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Abstract

We show that by adding a vector–like 5+ 5̄ pair of matter fields to the spectrum
of the minimal renormalizable SUSY SU(5) theory the wrong relations for fermion
masses can be corrected, while being predictive and consistent with proton lifetime
limits. Threshold correction from the vector–like fields improves unification of gauge
couplings compared to the minimal model. It is found that for supersymmetric
spectra lighter than 3 TeV, which would be testable at the LHC, at least some of
the nucleon decay modes should have partial lifetimes shorter than about 2× 1034

yrs., which is within reach of ongoing and proposed experiments.
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1 Introduction

While elegant and simple, the minimal renormalizable supersymmetric SU(5) model [1,

2, 3] suffers from two main drawbacks. The first is the wrong predictions it makes for the

light fermion masses. This theory predicts the asymptotic relations m0
d = m0

e, m
0
s = m0

µ

and m0
b = m0

τ connecting the charge −1/3 quark masses and charged lepton masses, valid

at the grand unification scale of 2×1016 GeV. Such relations would enable one to calculate

the down–type quark masses in terms of the charged lepton masses by evolving the mass

parameters via the renormalization group equations (RGE). The relation m0
b = m0

τ is

generally considered a successful prediction of minimal SUSY SU(5), since the b–quark

mass computed in terms of τ–lepton mass is typically within about 20% of its experimental

value. The relations involving the lighter families, however, lead to wrong predictions. For

example, the RGE–invariant relationmd/ms = me/mµ, which follows from the asymptotic

relations of the minimal model, differs from experimental values by about a factor of 10

(md/ms ≃ 1/20 while me/mµ ≃ 1/200 at low energy scale [4]).

The second drawback of the minimal SUSY SU(5) model is its prediction for proton

lifetime for the mode p → νK+ which arises via the exchange of colored Higgsinos. The

lifetime is generically too fast compared to the present experimental limits. This predic-

tion follows mainly from the requirement of gauge coupling unification. The spectrum of

the minimal supersymmetric standard model (MSSM) at low energies does not lead to a

precise unification of the three gauge couplings when the full two–loop RGE are used, and

therefore requires some threshold correction from the GUT scale. The only possibility in

the minimal renormalizable SU(5) set-up is to make the color triplets from the 5H + 5H

Higgs fields (which transforms as (3, 1,−1/3) + h.c. under SU(3)C × SU(2)L × U(1)Y

gauge group) somewhat lighter compared to the vector supermultiplets (the X and Y

gauge bosons of SU(5)). Since the same color triplets mediate d = 5 proton decay [5, 6],

making it lighter than the GUT scale results in a considerably shorter proton lifetime

[7, 8, 9, 10, 11, 12], typically in conflict with experimental limits. Notice that this out-

come is due to the minimal particle content: the same color triplet that corrects the RGE

running of the gauge couplings is coupled to the Standard Model (SM) fermions with

fixed Yukawa couplings. (The color triplet Yukawa couplings are unified with the Yukawa

couplings of the SU(2)L doublets also contained in 5H + 5H that generate quark and

lepton masses and mixings.) There is no other choice in the minimal model for correcting

the RGE running of the gauge couplings.

There are various well known ways out of these two problems. The most commonly
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used solution is the inclusion of higher dimensional operators. Due to the vicinity of

MGUT to MPlanck such operators may not be negligible numerically, especially for the

lighter fermion masses [13]. For example, they can easily improve the calculated masses

of the first two generations. Their influence for proton decay is even bigger. They make

the Yukawa couplings to the color triplet Higgs different from those to the weak doublet

Higgs, so that there is some freedom which can be used to somewhat suppress the d = 5

proton decay amplitudes. Alternatively, these higher dimensional operators can allow for

a lighter color octet and weak triplet (remnants of SU(5) symmetry breaking via a 24H)

which can increase both the GUT scale and the color triplet masses [14, 15, 16], alleviating

the d = 5 proton decay problem significantly.

The problem with this natural solution is that it automatically introduces a large

number of new parameters into the game, thus precluding any quantitative prediction.

So, although the model can be made consistent and realistic, it is difficult to test it.

There is also some questions about the strengths of these higher dimensional operators

being of the right magnitude if they are induced by quantum gravity effects. In this

paper we take a different approach. We assume that our supersymmetric SU(5) GUT

is renormalizable. After all, we really do not know how gravity influences our particle

physics world, and a conservative approach would be to not rely heavily on gravity–

induced corrections. This approach of using only renormalizable couplings has brought

great success in the electroweak sector of the Standard Model. The renormalizability of

the theory would greatly reduce possible couplings in the theory resulting in enhanced

predictivity. With this in mind we shall add to the minimal supersymmetric SU(5) as little

as possible: a vector-like 5 + 5̄ matter field. This will allow unequal mixings of the down

quarks and charged leptons with these fields, thus correcting the wrong mass relations.

Simultaneously this set-up would provide a new set of color triplet/weak doublet fields,

which allows for a precise unification of gauge couplings by choosing the color triplet

somewhat lighter than the weak doublet. Note that such a choice does not run afoul with

d = 5 proton decay rates, unlike the minimal SUSY SU(5) model, since the 5+5̄ fields do

not acquire vacuum expectation values (VEVs). As in minimal SUSY SU(5) we assume

R–parity conservation, and we take the vector–like 5 + 5̄ pair to be fermion–like. Had we

chosen Higgs–like multiplets such as 45+45, the wrong fermion mass relations could have

been corrected [17], however in this case quantitative predictions for proton decay would

be difficult to make owing to the large number of parameters that would be introduced.

Another possible solution to the wrong mass problem of the minimal SUSY SU(5) model
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is through supersymmetric threshold corrections arising from soft SUSY breaking terms

with a particular form, see for example Ref. [18, 19]. Here we shall assume that the SUSY

spectrum is such that such threshold corrections remain small. Yet another possibility

is to utilize large Yukawa couplings involving vector-like multiplets. This can raise the

unification scale when two–loop RGE effects are included, which would allow for a better

prediction for α3(MZ) [20, 21].

We now turn to the discussion of fermion masses in presence of a 5 + 5̄ matter fields

and show how the mixing of these fields with the MSSM fermions corrects the wrong mass

relations. We then derive the baryon number violating effective d = 5 superpotential and

study its implications for nucleon lifetime. The small number of new parameters that

are introduced with the addition of a 5 + 5̄ vector–like fermions allows the model to be

consistent with current proton lifetime limits, but at the same time we find that at least

some modes should have partial lifetime less than about 2× 1034 yrs. In our analysis we

assume that the GUT scale stays well below the Planck scale (by a factor of 20 to 50)

so that quantum gravity effects can be ignored, and the approximate unification of the

gauge couplings that occurs in the MSSM is not a complete accident. For supersymmetric

spectrum, we assume that all super-particles have masses less than about 3 TeV, which

would make them detectable at the LHC, while at the same time providing a solution to

the gauge hierarchy problem.

2 Fermion masses with vector–like 5+5̄ matter fields

Before discussing the modifications of the fermion mass relations with the inclusion of a

5 + 5̄ matter fields in SUSY SU(5), let us briefly summarize the situation in the minimal

renormalizable SUSY SU(5) model.

2.1 Fermion Masses in minimal SUSY SU(5)

The matter fields of the model consist of three generations in representations 10i + 5̄i,

i = 1, 2, 3. The Higgs sector consists of an adjoint 24H used for breaking SU(5) symmetry

down to the SM symmetry, and a pair of 5H + 5̄H fields for electroweak symmetry break-

ing. The renormalizable superpotential of the adjoint field relevant for SU(5) symmetry

breaking is

W24 =
m

2
Tr (242H) +

λ

3
Tr (243H) . (2.1)
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The scalar potential induced by this superpotential has a ground state with a non-zero

vacuum expectation value,

〈24H〉 = v diag (2, 2, 2,−3, 3) (2.2)

which spontaneously breaks SU(5) →SU(3)C×SU(2)L×U(1)Y . The VEV v is determined

to be

v =
m

λ
. (2.3)

The simplicity of Eq. (2.1) fixes the masses of the color octet (the (8, 1, 0) fragment of

24H which is a physical Higgs particle) M8 and the weak triplet (the (1, 3, 0) fragment of

24H) M3 to be

M3 = M8 = 5m . (2.4)

The same VEV sets the super-heavy SU(5) gauge boson masses to be

MX = MY = 5
√
2g

m

λ
. (2.5)

The two MSSM Higgs doublets Hu and Hd live in the pair of Higgs fundamentals

5H + 5̄H and have Yukawa couplings with the matter fields given by

WY = 10iY
ij
1010j5H + 5̄iY

ij
5 10j 5̄H . (2.6)

The equality of the down–type quark masses and charged lepton masses follows from this

superpotential:

MD = 〈5̄H〉Y T
5 = MT

E . (2.7)

The color triplets from 5H+5̄H have the same Yukawa couplings as the Higgs doublets

and would mediate rapid proton decay via d = 5 baryon number violating operators. For

this reason they must be ultra-heavy, preferably with a mass above the GUT scale. In

the superpotential terms

W5 = 5̄H (mH + ηH24H) 5H (2.8)

this can be arranged by a fine–tuning:

mH = 3ηH
m

λ
. (2.9)

The color triplet mass is thus

MT = 5ηH
m

λ
(2.10)
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which shows that mT cannot be arbitrarily large if we demand (as we do) perturbativity

of the couplings:
MT

MX
=

ηH√
2g ∼< O(1) . (2.11)

Due to the relation in Eq. (2.4), the requirement of gauge coupling unification would

imply that the color triplet mass is actually much lower, around or even smaller than 1015

GeV [11].4 Such a light color triplet would mediate too fast a proton decay, which is a

problem with the minimal model.

2.2 Mixing of chiral families with 5 + 5̄ fields

To the minimal SUSY SU(5) described in the previous subsection we now add a vector–

like pair of matter fields5 denoted as 54+5̄4. With their R–parity assumed to be identical

to that of the chiral families 10i+5̄i (or equivalently odd matter parity), the most general

renormalizable addition to the superpotential of minimal SU(5) is

W4 = 5̄a (µa + ηa24H) 54, a = 1, . . . , 4 . (2.12)

Notice that, without loss of generality, by an appropriate choice of the basis, the terms

5̄410i5̄H can be rotated away. Thus, the whole Yukawa superpotential reads as

WY = 10iY
ij
1010j5H + 5̄iY

ij
5 10j 5̄H + 5̄a (µa + ηa24H) 54 . (2.13)

One can work in a basis where the 3× 3 coupling matrix Y ij
5 is diagonal:

Y ij
5 = yiδij .

Plugging the VEVs 〈5H〉 = vu , 〈5̄H〉 = vd ,〈24H〉 = v diag (2, 2, 2,−3,−3) into Eq.

(2.13) and keeping color triplet states T, T̄ (from 5H , 5̄H), the relevant terms involving

the MSSM fields and the additional vector-like states will be

WY = LTM4×4
l Ec +DcTM4×4

d D + uTM0
Uu

c + lTY5qT̄ +
1

vu
uTM0

UdT

+ dcTY5u
cT̄ +

1

vu
ecTM0

Uu
cT , (2.14)

where

LT = (l1, l2, l3, l4) , EcT =
(

ec1, e
c
2, e

c
3, l̄4

)

,

4An exception would be to choose very special MSSM soft parameters [22]. This may however require
very particular and exotic hidden and messenger sectors of SUSY breaking.

5The use of heavy vector-like matter to correct the bad mass relations in GUTs is long known. For
an incomplete list see for example [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].
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DcT = (dc1, d
c
2, d

c
3, d

c
4) , DT = (d1, d2, d3, d̄

c
4) , (2.15)

M4×4
l =

(

yiδijvd M l
i

0 |M l
4|

)

, M4×4
d =

(

yiδijvd Md
i

0 |Md
4 |

)

, (2.16)

M l
i = µa − 3ηiv , Md

i = µi + 2ηiv , M0
U = Y10vu . (2.17)

Let us now focus on the light (MSSM) charged lepton and down–type quark masses

arising from Eq. (2.16). These are obtained by removing the heavy vector–like state from

the spectrum. The mass matrices of Eq. (2.16) can be block–diagonalized so as to bring

the mass terms in the superpontential to the form

Wmass = eT M̂Ee
c + dTM̂Dd

c + uTM̂Uu
c +MDDD̄ +MCCC̄ . (2.18)

The reduced mass matrices M̂E and M̂D, derived in Appendix A.1, can be made real and

have forms

M̂E =





d1c
e
1 0 0

−d1s
e
1s

e
2 d2c

e
2 0

−d1c
e
2s

e
1s

e
3 −d2s

e
2s

e
3 d3c

e
3



 , M̂D =





d1c
d
1 −d1s

d
1s

d
2 −d1c

d
2s

d
1s

d
3

0 d2c
d
2 −d2s

d
2s

d
3

0 0 d3c
d
3





(2.19)

with

di = |yivd| , ce,di ≡ cos θe,di , se,di ≡ sin θe,di , te,di ≡ tan θe,di ,

te,d1 =
|M l,d

1 |
|M l,d

4 |
, te,d2 =

|M l,d
2 |

|M l,d
4 |

ce,d1 , te,d3 =
|M l,d

3 |
|M l,d

4 |
ce,d1 ce,d2 . (2.20)

Note that sinceM l
i 6= Md

i , the wrong GUT scale asymptotic relation M̂E(MG) = M̂T
D(MG),

which is problematic for the minimal renormalizable SU(5) model, is avoided here. In

Eq. (2.16) M̂U = M0
U = Y10vu, since the up–type quarks do not mix with any of the

vector–like field.

From Eq. (2.19), it follows that realizing the mass hierarchy between different families

is possible only when the diagonal factors di are hierarchical, d1 ≪ d2 ≪ d3, in which case

we can write down very simple formulas for the masses:

me,d
i ≃ di cos θ

e,d
i . (2.21)

Thus, it is possible to fit all quark and lepton masses consistently to the observed values.

The mixing angles are related by the ratios:

md
i

me
i

≃ cos θdi
cos θei

. (2.22)
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The 3× 3 light fermion mass matrices are diagonalized via bi-unitary transformations

M̂E = U †
EM

E
diagVE , M̂D = U †

DM
D
diagVD , M̂U = V †

uM
U
diagV

∗
u , (2.23)

by going from the flavor to the mass eigenstate basis:6

d → UT
DP̂ d , e → UT

Ee , u → V T
u P 1/2u , ν → UT

Eν

dc → V †
DP̂

∗dc , ec → V †
Ee

c , uc → V T
u

√
P ∗uc . (2.24)

The diagonal phase matrices P and P̂ are introduced (see Appendix A.1 for details) so

that the CKM matrix can be written as

VCKM =
√
P ∗V ∗

u U
T
DP̂ (2.25)

in a standard parametrization with a single phase:

VCKM =





c12c13 s12c13 ŝ∗13
−s12c23 − c12s23ŝ13 c12c23 − s12s23ŝ13 s23c13
s12s23 − c12c23ŝ13 − c12s23 − s12c23ŝ13 c23c13



 . (2.26)

The entries of Eq. (2.26) can be parameterized by four Wolfenstein parameters λ, A, ρ̄

and η̄ as follows:

s12 = λ , c12 =
√
1− λ2 , s23 = Aλ2 , c23 =

√
1−A2λ4

ŝ13 =
Aλ3(ρ̄+ iη̄)

√
1−A2λ4

√
1− λ2[1− A2λ4(ρ̄+ iη̄)]

, s13 = |ŝ13| , c13 =
√

1− s213 . (2.27)

With the central values of these parameters taken from PDG [37]

λ = 0.2253 , A = 0.808 , ρ̄ = 0.132 , η̄ = 0.341 (2.28)

we can calculate the CKM elements at MZ scale. The corresponding CKM elements at

the GUT scale are obtained from VCKM(MZ) by dividing the 13, 23, 31 and 32 elements

by a common RGE factor (≃ 1.055 for tan β = 7), while keeping the remaining elements

intact.

6Neutrino masses are ignored for simplicity, since they are irrelevant for our studies. They can of
course be included via the seesaw mechanism with right–handed singlet neutrinos fields introduced. This
would have very little effects on our discussions. Another possibility would be to include bilinear R-parity
violating couplings, see for example [35].
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As far as the charged fermion masses are concerned, their Yukawa couplings at the

GUT scale, taken to be MG ≈ 2 · 1016 GeV, for tan β = 7, are taken to be

MU
diag/vu = diag

(

5.49 · 10−6, 0.00323, 1
)

λt(ΛG), λt(MG) ≃ 0.44 ,

MD
diag/vd = diag (0.000886 , 0.01646 , 1)λb(MG), λb(MG) ≃ 0.038 , (2.29)

ME
diag/vd = diag (0.0002777, 0.05862, 1)λτ (MG), λτ (MG) ≃ 0.047 .

These values correspond to central values of these masses at low energy scale, see for eg.,

Ref. [36]. These numerical values will be used below for the study of proton decay. We

emphasize that realistic fermion masses are obtained in this model, unlike the minimal

renormalizable SU(5) model.

3 The value of α3(MZ)

Since in the model under study we have additional states D, D̄, C, C̄ beyond those of

minimal SUSY SU(5), if their masses lie below the GUT scale (MG), the unification of

three gauge couplings will be modified. The masses of these extra states are given by

MD =
√

|M l
1|2 + |M l

2|2 + |M l
3|2 + |M l

4|2 ,

MC =
√

|Md
1 |2 + |Md

2 |2 + |Md
3 |2 + |Md

4 |2 . (3.1)

Since in M l
a,M

d
a there are SU(5) symmetry breaking effects (see Eq. (2.17)), in general

these two masses differ: MD 6= MC . We will exploit this fact for improving the value of

α3(MZ) predicted by the demand that the three gauge couplings unify. Assuming that

MD ≃ MG and MC < MG, we will have:

1

α3(MZ)
≃ 1

α0
3(MZ)

− 9

14π
ln

MC

MG

, (3.2)

where α0
3(MZ) denotes the value of the strong coupling constant one would have obtained

in minimal SUSY SU(5) GUT. The second term on the right–hand side of Eq. (3.2) is due

to the one–loop contribution of the extra color triplet pair from the vector–like fermions

with mass MC < MG. With the choice of super-particle spectrum inspires by supergravity

(see below Eq. (4.20) and Table 1 for the spectral values we use), and with all the GUT–

scale states (besides C, C̄) having masses ≃ MG one would obtain α0
3(MZ) ≃ 0.127. To

bring this somewhat large value down we take MC

MG
≃ 0.061. Using this in Eq. (3.2),
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we obtain α3(MZ) ≃ 0.1184 - the central value of the experimentally determined strong

coupling constant.

Note that from Eq. (3.2) the ratio MC

MG
is determined. The value ofMG should be found

from the meeting point of three gauge couplings. Because of the fact that the dependance

of MG on αi(MZ) is exponential, we are able to determine MG, and therefore also MT ,

only to an accuracy of about 22%. This will cause an uncertainty of about 45% in the

d = 5 proton decay lifetime estimate. Further uncertainty is caused by the uncertainty

in the ratio r = M8/MX . The natural value of r is of order one, but r ≪ 1 cannot be

excluded. Choosing r ≪ 1 would result in larger values of the unification scale, which

we shall demand to lie at least a factor 20− 50 below the Planck scale, so that quantum

gravitational corrections to the gauge coupling evolution remain small.

4 Effective baryon number violating operators and

nucleon decay

In studying nucleon decay, we will need to derive the relevant d = 5 baryon number

violating effective operators. These operators are obtained by integrating out the extra

vector-like matter superfields, as well as the states T, T̄ from the couplings given in Eq.

(2.14). Details of this procedure are given in Appendix A.2. Here we present the relevant

effective superpotential couplings:

Weff = Wmass +W d=5
L +W d=5

R , (4.1)

where Wmass is given in Eq. (2.18),

W d=5
L =

ǫabc

MTvuvd
(uT

a M̂Udb)(ν
TM̂EP

′dc − eTM̂EP
′uc), (4.2)

and

W d=5
R =

ǫabc

MT vuvd
(ucT

a M̂UP
′∗ec)(dcTb M̂T

Du
c
c) . (4.3)

Here a, b, c are color indices. P ′ is a phase matrix P ′ = diag(eiδ1 , eiδ2 , 1). MD and MC

are the masses of the extra vector–like weak doublets (D, D̄) and color triplets (C, C̄)

respectively. Note that all these coupling are written in the flavor basis of MSSM quarks

and leptons.7 The couplings given in (4.1)-(4.3) will be needed for the discussion of

nucleon decay. Now we turn to the estimate of d = 5 proton decay rates.

7These states differ from those of initial superpotential (2.14) due to various rotations (discussed in
the Appendix). However, in Eqs. (4.1)-(4.3) we use the same notation (without primes) for simplicity.
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4.1 Effective d = 5 operators in the mass eigenstate basis

With the basis change given in Eq. (2.24) and using Eqs. (2.23), (2.25), the baryon

number violating operators of Eqs. (4.2), (4.3) will have the following form in the mass

eigenstate basis:

W d=5
L =

ǫabc

MT vuvd

(

uT
aPMU

diagVCKMdb
)

(

νTME
diagV dc − eTME

diagV V †
CKMuc

)

(4.4)

W d=5
R =

ǫabc

MTvuvd

(

ucT
a MU

diagVCKMV †ec
)

(

dcTb MD
diagV

†
CKMP ∗uc

c

)

. (4.5)

The matrices V and P are given in Eqs. (A.10)-(A.12).

The d = 6 four fermion operator obtained from W d=5
L by wino dressing and involving

the neutrino has the form

Od=6
νL =

ǫabc

MT
Cν
δαγρ

(

uδ
ad

α
b

)

(dγcν
ρ) , (4.6)

where

Cν
δαγρ = g22

∑

β,σ

(cβσγρ − cβγσρ)|µ=MG
(VCKM)βα (V

∗
CKM)δσ I(ũ

β, d̃σ, W̃ )ĀS(d
γ, uβ, dσ)

+g22
∑

β

(c̄δαβρ − c̄βαδρ)|µ=MG
(VCKM)βγ I(ũ

β, ẽρ, W̃ )ĀS(d
α, uδ, uβ) ,

with , cβσγρ =
1

vuvd

(

MU
diagPVCKM

)

βσ

(

V TMD
diag

)

γρ
,

c̄δαβρ =
1

vuvd

(

MU
diagPVCKM

)

δα

(

V ∗
CKMV TME

diag

)

βρ
. (4.7)

Here I is the loop integral defined as

I(i, j, k) =
1

16π2

mk

m2
i −m2

j

(

m2
i

m2
i −m2

k

ln
m2

i

m2
k

−
m2

j

m2
j −m2

k

ln
m2

j

m2
k

)

, (4.8)

while ĀS accounts for short distance renormalization factor of the corresponding LLLL

d=5 operator. Here we present some of these RG factors, which will be needed later on

for numerical calculations:

ĀS(d
γ, uβ, dσ)γ,β,σ 6=3 = ĀS(d

α, uδ, uβ)α,δ,β 6=3 ≃ 6.88 ,

ĀS(d
γ, uβ, b)γ,β 6=3 = ĀS(d

γ, t, dσ)γ,σ 6=3 = ĀS(d
α, uδ, t)α,δ 6=3 ≃ 6.54 ,

ĀS(d
γ, t, b)γ 6=3 ≃ 6.2 . (4.9)

11



These expressions are valid for low to moderate values of tanβ.

The d = 6 four fermion operator obtained from W d=5
R by higgsino dressing and involv-

ing the neutrino has the form

Od=6
νR =

ǫabc

MT
Rν

δαγρ

(

ucδ
ad

c
α

b

)

(dγcν
ρ) , (4.10)

where

Rν
δαγρ =

1

vuvd

∑

σ

(ω∗
δρασ − ω∗

σραδ)
∣

∣

µ=MG

(

MU
diagVCKM

)

σγ

(

ME
diag

)

ρ
I(ẽc

δ
, ũcσ, H̃±)ĀS,R(u

cδ, ucσ) ,

with ωδρασ =
1

vuvd

(

MU
diagVCKMV †

)

δρ

(

MD
diagV

†
CKMP ∗

)

ασ
. (4.11)

ĀS,R accounts for short distance renormalization factor of the corresponding RRRR d=5

operator. Here we give values of those, which will be needed for further calculations:

ĀS,R(u
c, ucσ)σ 6=3 ≃ 4.44 , ĀS,R(u

c, tc) ≃ 4.0 . (4.12)

4.2 Nucleon decay

The operators responsible for p → νρK
+ decay are

ǫabc

MT

[

Cν
112ρ(uadb)(scνρ) + Cν

121ρ(uasb)(dcνρ) +Rν
112ρ(u

c
adcb)(scνρ) +Rν

121ρ(u
c
ascb)(dcνρ)

]

.

(4.13)

From these expressions we can calculate the partial widths for nucleon decay:

Γ(p → νρK
+) =

(m2
p −m2

K)
2

32πm3
pf

2
π

∣

∣

∣

∣

RL

MT

{

(βHCν
121ρ + αHRν

121ρ)
2mp

3mB

D+

(βHCν
112ρ + αHRν

112ρ)

(

1 +
mp

3mB

(D + 3F )

)}∣

∣

∣

∣

2

. (4.14)

Here αH , βH are hadronic matrix elements and at µ = 2 GeV scale are [38] |αH | ≃ |βH | ≃
0.012 GeV3, while the values of other parameters are mp = 0.94 GeV, mK = 0.494 GeV,

fπ = 0.131 GeV, mB = 1.15 GeV, D = 0.8, F = 0.47. The factor RL ≃ 1.25 is a long

distance renormalization factor.

Note that, different from the minimal SUSY SU(5) model, in Eqs. (4.4) and (4.5) the

unitary matrix V appears. This matrix, by proper selection of its mixing angles, allows

us to suppress proton decay so as to bring the partial lifetime within experimental limits.

12



Before demonstrating this with numerical results, in order to get a better feeling, we

present an analytic study to leading order in certain small parameters. To leading order,

let us ignore (i.e., set to zero) the 2− 3 and the 1− 3 mixing angles in the CKM matrix

and in the V̂ matrix. Let us also take the limit mu, md, me → 0. In this limit, we get

Cν
1211 = Cν

1213 = Cν
1121 = Cν

1123 = 0 . (4.15)

Similar results hold for the corresponding Rν amplitudes. Therefore

Γ(p → νeK
+) = Γ(p → ντK

+) = 0 . (4.16)

Only Γ(p → νµK
+) will be non–zero due to the non–zero elements Cν

1212 and Cν
1122

8 which

are given by

Cν
1212 = Cν

1122 ≃ g22

(

I(ũ, d̃) + I(ũ, ẽ)
)

Āα
Se

iω2λsλµ sin θc

(

sin θce
i(φ2+δ2) + V̂21e

iφ1

)

. (4.17)

Note that in the limit V̂21 → 0 the expressions of Eq. (4.17) will coincide with those of

minimal SUSY SU(5). Now, we can select the matrix element V̂21 in such a way that

these coefficients vanish (or are suppressed): sin θce
i(φ2+δ2) + V̂21e

iφ1 = 0, or

|V̂21| = sin θc , Arg(V̂21) = π + φ2 + δ2 − φ1 . (4.18)

With this conditions satisfied we get Γ(p → νµK
+) ≃ 0 and the decay p → νK+ will

be eliminated. Note that the conditions in Eq. (4.18) are easily satisfied. This is true

for the second relation because all phases entering there are free. As far as the condition

|V̂21| = sin θc is concerned, from (A.12), with te1s
e
2

<
∼ 5td1s

d
2 we have |V̂21| ≈ md

ms
td1s

d
2. With

the selection td1s
d
2 ≈ 4 we get |V̂21| ≈ 0.2 ≈ sin θc.

With the inclusion of 1−3 and 2−3 mixings, and mu,d,e 6= 0, the expressions get more

lengthy, making analytical treatment harder. Thus, in the following we proceed with a

numerical study, demonstrating the possibility of proton lifetime suppression.

4.3 Exact numerical results

Following Eq. (2.22) we choose

θl1 = arccos

(

me

md
cos θd1

)

, θd2 = arccos

(

ms

mµ
cos θl2

)

, θd3 = arccos

(

mb

mτ
cos θl3

)

.

(4.19)

8The elements Rν

1212, Rν

1122 are suppressed strongly and can be ignored.
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h A H0 H± χ̃±
1 χ̃±

2 χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 g̃
125 1000 1000 1003 145 497 132 -158 259 497 1450

t̃1 t̃2 ũ1, c̃1 ũ2, c̃2 b̃1 b̃2 d̃1, s̃1 d̃2, s̃2
554 2197 3144 3241 2186 3096 3145 3118

τ̃1 τ̃2 ẽ1, µ̃1 ẽ2, µ̃2 ν̃τ ν̃e, ν̃µ
2849 3062 3073 2871 3061 3072

Table 1: Particle masses (in GeV) obtained by the input given in Eq. (4.20) in MSSM.

Then there are only three independent angles. We treat θd1 , θ
l
2 and θl3 as free parameters

and select them in such a way as to suppress d = 5 proton decay rates adequately. We

also have the free phases δ1,2, ω1,2, φ1,2, which we vary so as to suppress proton decay rate.

For soft SUSY breaking parameters we adopt supergravity–inspired spectrum. How-

ever, we deviate from mSUGRA and allow for non-universality in the Higgs boson mass.

This is implemented by taking the pseudoscalar Higgs mass MA and µ as independent pa-

rameters. At the GUT scale we take as input, inspired by the “natural SUSY” spectrum

of Ref. [39],

M0 = 3 TeV, M1/2 = 568.3 GeV, A0 = −5 TeV,

tan β = 7, µ = 150 GeV, MA = 1 TeV, (4.20)

where M0 (M1/2) is the usual universal soft mass for chiral matter superfields (gauginos)

at the GUT scale, A0 the common trilinear term, while the Higgs sector is not universal

(M2
Hu,d

6= M2
0 ). The value of tan β given is at the weak scale, corresponding to tanβ = 6.75

at the GUT scale. The parameters are chosen so that the SUSY spectrum is lighter than

approximately 3 TeV, which can be discovered at LHC. For numerical calculations we

used the code SuSpect [40], through which we make sure that the lightest (SM like) Higgs

mass is ≃ 125 GeV. The spectrum (at weak scale) we get for the input of Eq. (4.20) is

given in Table 1. These values will be used in the calculation of proton lifetime.

One choice of the three free angles and phases giving adequate suppression of proton

decay rate is:

θd1 = 1.3433, θl2 = 1.016, θl3 = 0.10275,

φ1 = δ1 = 0, φ2 = 3.3065, δ2 = 1.883,

ω1 = 2.515 , ω2 = 1.748. (4.21)

With these input values we obtain for the decay rate p → νK+

Γ−1
d=5(p → ν̄K+) =

1
∑3

i=1 Γd=5(p → ν̄iK+)
≃

14



4 · 1033 yrs×
(

0.012GeV3

βH

)2(
1.25

RL

)2(
MT

4.8·1016GeV

)2

. (4.22)

In Table 2 we summarize the partial lifetimes for this and other decay modes. Not all

decay modes (induced by the d = 5 operators) are listed, those with lifetimes exceeding

∼ 5 · 1036 years are not shown. Note that with further tuning of parameters, we may

suppress even more the p → ν̄K+ decay. However, we can not decrease much further the

value of MT because that would decrease the lifetime Γ−1
d=5(p → µ+K0) whose value is

already near at the experimental limit [41] (see Table 2).

Note that with the value MT = 4.8 · 1016 GeV (used in Eq. (4.22)), the mass of the

SU(5) gauge bosons (X, Y ) should be greater than about 2 × 1016 GeV in order to be

consistent with perturbtativity [26]. Such a value for MX would mean that there is some

chance for the observation of the gauge boson mediated nucleon decay such as p → e+π0,

but this will be challenging.

One can try to increase the color triplet mass to further suppress the rates for the

d = 5 modes. Due to the perturbativity constraint (see Eq. (2.11)) one needs first to

increase the heavy gauge boson mass. For m3 = m8 this equals

MX = M0
X/r

1/3 (4.23)

where M0
X ≈ 2.1016 GeV. By choosing r ≈ 1/10 or so MX and thus MT can be increased

by a factor of 2. The color triplet mass can now be raised to MT ≈ 1017 GeV, which would

imply the scaling of all lifetimes for all modes in Table 2 upward by a factor of 4. Further

increase of the triplet mass could jeopardize the expansion in inverse powers of the Planck

scale, so we will not consider it. We see that, with the assumption that SUSY particles

masses lie below about 3 TeV, which is testable at the LHC, proton lifetime cannot exceed

about 2× 1034 years. This is within reach of ongoing and proposed experiments.

We have not included gluino dressing of the effective d = 5 operators in order to

obtain four fermion operators for proton decay. When universality is assumed, as we do,

for the masses of the superpartners of the chiral fermions, the gluino dressing diagrams

are highly suppressed [42] compared to the Wino dressing diagrams. This is primarily due

to the antisymmetric nature of the QQQL operator in flavor. With the SUSY particle

masses taken to be less than about 3 TeV, universality in the soft scalar masses is almost

a necessity in order to suppress flavor changing neutral currents (FCNC) arising from the

exchange of SUSY particles. If the third family squark and slepton masses are taken to

be different from those of the (degenerate) first two families, FCNC processes may not be

excessive. In this case, the gluino dressing contributions to nucleon decay may become

15



Table 2: Inverse widths for nucleon decay. Calculations are carried out for the SUSY
parameters (spectrum) given in Eq. (4.20), Table 1. The model parameters are given
in Eqs. (4.21), (4.19), along with MT = 4.8 × 1016 GeV. Other parameters used can be
found right after Eq. (4.14).

Γ−1
d=5(p → ν̄K+) 4 · 1033 yrs.

Γ−1
d=5(n → ν̄K0) 2 · 1033 yrs.

Γ−1
d=5(p → µ+K0) 1.0 · 1034 yrs.

Γ−1
d=5(p → µ+π0) 1.8 · 1034 yrs.

Γ−1
d=5(p → ν̄π+) 7.3 · 1033 yrs.

Γ−1
d=5(n → ν̄π0) 1.5 · 1034 yrs.

important, but typically the amplitude is not much more than that arising from the Wino

dressing, see for eg. discussions in Ref. [43]. Thus, variation of SUSY spectrum would

not significantly alter the upper limit on nucleon lifetime derived above, as long as the

sparticle masses lie below 3 TeV or so.

5 Conclusions

In this paper we have shown that the main problems of the minimal renormalizable model

based on SUSY SU(5) can be cured by adding a vector–like pair of 5 + 5̄ matter fields.

This allows for the mixing of chiral families with the vector–like fields, which we show

corrects the wrong mass relations of minimal SU(5). The mass splitting between the

color triplets and the weak doublets of this vector–like fields improves the unification of

the three gauge couplings. The color triplets from the 5H + 5̄H fields, which mediate

d = 5 proton decay can have GUT scale masses, thus avoiding the rapid proton decay

problem of the minimal model. The small number of couplings of this model enables us

to make quantitative predictions for partial lifetimes for proton decay. We find that, in

the favorable case that the LHC is sensitive to the discovery of the whole SUSY spectrum

(corresponding to all the super-partner masses and Higgs boson masses ∼< 3 TeV), at least

some of the modes should have partial lifetimes shorter than about 2× 1034 yrs, which is

within reach of proposed experiments.
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A Deriving Weff

In this Appendix, we give details of obtaining the effective superpotential, both for the

light fermion mass matrices, and for the d = 5 baryon number violating superpotential

couplings. The effective superpotential is obtained by decoupling the extra heavy vector

like states. First we integrate out the extra matter states. This is performed by block–

diagonalization of the first two coupling matrices in Eq. (2.14).

A.1 Derivation of Wmass

With the transformation

L = PlV
†
l L

′ , Ec = PecE
c′ , Dc = PdcV

†
dD

c′ , D = PqD
′ , (A.1)

the matrices M4×4
l and M4×4

d get transformed to [30]

M4×4
l → VlPlM

4×4
l Pec =

(

M̂E 0
O(vd) MD

)

, (A.2)

M4×4
d → VdPdcM

4×4
d Pe =

(

M̂T
D 0

O(vd) MC

)

. (A.3)

The matrices in Eq. (A.1) are given by

Pl = eiωlDiag
(

e
−iφ

Ml
1 , e

−iφ
Ml

2 , e
−iφ

Ml
3 , 1

)

Pec = e−iωlDiag
(

e
i(φ

Ml
1

−φy1vd
)
, e

i(φ
Ml

2

−φy2vd
)
, e

i(φ
Ml

3

−φy3vd
)
, 1

)

17



Pdc = eiωdcDiag
(

e
−iφ

Md
1 , e

−iφ
Md

2 , e
−iφ

Md
3 , 1

)

Pq = e−iωdcDiag
(

e
i(φ

Md
1

−φy1vd
)
, e

i(φ
Md

2

−φy2vd
)
, e

i(φ
Md

3

−φy3vd
)
, 1

)

(A.4)

Vl,d =









ce,d1 0 0 −se,d1

−se,d1 se,d2 ce,d2 0 −ce,d1 se,d2

−ce,d2 se,d1 se,d3 − se,d2 se,d3 ce,d3 −ce,d1 ce,d2 se,d3

ce,d2 ce,d3 se,d1 ce,d3 se,d2 se,d3 ce,d1 ce,d2 ce,d3









, (A.5)

where definitions for the entries of Eq. (A.5) see Eq. (2.20). We use the notation φX

to denote the phase of a complex parameter X . Thus φy1vd is the argument of y1vd, etc.

With all these, one can easily check that the matrices M̂E , M̂D and masses MD,MC are

given by Eqs. (2.19) and (3.1) respectively. The entries O(vd) in Eqs. (A.2), (A.3) can

be safely ignored. Thus, the diagonal block-entries in these matrices, together with M̂U ,

coincide with the terms of Eq. (2.18).

A.2 Deriving effective d = 5 operators

Now we turn to the derivation of the effective d = 5 baryon number violating superpo-

tential couplings. With the transformations of Eq. (A.1) and with

q = P ′
qq

′ , uc = P ′
qu

c′ , (A.6)

where

P ′
q = e−iωdcDiag

(

e
i(φ

Md
1

−φy1vd
)
, e

i(φ
Md

2

−φy2vd
)
, e

i(φ
Md

3

−φy3vd
)
)

, (A.7)

one can derive the couplings of the light states with the color triplets T, T̄ :

1

vd
lTM̂EP

′qT̄ +
1

vu
uTM̂UdT +

1

vd
dcTM̂T

Du
cT̄ +

1

vu
ecTP

′∗M̂Uu
cT , (A.8)

where we have omitted primes for the quark and lepton states. The matrix P ′, without

loss of generality, can be parameterized as:

P ′ = Diag
(

eiδ1 , eiδ2, 1
)

. (A.9)

Further, integrating out the states T, T̄ with mass MT , from Eq. (A.8) we derive the

effective d = 5 operators given in Eqs. (4.2), (4.3). These are written in a flavor basis.
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Finally, we present the matrices which appear in the d = 5 couplings written in the

the mass eigenstate basis, using the transformations given in Eq. (2.24). These are the

phase matrix P

P = Diag
(

eiω1 , eiω2, 1
)

, (A.10)

and the matrix

V = V̂ P̂ , with V̂ = VEP
′UT

D , P̂ = Diag
(

eiφ1 , eiφ2, 1
)

. (A.11)

The elements of the matrix V̂ are:

V̂11 ≃ eiδ1 , V̂12 ≃ −md

ms

td1s
d
2e

iδ1 +
me

mµ

te1s
e
2e

iδ2 ,

V̂13 ≃ −md

mb
td1c

d
2s

d
3e

iδ1 − ms

mb

me

mµ
te1s

e
2t

d
2s

d
3e

iδ2 +
me

mτ
te1
se3
ce2

,

V̂21 ≃
md

ms

td1s
d
2e

iδ2 − me

mµ

te1s
e
2e

iδ1 , V̂22 ≃ eiδ2 , V̂23 ≃ −ms

mb

td2s
d
3e

iδ2 +
mµ

mτ

te2s
e
3 ,

V̂31 ≃
md

mb
td1
sd3
cd2

− md

ms

mµ

mτ
te2s

e
3t

d
1s

d
2e

iδ2 − me

mτ
te1s

e
3c

e
2e

iδ1 ,

V̂32 ≃
ms

mb
td2s

d
3 −

mµ

mτ
te2s

e
3e

iδ2 , V̂33 ≃ 1 . (A.12)

A.3 An alternative derivation of Wmass

Here we provide an alternative, perhaps more intuitive, derivation of the effective mass

matrices for the down–type quarks and charged leptons that follow from Eq. (2.16). We

write down these matrices in a unified SU(5) notation,

L =
(

5̄i 5̄4
)

(

m0
ij Mi

0 M4

)(

10j
54

)

(A.13)

where

m0
ij = yiδij〈5̄H〉 (A.14)

Ma = µa + ηa〈24H〉 , a = 1 . . . 4 (A.15)

Here 〈24H〉 = 2v for the color triplet quark fields, while 〈24H〉 = −3v for the SU(2)L

doublet lepton fields from the 5a + 54. Now we make a unitary rotation parametrized by

(

5̄i 5̄4
)

→
(

5̄i 5̄4
)

U (A.16)
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with

U =

(

Λ −Λx
x†Λ̄ Λ̄

)

(A.17)

xT = (M1,M2,M3)/M4 (A.18)

Λ = (1 + xx†)−1/2 , Λ̄ = (1 + x† x)−1/2 = (1 + |x|2)−1/2 (A.19)

Note that the unitary matrix U is different for the quarks and leptons, since theMi factors

that enter into U are different. Similarly, the xi factors are not the same in these two

sectors. We shall not explicitly show here the dependence of U or xi on the fermion flavor,

but it is to be understood.

With the rotation of Eq. (A.16) , Eq. (A.13) becomes

L →
(

5̄i 5̄4
)

(

(Λm0)ij 0
(x† Λ̄m0)i x† Λ̄M + Λ̄M4

)(

10j
54

)

(A.20)

The heavy pair is now 5̄4 − 54, and the light mass matrices for down quarks and charged

leptons become

MD = Λdm0 ME = m0ΛeT (A.21)

with

xDi =
µi + 2ηiv

µ4 + 2η4v
, xEi =

µi − 3ηiv

µ4 − 3η4v
(A.22)

where we have explicitly shown the separate matrices for down type quarks and charged

leptons, using the GUT scale VEV v given in Eq. (2.2).

The matrix Λ from (A.19) (for each sector separately) can be written explicitly as

Λ = 1− xx†

√

1 + |x|2
(

√

1 + |x|2 + 1
)

=





1− c x1 x
∗
1 −c x1 x

∗
2 −c x1 x

∗
3

−c x2 x
∗
1 1− c x2 x

∗
2 −c x2 x

∗
3

−c x3 x
∗
1 −c x3 x

∗
2 1− c x3 x

∗
3



 (A.23)

with

c =
1

√

1 + |x|2
(

√

1 + |x|2 + 1
) (A.24)

The down quark and charged lepton mass matrices of Eq. (A.21) can be diagonalized
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readily. Their eigenvalues are given by:

m2
1 +m2

2 +m2
3 =

|d1|2(1 + |x2|2 + |x3|2) + |d2|2(1 + |x3|2 + |x1|2) + |d3|2(1 + |x1|2 + |x2|2)
1 + |x|2

m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3 =

|d1|2|d2|2(1 + |x3|2) + |d2|2|d3|2(1 + |x1|2) + |d3|2|d1|2(1 + |x2|2)
1 + |x|2

m2
1m

2
2m

2
3 =

|d1|2|d2|2|d3|2
1 + |x|2 , (A.25)

where di’s are common for MD and ME , while the xi’s are different. From Eq. (A.25),

it follows that realizing the mass hierarchy is possible only when |di| are hierarchical,

|d1| ≪ |d2| ≪ |d3|, in which case we can write down very simple formulas for the three

masses:

mi = |di| cos θi . (A.26)

Here we define three mixing angles as:

tan θ1 = |x1|, tan θ2 =
|x2|

√

1 + |x1|2
, tan θ3 =

|x3|
√

1 + |x1|2 + |x2|2
(A.27)

with 0 ≤ θi ≤ π/2. These are the same definitions used in Eq. (2.20).

Noting that the mass matrix elements of Eq. (A.13) can be all made real by redefini-

tions of fields, we also obtain the unitary matrices that diagonalize MD and ME :

UTMDV = MD
diag (A.28)

V TMEU = ME
diag (A.29)

We interchanged the notation U ↔ V passing from D to E, because it is MT
E that has

the same form as MD. Again, the matrices U, V are different for down type quarks and

charged leptons, we use the same symbol however. The unitary matrices U and V are

given as (with |d1| ≪ |d2| ≪ |d3|

U ≃





1 −m1

m2

t1s2 −m1

m3

t1c2s3
m1

m2

t1s2 1 −m2

m3

t2s3
m1

m3

t1s3
c2

m2

m3

t2s3 1



 , (A.30)

V ≃ 1

1 + c1c2c3





c1 + c2c3 −s1s2 −s1c2s3
s1s2c3 c2 + c3c1 −s2s3
s1s3 c1s2s3 c3 + c1c2



 . (A.31)

Here ci = cos θi, si = sin θi, ti = tan θi. Terms of order (m2
2/m

2
3) and (m2

1/m
2
2) are ignored

in the derivation of these matrices.

It is possible to fit all quark and lepton masses consistently to the observed values.

The mixing angles are related by the ratios given in Eq. (2.22).
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