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Abstract

We compute the full non-perturbative ghost and gluon two-point Green functions by using gauge

field configurations with Nf = 2 and Nf = 2+1+1 twisted-mass quark flavours. We use simulations

with several different light quark masses, heavy quark masses close to that of the strange and

charm quarks, and lightest pseudoscalar masses ranging from 270 to 510 [MeV]. Quark flavour

effects on both the gluon and the ghost propagators are then investigated in a wide range of

momenta, bridging the deep infrared and intermediate momenta domain of QCD interactions in

the presence of dynamical quarks. The ghost-gluon vertex is also indirectly probed through a

consistency requirement among the lattice data for the gluon and ghost propagators and the ghost

propagator Schwinger-Dyson equation. The effective full QCD coupling is finally constructed, and

its dependence on the presence of dynamical fermions scrutinized.

PACS numbers: 11.15.Tk, 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.70.Dj
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I. INTRODUCTION

During the past few years, lattice simulations have considerably improved our understand-

ing of the infrared (IR) sector of non-abelian Yang Mills theories. In particular, quenched

Landau gauge simulations [1, 2], performed on lattices with large volumes, have unequivo-

cally demonstrated that the gluon propagator saturates in the (deep) IR region. This is true

for the space-time dimensions d = 3 as well as 4, irrespectively of the number of colors NC of

the gauge group SU(NC) under consideration. At the same time, the ghost dressing function

effectively acquires its tree-level behaviour, with the functional form of the propagator being

∼ 1/q2.

Within the continuum formulation of the theory, these lattice results are in agreement

with the solutions of the corresponding all-order Schwinger-Dyson equations (SDEs) [3, 4]

and exact renormalization group (RG) equations [5]. Other approaches such as the so-

called refined Gribov-Zwanziger formalism [6] also converge to the same conclusions. This

has caused a paradigmatic shift among practitioners: the gluon is now thought to acquire

a momentum-dependent mass m(q2) whose magnitude can be large at IR momenta, but

vanishes with increasing spacelike momenta (i.e., q2 � Λ2
QCD), thereby maintaining full

accord with perturbative QCD. Gluon confinement is then realized, as it is customarily

done in the case of quarks, through the violation of reflection positivity (signaled by the

presence of an inflection point of the propagator scalar cofactor ∆(q2)) instead of achieving

an area law for a Wilson loop or a linearly rising potential (criteria which are irrelevant to

the question of light-quark confinement [7]), or satisfying ad-hoc criteria involving the ghost

sector (which, as already pointed out above, completely decouples in this regime).

The extension of these quenched lattice results to full QCD, i.e., to a non-Abelian SU(3)

theory with the inclusion of dynamical quarks, has not been extensively pursued, neither in

the continuum nor on the lattice. In the former case, a first analysis of the effects on the gluon

propagator due to dynamical quarks has recently been reported in [8] within the so-called

PT-BFM (pinch technique-background field method) truncation scheme [9]. Earlier related

endeavours on the lattice can be traced back to [10] where an O(a2) Symanzik-improved ac-

tion with 2 + 1 staggered fermion flavours was employed, and [11] where a tadpole-improved

gauge action with 2 dynamical overlap fermions was used instead. However, an indepen-
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dent affirmation of these results by implementing different lattice actions1 as well as their

extension for different numbers of flavours, has been a pending issue since then.

This article provides a comprehensive quantitative study of the aforementioned Green

functions which incorporate the effects stemming from the presence of dynamical quarks.

To this end, we compute the gluon and ghost two-point Green functions from the gauge

configurations generated by the ETM collaboration [13, 14] for the cases of (i) two light

degenerate quarks (Nf = 2) and (ii) two light and two heavy2 (Nf = 2 + 1 + 1) mass-

twisted lattice flavours [15]. Furthermore, we apply our lattice results to carry out an

indirect study of the ghost-gluon form factor (as done for quenched lattice data in [16]),

by employing a hybrid approach where the solutions of the ghost SDE are studied using

the gluon propagator determined in our simulations as an input. Consequently, the natural

requirement to reproduce the lattice ghost dressing function data from the corresponding

SDE solution will pin down the ghost-gluon vertex form factor, which will be shown to

deviate considerably from its tree-level value. The constructed SDE solutions then allow us

to extrapolate the lattice ghost data down to the vanishing momentum region and obtain

reliable information on the saturation point of both the ghost dressing function as well as of

the so-called Kugo-Ojima parameter [17]. Finally, the QCD effective charge, defined in [18],

is computed by properly combining the gluon propagator and the ghost dressing function

with the lattice estimate of the coupling in the so-called Taylor scheme (e.g., see [19]) at a

given (large enough) momentum.

The main results of this article can be summarized as follows:

• The effect of the presence of dynamical quarks on the gluon propagator ∆ is twofold: a

suppression of both the “swelling” region at intermediate momenta and the saturation

value in the deep IR (which can be interpreted as the gluon becoming more massive in

the presence of quarks). In addition, one observes that the more light flavours there

are, the bigger the effect is, which is in accordance with what we would naturally

expect. Light virtual quarks can be copiously produced, thus screening the interaction

1 Some preliminary results obtained from simulations with large lattice sizes (far from the continuum limit)

and Nf = 2 Wilson-Clover fermions have also been reported in [12].
2 It should be also noticed that these 2 + 1 + 1 configurations provide a realistic simulation of QCD below

the bottom quark mass threshold, mainly at the momentum scales which we compute the Green functions

for.
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and suppressing the very same mechanism which triggers gluon mass generation. As

the fermion mass is increased (at a fixed flavour number) the effect gets smaller, since

the heavier the fermions, the lesser is the statistical likelihood of their pair-production.

At a sufficiently large value of their mass, they essentially decouple and the gluon mass

generation is practically insensitive to their presence. With respect to this point it

should be noticed that our results turn out to be in agreement with the SDE study

reported in [8] confirming at the same time the general trend reported in the earlier

lattice studies of [10–12].

• On the other hand, the effect on the ghost dressing function F is much milder and is

diametrically opposed to the one encountered for the gluon case, i.e., it consists in a

small increase of the saturation point. This result is also in harmony with what one

would intuitively anticipate. In the SDE for the ghost, the quark propagator does not

enter directly, but only through the gluon propagator or via higher loop corrections to

the gluon-ghost vertex. Therefore, it is natural to expect the influence of dynamical

quarks to be less pronounced for the ghosts.

• When the gluon propagator obtained is used as an input in the ghost SDE, one finds

that the requirement for the SDE solution to match the ghost propagator lattice data

naturally provides a stringent check on the ghost-gluon vertex; specifically, this exercise

will show that this vertex differs significantly from its tree-level value.

• Finally, when all the results are used to form the RG invariant combination α∆F 2

eventually leading to the QCD effective charge, we observe that, although obviously

modifying the ultraviolet (UV) parameters controlling the running of the coupling and

its magnitude, the number of fermions flavours does not affect the IR behaviour of

this quantity.

The paper is organized as follows: Section II provides the reader with some of the technical

details of the lattice set-up used for the computation of the relevant gluon and ghost Green

functions. Next, in Section III, we present the results of the simulations, emphasizing the

differences with respect to the quenched results; volume artifacts are also addressed in some

detail. The ghost SDE is then solved in Section IV, and the effective coupling evaluated in

Section V. Finally, we provide the conclusions in Section VI.

4



II. GENERALITIES

The following section is a reminder of how the ghost and gluon propagators are computed

from the lattice simulations of gauge fields for light and heavy mass-twisted lattice flavours.

It should be noticed that these propagators have been obtained (but not presented) earlier,

as a by-product of the computation of the running coupling in the momentum subtraction

(MOM) Taylor scheme [20]. These references, which the interested reader is referred to, also

contain relevant details concerning lattice actions, set-ups and the treatment of artifacts.

In our simulations, the lattice fermion action for the doublet of light degenerate quarks

is given by [21]

Sl = a4
∑
x

χl(x) (DW [U ] +m0,l + iµlγ5τ3)χl(x), (2.1)

whereas, for the heavy doublet, we employ

Sh = a4
∑
x

χh(x) (DW [U ] +m0,h + iµσγ5τ1 + µδτ3)χh(x), (2.2)

where DW [U ] stands for the standard massless Wilson Dirac operator. In the gauge sector,

the tree-level Symanzik improved gauge action (tlSym) [22] is applied for Nf = 2 and the

Iwasaki improved action [23] for Nf = 2 + 1 + 1. In addition to the plaquette term U1×1
x,µ,ν ,

this formulation of the action also requires including rectangular (1×2) Wilson loops U1×2
x,µ,ν .

For instance, in the tlSym case, the action reads

Sg =
β

3

∑
x

{
b0

4∑
µ,ν=1
1≤µ<ν

[
1− Re Tr (U1×1

x,µ,ν)
]

+ b1

4∑
µ,ν=1
µ6=ν

[
1− Re Tr(U1×2

x,µ,ν)
]}

, (2.3)

where β ≡ 6/g2
0, g0 is the bare lattice coupling and one sets b1 = −1/12 and b0 = 1− 8b1 as

dictated by the requirement of continuum limit normalization. Configurations of the gauge

fields generated by the above actions are next gauge fixed to the (minimal) Landau gauge.

This is done through the minimization of the following functional [of the SU(3) matrices

Uµ(x)]

FU [g] = Re

{∑
x

∑
µ

Tr

[
1− 1

N
g(x)Uµ(x)g†(x+ µ)

]}
, (2.4)

with respect to the gauge group element g.

To get as close as possible to the global minimum, we apply a combination of an over-

relaxation algorithm and Fourier acceleration, considering the gauge to be fixed when the
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condition |∂µAµ|2 < 10−11 is fulfilled and the spatial integral of A0 is constant in time to

better than 10−6. Evidently, this procedure cannot avoid the possibility that lattice Gribov

copies are present in the ensemble of gauge fixed configurations. However, extensive litera-

ture in the quenched case (see for example [2]) shows that such copies do not seriously affect

the qualitative and quantitative behavior of the Green functions in question. Given also the

relative large physical volumes simulated, we will proceed under the working assumption

that this feature survives unquenching, as was also verified in [12].

After the lattice configurations have been projected onto the Landau gauge, one can start

calculating the Green functions of interest.

To begin with, we consider the gluon propagator. The gauge field is defined as

Aµ(x+ µ̂/2) =
Uµ(x)− U †µ(x)

2iag0

− 1

3
Tr
Uµ(x)− U †µ(x)

2iag0

, (2.5)

with µ̂ indicating the unit lattice vector in the µ direction. The two-point gluon Green

function is then computed in momentum space through the following Monte-Carlo average

∆ab
µν(q) =

〈
Aaµ(q)Abν(−q)

〉
= δab

(
δµν −

qµqν
q2

)
∆(q2), (2.6)

with

Aaµ(q) =
1

2
Tr
∑
x

Aµ(x+ µ̂/2) exp[iq · (x+ µ̂/2)]λa. (2.7)

In the formula above λa are the Gell-Mann matrices and the trace is evaluated in color space.

The Landau gauge ghost propagator can also be computed in terms of Monte-Carlo

averages of the inverse of the Faddeev-Popov operator, i.e.,

F ab(q2) =
1

V

〈∑
x,y

exp[iq · (x− y)]
(
M−1

)ab
xy

〉
= δab

F (q2)

q2
, (2.8)

with M written as a lattice divergence

M(U) = − 1

N
∇ · D̃(U), (2.9)

and the operator D̃ acting on an arbitrary element of the Lie algebra η according to

D̃(U)η(x) =
1

2

[
Uµ(x)η(x+ µ)− η(x)Uµ(x) + η(x+ µ)U †µ − U †µ(x)η(x)

]
. (2.10)

More details on the lattice procedure for the inversion of the Faddeev-Popov operator can

be found in [24].
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Next, if we indicate with Λ the regularization cutoff (e.g., Λ ≡ a−1(β) if one specializes to

lattice regularization), one can obtain the renormalized gluon propagator and ghost dressing

function as

∆R(q2, µ2) = lim
Λ→∞

Z−1
3 (µ2,Λ2)∆(q2,Λ2),

FR(q2, µ2) = lim
Λ→∞

Z̃−1
3 (µ2,Λ2)F (q2,Λ2), (2.11)

where one imposes the standard MOM renormalization conditions

∆R(µ2, µ2) = 1/µ2; FR(µ2, µ2) = 1. (2.12)

When unnecessary, we will refrain from explicitly indicating the renormalization point de-

pendence of the various renormalized quantities.

We conclude this section by commenting briefly on the crucial role played by the so-called

H(4)-extrapolation procedure [25], which have been used to correct the data for discretiza-

tion artifacts (otherwise plaguing the reliable determination of ∆ and F ) due to the breaking

of the O(4) rotational invariance down to the H(4) isometry group. Specifically, let us ob-

serve that the gluon and ghost dressing functions (q2∆ and F ) are dimensionless correlation

functions, and therefore general dimensional analysis shows that they must depend on the

(dimensionless) lattice momentum a qµ, where

qµ =
2πnµ
Nµa

, nµ = 0, 1, . . . , Nµ , (2.13)

Nµ being the number of lattice sites in the µ direction (in our case, Nx = Ny = Nz = Nt/2).

However, if one considers a dimensionless correlator Q evaluated on the lattice, since O(4)

is broken down to H(4), one has

Qlatt(a2q2, a2 q
[4]

q2
, · · · ) = Qlatt(a2q2) +

∂Qlatt

∂
(
a2 q

[4]

q2

)
∣∣∣∣∣∣
a2 q[4]

q2
=0

a2 q
[4]

q2
+ · · · , (2.14)

where q[4] =
∑

µ q
4
µ is the first H(4)-invariant (and the only one relevant in the ensuing

analysis). The H(4)-extrapolation procedure is thought to account properly for the breaking

of O(4) down to H(4) and thus recover the continuum-limit O(4)-invariant result by means

of the following prescription: one first averages over any combination of momenta being

invariant under H(4) (a so-called H(4) orbit); next, one extrapolates the results towards

the continuum limit (where the effect of a2q[4] must vanish) by applying Eq. (2.14) to all

the orbits sharing the same value of q2. The only assumption employed is that the slope

coefficient in Eq. (2.14) depends smoothly on a2q2.
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β κcrit aµl aµσ aµδ (L/a)3 × T/a confs.

3.90 0.161856 0.004 243 × 64 50

4.20 0.154073 0.002 483 × 96 50

1.95 0.161240 0.0035 0.135 0.170 483 × 96 40

1.90 0.163270 0.0040 0.150 0.190 323 × 64 50

TABLE I: Lattice set-up parameters for the ensembles we used in this paper: κcrit is the critical

value for the standard hopping parameter for the bare untwisted mass; µl stands for the twisted

mass for the two degenerated light quarks, while µσ and µδ define the heavy quarks twisted masses;

the last column indicates the number of gauge field configurations we used.

III. SIMULATION RESULTS

In this section we describe the outcome of our lattice simulations. The parameters used

are reported in Table I. The physical scale, i.e., the lattice size at any bare coupling β, has

been fixed by European Twisted Mass Collaboration (ETMC) through chiral fits to lattice

pseudoscalar masses and decay constants. At the physical point, these are required to take

on the values of fπ and mπ provided by experiments. The bare untwisted mass is tuned to its

critical value by setting the so-called untwisted Partially Conserved Axial Current (PCAC)

mass to zero, so that the twisted-mass fermions are at maximal twist. The renormalized

running masses for light and heavy quarks are obtained from the bare twisted-mass as

µu,d(q0) =
aµl

a(β)ZP (q0)
,

µc/s(q0) =
1

a(β)ZP (q0)

(
aµσ ±

ZS(q0)

ZP (q0)
aµδ

)
, (3.1)

where q0 is the renormalization scale. The determination of the nonperturbative renormal-

ization constants, in particular ZP and ZS, is the subject of an exhaustive computation

program within the framework of ETMC (see for instance [26] for the Nf = 2 case and

[27, 28] which contain some preliminary results for the Nf = 2+1+1 case). The degenerate

light quark masses we used for the simulations (Table I), range from 20 to 50 [MeV], while

the strange quark is roughly set to 95 [MeV] and the heavy charm to 1.51 [GeV] (in MS

at q0 = 2 [GeV]). The lightest pseudoscalar masses for the simulations of Table I range

approximately from 270 to 510 [MeV]. The biggest volume simulated corresponds to an

8



β [Nf ] 1.90 [2+1+1] 1.95 [2+1+1] 3.90 [2] 4.05 [2]

Z3(q0 = 4.3 GeV) 0.693(2) 0.709(2) 1.295(1) 1.341(3)

Z̃3(q0 = 4.3 GeV) 1.345(6) 1.38(2) 1.36(1) 1.37(1)

TABLE II: MOM renormalization constants for ghost and gluon propagators computed at the

subtraction point µ = 4.3 GeV for the lattice parameters corresponding to the four ensembles

described in Tab. I and used in this work.

asymmetrical box of roughly 33 × 6 [fm4].

As previously mentioned, the MOM prescription (2.11) is to be applied if one wants to

obtain the renormalized gluon and ghost propagators, which are the object of interest in the

present work; though they play a marginal role for our purposes, these constants have been

computed at the subtraction point µ = 4.3 GeV and, for the sake of completeness, collected

in Tab. II.

A. Gluon sector

The results obtained for the gluon propagator and dressing function for the cases of two

light quarks and two light plus two heavy quarks are plotted3 in Fig. 1. As far as the

gluon propagator is concerned (top panel) one can clearly see the IR flattening typical of the

massive solutions. However, when compared to the quenched case (shown for reference by

the diamond-shaped gray data points), the propagator shows a less pronounced “swelling”

at intermediate momenta and a lower freezing out value.

To check the dependence of this latter effect on the lattice volume, we plot in Fig. 2 the

value of ∆R(0) as a function of the inverse of the volume. Though we do not have enough

simulations on large volume lattices to attempt any continuum extrapolation, it is evident

that residual volume effects are expected to be small when the appropriate simulations (i.e.,

β = 4.20 for Nf = 2 and both β = 1.95 and β = 1.90 for Nf = 2 + 1 + 1) are considered.

Furthermore, apart from the zero-momentum gluon propagator, the results for our two

simulations in both cases appear clearly superimposed in the plots of Fig. 1, indicating that

3 If not stated otherwise we will be setting the renormalization point to be µ = 4.3 GeV
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FIG. 1: The unquenched gluon propagator (top panel) and dressing function (bottom panel) for

Nf = 2 (two light quarks) and Nf = 2 + 1 + 1 (two light and two heavy quarks). For the sake

of comparison, in this and the following figures we plot the quenched data (Nf = 0) for various

lattice volumes taken from [2].

volume effects are indeed under control.

In addition, the quenched simulation can be viewed as an unquenched counterpart in the

limit of infinitely massive fermions, and the Nf = 2 results as the limit of the Nf = 2+1+ 1
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FIG. 2: The volume dependence of the IR saturation point of the gluon propagator ∆R(0) in our

simulations. For the Nf = 2 case, we include an extra point corresponding to a simulation on a

243 × 48 lattice, at β = 4.05 (κ = 0.157010 and aµl = 0.006). Notice that this last point has not

been exploited as it clearly corresponds to a very small physical volume.

case in the infinite mass limit of the heavy sector. Thus, one can unambiguously conclude

that the presence of dynamical fermions suppresses the IR saturation point, and renders the

gluon heavier. Also notice that the suppression tends to subside as the dynamical fermion

mass increases. The decoupling of heavy fermions has been explicitly shown in the continuum

through the SDE analysis of [8], where it was found that the gluon propagator results for

Nf = 2 + 1 approach those for Nf = 2 as the mass of the heavy flavour is increased (see Fig.

17 of [8]).

Finally, the concave shape of the propagator ensures the violation of reflection positivity,

thus implying that the unquenched gluon is also a confined excitation.

The behavior of the dressing function (bottom panel) is similar. In this case, the greater

the number of dynamical quarks, the less pronounced the peak at the intermediate momenta.

Analogously, the heavier the quark, the less the effect it entails on the overall shape of the

dressing function. These results are in agreement with the SDE study of [8], as well as with

the lattice findings of [10–12].
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B. Ghost sector

The results for the ghost dressing function are plotted in the top panel of Fig. 3. In

analogy with the quenched case, the data do not support a power-like singular behaviour in

the (deep) IR region; rather one finds the characteristic freezing out feature of the massive

solutions [4, 29]. As one would expect on the basis of a naive perturbative analysis (there is

no tree level coupling between ghosts and fermions) the effect of dynamical quarks on the

ghost sector is much milder as compared to the gluon sector.

The ghost dressing function F can provide valuable information with respect to the so-

called Kugo-Ojima function [17]. This is due to a powerful identity dictated by the under-

lying Becchi-Rouet-Stora-Tyutin (BRST) symmetry present in the continuum formulation

of the theory, which leads to the relation [30, 31]

F−1(q2) = 1 +G(q2) + L(q2), (3.2)

where G(q2) and L(q2) are the form factors of a particular Green function Λµν(q) that plays

a special role in the aformentioned PT-BFM truncation scheme [32], with

Λµν(q) = δµνG(q2) +
qµ qν
q2

L(q2). (3.3)

The important point here is that G(q2) coincides (in the Landau gauge) with the Kugo-

Ojima function [30, 31]. In addition, a detailed analysis of the L(q2) form factor in the

quenched approximation reveals that it is numerically subdominant in the whole range of

momenta when compared to G(q2) [31], and, furthermore, L(0) = 0. Since quark effects

on Λµν(q) are suppressed, either due to their indirect presence in the full gluon and ghost

propagators, or in higher order corrections to the ghost-gluon kernel (the first one happening

at the three-loop level in the kernel skeleton expansion, and therefore at four loops in Λµν),

one naturally expects the same results to survive in the unquenched case, thus leaving us

with the approximate relation

G(q2) ≈ F−1(q2)− 1. (3.4)

In the bottom panel of Fig. 3 we plot the function −G(q2) and observe that its value at

origin is practically unchanged when varying the number of flavours. Clearly the behavior

is not dissimilar from the one revealed in quenched simulation, and the (extrapolated) IR

saturation value looks once again far from the critical value 1 predicted by the scaling type
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FIG. 3: The unquenched ghost dressing function (top panel) and the (approximate) Kugo-Ojima

function (bottom panel) for Nf = 2 (two light quarks) and Nf = 2 + 1 + 1 (two light and two

heavy quarks). The quenched (Nf = 0) data shown in this and the following figures are again

taken from [2].

solutions of the SDE and the related Kugo-Ojima confinement criterion. We will return to

this issue in the next section.
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IV. GHOST SDE ANALYSIS

In this section we carry out a hybrid analysis combining our lattice simulation results

with SDE techniques, in a spirit analogous to what has been reported in [29]. The aim is

to study the ghost sector in greater detail and, in particular, gain access to the ghost-gluon

vertex form factor(s). As a welcome byproduct, we will obtain a reliable extrapolation of

the ghost lattice data to the deep IR.

Specifically, let us start by considering the ghost SDE, which can be recast in the following

bare form

1

F (q2)
= 1 + g2

0Nc

∫
d4k

(2π)4

F (k2)∆((k − q)2)

k2(k − q)2

[
(q · k)2

q2
− k2

]
H1(k, q), (4.1)

where H1(k, q) is non-longitudinal form factor of the ghost-gluon vertex, parameterized as

Γ̃abcν (−k, q; k − q) = ig0f
abckν′Γ̃ν′ν(−k, q; k − q)

= ig0f
abc [kνH1(k, q) + (k − q)νH2(k, q)] , (4.2)

with k and q being the outgoing and incoming ghost momenta respectively, and g0 the

bare coupling constant. As explained in depth in [29, 33, 34], one can first renormalize the

ghost and gluon propagators in Eq. (4.1), by using Eq. (2.12), and then apply a subtraction

procedure to deal with the UV singularity of the ghost self-energy integral to obtain

1

FR(q2)
= 1 + Z̃2

3Z3
g2

0

4π

∫
k3dkK(k, q)Hbare

1 (k, q)FR(k2), (4.3)

where

K(k, q) = − 1

π2

∫ π

0

sin4 θ dθ

[
∆R((k − q)2)

(k − q)2
− ∆R((k − p)2)

(k − p)2

]
. (4.4)

The renormalization point, µ2, is implicitly present as an argument for all the renormal-

ized quantities. In obtaining Eq. (4.3), the subtraction procedure is applied for Eq. (4.1)

evaluated at the two momenta k and p, both being parallel and such that p2 = µ2. H1 in

Eq. (4.3) is a bare but finite [35] quantity which needs no renormalization while, in front

of the integral, the renormalization constants and the bare coupling especially appear in

the right combination to cancel the cut-off dependence and give the MOM Taylor scheme

coupling (see e.g., [19]),

αT(µ2) =
g2

0

4π
Z̃2

3(µ2)Z3(µ2). (4.5)
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This coupling αT(µ2) for Nf = 0, 2 and 2 + 1 + 1 can be determined from lattice data

(see, e.g., [19, 20]). In order to solve the ghost SDE in isolation (i.e., without coupling it

to the much more complicated gluon SDE), one can use the just determined lattice gluon

propagator ∆R as an input for the equation, thus fully determining the kernel (4.4). Now the

only unknown term present in the equation is the ghost form factor H1; clearly the solutions

to the ghost SDE will describe the lattice data with a better or worse agreement depending

on our ability to model this form factor [16, 36].

Through the analysis of the quenched lattice data, it was shown in [29] that the solutions

of Eq. (4.3) grossly underestimate (by a factor of at least 2) the lattice data if one uses

the tree-level value H1 = 1 for the ghost-gluon form factor. A constant does indeed do a

better job [29] but does not allow for a precise description of the deep IR behavior of the

function [16]. This implies that a good description of the (quenched) ghost dressing lattice

data calls for a ghost-gluon form factor with a non-trivial kinematical structure. Using the

knowledge derived from the OPE analysis of [16], coupled with the current lattice data on

the (Landau gauge) ghost-gluon vertex [37], one can parameterize this form factor as4

H1(k, 0) = H0
1

[
1 +

NCg
2〈A2〉

4(N2
C − 1)

k2

k4 +m4
IR

]
+
(
1−H0

1

) w4

w4 + k4
.] (4.6)

Estimates for the gluon condensate5 g2〈A2〉, and the IR mass scale mIR, can be obtained

from lattice data and OPE analysis [36]; the constants H0
1 and w (introduced in order to

guarantee that H1(0, 0) = 1, as suggested by current lattice data [37]) can be adjusted so

that the solutions Eq. (4.3) match the corresponding lattice data as closely as possible.

The solutions of the ghost SDE (4.3) following the procedure just illustrated are pre-

sented in Fig. 4. In the top panel of the figure one can clearly see that, similarly to the

quenched case, a tree-level value for H1 does not give solutions which can describe the lattice

data. However, once the kinematically non-trivial expression, Eq. (4.6) (bottom panel of the

same figure), is included in the equation, one obtains an excellent agreement with the data.

Therefore, effectively, the curves for H1(q, 0) represent a genuine prediction of our analysis;

4 Eq. (4.3) requires to be solved with the full vertex H1(k, q), which is modelled in [16]; however it can be

shown that H1(k, q) ' H1(k, 0) is a good approximation to obtain the ghost dressing in the IR momentum

region [38].
5 The very notion of condensate have been recently questioned in [39, 40]. In particular, according to

the new perspective suggested there, our gluon condensate g2〈A2〉 should be understood as a mass-scale

parameter related to the local operator A2 in the OPE expansion of the gluon Green functions.
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FIG. 4: (Top panel) The ghost dressing function obtained from the solution of the ghost SDE (4.3)

with the lattice gluon propagator as an input and αT = 0.25, 0.32, 0.37, respectively, for Nf = 0, 2,

and 2+1+1 at µ = 3.61 [GeV]. Dashed lines correspond to solutions for the tree-level H1(q, 0) = 1,

while continuous lines to the inclusion of the full form factor (4.6). The latter is also shown in the

bottom panel. The values of the parameters used to integrate the ghost SDE are: g2〈A2〉 = 7 GeV2,

mIR = 1.3 GeV and w = 0.65 GeV (the same IR ones for the three cases). Moreover, H0
1 = 1.26,

1.20, 1.18 for Nf = 0, 2 and 2 + 1 + 1, respectively.

it would therefore be extremely interesting to confirm or refute this prediction through direct
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FIG. 5: Extrapolation of the (approximate) Kugo-Ojima function in the deep IR. The ghost dress-

ing function F employed in this plot is generated by solving the ghost SDE.

lattice calculations of the ghost-gluon three-point function. It should be noticed that, when

obtaining the dressing function from the ghost SDE, the subtraction point has been fixed

at µ = 3.61 GeV (the same happens in Fig. 4). This is merely aimed to allow for a direct

comparison with the quenched analysis of [29, 38]. Of course, once the dressing function

renormalized at a given µ is obtained, it can be renormalized at any other point µ′ through

the simple rescaling

FR(q2, µ′
2
) =

FR(q2, µ2)

FR(µ′2, µ2)
, (4.7)

where the second argument of F specifies the renormalization point. Eq. (4.7) is applied to

obtain the SDE ghost dressing prediction for µ′ = 4.3 GeV in Fig. 5 and in the following

section. To be sure, it can be straightforwardly proven that FR(q2, µ′2), given by Eq. (4.7),

is a solution of the ghost SDE in Eq. (4.3) when g2
0(µ2) is replaced by6

g2
0(µ′

2
) = g2

0(µ2)F 2
R(µ′

2
, µ2)µ′

2
∆(µ′

2
, µ2), (4.8)

which gives the perturbative renormalization flow of the Taylor coupling, as can be inferred

from Eq. (4.5).

6 Observe that the unity appearing on the r.h.s. of Eq. (4.3) has also to be replaced by 1/FR(µ2, µ′2).
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The good agreement between the SDE solutions and the lattice data allows for an extrap-

olation of the latter towards the deep IR region, where one observes a very small increment of

the saturation point (monotonic with Nf ). In particular, the extrapolated zero-momentum

values for the ghost dressing function, renormalized at µ = 4.3 GeV, are given by 2.86, 2.91

and 2.98 for Nf =0, 2 and 2+1+1, respectively. This SDE-driven extrapolation is particu-

larly useful when scrutinizing the Kugo-Ojima function of Fig. 5, which clearly shows that

the saturation point of this function is practically insensitive to the inclusion of dynamical

fermions.

V. EFFECTIVE COUPLING

The results obtained for the gluon and ghost two-point functions allow us to extract

the running of the full QCD effective charge for a wide range of physical momenta, and in

particular in the deep IR region which is evidently inaccessible to perturbation theory.

To begin with, let us recall that the QCD effective charge is defined, among practitioners,

in primarily two different ways: the first one (to be denoted by αPT) is obtained within the

framework of the pinch technique [9, 41] and represents the most direct generalization of

the familiar QED effective charge concept to a non-Abelian setting; the second one (to be

denoted by αgh) corresponds to the non-perturbative generalization of the strong coupling

in the Taylor scheme mentioned before [20].

The construction of either effective charges proceeds through the identification of a suit-

able RG invariant combination. Before identifying this quantity however, let us observe

that though the effective couplings αPT and αgh have a rather distinct theoretical origin and

status, it turns out that, in the Landau gauge, they are related through the equation [18]

αgh(q2) =

[
1 +

L(q2)

1 +G(q2)

]−2

αPT(q2); (5.1)

evidently, in the approximation L(q2) ≈ 0, used throughout this paper, the two definitions

coincide, and one has αPT(q2) ≡ αgh(q2) ≡ α(q2). This implies also that one can choose as

the RG invariant combination

r(q2) = αT(µ2)∆R(q2, µ2)F 2
R(q2, µ2), (5.2)

which can be readily obtained from the data presented so far [αT is given in Eq. (4.5)].

The quantity r(q2) defined above is constructed in Fig. 6 for different number of flavours
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FIG. 6: The RG invariant quantity r(q2) defined in Eq. (5.2) for the different values of flavours

Nf . Errors for the Nf = 0 case are underestimated, since we have used the ghost dressing function

obtained from the SDE for constructing the effective charge. Notice the absence of any flavour

dependence below the 1 GeV region.

Nf ; notice that for calculating the freezing out point r(0) the value of FR(0) has been

extrapolated from the SDE results for the ghost dressing obtained in the previous section.

A most salient feature of this plot is the absence (within the errors) of any flavour depen-

dence in the IR region, more precisely starting from q2 <∼ 1 GeV2. Indeed, one observes that

the flavour effects which control the behavior of the UV parameters of the theory (e.g., the

β-function coefficients, ΛQCD and 〈A2〉), combine in such a way that, when the RG invariant

combination r(q2) is formed, no net flavour dependence survives in the IR .

Since, modulo an overall dimensionful factor to render it dimensionless, r(q2) coincides

with the effective coupling, the origin of this independence can be understood by recalling

the reason for the Nf dependence of the running coupling in the UV (it should also be noticed

that the invariant combination r(q2) is related with the UV coupling defined through the

ghost-gluon vertex in Taylor scheme by nothing but a factor q2). In this case the bigger

the physical momenta q2, the more channels open up for the production of quark anti-quark

virtual pairs (so that every time a channels opens, the coupling receives a “kick” and goes
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up). However, as soon as q2 drops below a certain threshold, no energy will be available

to produce any virtual pairs (not even gluons when q2
0 < 4m2

0) so that the residual running

of the coupling below this value is completely dominated by the IR mass scale introduced

when defining the effective charge.

Coming to this specific point, it turns out that [18] one can construct from r(q2) the di-

mensionless effective coupling α(q2) by pulling out the inverse propagator factor q2 +m2(q2),

i.e.,

α(q2) =
[
q2 +m2(q2)

]
r(q2), (5.3)

which leads to an IR saturating coupling. Notice that this definition is valid for both

massive and the (already ruled out) scaling solutions (in which case one would have to set

m2(q2) = 0); since in the latter case ∆(0) → 0 and F (0) → ∞, the effective coupling does

not distinguish between the two solutions7.

As a last step, we need to specify the q2 running of the dynamical mass m2(q2). We

will consider here the simplified setting of [18, 42] under which the mass obeys a power law

running

m2(q2) =
m4

0

q2 +m2
0

; m0 ≡ m(0), (5.4)

and for m0 one considers the representative values m0 = 500− 600 MeV, consistent with a

variety of phenomenological studies. The resulting effective charge is plotted in Fig. 7.

We hasten to emphasize that this is only a toy model, and one should take into account

that in reality m0 differs for different Nf , as clearly seen in the top panel of Fig. 1. However,

inserting directly in Eq. (5.4) the saturation value m0 = ∆−1
R (0, µ2) obtained from our sim-

ulations for different number of flavours Nf , breaks the RG invariance in zero of Eq. (5.3)8.

We are evidently in need of better tools for extracting reliable (RG invariant) information

about the saturation point of the coupling (and probably more data as well in the low

momentum region); this issue clearly deserves a separate study.

7 As explained in detail in [18], in the presence of an IR saturating propagator, one should not insist in

pulling out in front of the effective coupling a simple q2 factor. Otherwise, one would end up with a

completely unphysical coupling, namely the one that vanishes in the IR, where QCD is supposed to be a

strongly coupled theory.
8 One could in principle choose different phenomenological values of m0 for different values of Nf but the

result would not be that different from what is seen in Fig. 7.
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FIG. 7: The effective charge α(q2) defined in Eq. (5.3) for two different values of the IR gluon

mass: m0 = 500 MeV (solid symbols) and m0 = 600 MeV (open symbols). The gray band in the

background (meant to guide the eye) has been obtained from a continuum extrapolation of the

Nf = 2 + 1 + 1 data.

VI. CONCLUSIONS

In this paper, we have carried out a systematic and comprehensive analysis of the gluon

and ghost two-point functions in (Landau gauge) full lattice QCD.

The configurations used include two light and two light plus two heavy twisted mass

fermions with masses between 20−50 [MeV] for the light quarks, 95 [MeV] for the strange

quark and 1.51 [GeV] for the charm quark (in MS scheme at a renormalization scale of 2

[GeV]). The mass of the lightest pseudoscalar turns out to be between the range of 270 and

510 [MeV]. As this value does not lie too far from the physical pion mass, it increases our

confidence in the flavor physics effects reported in this article. Moreover, simulations on

lattices with up to 483 × 96 points, with β = 3.90 and 4.20 for Nf = 2 and β = 1.90 and

1.95 for Nf = 2 + 1 + 1, allow us to reach momenta down to q ' 300 [MeV], keeping the

volume effects under control.

Our analysis demonstrates that in the intermediate and low momentum region, the gluon
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propagator lessens with the increase in the number of dynamical quarks, whereas, the ghost

dressing function is enhanced, albeit only slightly. In addition, the heavier a species of

fermions, the smaller in extent is its effect on the suppression of the gluon propagator. With

a heavier enough mass, which prevents its virtual pair production, the fermion fails to screen

the interaction and gets decoupled from the gluon dynamics altogether.

When all the pieces of data are put together to construct the effective QCD running

coupling, α(q2), we observe the behavior anticipated from the massive decoupling solutions,

namely, a monotonic approach to an IR fixed point. Furthermore, we find that below q ' 1

[GeV], this quantity is not directly affected by the variation in the number of dynamical

fermion flavours. However, considering that an IR gluon mass is introduced while defining

the effective running coupling, there is indirect dependence on Nf via this mass scale.

Making the most of the lattice results for the gluon and ghost propagators, we present a

self-consistent analysis of the ghost 2-point function and extract the unquenched ghost-gluon

form factor H1. This is a genuine prediction of the SDE study presented in Sect. IV, which

should be confirmed (or refuted) through direct lattice studies of the ghost-gluon vertex.

Evidently, while the whole analysis in the present paper has been performed in the Landau

gauge, the gluon and ghost propagators are gauge dependent quantities and one might

wonder how the results reported will change when considering other gauges9. To begin with,

the IR saturation point of the gluon propagator and the ghost dressing function obtained for

the different number of flavours Nf are particular to the Landau gauge, and one should not

expect that the same points would emerge had one carried out the simulation in a different

gauge (e.g., the Feynman gauge). However, the fact that the PT-BFM framework carries

over practically unmodified to both Rξ and background field covariant gauges, gives good

reasons to expect that the IR finiteness found in the quenched as well as in the unquenched

(Landau gauge) cases, will persist in this class of gauges10. In this respect, very preliminary

results on lattice calculations performed within an Rξ gauge with ξ 6= 0 have appeared in the

literature [44], while recently, a gauge fixing functional has been derived in [45, 46], which,

9 Notice that, away from the Landau gauge, the whole notion of a Kugo-Ojima function and the corre-

sponding confinement criterion becomes meaningless.
10 In particular, the PT-BFM analysis of [43] predicts a finite ghost propagator in the Feynman gauge, while

a prediction for the gluon propagator in the background Landau gauge can be found in [31]. From a lattice

perspective, in both cases the concave gluon propagator shape points towards a violation of the reflection

positivity thus preventing the gluon from being considered a free state.
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upon a suitable minimization procedure, gives the background Landau gauge condition; it

will be therefore extremely interesting to compare the Landau gauge results, with Green’s

functions obtained from (large volume) lattice configurations gauge fixed using these new

implementations11. A qualitatively different picture may finally appear in the context of

non-covariant gauge fixing schemes, such as the Coulomb gauge or the maximal abelian

gauge [47]; for instance, in the former gauge, only “scaling” solutions (for which ∆(0) = 0)

have been reported from both SDE and lattice analysis [48].

We conclude by observing that, though the data presented have been obtained for an

arbitrary gauge copy selected through a gauge fixing algorithm using a combination of over-

relaxation and Fourier acceleration, we do not expect that the presence of Gribov copies to

alter the conclusions in any significant way, given also that their effect is expected to weaken

significantly for physical volumes as large as the ones considered here.
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