from
SM gauge interactions that could dominate when Λ is very large.

The matching of the gaugino masses follows simply from the invariance of Λ, implying
mλ/(bg

2) = mλ̃/(b̃g̃
2) in the holomorphic basis. After the rescaling by couplings to get into

the canonical basis one obtains the well-known answer

mλ̃ = −3N − 2F

3N − F
mλ , (2.17)

thus the leading contribution of the composite gaugino mass also vanishes at the boundary
of the conformal window.

To get the soft terms that come from the superpotential couplings we must rescale the
fields to get canonical Kähler terms. Since we need terms only of order θ2 we can write

Z = ξ†ξ , ξ = 1− θ2B (2.18)

and then rescale chiral fields only via the holomorphic quantities ξ,Λh. We then find the
superpotential terms in the canonical basis:∫

d2θ
(
yMqq̄ + µfΛhMξ

2(2F−3N)
(3N−F ) + h.c.

)
(2.19)

Since the cubic superpotential is independent of the supersymmetry breaking spurions, we
find that the A-term vanishes in the IR limit for any F :

A = O(
m2
UV

Λ
) . (2.20)

We also find a SUSY breaking scalar tadpole for the meson

T = µfΛ

(
−16π2mλ

bg2
− 2(2F − 3N)

3N − F
B

)
. (2.21)

While the second term vanishes for F = 3/2N the first one does not: this is not surprising
since this is the effect of an explicit breaking of the conformality on the elementary side.
The expected magnitude for T will then be of order

T ∼ µfΛ×mUV , (2.22)

where mUV represents the characteristic magnitude of the gaugino mass mλ that appears on
the right hand side of equation (2.17). Thus we find that the IR limit of all soft breaking
parameters for composites vanish at the edge of the conformal window, except for the scalar
tadpole, which is related to the explicit breaking term and the elementary SUSY breaking
terms. For phenomenological reasons that will be explicit in the next section we parameterize
the superpotential term linear in the meson field in (2.19) as yf 2M , where f must be chosen
to be of order of the weak scale, and y is the dynamical Yukawa coupling that runs down to
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O(1) at the electroweak scale, which is the right size to give the correct t mass. In terms of
the duality mapping given above, we see that by definition y f 2 ≡ µfΛ, so we find that the
magnitude of the scalar tadpole is of order

T ∼ f 2mUV (2.23)

Thus we find that at the edge of the conformal window one has a hierarchy of the soft
breaking terms, which, writing the soft scale for the elementary fields as mel ∼ mUV , takes
the form

A,mq̃,g̃ ∼
m2
el

Λ
� mel

T ∼ µfΛ×mel ≡ f 2mel � m3
el . (2.24)

As a check of the duality mapping, note that the scale matching relation between the
electric and dual magnetic theories is defined in the frame where the dual quarks are canon-
ically normalized, and the meson is mapped to QQ̄. In this frame the dual quarks carry
anomalous charge 1, and the scale matching relation is [28]

Λb
hΛ̃

b̃
h = (−1)NΛF

M (2.25)

where ΛM can be expressed in terms of Λh and ξ by matching the anomalous charge as:

ΛM = Λhξ
3(2N−F )
3N−F (2.26)

By rescaling the terms in (2.15) to move to a frame with canonically normalized dual quarks
we find that as expected ΛM is also the parameter appearing in the dual superpotential in
this frame: Mqq̄/ΛM , as predicted in [28].

3 MCSSM: The Model for a Composite Third Gener-

ation

A concrete model (that we refer to as the Minimal Composite Supersymmetric Standard
Model or MCSSM) of supersymmetric composite Higgs and t quarks (and partially composite
W and Z) was recently proposed in [11]. The main idea is that an asymptotically free gauge
group becomes strongly interacting and the IR theory will contain composite gauge bosons,
mesons and dual quarks, some of which are to be identified with the W , Z, t, and Higgs
of the MSSM. To get a realistic theory, the composite W and Z need to be mixed with
elementary W and Z gauge bosons that couple to the elementary quarks and leptons. The
electric theory of the simplest such model is given by (corresponding to N = 4, F = 6)

SU(4) SU(6)1 SU(6)2 U(1)V U(1)R

Q 1 1 1
3

Q̄ 1 −1 1
3

(3.1)
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where the SU(4) is the strong gauge group and the other groups are the global symmetries,
some of which are weakly gauged. In particular, the elementary gauge symmetries SU(3)×
SU(2)el×U(1) are embedded into these global symmetries. We will also allow small tree-level
masses for the electric quarks.

The IR behavior of this strongly coupled theory is given by the Seiberg dual [28]

SU(2)mag SU(6)1 SU(6)2 U(1)V U(1)R

q 1 2 2
3

q̄ 1 −2 2
3

M 1 0 2
3

(3.2)

with the additional dynamical superpotential term

Wdyn = y q̄Mq . (3.3)

The SM gauge groups are embedded in the global symmetry as

SU(6)1 ⊃ SU(3)c × SU(2)el × U(1)Y

SU(6)2 ⊃ SU(3)X × SU(2)el × U(1)Y
(3.4)

where SU(3)X is a global SU(3) which will be broken by (elementary) Yukawa couplings.
The SU(2)mag × SU(2)el will eventually be broken to the diagonal subgroup which will be
identified with the SM SU(2)L. The embedding is chosen so that the dual quarks contain the
left-handed third generation quark doublet, two Higgses Hu,d, and two bifundamentals H, H̄
that will be responsible for breaking the SU(2)mag×SU(2)el to the diagonal and generating
the partially composite W and Z. Fields are embedded into the dual quarks as

q = Q3,H, Hd

q̄ = X, H̄, Hu

(3.5)

From the q, q̄ charge assignments it follows that the meson M contains the right-handed t,
the two singlets S and P , two additional Higgses Φu,d transforming under the elementary
SU(2)el, a second right handed up-type quark U and some exotics V,E,R,G:

M =

 V U t̄
E G+ P φu
R φd S

 (3.6)

where the quantum numbers under SU(3)c × SU(2)el for the meson fields are as follows: V
represents three (3̄, 1)’s, U is a (3̄, 2), E represents three (1, 2)’s, G is a (1, 3), φd and φu are
(1, 2)’s, P and S are singlets, and R represents three singlets. The hypercharge assignments
for the electric quarks, the dual quarks, and the mesons are then

Q1 Q2 Q3 Q4 Q5 Q6

Y 1
6

1
6

1
6

0 0 −1
2

,

Q3 H, H̄ Hu Hd X V U t̄ E φu R φd G,P, S

Y 1
6

0 1
2
−1

2
−1

6
0 −1

6
−2

3
1
6
−1

2
2
3

1
2

0
.

(3.7)
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With these quantum numbers the most general gauge invariant renormalizable electric su-
perpotential is given by

Wtree = µF(Q4Q̄4 +Q5Q̄5) + µfQ6Q̄6 . (3.8)

These will get mapped into tadpoles for the singlets P and S on the magnetic side. The
P tadpole will be responsible for the breaking of the SU(2)mag × SU(2)el to the diagonal,
while the S tadpole will be responsible for electroweak symmetry breaking. Note that the
embedding of the SM gauge symmetries into the global symmetries together with the super-
potential (3.8) imply that there are no accidental global symmetries appearing in the IR.
This can be seen from the fact that the only gauge singlet composites are the S, P compo-
nents of the meson, but these are precisely the fields for which a tree-level superpotential has
been added. The absence of accidental global symmetries implies that there is no danger of
the logarithmic IR running associated with accidental global symmetries described in [29].

The cancellation of SM gauge anomalies requires the presence of some spectator fields
in the electric theory that only have SM gauge couplings. A simple choice for this anomaly
cancelation is to include elementary fields that are conjugate to the representations of com-
posite mesons V , U , R, φu,d, G. Trilinear superpotential terms between these spectators
and electric quarks will map to mass terms in the dual description, and the extra degrees
of freedom will decouple, while the fields E,X will pair together to obtain a mass from the
VEV of the bifundamental H. The remaining standard model fields (first two generation
quarks, right handed bottom and all leptons) are assumed to be elementary fields transform-
ing under SU(3)c×SU(2)el×U(1)Y . This charge assignment will be automatically anomaly
free, and is capable of producing the usual flavor structure and CKM mixing matrix.

The relevant part of the superpotential (3.3) together with the singlet tadpoles from (3.8)
can then be written as

W ⊃ yP (HH̄ − F2) + yS(HuHd − f 2) + yQ3Hut̄+ yHuHφu + yHdH̄φd . (3.9)

The first term is responsible for the breaking of SU(2)el × SU(2)mag to the diagonal group,
the second term will trigger electroweak symmetry breaking, the third will give rise to the
t Yukawa coupling and the last two terms give rise to a mixing of the Higgs with a heavy
Higgs φu,d. At this point the low-energy effective theory below the scale F (and assuming
that F � f) is that of the NMSSM with a composite Higgs, Q3 and t. As explained above
the rest of the SM particles are assumed to be elementary, that is made of fields that do
not transform under the strongly coupled SU(4). They simply carry the usual SM quantum
numbers under SU(2)el × SU(3)c × U(1)Y .

At high energies there are three sets of Higgses: the composite Hu,d from the dual quarks
transforming under the composite SU(2)mag, the composite φu,d from the mesons transform-
ing under the elementary SU(2)el, and a set of elementary Higgses φ′u,d transforming under
the elementary SU(2)el. These latter fields need to be present to remove φu,d from the spec-
trum via a trilinear superpotential term, which after duality maps into a mass term. The
elementary Higgses φ′u,d also have ordinary Yukawa couplings with the light elementary SM
matter fields in addition to their mass with φu,d, After integrating out φu,d, φ

′
u,d effective
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Yukawa couplings between the remaining light composite Higgses Hu,d and the light SM
fermions are generated. For more details see [11]. The resulting theory of the Higgses in the
low energy potential has the necessary Yukawa couplings and as we will now see it also has
a viable and interesting potential.

4 Electroweak Symmetry Breaking, Soft Breaking Pat-

terns and Mass Spectrum

The Higgs potential relevant for electroweak symmetry breaking (assuming F � f) is (in-
cluding soft breaking terms)

V = y2|HuHd − f 2|2 + y2|S|2(|Hu|2 + |Hd|2) +m2
S|S|2 +m2

Hu
|Hu|2 +m2

Hd
|Hd|2

+(ASHuHd + TS + h.c.) +
g2 + g′2

8
(|Hu|2 − |Hd|2)2 (4.1)

where m2
S,Hu,Hd

, A and T are soft supersymmetry breaking parameters, and the last term is
the usual MSSM D-term. This is quite different from the usual MSSM potential, and the
traditional source of fine tuning related to the need of large t̃ loop corrections for the quartic
are not produced. While the matter content of the Higgs sector is that of an NMSSM,
the actual potential is quite different from what is traditionally used in a Z3 symmetric
NMSSM. Electroweak symmetry is broken in the supersymmetric limit, and a Higgs mass
much bigger than in the MSSM is ensured since the quartic does not come from D-terms
and thus the Higgs mass is not related to the Z-mass. Such Higgs sectors are natural in the
context of composite “fat Higgs”-like models [9, 10]: the NMSSM singlet S is simply one of
the composite meson components. The NMSSM-like superpotential given in Eq. (3.9) is the
one that appears most naturally in Seiberg duals. The electroweak symmetry breaking scale
is determined by the magnitude of the S-tadpole f , which means that electroweak symmetry
breaking in general is not dependent or related to supersymmetry breaking, but that f has
to be of the order of the Higgs VEV v. For a completetly natural model, one would hope
for a deeper relation between f and v. This is similar to the usual µ-problem of the MSSM
(without a corresponding Bµ problem). The traditional way of solving this would be to
assume that the electric theory has a global Peccei-Quinn-type symmetry that forbids the
mass term for the electric quarks that eventually turn into the composite S, and that this
PQ symmetry is only broken in the supersymmetry breaking sector. Coupling the electric
quarks to the supersymmetry breaking sector can then give a PQ violating superpotential
term proportional to the supersymmetry breaking scale just like in the usual Giudice-Masiero
mechanism. We will not try to build a complete model for the supersymmtry breaking sector
in this paper.

We will use the usual parametrization of the Higgs fields:

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
(4.2)

〈H0
u〉 =

v√
2

sin β , 〈H0
d〉 =

v√
2

cos β . (4.3)
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Since the interaction with the singlet provides a sizable quartic, it is not important to have
a large tan β, it actually can be close to one, or even less than one. Minimizing the potential
with respect to the scalar S we find the scalar VEV

〈S〉 = −
√

2 (Av2 sin β cos β + 2T )

2M2
S + y2v2

, (4.4)

A combination of the other two equations yield an expression that is analogous to the usual
fine-tuning condition for the Higgs VEV:

y2v2

2
=

2(y2f 2 − AS)

sin 2β
− 2y2S2 −m2

Hu
−m2

Hd
(4.5)

Thus the fine tuning can now be characterized by

y2v2

2m2
Hu

(4.6)

In most supersymmetric models, the t̃’s have to be sufficiently heavy to generate a large
enough Higgs quartic (or equivalently, a large enough physical Higgs mass). On the other
hand, heavy t̃’s also give a large contribution to m2

Hu
leading to large tuning. In our models,

one has a large tree-level quartic from compositeness, and the t̃’s are light, thus (4.6) can
be of O(1) with composite t̃ masses in the 200-500 GeV range. Even so, since the gluino is
elementary and thus in the few TeV range the the two-loop corrections to the Higgs mass
via gluino-t̃ loops can potentially be too large. The leading 2-loop correction to m2

Hu
due to

the gluino loop is

∆m2
Hu
∼ −2y2

tα
2
s

π3
|mg̃|2 log2

(
Λ

TeV

)
(4.7)

Note that due to compositeness, the cutoff scale of the logarithm is small here. Even for low
tan β, one gets only about ten percent tuning for a gluino as heavy as 3 TeV.

We conclude that in principle, a gluino heavier than those that are usually considered
natural would be allowed. However, a heavy gluino mass would also contribute to the t̃
masses, and in our models we assume light top squark masses. The leading log correction to
the t̃ mass parameters is of the order

∆mt̃ ∼
32

3

αs
4π
|M3|2 log

(
Λ

TeV

)
(4.8)

Even with this additional consideration on naturalness, since the logarithm is quite small
(corresponding to the running between the duality scale and the TeV scale, log Λ

TeV
∼ 2),

one can naturally maintain a hierarchy between the gluino and the t̃ mass. However this
hierarchy cannot be very large if we want to keep the top squark light. A gluino of about
1.5 TeV would be natural with a 400 GeV t̃ without much tuning. If one were to allow ten
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percent tuning the gluino mass could be raised to about 3 TeV. We will however not do
that, and restrict the gluino mass to be below 1.5 TeV in order to protect the squark mass
hierarchies obtained from the strong dynamics. Note, that the experimental lower bound on
the gluino is around 700 GeV even if it only decays via third generation squarks [30].

We now discuss the pattern of soft breaking terms and the magnitudes of the relevant
parameters of the model. While we do not fully specify the mechanism of supersymmetry
breaking mediation to the elementary (“electric”) fields here, we will usually assume some
form of low-scale mediation mechanism, in order to have the gravitino be the LSP. The
prime example of such models is gauge mediation. However, even if we assume gauge medi-
ation applies, this is a non-standard application, since we are eventually ending up with the
NMSSM. Naively one would think that gauge mediation can not be applied to an NMSSM-
type theory, since the singlet will not obtain SUSY breaking terms. However, in this case
gauge mediation is assumed to happen above the compositeness (“duality”) scale. Since the
singlet is a composite (it is a component of the meson) a soft breaking term (suppressed as
with all composites) will be induced for it. The mass for the fermionic partner of the singlet
(the singlino) is model dependent. There can be a singlino mass from non-renormalizable
terms for the elementary fields (Q̄6Q6)2/ΛUV giving a singlino mass of order mSf

∼ Λ2/ΛUV .

There will also be a singlino mass generated by the strong dynamics of order f4

Λ4mel which is
typically quite small. We will not be making a definite assumption on the size of the singlino
mass, but explore spectra both with small and sizeable values for it.

Note that the usual Bµ problem is simply not present, since the potential contains only
trilinear and tadpole terms, both of which are induced as described in Sec. 2. While the
µ-problem is solved as usual in NMSSM-type models, an issue similar to the µ-problem is
why the parameter f is close to the electroweak scale, which as we discussed before is likely
to be addressed with a more complete model of SUSY breaking.

The message from the general discussion of Section 2 is that soft breaking terms for
the composites are suppressed compared to those of the elementary fields, while the scalar
tadpole T is unsuppressed. We choose parameters consistent with the hierarchies explained
in the previous explained in the previous section of order

mel ∼M3 ∼ few · TeV

Λ ∼ 5− 10 TeV

mcomp ∼
m2
el

Λ
∼M1 ∼M2 ∼ A ∼ few · 100 GeV

f ∼ 100 GeV

T ∼ f 2mel ∼ few · 107 GeV3

F ∼ few · TeV

µeff = y〈S〉 ∼ A (4.9)

tan β ∼ O(1) (4.10)

Here mel includes the soft breaking scalar masses of the first two generation squarks, the
right handed sbottom, b̃ and all sleptons, while mcomp includes mQ33 and mU33 . The soft
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terms include the dynamical non-calculable contributions of O(m2
el/Λ) and the additional

radiative corrections ∝ log Λ
TeV

. The latter can be comparable to the dynamical terms as we
discussed for the gluino loops. The effective Bµ term is A〈S〉 ∼ µ2

eff . However, as stated
previously, in this model electroweak symmetry is broken in the supersymmetric limit, so
the magnitude of Bµ is not very crucial. Note, that flavor constraints for such models with
heavy first and second generation squarks and sleptons are largely satisfied if the scale of the
heavy squark masses is around 5 TeV [31], and if the heavy squarks are close to degenerate,
which would be the case if they get their masses from gauge mediation.

With this choice of parameters we can then go ahead and evaluate the full sparticle
spectrum. We present the relevant expressions for the masses below, while in the next
section we focus on four benchmark spectra.

Given all the soft SUSY breaking terms the spectrum calculation proceeds in a similar
fashion to the MSSM and NMSSM. The t̃ mass matrix is

m2
t̃ =

(
m2
Q33 +m2

t + δu v(Asβ − µeff yt cβ)/
√

2

v(Asβ − µeff yt cβ)/
√

2 m2
u33 +m2

t + δu

)
, (4.11)

where the D-term contribution is as usual

δf = −gT 3
f 〈D3〉 − g′Yf〈D′〉 = (T 3

f −Qfs
2
W ) cos 2βM2

Z . (4.12)

Since the b̃ mass is constrained by the LHC to be above ∼ 250− 280 GeV [5], mQ33 should
not be too small, since this sets the mass of the lighter b̃. The right-handed t̃ mass, mū33,
can be somewhat smaller than mQ33, and with A not too large one gets a spectrum with the
right handed t̃ as the lightest sfermion, a somewhat heavier left handed t̃ and left handed b̃,
while the elementary fields are quite a bit heavier.

The explicit form of the b̃ mass matrix is

m2
b̃

=

(
m2
Q33 +m2

b + δd v(Ad33 cβ − µeff yb sβ)/
√

2

v(Ad33 cβ − µeff yb sβ)/
√

2 m2
d33

+m2
b + δd

)
, (4.13)

where the right handed b̃ is elementary, so its soft breaking mass is expected to be large
m2
d33
∼ mel, while m2

Q33 ∼ mcomp is suppressed.
Due to the extra SU(2) group we have an additional set of charginos and neutralinos,

and the singlet S also contributes to the neutralino mass matrix. The chargino mass matrix
is

(
W̃−

2,el φ̃−d H̃−d W̃−
2,mag

)
M2

gel√
2
F 0 0

gel√
2
F y〈P 〉 0 gmag√

2
F

0 0 µeff
gmag√

2
sβ v

0 gmag√
2
F gmag√

2
cβ v M2,mag




W̃+
2,el

φ̃+
u

H̃+
u

W̃+
2,mag

 (4.14)

where we have also added the elementary winos for the SU(2)el group and the higgsinos from
φu,d, and also F = 〈H〉 is the bifundamental VEV that breaks the composite SU(2)mag and
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the elementary SU(2)el down to the diagonal SU(2)L subgroup, while gc and ge represent
the two gauge couplings giving rise to the SM couplings via the mixing

sθ =
gel√

g2
el + g2

mag

, cθ =
gmag√
g2
el + g2

mag

, g2 = gmagsθ = gelcθ . (4.15)

and µeff = y〈S〉. In the limit gmag � gel,F � M2,M2,mag this can be approximately
diagonalized, and the heavy combination of gauginos (corresponding mostly to the compos-
ite charginos and the H’s) can be integrated out with only small corrections to the mass
spectrum that results from the ordinary MSSM mass matrix of the form(

H̃−d W̃−
2,L

)( µeff
g2√

2
sβ v

g2√
2
cβ v M2

) (
H̃+
u

W̃+
2,L

)
(4.16)

with the elementary gaugino mass playing approximately the role of the MSSM M2 parame-
ter. In some regions of parameter space the extra mixing can change the chargino spectrum
but we will not consider that case here. Thus to leading order it is the elementary gaugino
that will be lighter, due to the large coupling of the composite gaugino. When gauginos are
light, it is as usual only because of the suppression by the small SM gauge couplings.

Similarly the neutralino mass matrix reduces to the NMSSM form after integrating out
the heavy neutral fermions corresponding to the composite neutral gauginos:

M1 0 −MZcβsW MZsβsW 0
0 M2 MZcβcW −MZcW sβ 0

−MZcβsW MZsβsW 0 −µeff −yvsβ
MZcβcW −MZcW sβ −µeff 0 −yvcβ

0 0 −yvsβ −yvcβ MSf

 . (4.17)

where sW = sin θW , cW = cos θW , where again M1,2 are approximately given by the ele-
mentary gaugino masses, and we have also included a soft breaking Majorana mass for the
singlino. All other fields either correspond to elementary fields with large SUSY breaking
terms, or are vector-like and also assumed to have large masses. This way we obtain the
particle spectrum we will be investigating in the next section: the lightest t̃ within a few hun-
dred GeV of the top mass, heavier t̃ and lighter b̃ below 500 GeV, neutralinos and charginos
and the full scalar Higgs sector below a TeV, while all other particles are above one TeV.

5 Phenomenology of a Light Composite Stop

Finally we discuss the phenomenology of composite supersymmetric models with light t̃’s.
We restrict our analysis to regions of parameter space for which the lighter t̃ (which is mostly
the right handed t̃) is within a few hundred GeV of the top. We examine four different spectra
in order to display a variety of phenomenological possibilities.

The NLSP will be either the t̃ or the lightest neutralino, N1. The first two spectra have
t̃ NLSP. The two spectra are distinguished by the degree of degeneracy of the t and right
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handed t̃. In the first, the t̃ NLSP is nearly degenerate with the t, generating a stealth stop
spectrum, while the t̃ is a bit heavier for the second parameter set. The third spectrum
has a neutralino NSLP and supersymmetry breaking arises from standard gauge mediation.
The last spectrum has a neutralino (N)LSP, but the dominant contribution to the soft mass
parameters is assumed to be the radiative contributions, and not the power suppressed
corrections. In other words, this model assumes a relatively high compositeness scale.

When the NSLP is the t̃, it will decay to t plus gravitino. If it is the N1, then the t̃ will
decay (depending on kinematics) either to t + N1 or bottom plus chargino (b + C−), while
the N1 will decay to photon plus gravitino or Higgs/Z+gravitino. Alternatively the N1 may
be the LSP itself, with higher scale SUSY breaking and heavier gravitino. In either case
there will be missing energy signals from neutralino production.

For the spectra where the t̃ is lighter than the N1, we assume a low-scale for supersym-
metry breaking

√
F ≤ 1010 GeV, implying an LSP gravitino mass of a few GeV or less.

As long as the mediation scale MSUSY is well above the duality scale Λ ∼ 5 − 10 TeV the
assumption that supersymmetry breaking must be fed through the duality applies.

The viability of a t-t̃ sector with a t̃ NLSP decaying via the gravitino has recently been
investigated in detail by Kats and Shih in [25] using Tevatron and first year LHC data (35
pb−1). They found that using searches based on these data sets that the data on the lightest
t̃ mass decaying to t plus gravitino sets a bound of about t̃ mass of about 150 GeV, and that
bounds of about 180 GeV are expected using 3 fb−1 data. If the lightest t̃ mass is almost
degenerate with the top, then there will not be much missing energy in the decays leading
to the stealth supersymmetry scenario mentioned in [26]. The most recent papers [3–6] on
light third generation bounds from 1 fb−1 of LHC data have also considered the possibility
of the lightest t̃ decaying to top plus gravitino. They have found (in agreement with [25])
that currently there is no bound [5] over 200 GeV for such a t̃.

These most recent analyses [3–6] have also examined bounds on the heavier t̃ and the left
handed b̃. These are assumed to decay to neutralinos/charginos, and for decays of this type
the currents bounds are found to be around 270 GeV. We take it as an indication that left
handed t̃’s and b̃’s of order 300 GeV are experimentally viable, even though in some of the
spectra presented here the leading decays of the heavier t̃, b̃ will actually involve the lighter
t̃.

We now discuss our choice of input parameters that correspond to these spectra. When
minimizing the Higgs potential (4.1), we impose the EWSB vacuum with the correct value
of v and a fixed tan β, with an appropriate choice of the scalar tadpole f . This fixes the
values of the Higgs soft breaking terms m2

Hu,d
, which will not be treated as inputs. We

do however check that these terms have the correct magnitudes presented in the previous
section. The other relevant input parameters to fix are the composite soft breaking masses
mQ33 ,mu33 ,M1,2 and MS. As discussed before, a Majorana mass for the singlet fermion MSf

may also be present, and in the second spectrum we add a term that raises the neutralino
mass. In all other spectra this term is set to zero. The A-terms for the SHuHd and the
t Yukawa interaction originate from the same dynamical term and are thus assumed to be
equal. Finally we need to asign the soft breaking scalar tadpole T . All other soft breaking
masses are assumed to be above a TeV, ensuring that the rest of the sparticle spectrum is
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parameter spectrum 1 spectrum 2 spectrum 3 spectrum 4
tan β 0.85 1.3 1.0 0.97
A 300 GeV 540 GeV 350 GeV 400 GeV
T 4× 107 GeV3 1.4× 107 GeV3 3.35× 107 GeV3 6× 106 GeV3

mQ33 500 GeV 500 GeV 350 GeV 400 GeV
mU33 250 GeV 350 GeV 350 GeV 400 GeV
M1 600 GeV 700 GeV 85 GeV 600 GeV
M2 800 GeV 800 GeV 282 GeV 1200 GeV
mS 400 GeV 350 GeV 350 GeV 100 GeV
MSf 0 GeV −350 GeV 0 GeV 0 GeV
f 100 GeV 100 GeV 293 GeV 100 GeV

Table 1: Input parameters for the four sample spectra. In spectrum 1, the t̃ is the NLSP and
very degenerate with the top, generating a stealth stop spectrum. In spectrum 2, the t̃ is the
NLSP but is a bit heavier. Spectrum 3 has a neutralino NLSP and is generated through a
gauge mediated spectrum. Spectrum 4 has a neutralino (N)LSP, and the compositeness scale
is assumed high enough that radiative corrections to soft composite superpartners dominate.

essentially decoupled due to them being elementary degrees of freedom. Elementary Higgses
responsible for generating the Yukawa couplings for the elementary fields are assumed to
be heavy and integrated out for the purposes of this paper, but it could be interesting to
investigate a theory with the elementary Higgses included as light fields as well.

The input parameters for the four benchmark spectra are given in Table 1. Minimizing
(4.1) and imposing the correct electroweak symmetry breaking VEV’s fixes µeff , m2

Hu
, m2

Hd
;

the corresponding values are given in Table 2. The first two spectra we examine have t̃
NLSP’s, while the second two have neutralino NLSP/LSP’s. The singlino mass is set to zero
in all but the second spectrum, where it is used to raise the lightest neutralino mass above
the t̃ mass. The first spectrum has the lightest t̃ almost degenerate with the t, and is thus
more “stealthy”, while the second one has heavier t̃’s with it still being the NLSP. The third
spectrum implements minimal gauge mediation to the electric degrees of freedom: the ratio
of gaugino masses here is given by the coupling constant squares (with the gluino at 1 TeV),
and the other soft breaking masses for the composites taken equal. The fourth spectrum
was chosen such that the soft-breaking Higgs masses are rather small so this scenario could
correspond to a high duality scale with radiatively generated t̃ and b̃ masses. While we are
assuming some form of low-scale supersymmetry breaking in all but one of the spectra, only
the third one corresponds to minimal gauge mediation. In the minimal case the gaugino
mass ratios are determined by the SM gauge couplings, and the upper bound on the gluino
mass implies a fairly light bino below 100 GeV and thus a neutralino LSP (unless the a large
contribution to the singlino mass is present). The cases with heavier gaugino masses (and t̃
NLSP’s) can be thought of as cases corresponding to a general gauge mediated spectrum [32]
to the electric degrees of freedom.

We have chosen the parameters of all four spectra such that the lightest Higgs mass is
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parameter spectrum 1 spectrum 2 spectrum 3 spectrum 4
µeff −416 GeV −639 GeV −422 GeV −342 GeV
m2
Hu

−(176 GeV)2 −(244 GeV)2 (350 GeV)2 (40.3 GeV)2

m2
Hd

−(218 GeV)2 (207 GeV)2 (350 GeV)2 −(46.6 GeV)2

Table 2: Output parameters for the four benchmark spectra.

H1 125 GeV b̃1 499 GeV
t̃1 188 GeV A2 509 GeV
N1 216 GeV H3 530 GeV
H± 307 GeV t̃2 580 GeV
H2 326 GeV N3 602 GeV
A1 368 GeV N4 635 GeV
C1 406 GeV N5 805 GeV
N2 426 GeV C2 876 GeV

H1 125 GeV C1 628 GeV
t̃1 210 GeV N2 651 GeV
N1 429 GeV H3 667 GeV

b̃1 501 GeV N3 700 GeV
A1 572 GeV A2 720 GeV
t̃2 621 GeV N4 724 GeV
H± 626 GeV N5 806 GeV
H2 627 GeV C2 881 GeV

Table 3: Light superpartners and Higgs particles for benchmark spectra 1 and 2 with a t̃
NLSP. All other superpartners are above 1 TeV.

around 125 GeV. This is not a necessity dictated by the model, and one can easily obtain
spectra with heavier Higgses. We also made sure that for these points we are sufficiently
close to the decoupling limit, such that Higgs production and decay rates are not too far
from the corresponding SM values. Note that choosing the input parameters given above
does not involve any extensive tuning: no automated scans had to be performed for finding
these points.

In order to calculate the spectrum and widths we have modified the NMSSMTools [35,36]
package, which deals with the Z3 symmetric NMSSM. The modified package (MCSSMTools)
[37] handles the minimal composite supersymmetric standard model considered here, where a
linear superpotential term, tadpole soft breaking term, and a singlino mass are also allowed.

The mass spectra are presented graphically in Fig. 1 (benchmark spectra 1 and 2 with
t̃ NLSP’s) and Fig. 2 (benchmark spectra 3 and 4 with neutralino NLSP/LSP’s). The
numerical values for the masses for spectra 1 and 2 are presented in Table 3, while the
leading decay modes are in Table 4. The physical masses for spectra 3 and 4 are in Table 5,
with decay modes in Table 6. The spectrum and decay chains can be interactively visualized
online at http://bit.ly/mcspect. Table 7 contains the couplings of the lightest Higgs
relative to their SM values. One can see that we are close to the decoupling limit in each
case: gluon couplings are within 65-83% of the SM values, while the photon coupling varies
between 85-102% of the SM size for the same Higgs mass.
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Figure 1: Light superpartners and Higgs particles for benchmark spectra 1 and 2 with a t̃
NLSP.

t̃1 → t+ LSP 100%
C1 → t̃1 + b† 84%
C1 → N1 +W± 16%

b̃1 → t̃1 +W− 97%

b̃1 → t̃1 +H− 3%
t̃2 → t̃1 + Z 51%
t̃2 → t+N1 27%
t̃2 → b+ C+

1 11%
t̃2 → t̃1 +H1 10%

t̃1 → t+ LSP 100%
N1 → t+ t̃∗ 50%
N1 → t̄+ t̃ 50%

b̃1 → t̃1 +W− 100%
t̃2 → t̃1 + Z 78%

t̃2 → b̃1 +W+ 14%
t̃2 → t̃1 +H1 8%

Table 4: Branching fractions for benchmark spectra 1 and 2 with a t̃ NLSP.
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5.1 Spectum 1: stealth stop NLSP

The first spectrum corresponds to a stealthy t̃ scenario [26], with the t̃1 almost degenerate
with the t. The largest LHC SUSY production process in this scenario is pp → t̃1t̃

∗
1 pro-

duction, which is about 12 % of the tt̄ production cross section [33] at the 7 TeV LHC. For
a small enough gravitino mass, the t̃1 decays promptly with very little missing transverse
energy. The t̃1 can only be uncovered by a precise measurement of the the tt̄ cross section
or a shape analysis of the invariant mass distribution of tt̄ pairs.

The next largest SUSY production process are pp→ b̃1b̃
∗
1 and pp→ t̃2t̃

∗
2 which are about

few · 10 fb, of the order of 0.1 % of the tt̄ production cross section [33] at the 7 TeV LHC. The
experimental bounds on t̃2, b̃1 are around 270 GeV if decaying to N1, C1, while the bound
from decays to light gravitinos/binos can be as high as 350 GeV [5]. The b̃1 decays to t̃1W ,
giving rise to ttWW final states and in principle, missing energy. The N1 decays to tt̃∗1, and
the off-shell t̃’s will further decay to off-shell t’s. The final state for a pair production of t̃2
will then contain ttbb plus the decay products of two off-shell W’s. The b̃ decays would be the
best channels for looking for this spectrum. However all of these events will have very little
missing transverse energy. In the rest frame the gravitino will carry only a little energy. Even
though the lightest t̃ will be boosted, boost factors of order a few will generically not bring
the missing energy above the standard cuts. As seen in Table 4, almost all superpartner
decay chains end in the NLSP, the t̃1, which decays to t and a soft gravitino. The t̃ lifetime
is [34]

Γ =
m5
t̃

16πF 2

(
1− m2

t

m2
t̃

)4

. (5.1)

For mt̃ < 200 GeV, a prompt decay requires
√
F less than 50 TeV, in which case there is

no easy way to find a SUSY signal [25] from this mode. For bigger values of F there will be
displaced vertices involving t quarks.

5.2 Spectrum 2: stop NLSP with heavier N1

The phenomenology with the second set of input parameters is fairly similar with a slightly
heavier t̃. The main difference is that we no longer have a stealth spectrum, N1 is quite a
bit heavier, and more of the spectrum is pushed above a TeV. Due to the heavier N1 mass,
it can now decay on shell to t + t̃, giving rise to events with tttt in addition to the ttWW
states from the b̃ decays. Since the t̃1 is still quite light, the amount of missing energy in
these decays will still be limited. The t̃2 will mainly decay to Z + t̃1 giving rise to ttZZ final
states.

5.3 Spectrum 3: minimal gauge mediation

The third and fourth spectra both have neutralino (N)LSP’s, thus the traditional missing
energy signals of supersymmetry are expected. However, due to the heavy gluino and first
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N1 88 GeV C2 415 GeV
H1 128 GeV N4 434 GeV
t̃1 191 GeV H2 473 GeV
N2 192 GeV t̃2 517 GeV
N3 291 GeV N5 613 GeV
C1 327 GeV H± 650 GeV

b̃1 350 GeV H3 657 GeV
A1 412 GeV A2 702 GeV

H1 126 GeV N2 348 GeV
A1 190 GeV H3 353 GeV

N1 217 GeV b̃1 400 GeV
t̃1 284 GeV A2 460 GeV
H2 339 GeV t̃2 546 GeV
H± 341 GeV N3 559 GeV
C1 341 GeV N4 602 GeV

Table 5: Benchmark spectra 3 and 4.

two generations squarks, the rates are strongly reduced from those of the constrained MSSM.
These spectra fall in the class of models considered in [5].

The third set of input parameters in particular represent a minimal gauge mediated
spectrum to the electric degrees of freedom. All the soft scalar masses are set equal to
350 GeV. Thus fixing m2

Hu
= m2

Hd
= (350 GeV)2 means that f is no longer really an input

parameter but is an output of fixing the right EWSB vacuum. Since we are considering gauge
mediation, the expectation is that the LSP is again the gravitino, and the NLSP N1 decays
to photon plus gravitino. The lightest t̃ decays to t∗N1, while the heavier t̃ has again many
possible decay channels including t̃1Z, b̃W,N1,2,3t, C1,2b, while the sbottom again decays to
t̃W . Depending on the N1 lifetime, the final states will again either be j+MET, jt+MET,
and j + W/Z+MET, or the same final states with additional photons. This spectrum will
also produce some longer SUSY cascades involving the same final states.

5.4 Spectrum 4: high duality scale

The fourth spectrum was chosen such that it can correspond to a higher duality scale, where
the squark masses are mainly radiatively induced from the elementary gluino (and not coming
from power suppressed terms), while the other composite soft masses are small. In this case
Higgs naturalness is especially good, since the Higgs soft breaking terms needed are around
(50 GeV)2. Third generation squarks are in the 300-500 GeV range. The lightest t̃ decays
via t̃1 → N1c, while the second t̃ has many possible decay modes to final states t̃1Z,C

+
1 b, b̃W

and N1,2t. The sbottom decay is b̃1 → t̃1W . The characteristic final states will be j+MET,
jt+MET, or jW/Z+MET events. This yields fairly traditional SUSY signals at reduced
rate and no leptons (except from W and Z’s).

6 Conclusions

We have seen that by combining supersymmetry, which makes the theory calculable but also
the Higgs too light and/or fine-tuned, with compositeness, which requires strong coupling
and allows for a heavier Higgs with large dynamical Yukawa couplings to other composites,
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Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.

t̃1 → N+
1 + b+W+ 100%

b̃1 → N3 + b 80%

b̃1 → t̃1 +W− 95%

b̃1 → N3 + b 4%

b̃1 → N1 + b 1%
t̃2 → t̃1 + Z 42%

t̃2 → b̃1 +W+ 31%
t̃2 → N2 + t 10%
t̃2 → C+

2 + b 8%
t̃2 → N1 + t 4%
t̃2 → C+

1 + b 3%
t̃2 → N3 + t 2%

t̃1 → N1 + c 99%
t̃1 → N1 + u 1%

b̃1 → t̃1 +W− 100%
t̃2 → t̃1 + Z 28%
t̃2 → C+

1 + b 24%

t̃2 → b̃1 +W+ 20%
t̃2 → N2 + t 15%
t̃2 → N2 + t 14%

Table 6: Branching fractions for benchmark spectra 3 and 4.
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SM fields spectrum 1 spectrum 2 spectrum 3 spectrum 4
γγ 1.02 1.02 0.95 0.85

gluons 0.65 0.83 0.82 0.73
WW,ZZ 0.89 0.96 0.89 0.74

uū 0.72 1.0 0.89 0.72
dd̄ 1.01 0.91 0.89 0.77

Table 7: Ratio of Higgs couplings to SM Higgs couplings for the same mass for the four
benchmark spectra to various SM fields.

we can address three hierarchies: the hierarchy in Yukawa couplings, the little hierarchy
problem, and the apparent hierarchy in squark soft masses. The strong dynamics determines
which particles have significant coupling to the composite Higgs and can force the composite
superpartners that are thus required for naturalness to be much lighter than the elementary
superpartners.

In the model presented here Seiberg duality provides the crucial ingredient for resolving
these hierarchies. The lessons could apply more generally but with Seiberg duality, we can
explicitly determine the hierarchies in the spectrum of composite superpartners. The models
we presented produce a composite Higgs, t and LH b along with partially composite W and
Z. The low energy dynamics is that of the NMSSM with a composite singlet, where the
singlet couplings equal the t Yukawa coupling. This ensures that the Higgs can be sufficiently
heavy. The flavor problem is addressed via the large dynamical top Yukawa, and the little
hierarchy via the NMSSM-type singlet coupling that determines the effective µ-parameter
and is related to the top Yukawa. The strong dynamics at the edge or just inside the
conformal window will strongly suppress the soft breaking terms for the composites. This
gives the necessary hierarchy among the squark masses, that will strongly reduce the SUSY
production rates at the LHC and allow for a natural SUSY EWSB sector.

We have presented four distinct mass spectra corresponding to explicit implementations
of this model. Two of them have the t̃ as the NLSP (with gravitino LSP’s), while the other
two have the N1 as the (N)LSP. One of the spectra with a t̃ NLSP correspond to an explicit
implementation of a stealthy stop, where most of the SUSY events would not contain much
missing energy.

Although conventional supersymmetric models are being challenged by experiments and
naturalness at this point, this model raises the hope that models with more subtle composite
dynamics could in fact be the correct theory of nature.
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