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Using precise lattice QCD computations of the baryon spectrum, we present the first direct
evidence for the presence of contributions to the baryon masses which are non-analytic in the light
quark masses; contributions which are often denoted chiral logarithms. It is demonstrated the
SU(3) flavor-singlet mass combination suffers the most severe convergence issues. The flavor-octet
baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3)
chiral perturbation theory, yield baryon-pion axial coupling constants D,F,C and H consistent
with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann–
Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from
light quark masses, provides further evidence for the presence of non-analytic light quark mass
dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent
with the first few terms in a taylor expansion in ms − ml, which must be valid for small values
of this SU(3) breaking parameter. Additional, more definitive tests of SU(3) chiral perturbation
theory will become possible with future, more precise, lattice calculations.

PACS numbers:

I. INTRODUCTION

Quantum chromodynamics (QCD) is one of the fundamental gauge theories of the standard model of particle
physics, encoding the interactions amongst quarks and gluons. At high energies, the theory exhibits the property of
asymptotic freedom where the coupling between the quarks and gluons runs to zero as the interactions are probed
with larger momentum transfer. Conversely, at low energies, at a scale of ΛQCD ∼ 1 GeV, the coupling between the
quarks and gluons becomes O(1), and the theory is no longer amenable to a perturbative treatment; the quark and
gluon degrees of freedom are bound into the observed hadronic degrees of freedom, the protons, neutrons, pions, etc.,
which leave only subtle clues about the underlying fundamental theory of QCD.

These properties of QCD, as well as many others, are now well established thanks to a variety of techniques that
have been developed to understand the rich phenomena that emerge from the theory. One of the most important
tools is lattice QCD, a numerical solution to the theory, performed on a discrete, Euclidean space-time lattice. With
algorithmic advances and ever growing computing power, state of the art lattice QCD calculations are performed
at several lattice spacings, with moderate physical space-time volumes and with dynamical light quark masses at or
near their physical values [1–5]. Recently, the ground state hadron spectrum, composed of up, down and strange
quarks, has been reproduced from lattice calculations with a few percent uncertainty [6]. This serves as an important
benchmark in demonstrating the ability for these numerical calculations to produce precise quantitative predictions
for hadronic physics observables. Indeed, lattice calculations are playing an important role in many areas of both
nuclear and high energy physics [7].

In addition to this numerical solution to QCD, a variety of analytic methods have been developed to understand
the low-energy regime of the theory. The most prominent method is chiral perturbation theory (χPT) which exploits
an approximate global symmetry of QCD [8]. For the up, down and strange quarks with masses less than ΛQCD,
the QCD Lagrangian is approximately invariant under global chiral transformations of the quark fields such that
the theory has an approximate SU(3)L × SU(3)R chiral symmetry, which becomes exact in the limit the quarks are
massless. This approximate chiral symmetry is spontaneously broken to the SU(3)V subgroup by the QCD vacuum
giving rise to the pion octet pseudoscalar pseudo–Nambu-Goldstone bosons, the pions, kaons and eta. The realization
of this chiral symmetry, as well as its spontaneous and explicit symmetry breaking, can be described by constructing
a chiral Lagrangian which contains this pion octet as well as other SU(3)V hadron multiplets as explicit degrees
of freedom. In the chiral limit, the pion octet become exact Nambu-Goldstone bosons which have only derivative
couplings to themselves and other hadrons. This theory, χPT, is non-renormalizable and contains an infinite number
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of operators whose forms are constrained by the global symmetries of QCD, while the coefficients of these operators,
the low energy constants (LECs), are unconstrained and must be determined by comparing with experimental data
and/or the results of numerical lattice QCD calculations. The quantitative relevance of these operators are dictated
by an expansion in the soft momentum of the pion octet and the light quark masses suppressed by the chiral symmetry
breaking scale, Λχ; hadronic observables can be computed at low energies to any fixed precision by keeping operators
to a given order in the chiral expansion, thus requiring determination of only a finite number of the LECs.

One of the principle applications of χPT has been to determine the light quark mass dependence of various hadronic
observables, the simplest of which is the light hadron spectrum. The motivation comes from the significant numerical
cost of performing lattice QCD calculations at the physical values of the up and down quark masses. χPT can be
used to extrapolate the numerical lattice QCD results to the physical values of the light quark masses, in the process
determining some of the LECs associated with the quark mass dependent operators. This program has been very
successful when applied to the Nambu-Goldstone meson spectrum and decay constants, see Ref. [9] for a review,
beginning with the first significant comparison of lattice QCD results with χPT [10].

The comparison with the light baryon spectrum has been wrought with more significant difficulties and the overall
convergence, and usefulness of the SU(3) baryon χPT is in question. These challenges are not unexpected; first, there
is a dense spectrum of low lying excited states, introducing new scales in the theory; second, while the expansion pa-
rameters of χPT in the Nambu-Goldstone meson sector are given by εm ∼ m2

K,π,η/Λ
2
χ, the small expansion parameter

when the baryon fields are included becomes ε ∼ mK,π,η/Λχ [11]. For the physical kaon, ε ' 1/2 and from general
expectations of asymptotic series, one does not expect this theory to have a controlled perturbative expansion. A
few recent comparisons of SU(3) baryon χPT to numerical lattice QCD results have led to the conclusion the three
flavor chiral expansion is failing to provide a controlled, convergent expansion [12–14]. The issues of convergence
are not limited to the three flavor expansion [15] and recent analysis indicates the range of expansion of the two
flavor theory, considering only an expansion about the limit of vanishing up and down quark masses, extends only to
mmax
π ' 300− 350 MeV [12, 16].
These challenges have led to a number of efforts to reorganize the expansion for baryon χPT. The initial approach

is known as heavy baryon χPT (HBχPT) which treats the baryons as nearly static fields allowing for an expansion in
inverse powers of the baryon mass [17, 18], modeled after the heavy quark effective theory [19]. This led to significant
phenomenological successes which are partly reviewed in Refs. [20, 21]. Early on, it was recognized the convergence of
the theory would be problematic because of the large contributions from kaon and eta loops in various observables. A
new regularization scheme was proposed, the introduction of a (chiral symmetry violating) long range regulator, eg.
a dipole regulator, to soften the contribution from the kaon and eta loops [22]. When applied to chiral extrapolations
of lattice QCD results, this led to some successes in simultaneously describing both the numerical results and physical
observables [23, 24]. An additional reorganization of the chiral expansion, equivalent to a resummation of the leading
kinetic corrections to the baryon propagators was constructed and has become known as infrared regularized baryon
χPT [25]; with several offshoots to deal with renormalization of higher loop corrections [26, 27]. Lattice QCD
calculations in the last few years have also made feasible the use of the SU(2) expansion for hyperons [28, 29]. In this
work, we further examine a new application of an old idea: combining the large Nc expansion [30, 31] with the SU(3)
chiral expansion [32–36]. This approach has a few formal advantages over the other methods. In the large Nc limit,
there is an extra symmetry, the contracted spin-flavor symmetry [32, 33], allowing for an unambiguous field-theoretic
method to include the low lying decuplet baryon resonances in the theory; in the large Nc limit, the spin-1/2 and -3/2
baryons become degenerate and infinitely heavy. Further, while the large Nc and SU(3) chiral expansions on their
own may not provide well converged effective theories, the combined expansions may prove sufficient for a controlled
perturbative expansion. This approach was first explored in Ref. [37] where it was demonstrated the predictions from
the combined large Nc and SU(3) expansions on the baryon spectrum are well met for a range of light quark masses.

Having a controlled expansion is necessary but not sufficient to claim success. The principle prediction from χPT
are the contributions to hadronic observables which are non-analytic in the light quark masses. The masses of Nambu-
Goldstone boson is given to leading order by the Gell-Mann-Oakes–Renner Relation [38], m2

i,j = B(mi + mj), with
a meson composed of a quark–anti-quark pair of (anti) flavors i and j and mi is the mass of a quark with flavor i.
Therefore, in χPT, the non-analytic light quark mass dependence arises from pion-octet loops, which often contribute
ln(m2

K,π,η) terms to hadronic observables, and are commonly referred to as chiral logs. These contributions can not
arise from a finite number of local counterterms but only from the long range contributions from the light pion octet
degrees of freedom, the pion cloud. Isolating this predicted light quark mass dependence in lattice QCD results has
been a major challenge for many years. The definitive identification of these contributions is hailed as a signal that
the up and down (and strange) quarks are sufficiently light that the lattice results can be described accurately by
χPT. This task has proved to be very challenging, as often, these non-analytic light quark mass contributions are
subleading, or masked by other systematics.

In this work, we present for the first time, direct evidence of non-analytic light quark mass dependence in the
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baryon spectrum. As will be discussed in this article, this work is not the definitive work on the subject, as there are
many systematics which must be resolved, but this is an important first step in the quest for chiral logs.

II. THE HEAVY BARYON CHIRAL LAGRANGIAN AND THE LARGE Nc EXPANSION

A. Heavy Baryon Chiral Lagrangian in the 1/Nc Expansion

The three flavor heavy baryon chiral Lagrangian at leading order (LO) in the momentum expansion and to first
order in the chiral-symmetry breaking quark mass matrix Mq ≡ diag(mu,md,ms) is given by [17, 18],

L = Tr B̄v (iv · D)Bv − T̄µv (iv · D)Tv µ −
1

4
∆0 Tr B̄vBv +

5

4
∆0 T̄

µ
v Tv µ

+ 2DTr
(
B̄vS

µ
v {Aµ, Bv}

)
+ 2F Tr

(
B̄vS

µ
v [Aµ, Bv]

)
+ C

(
T̄µv AµBv + B̄vAµTµv

)
+ 2H T̄µv SνvAνTv µ

+ 2σB Tr
(
B̄vBv

)
TrM+ − 2σT T̄µv Tv µTrM+

+ 2bDTr
(
B̄v {M+, Bv}

)
+ 2bFTr

(
B̄v [M+, Bv]

)
+ 2bT T̄

µ
vM+Tv µ (1)

where the spin-1/2 octet baryon fields Bv and spin-3/2 decuplet baryon fields Tµv are two-component velocity-
dependent baryon fields which are related to the usual four-component relativistic Dirac spin baryon fields B and Tµ

by

Bv(x) =
1 + v/

2
eiM0v·xB(x),

Tµv (x) =
1 + v/

2
eiM0v·xTµ(x) . (2)

The mass M0 is the flavor-singlet mass of the baryon octet and decuplet baryons in the SU(3) chiral limit mq → 0.
Specifically,

M0 =
5

4
〈M8〉 −

1

4
〈M10〉, (3)

where 〈M8〉 and 〈M10〉 are the average flavor-singlet masses of the spin-1/2 flavor-octet baryons and the spin-3/2
flavor-decuplet baryons, respectively, in the chiral limit. In the large Nc expansion, M0 is O(Nc) for baryons with Nc
quarks. The leading heavy baryon chiral Lagrangian also contains the flavor-singlet hyperfine mass splitting

∆0 = 〈M10〉 − 〈M8〉, (4)

which is proportional to the total spin-squared J2
v of each baryon multiplet. The mass parameter ∆0 is O(1/Nc) in

the 1/Nc expansion. The SU(3) flavor representations of the QCD baryons are the flavor-octet

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 , (5)

and the completely symmetric rank-3 flavor-decuplet Tijk, normalized such that Tuuu = ∆++. The heavy baryon
chiral Lagrangian also contains four independent baryon-pion couplings, the axial couplings D, F , C and H. The
couplings D and F describe the usual baryon-octet pion couplings; C describes pion couplings between octet and
decuplet baryons; and H describes the pion coupling of the decuplet baryons. The pion octet fields

Π ≡ πaT a =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 (6)

appear in the heavy baryon chiral Lagrangian in the nonlinear representation ξ2 = Σ = e2iΠ/f , where f ∼ 130 MeV
is the pion decay constant in the chiral limit. The vector and axial vector pion combinations

Aµ =
i

2

(
ξ∂µξ

† − ξ†∂µξ
)
,

Vµ =
1

2

(
ξ∂µξ

† + ξ†∂µξ
)
, (7)
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appear in the baryon-pion couplings and through the baryon covariant derivative Dµ = ∂µ+ iVµ. In the heavy baryon
chiral Lagrangian, Sµv is the spin operator which acts on the spinor portion of the baryon field.

Additional dependence on the pion field enters through the quark mass matrix spurion

M+ =
1

2

(
ξMq

†ξ + ξ†Mqξ
†
)
. (8)

In this work, we compare with lattice computations performed with degenerate u and d quark masses mu = md = ml,
so the quark mass matrix reduces to

Mq =
1

3
(2ml +ms) 11 +

2√
3

(ml −ms)T
8 . (9)

There are two flavor-singlet contributions to the baryon masses with one insertion of the quark mass matrix coming
from the terms proportional to σB and σT . There are also three flavor-octet contributions to the baryon masses with
a single insertion of the quark mass matrix, proportional to bD, bF and bT (called bC previously [39]).

The 1/Nc expansion [30] for baryons [31] leads to the emergence of a spin-flavor symmetry [32, 33, 35] for large-Nc
baryons. In Ref. [40], the heavy baryon Lagrangian was formulated in the 1/Nc expansion. Relations amongst the
coefficients in the heavy baryon chiral Lagrangian occur at leading and subleading orders in the 1/Nc expansion, which
reduces the number of independent chiral coefficients in the heavy baryon chiral Lagrangian at leading and subleading
orders in 1/Nc. In addition, there exists a planar flavor symmetry [40] at leading order in 1/Nc, which relates flavor-
singlet to flavor-octet parameters at this order, further reducing the number of independent chiral coefficients in the
heavy baryon chiral Lagrangian. In particular, planar QCD flavor symmetry relates the flavor-singlet quark mass
parameters σB and σT to the flavor-octet quark mass parameters bD, bF and bT at leading orders in 1/Nc. The
flavor-octet and flavor-singlet quark mass parameters are given in terms of the coefficients bn of the spin-0 flavor-octet
1/Nc expansion,1 where the subscript n refers to the fact that the corresponding operator O(n) is an n-body quark

operator which is accompanied by an explicit factor of N1−n
c . To first subleading order in the 1/Nc expansion, the

mass matrix parameters of the heavy baryon chiral Lagrangian for QCD with Nc = 3 are given by

bD =
1

4
b2 , bF =

1

2
b1 +

1

6
b2 , bT = −3

2
b1 −

5

4
b2 ,

σB =
1

2
b1 +

1

12
b2 , σT =

1

2
b1 +

5

12
b2 . (10)

The axial couplings D, F , C and H also have an expansion in terms of spin-1 flavor-octet coefficients an of the 1/Nc
expansion. To first subleading order in 1/Nc, the pion-baryon couplings of the heavy baryon chiral Lagrangian for
QCD with Nc = 3 are related to the 1/Nc coefficients by [40, 41]2

D =
1

2
a1 , F =

1

3
a1 +

1

6
a2 ,

C = −a1 , H = −3

2
a1 −

3

2
a2 . (11)

B. Mass Relations R1, R3 and R4

In Ref. [37], it was argued a better approach to exploring the baryon spectrum was to utilize our knowledge of
both large Nc as well as SU(3) symmetry which is known to work well for the experimental spectrum [43]; instead of
considering the individual baryon masses directly, one should explore the light quark mass dependence of various linear
combinations of the baryon masses, chosen to have definite scaling in terms of 1/Nc and SU(3) symmetry breaking.3

The various linear combinations were determined in Ref. [43]. In Ref. [37], it was demonstrated that the predicted
scaling with both 1/Nc and (ms −ml) was clearly visible in the lattice data. The first few mass combinations had
statistically meaningful values over the range of quark masses, but there were not enough statistics to resolve all of

1 Here, we adopt a simplified notation for the operator coefficients compared to Ref. [40].
2 The 1/Nc operator analysis has recently been extended to the two-body axial current operators [42], such as Tr

(
B̄A · AB

)
.

3 Ref. [44] utilized the large Nc relations between operators in baryon χPT to study the baryon spectrum, but not the linear combinations
constructed to have definite scaling in ms −ml and 1/Nc.
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them. In this work, we focus our attention on three of these mass relations, R1, R3 and R4.4 These mass relations
are given by

Ri =

∑
j cijMj∑
j |cij |

(12)

where

M1 =
∑
j

c1jMj = 25(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M3 =
∑
j

c3jMj = 5(6MN +MΛ − 3MΣ − 4MΞ)− 2(2M∆ −MΞ∗ −MΩ) ,

M4 =
∑
j

c4jMj = MN +MΛ − 3MΣ +MΞ , (13)

and for example R4 = M4/6.
These relations are designed to isolate various operators in the combined 1/Nc and SU(3)-breaking expansions. At

O(mq), only relations R1–R4 are non-vanishing. For this reason, the relations R5 – R8 are particularly interesting

to use with light quark mass extrapolations, as the leading contribution begins with the chiral loops at O(m
3/2
q ).

However, even more precise results of the baryon spectrum than exist are needed for these relations. Using the
large Nc expansions through second non-trivial order, and working through next-to-leading order (NLO) in the chiral
expansion, the relation R1 is given by

3

2
R1(ml,ms) = M0 −

3

4

(
b1 +

5

18
b2

)
(2ml +ms)−

35a2
1 − 5a2

2

96

3F0
π + 4F0

K + F0
η

(4πf)2

− a2
1

96

[
50

3F∆
π + 4F∆

K + F∆
η

(4πf)2
− 4

3F−∆
π + 4F−∆

K + F−∆
η

(4πf)2

]
(14)

The non-analytic function F∆
φ = F(mφ,∆, µ) is defined as

F(m,∆, µ) = (∆2 −m2 + iε)3/2 ln

(
∆ +

√
∆2 −m2 + iε

∆−
√

∆2 −m2 + iε

)

− 3

2
∆m2 ln

(
m2

µ2

)
−∆3 ln

(
4∆2

m2

)
. (15)

which has the limits and properties

F(0,∆, µ) = 0

F(m, 0, µ) = πm3

F(m,−∆, µ) =

{
−F(m,∆, µ) + 2iπ(∆2 −m2)3/2, m < |∆|
−F(m,∆, µ) + 2π(m2 −∆2)3/2, m > |∆| . (16)

For the baryon spectrum, the leading non-analytic light quark mass dependence is encoded in this function. As such,
it is of particular interest to find evidence of this behavior in the spectrum.

The mass relations R3 and R4 vanish in both the SU(3) chiral and vector limits, making them more sensitive to
the NLO non-analytic light quark mass dependence. At NLO in the chiral expansion, and to the first two non-trivial
orders in the large Nc expansion, these relations are given by

R3(ml,ms) =
20

39
b1 (ms −ml)−

20a2
1 − 5a2

2

117

3F0
π − 2F0

K −F0
η

(4πf)2

− a2
1

117

[
35

3F∆
π − 2F∆

K −F∆
η

(4πf)2
− 3F−∆

π − 2F−∆
K −F−∆

η

(4πf)2

]
, (17)

4 The relation R2 gives at leading order the hyper-fine splitting ∆0. For the current lattice data set, this quantity provides no further
information over the use of R1.
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R4(ml,ms) =− 5

18
b2 (ms −ml)

+
a2

1 + 4a1a2 + a2
2

36

3F0
π − 2F0

K −F0
η

(4πf)2
− 2a2

1

9

3F∆
π − 2F∆

K −F∆
η

(4πf)2
. (18)

In addition to these three mass relations, the Gell-Mann–Okubo relation is also important to examine

∆GMO =
3

4
MΛ +

1

4
MΣ −

1

2
MN −

1

2
MΞ . (19)

Since the quark mass operator contains pieces which transform as both an 8 as well as a 1 under SU(3) transformations,
Eq. (9), there are non-vanishing contributions to the GMO relation at sub-leading orders in the chiral expansion.
However, mass operators which transform as an 8 make vanishing contributions to Eq. (19). The leading mass
operator which makes a non-zero contribution to the GMO relation transforms as a flavor-27. These corrections can
arise either from chiral loops or from a mass operator containing two or more quark mass insertions. This makes the
GMO relation particularly interesting to explore with lattice QCD calculations; the leading contribution to this mass
relation comes from chiral loop effects which are non-analytic in the light quark masses. Experimentally, the GMO
relation is found to be

∆phy
GMO = 6.45 MeV . (20)

Each baryon mass in the relation receives non-analytic mass corrections which scale as δMB ∝ Ncm
3/2
s . These large

corrections may lead to the expectation that the GMO relation receives large contributions from the loop corrections.

However, one can show these Ncm
3/2
s terms are proportional to 1 under SU(3) transformations. Additionally, the

m
3/2
s contributions transform as an 8 while the m

3/2
s /Nc corrections transform as a flavor-27. This provides an extra

1/N2
c on top of the chiral suppression, explaining the relatively small value of the GMO relation [40].

At next-to-leading order in the chiral and large Nc expansions, the Gell-Mann–Okubo relation is

∆NLO
GMO =

a2
1

36(4πf)2

[
F0
π − 4F0

K + 3F0
η + 2F∆

π − 8F∆
K + 6F∆

η

]
+

4a1a2 + a2
2

36(4πf)2

[
F0
π − 4F0

K + 3F0
η

]
, (21)

In this article, we will also be interested in the next-to-next-to-leading order (NNLO) formula. This can be
determined from Ref. [45, 46]. Retaining the subleading Nc relations for the quark mass operators, Eq. (10), but only
the leading relations for the axial couplings (a2 → 0), the NNLO contributions to the GMO formula are

∆NNLO
GMO =

1

48

(
bM3 + bM4

)
(ms −ml)

2

4πf
+

23a2
1

384M0

(
m4
π − 4m4

K + 3m4
η

(4πf)2

)

+

(
bA3

96πf
+

13a2
1

192M0

)(
m4
π ln(m2

π/µ
2)− 4m4

K ln(m2
K/µ

2) + 3m4
η ln(m2

η/µ
2)

(4πf)2

)

+
a2

1

(4πf)2

{
b1

[
2ml +ms

12

(
J∆
π − 4J∆

K + 3J∆
η +m2

π − 4m2
K + 3m2

η

)]
+ b2

[−9ms + 16ml

24

(
J∆
π − 4J∆

K + 3J∆
η

)
+

3

2
(ms −ml)

(
J∆
η − J∆

K

)
− 2

3
(ms −ml)

(
m2
K ln

(
m2
K

µ2

)
−m2

π ln

(
m2
π

µ2

))
+

16ml + 5ms

72

(
m2
π − 4m2

K + 3m2
η

)
− ms −ml

6

(
m2
η −m2

K

)]}
(22)

where the function J∆
φ = J (mφ,∆, µ) encodes additional non-analytic dependence on the light quark masses

J (m,∆, µ) = 2∆
√

∆2 −m2 + iε ln

(
∆ +

√
∆2 −m2 + iε

∆−
√

∆2 −m2 + iε

)

+m2 ln

(
m2

µ2

)
− 2∆2 ln

(
4∆2

m2

)
. (23)
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TABLE I: The numerical lattice data from Ref. [12], converted to physical units. The uncertainties are the statistical and
systematic uncertainties from Ref. [12] combined in quadrature. The strange quark mass is fixed to the largest amq value in all
calculations: amsea

s = 0.050: amval
s = 0.081.

β 6.76 6.76 6.79 6.81 6.83 6.85

amsea
l 0.007 0.010 0.020 0.030 0.040 0.050

amval
l 0.0081 0.0138 0.0313 0.0478 0.0644 0.081

amres
l 0.00160(3) 0.00157(1) 0.00123(1) 0.00101(1) 0.00083(2) 0.00073(3)

mlatt
q [MeV] 16.8 26.6 58.0 88.8 121 155

mπ [MeV] 320(2) 389(2) 557(1) 685(2) 805(4) 905(2)

mK [MeV] 640(2) 659(2) 726(1) 787(2) 852(4) 905(2)
3
2
R1 [MeV] 1285(6) 1315(6) 1454(6) 1556(12) 1698(13) 1769(9)

R3 [MeV] -113(3) -100(2) -64(1) -41(1) -19(1) 0

R4 [MeV] -39(2) -33(1) -19(1) -11(1) -4.4(0.6) 0

∆GMO [MeV] 5.6(2.3) 1.8(1.2) 0.18(48) 0.13(35) 0.13(0.09) 0

and has the limits and properties

J (0,∆, µ) = 0

J (m, 0, µ) = m2 ln

(
m2

µ2

)
J (m,−∆, µ) =

{
J (m,∆, µ) + 4iπ∆

√
∆2 −m2, m < |∆|

J (m,∆, µ)− 4π∆
√
m2 −∆2, m > |∆| . (24)

III. EVIDENCE FOR NON-ANALYTIC LIGHT QUARK MASS DEPENDENCE IN BARYON
SPECTRUM

A. Details of the lattice results

For this work, the numerical results of Ref. [12] are utilized, which are not the most recent but are still the
most statistically precise data set available. The lattice calculation was performed with a mixed-action composed of
domain-wall fermion [47–51] propagators generated on the nf = 2 + 1 asqtad-improved [52, 53], rooted, staggered
sea quark configurations generated by the MILC Collaboration [54]. This particular mixed-action set up has been
used quite extensively by the LHP [12, 55–59] and NPLQCD [14, 60–74] Collaborations as well as some independent
works [75–79]. The mixed-action effective field theory, which encodes the discretization effects specific to this particular
mixed-action, has also been thoroughly developed [80–93]. However, the baryon spectrum results used in this work
exist at only a single lattice spacing. There is also reason to believe the discretization systematics are small [12, 88, 91]
and to the order we are working in the mixed-action EFT, they are subleading. For these reasons, the continuum
χPT extrapolation formula, presented in the previous section, is used.

The latest scale setting by the MILC Collaboration [2], as detailed in Ref. [74] is used; numerical results of Ref. [12]

are first converted into r1 units5 then the MILC determination of r1(mphy
l ,mphy

s ) is used to convert to physical units.
Finally, extrapolations are performed as functions of the quark masses. The quark masses are not renormalization
scheme or scale independent. However, at a fixed lattice spacing, the quark mass renormalization can be absorbed
into the quantity B, where at leading order, the Nambu-Goldstone boson masses are given by m2

i,j = B(mi + mj).
Lattice quark masses are then defined in physical units by

rphy1 mlatt
q ≡ r1

a
(amq + amres) , (25)

where mres is the residual chiral symmetry breaking present with the Domain-Wall lattice action at finite fifth
dimensional extent [94]. These numerical values are collected in Table I.

5 The length scale r1 is determined with the heavy quark potential, defined such that r2
1F (r1) = −1.
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FIG. 1: The results of SU(3) χPT analysis of the pion and kaon masses. The left plot displays the fit result with the data and
the right plot shows the size of the NLO contributions compared to LO. This particular fit is performed to just the lightest three
values of the light quark mass, and it is clear from the plot that the fits including all six points yields consistent results.

To extrapolate the lattice results to the physical point, NLO χPT [95] is used to determine the values of mlatt
q

which reproduce

mphy
π ≡ 138 MeV , mphy

K ≡ 496 MeV . (26)

It is interesting to note that despite ignoring the issues of quark mass renormalization, this yields the values

mlatt
l,phy = 3.0(2) MeV , mlatt

s,phy = 99(5) MeV , (27)

which are remarkably similar to the proper lattice determination of the light and strange quark masses [9]. The NLO
χPT formula provide a controlled and convergent description of both mπ and mK over the full range of quark masses
used, see Fig. 1.

B. Large Nc and Consistency of Hyperon Axial Charges

One of the major failings in the application of SU(3) heavy baryon χPT is a lack of consistency between the
determination of the axial coupling constants, D, F , C and H when determined from the baryon spectrum [12, 13]
versus a direct calculation of the hyperon axial charges [75]. The direct lattice determination6 yields values consistent
with the phenomenological values [96], while the indirect determination from the baryon spectrum yields values
consistent with zero. The small values of the axial couplings returned indicate the numerical results do not support
evidence for the leading non-analytic light quark mass dependence predicted in the spectrum. This problem is not
unique to the SU(3) heavy baryon χPT extrapolations, with large contributions from kaon and eta loops, but also
observed in the SU(2) extrapolation of the nucleon mass. As demonstrated in Refs. [12, 16], for mπ & 300 MeV, there
are large cancellations between the LO, NLO and NNLO contributions to the nucleon mass; in order to accommodate
the large negative mass contribution occurring at NLO, the leading non-analytic light quark mass dependence, there
must be a compensating large but positive contribution from the LO and NNLO terms, signaling a breakdown of the
perturbative expansion for these heavier pion masses. A similar and more severe situation occurs for the SU(3) chiral
expansion. As we shall demonstrate in the next sections, it may be we are simply asking the wrong questions of heavy
baryon χPT.

6 In Ref. [75], gA, gΣΣ and gΞΞ were computed which were used to infer the values of D and F .
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1. Mass relation R1

The mass relation R1 is a flavor singlet mass combination designed to isolate the M0 contribution plus higher order
chiral corrections. Starting with the lightest quark mass and including successively heavier values of mq, there are
four possible ranges of light quark masses which can be used to perform the chiral extrapolation analysis. Both LO
and NLO analyses are performed over all these ranges of light quark masses. In the NLO analysis, the subleading in
Nc axial coefficient is set to zero, a2 = 0. Several choices of the parameter f are taken to explore systematics from
higher orders in the chiral expansion:

i) f = fπ(mq) ,

ii) f2 = fK(mq) fπ(mq) ,

iii) f = fK(mq) , (28)

where fπ(K)(mq) is the value of the pion (kaon) decay constant calculated at the quark mass mq. From the LO
analysis, the following LECs are obtained

M0[LO] = 903(20) MeV ,

[
b1 +

5

18
b2

]
[LO] = −2.73(11) . (29)

Extrapolating to the physical values of the light and strange quark masses gives

3

2
R1[LO] = 1124(18) MeV , (30)

which is to be compared with 3
2R

phy
1 = 1093 MeV. Performing the NLO analysis, the LECs are determined to be

M0[NLO] = 899(40) MeV ,

[
b1 +

5

18
b2

]
[NLO] = −3.26(70) , a1[NLO] = 0.24(30) , (31)

with a determination

3

2
R1[NLO] = 1107(50) MeV . (32)

In Fig. 2, representative fits of R1 from LO and NLO are displayed. One may take comfort in the consistent values of
the LECs M0 and b1 + 5

18b2 between the LO and NLO analyses. However, this is not surprising given the small value
of a1 determined in the NLO analysis. This small value is consistent with no contributions from the NLO terms and
inconsistent with the known phenomenological determination of the axial coupling. This is not surprising given the
convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16]. One is left to conclude that the
SU(3) heavy baryon χPT does not provide a controlled, convergent expansion for the mass combination R1 for the
range of quark masses used in this work and a value of a1 consistent with phenomenology or direct lattice calculations
of the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass operators, vanishing in both the
SU(3) vector as well as SU(3) chiral limits. From these symmetries, the relations R3 and R4 are more sensitive to
the non-analytic light quark mass dependence occurring at NLO in the chiral expansion. As with the analysis of R1,
three choices of the parameter f are taken to estimate higher order effects, Eq. (28). The LO expressions for R3 and
R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical results well; it is clear higher order contributions are
necessary for extrapolations of this data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance
matrix is constructed as described in Ref. [37]. The numerical results of Ref. [12] are insufficient to constrain both
the leading and subleading axial coefficients, and so the analysis is restricted to the set of LECs

λ = (b1, b2, a1) , (33)

with a2 = 0. From the NLO analysis, the LECs are determined to be

b1[NLO] = −6.6(5) , b2[NLO] = 4.3(4) , a1[NLO] = 1.4(1) . (34)
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FIG. 2: Representative fits to R1 from LO (left) and NLO (right) HBχPT analysis. The blue star is the physical value, not
used in the analysis. The upper error band results from a fit to the lightest four numerical data and the lower band is the result
extrapolated to the physical value of the strange quark mass mlatt

s → mlatt
s,phy, Eq. (27).
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FIG. 3: The LO and NLO contributions to R3 (left) and R4 (right). A (blue) star is used to denote the physical values, not
included in the analysis. The particular fit displayed is a combined analysis of R3 and R4 to the data at the lightest three values
of mlatt

l .

Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence for the presence of the
non-analytic light quark mass dependence in these mass relations. Further, this is the first time an analysis of the
baryon spectrum has returned values of the axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO and NLO separately,
one observes a delicate cancellation between the different contributions, see Fig. 3. Further studies are needed with

7 Finding values of the axial couplings consistent with phenomenology has not just been a challenge for lattice QCD, but also observed in
large Nc χPT analysis of the experimentally measured baryon magnetic moments [97, 98]. It is also interesting to note that while the
SU(3) chiral expansion for the baryon spectrum is not convergent, it was found that the volume dependence of the octet baryon masses
is consistent with SU(3) HBχPT. Analysis of the volume dependence yielded a large value of gπN∆ (C) with gA fixed to its physical
value [99].
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FIG. 4: GMO mass splitting plotted as a function of mlatt
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more numerical data sufficient to also constrain the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which in HBχPT come from the
leading non-analytic light quark mass dependence, Eq. (21). For this reason, it is a particularly interesting mass
relation to study, as has been done if Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated
that the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit. Second, an NNLO
analysis is performed for the first time and it is demonstrated at this order, HBχPT naturally accommodates the
strong light quark mass dependence observed, and is dominated by the non-analytic contributions.

In Fig. 4, four plots are displayed. In each plot, the (red) star is the physical value, which is not used in the
analysis. The filled (blue) circles are numerical data points included in the analysis and the open (gray) squares are
not included. The filled (blue) band is the one-sigma confidence interval. The first plot (upper left) is the result of an
NLO analysis of the GMO formula, allowing the axial coupling to be determined from the data, resulting in a small,
but non-zero value for a1. For comparison, the upper right plot displays the predicted NLO results for the GMO
relation for a1 = 1.4(1). This highlights tension between the NLO analysis/prediction and the numerical data.

Close to the SU(3) vector limit, the GMO relation can be described by a taylor expansion in ms −ml,

∆V
GMO = d2 (ms −ml)

2
+ d3 (ms −ml)

3
+ · · · (36)

The leading term proportional to (ms −ml) must vanish as it transforms as a flavor-8. The (ms −ml)
2 contribution

is equivalent to an NNLO contribution from HBχPT and the (ms −ml)
3 contribution is equivalent to an NNNNLO

HBχPT contribution. The lower left plot displays a fit to the numerical data to these first two non-vanishing
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FIG. 5: The ratio of NNLO to NLO contributions to the GMO relation from the NNLO analysis.

contributions in the Taylor expansion, which do not give rise to the observed steep rise as mlatt
l → 0. Inclusion of the

(ms −ml)
4 term provides a fit which agrees with the data and the physical value but with a severely non-converging

expansion for mlatt
l < 100 MeV.

Finally, the NNLO analysis is displayed, using Eqs. (21) and (22) with a2 = 0, and taking a1 from the determination
from R3 and R4 (bottom right). Only the NNLO analysis is consistent with the values of the numerical data over the
full range of light quark masses, in particular, the steep rise observed as mlatt

l → 0, as well as the value of the axial
coupling a1 determined from phenomenology. However, as in the case of R3 and R4, the convergence is not great.
The NNLO contributions are smaller than the NLO contributions over the full range of quark masses but are as large
as 90% in magnitude compared with the NLO contributions: see Fig. 5. Despite this issue, the success of the NNLO
analysis is further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum.

IV. CONCLUSIONS

In this article, we have presented the first substantial evidence for non-analytic light quark mass contributions
to the baryon spectrum. This was achieved by comparing the predictions from heavy baryon χPT, combined with
the large Nc expansion to relatively high statistics lattice computations of the octet and decuplet spectrum. The
numerical results available [12] allowed for a detailed comparison of the mass relations R1, R3 and R4 [43] as well
as the Gell-Mann–Okubo relation. It was demonstrated that the mass relation R1 does not support large values
of the axial couplings, signaling a failed convergence of SU(3) heavy baryon χPT for this quantity. An analysis of
mass relations R3 and R4 provided for the first time, values of the axial couplings which are consistent with the
phenomenological determination, signaling significant contributions from non-analytic light quark mass dependence
in R3 and R4. At leading order in the large Nc expansion, it was found

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) .

It was further demonstrated that the Gell-Mann–Okubo relation is inconsistent with the first two non-vanishing
terms in a taylor expansion about the SU(3) vector limit, and that the steep rise in the numerical data, observed
as mlatt

l → 0, can only be described by the NNLO heavy baryon χPT formula which is dominated by chiral loop
contributions. Taken together, these observations indicate the first significant evidence for the presence of non-analytic
light quark mass dependence in the baryon spectrum.

This is not the definitive work however. There are several known systematics which were not addressed in the
present article, and require future, more precise lattice results:

• the numerical data used [12] exist at only a single lattice spacing,

• a continuum χPT analysis was performed,

• there may be contamination from finite volume effects [99],
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• the convergence issues need further examination,

• more precise numerical results are needed to explore mass relations R5 – R8 which are more sensitive to non-
analytic light quark mass dependence,

• results with smaller values of the light quark mass are desirable,

• the strange quark mass used in this work is known to be ∼25% to large [100].

We regard the most severe of these systematics the convergence issues observed in R3, R4 and the GMO relation.
While this work is very promising, the analysis needs to be carried out to at least one higher order in both the chiral
and large Nc expansions. A further order in the large Nc expansion is needed to determine the sub-leading axial
coupling a2, allowing for a more detailed comparison with the phenomenologically determined axial couplings, D,
F , H and C. Taking the analysis to one higher order in the chiral expansion is crucial to test wither the observed
convergence improves or not, and also to test wether the large values of the axial couplings will persist. Unfortunately,
exploring these systematics, as well as all mentioned above, is beyond the scope of this work, as it requires a larger
set of statistically precise numerical lattice QCD results, which do not yet exist. There are currently some lattice
calculations underway which may be able to explore these mass relations in more detail. In particular, the new
strategy presented in Ref. [101, 102], where the sum of the quark masses is held fixed, mu + md + ms = m̄, for a
range of light and strange quark masses, proves very promising for comparing with predictions from χPT. Further,
the strategy is not limited to the spectrum, with similar relations having been recently determined for the baryon
magnetic moments [103].
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