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Abstract
The free energy of effective spin or “Polyakov line” modelshma chemical potential, based on theN)(
group, does not depend on the chemical potential. In a melahirigpired expansion, we show how the
condition of unit determinant, taking ™) to SUN), reintroduces the chemical potential, and allows us
to express the free energy, as a function of mean field vanatiparameters, in terms of an expansion
in the baryon (rather than the quark) fugacity at each ktite. We solve the SU(3) mean field equations
numerically to determine the phase diagram and compute\aiides. We also calculate the first corrections
to the leading order mean field results, and find that thesesigaificantly shift the endpoint of a line of

first order transitions. The problem of deriving an effeetdpin model from full QCD is discussed.
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I. INTRODUCTION

Polyakov line or “effective spin” models, with lattice amtis of the form

d
S=BY kZl[TruxT TiU, ¢+ TrUXTrU)LR] +K Y [ TrUx+ e HTr] (1)
X k= X

are of interest as crude models of gauge theorid3 #ad + 1 dimensions at finite temperature
and chemical potential [1]. Indeed, actions of this form t&nextracted from QCD directly
by integrating out most of the variables via a combined gtrooupling and hopping parameter
expansion, while keeping the Polyakov line holonontiggixed, and therefore (1) is justified as
an effective theory at least within the range of validity bése expansioris At finite chemical
potentialu the Polyakov line models have a sign problem, so that thd varate Carlo simulation
is not directly applicable. There are, nonetheless, seddfarent methods which can be used
to solve this model. One of the earliest studies applied tmptex Langevin equations to the
SU(3) model [1-3]. A second method is the mean field approagplied to theu = 0 case by
Bilic et al. [2]. A third procedure, introduced in ref. [4} to convert the partition function to a
“flux” representation, which, in the SU(3) case, has beerukited numerically by Mercado and
Gattringer [5]. Finally, the model can also be solved, astiéa some parameter range, by the
reweighting technique [6].

In this article we will revisit the mean field strategy, besaudhere are certain aspects of that
approach which we find illuminating. It is generally belidwbat the free energy of effective spin
models based on the NJ group do not depend on the chemical potential, and thisdaulme one
can shift the integration contour of a U(1) subgroup intodbmplex plane to absorb the factors of
e™H (c.f. [7]), providing no singularities are encountered. fikit rederive thigu-independence, in
section Il, in the framework of a mean field-inspired expansWe then go on to show, in section
[ll, how the restriction to a unit determinant, which cortgdd(N) to SUWN), not only reintroduces
the chemical potential, but also converts the mean field ddetion into an expansion in baryon
fugacity. Numerical solutions of the mean field equationstiie SU(3) are presented in section
IV, and the phase diagram (projected to fhe u plane) is obtained. We also display the effects
of including the first correction to the mean field approximat In section V we present some
comments on the problem of extracting the appropriate &ffespin model from full QCD, in the
range of gauge couplings and quark masses of interest. @ualusions are in section VI.

II. U(N)POLYAKQV LINE MODELS

We will begin with models in which the effective spin (or “jakov line”) variableU (x) is
an element of the U\) group. As already noted, the chemical potential disagpzam the free
energy in this case, but the example will set the stage fomibie interesting SUY) models.

Starting from the action (1), we mimic the mean field apprdagfirst adding and subtracting

1 Below we will refer tou in eq. (1) as the “quark” chemical potential, while keepingnind the fact that, in the
hopping parameter expansion,is actually related to the quark chemical potential of full by a factor of
inverse temperature.



constantsl, v, which will eventually become variational parameters:
S=p Z [(TruxT —V+V)(TrU, g —u+u)+ (TrlUx—u+ u)(TrUXT+R —V+V)
X7

+K Y [ TrUx+ e HTru,]
X

= —2BdVuv+2Bdvy TrUx+2Bdu’y TrUS + Kk § [e4Trux+e HTrU] +3. (2)
X X X
HereV is the lattice volumed is its dimensionality, and
1-8 Xg{mu;f V) (T =)+ (T —u)(TU]  —v) 3)
We then have
S=—2BdVuv+ § [ATrUx+ BT + 3, (4)
X
where
A, =A=2Bdv+ ke’ and By =B =2Bdu+«ke . (5)

Although Ay, By arex-independent constants, it is useful below to regard thewaaables. This
allows us to differentiate with respect to each of them, whida understanding that all thg, By
are set toA andB, respectively, after the differentiation.

Ordinary mean field theory amounts to droppihigp the action and, in the absence of a chem-
ical potential, settingy = v=m, wheremis the mean field. One then varigsto minimize the
free energy. In our case, define

Zmi=g€ fmf — e*ZBdVUVH / dUy explAcTrUy + B, TrU,]| (6)
X
and
Z _ o JDU & expl 3 x(AcTrUy + BcTrUy)] @)
Zm /DU exply o (ATrUy+ B TrU))]

Also defining the operator

J{ oA 08] B%{<asx )(api+k_”>+(aiAx_”)<aBLM_V>}’ (8)

we have

expi_AF] — UV 3a: 58] [ DU expl s «(ATrUyx + By TrU;))] '
/DU exgy « (AxTrUx+ B, TrUy)] .

Next we need to evaluate theN)integral

| = / dU exgATHU + BTHUT] | (10)
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which, by standard methods (cf. [8]), becomes an angulagiatiorf
A Z éf 1B Z ]

Nlal inEinin |_| /d%e' Jn=in q’“exp[Aé%-i-Be‘i‘”“]

1 N 79\ . y
= mei1-~-iN£j1-~-jN |_| <(9A) (08) /—exp[ Ad% + Be I(lh}

1 N 9\ a
= m€i1-~-iN£j1-~-jN n|:|1 (ﬁ) (%) |0|:2\/A\_B:| . (11)

This gives us

1 N d jn
_ a—2BdVuv ey P S . _
Ini=¢€ U T €ir.in€j1.in nEll <0AX) ((?Bx) [2\/ AxBx] (12)

We now introduce rescaled variables
u=e Hd andv=e"*V
Ax= (2BdV + k) = Al M
Bx = (2BdU +k)e H =Be ¥

N dg, 1
|_/ Z%le'l i 80100 NI gy

o .0
— =g
0A oA,
0 0
a8, % am (13)

ThenZyt becomes
28dvdv 1 N i (O In
Z —a . . . . n—Jn . . 2 A/B/
mt =€ [ ] 6 [ (aAfx) (dB’) o[ 2V/AE]
2Bdvuv L AN A
—e [ N EiainEia..jn €XP Z im— Z jm | 4
X ' —1
N 0 in
! R/
anl(ﬁA’x) <aB/) |0[2~/A B} (14)
At this point we note that, because of the j,€j,..j, term,
N - N -
Z Im= Z Jm - (15)
m=1 m=1

2 The solution forl in the general case whefeB are matrix-valued and located inside the trace is given]ingid
the answer involves Vandermonde determinants of the eideas ofAB. The SU(N) case was presented in [10],
but only forB = AT. For the later extension to SNJ with A andB arbitrary scalar constants, it is convenient for us
to work out the scalar constant case explicitly here.
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Therefore

—2pdVuv 1 N J In 4 n /N R/
Imt=¢€ U mgil---istl---jN I_l aA/ 08/ IO[Z AXBX]
0 i
_ a—2BdVUV
ool (2 (2) ofovE]]

As a function of the rescaled variational parametérs’, Z is clearly, u-independent, and of
course it will remainu-independent wheRy, ¢ is minimized with respect td’, V. Likewise, allu

dependence cancels in theperator

J{ dAdB] B%{(‘?Bx )<5£+R_U>+<0LAX_U)<‘9;X+R_V>}
Bl et ) ) o )

(17)

(16)

From this we can conclude that bd#y; andAF, and therefore the free ener§y= F ¢ + AF
itself, are independent of the chemical potentiaih Polyakov line models based on the group
U(N).3

Before proceeding to SB), we note that the expression fdg,+ can be simplified a little
further, using the identity

J 0

ﬁﬁlo[Z\/AB] - IO[Z\/AB] : (18)
which is evident from the fact that

|0 2 / /d(PeAé"’+8e i® (19)

Then, defining the derivative operator
a Ii] . .
=BT 1> ]

we may write

Ty = € 2BV ] det[Di [ (X)lo[2: /A/XB/X]} (21)
X
and
o OF _ ( Ly me) | (22)
m f |A§<:A’7B§<:B’

3 A slight subtlety is that ak = 0, the free energy depends notwn separately, but only on the produét’ = uv.
Then one must appeal to the hermiticity of the action tausetv. For any non-zera andu, however, there is no
such degeneracy.



Again, theu-independence of the free energy is manifest.

[ll.  SU(N) POLYAKOV LINE MODELS

We can convert the W) models considered above to (models by simply converting the
U(N) group integration in eq. (11) to an SN integration. To accomplish this (cf. [10]) we have
only to insert a periodic delta function into the angulaegrations, which imposes the constraint
thaty , ¢, = 0 mod 21. We use the identity

N 00 N
Op (n; qh) = %T S:Zmexp [isn;qh] ) (23)

This introduces into eaof, integration an additional factor of efigg,]. Tracing through the steps
of the previous section, we arrive at

_opdv i 00 i o N i In i In (SZ 0) <5_Ax)
Ini=¢€ uvl:l zns_z_ooN!gll..-lell---JNanll(0Ax) 9By P >|S| IO[ZV AxBx] .

(s<0) <0_Bx
(24)

Now expressing everything in terms of the rescaled varsableq. (13), this becomes
N Stjn in
_ a—2BdVUV i e i —sNu 4 J
me =€ U N! ell...INgjl...jN 27'[{5;6 nl:ll <aA;( 0B§(
s ( 0 )’( 2 )i”*s 2V/AE]
+ lo|2\/AB,| . (25)
S; n|:|1 oA, 0B X

Defining
Dij+s(X) s>0
D? (X) = Lits ~ A, 26
i) {Di+s7j(x) s<0 (26)
we can expresgn s compactly in the form
Zni=e PNV m V] Y e det[Dﬁo[z\/Afxfo]] , 27)
X S=—00
where we have also changed varialdes —sin the sum. As before
eOF = (ieﬂucv,ﬁd%]sz) . (28)
it

|A§<:A’7B§<:B’

This gives a formal expression for the full free enefgyu) = Fnt(u) +AF (1) in terms of the
variational parameters, V', which should be chosen to minimigd ).

The mean field expression for the free enelgy, as a function of the variational parameters
U,V (or equivalentlyd’, B') has some features which are worth noting. In the first pldaegemean

4 This pu-independence was also demonstrated if\the co limit in [11].
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field partition functionZ, 1 has now been expressed in terms of a product, at each sitk)gdeity
expansion of the form

% eSNH det[D;ﬁlo[z\/A'B/]] . (29)

Here we see that the quark chemical potentia@nly occurs in the combinatioNu, which is, in
effect, the baryon chemical potential. So in fact we havexgraesion in the baryon, rather than
quark, fugacity. In ref. [12], the determinant in an expansf this sort is referred as the “canon-
ical determinant.” The second point is that paramsteriginally introduced in the representation
(23) of the periodic delta function, has now emerged as tingomenumber (which, if negative, is
the number of antibaryons) per site.

Of course, one still has to minimize the free energy with eespo the variational parameters,
and this will introduce somB u-dependence into the canonical determinants. Strictlglsgpg, it
is the mean field expression of the partition function as ation of (freely varying) parameters
U,V which has the form of a fugacity expansion.

Successive improvements to the leading mean field resulidii®iobtained by expanding the
operator exfl] in a Taylor series. In the case that= 0, andf is so small that the minimum
free energy is obtained at =V = 0, then the Taylor series simply generates the strong-aaupl
expansion. At large andk, the series also generates corrections to the leading freddmesult.
We will compute the effect of the leading correction in thetreection.

At this point, we should draw attention to the similaritieslalifferences between our approach
and the much earlier work of Bilic et al. [2]. The starting poof the mean field treatment in [2]
was the action (4) without thé&term. The SU(3) group integral was expanded as a powersserie
in A, B, and for this reason it was not obvious that the partitiorcfiom is an expansion in baryon
fugacity, arising from the unit determinant condition. hetnext section we determine the phase
diagram (for both real and imaginapy), which was not displayed in [2], and work out leading
corrections to the mean field result.

IV. NUMERICAL RESULTS FOR THE SU(3) POLYAKOV LINE MODEL

We will now specialize to SU(3). From eq. (27), we see thatrttean field free energy per
lattice site alN = 3 is

fmf:2ﬁdd\/—log[ i e3H det[Dﬁo[z\/Afo]} . (30)
S——o0

where we have dropped an irrelevant constant. In numeriogt we cannot suns over the full
range[—oo, ], SO it is necessary to cut off the sum at some maximum bargthéyon number
Smax P€r site

fmt ~ 2BduUV —log[G(A,B')] ,
Smax
GAB)= § & det[D;ﬁlo[z\/A'B']] , (31)
S=—Smax

and of course it is important, when computing observabtesheck sensitivity to the cutoff. We
will return to this issue below.



Minimizing the free energy with respect to the variationatameters/,V, or, equivalently,
with respect toA' = 23dV + k, B’ = 23dU + K, leads to two equations

B —k B 1 0G _ 0
2Bd  G(A,B)oA
A —k 1 9G

_ - = 2
28d  G(A,B) 0B 0 (32)
whose roots may be determined numericallt the minimum, we can rega® = A'(B,k, 1)
andB’ = B'(j3, K, ) as functions of the parameters of the theory.

Apart from the free energy itself, the observables of irteage T{U], Tr[U ], and the baryon
number density (baryon number per lattice site). The latter is given by

afmf
AFTEN

B 1 Smax su s =
_ Ws;zmsé det| D lo[2VA'B]|
1 aA/(Bvau) d aB/(B K “) =4
3 <Tﬁ+TaB’ mi(A.B). (59)

where it is understood that the derivative is taken at thatpeherefy,:(A’,B') is minimized. But
at this point, the first derivatives df, s with respect toA’ andB’ vanish. Therefore

1 Smax
AT 2 e det[Dﬁo[z\/A/B/]}. (34)

S=—Smax

(n) =

From (6) we see that

=e H_—logG(A',B). (35)
At the minimum of the free energy, determined by the roots3a) (this simply becomes

1
= —p H /
(TrU) = v Z(Trux> =e Hu =u (36)
and likewise
(muty == Z (TrU)) = etV =v. (37)

X

This is, of course, reminiscent of the standard mean fieldogmb to a spin system, in which the

5 Note that these are real-valued equations with real-valaet, despite the complex character of the action (1).
Ultimately this is due to the fact, which one can easily shemg the reality of the Haar measure and the property
DU = DU', that(TrU), (TrUT) andF are all real-valued quantities.
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variational parameter becomes the average spin. It mushderstood, however, that due to the
complex weight there is no constraint that the “averagetieslof Tt and TiJT are necessarily
bounded by Ti.

k=0.02, p=1.2 k=0.02, p=1.2
2 ‘ ‘ ‘ : 0.45 ‘ ‘ ‘ ;
<TrUl> e
1.8 + <Tr[U+]> ™ 4 0.4 +
16 ‘*4‘ 1 035
= E 0251
= hry 02t
% 0.8
£ o6t 1 0.15 r
04 | 1 0.1
0.2 s 1 0.05 |
g bttt ‘ ‘ ‘ 0 e - ‘ ‘
01 011 012 013 014 015 016 01 011 012 013 014 015 016
(a) Polyakov lines vs(3. (b) - free energy/site vg.

FIG. 1. Observables v§ at fixedk = 0.02 andu = 1.2, evaluated at mean field level for SU(3).

We now have all the tools needed to evaluate observables apdont the phase diagram.
Figure 1 shows a typical result féTrU), (TrUT) and the mean field free energy per ditg, as a
function of 3, at fixedk = 0.02 and chemical potential = 1.2. There is a clear first order phase
transition af3 = 0.1257. As the chemical potential is increased at fixed 0.2, the discontinuity
at the transition decreases, until it disappears altogettye = 1.67. At largery, there is only a
crossover.

Repeating this procedure, we can map out the region of fidgrdransitions in the8, u, k
parameter space. In Fig. 2 we show sample first-order phaisgition lines in thg8 — i plane at
k =0,0.02,0.03,0.04,0.05,0.059. Atk = 0 the transition, g8 = 0.1339, is of course independent
of u. At fixed, finitek the transition line terminates at some valugofind this termination point
happens at smaller and smaller valuegi@sk increases. The transition line shrinks to a point at
u = 0 for k = 0.059, and beyond this value &fthere are no further transitions.

We can also solve the mean field equations for imaginaryThe results for several values
of k are shown in Fig. 3. The continuity of first order transitiamel, asu varies from real to
imaginary values, as well as the weakening of the transdtdarger values ok, ties in with the
considerations of ref. [13].

Figure 2 can be compared directly to the phase diagram fgoaitained by Mercado and
Gattringer [5] via a Monte Carlo simulation in the flux repratation. The two diagrams are
qualitatively, and even quantitatively, very similar. Tinain difference is that we only show first
order transition points, and most of these are found in Eftd be crossover points, rather than
first order transitions. According to Mercado and Gattrmg, the endpoint of a line of first
order transitions, at a givex, occurs at a much smaller value fthan we find in our mean field
calculations. So an interesting question is whether inafusf higher order corrections, beyond
the leading order mean field result, would bring our endoiatsmaller values qft, in closer
agreement with [5]. We will turn to this question in subsewtiV B below.
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FIG. 2. Phase diagram of the Polyakov line model (1) for th€33group, obtained via mean field methods,
in the B — u plane at several values &f The lines indicate first order transitions. Beyane- 0.059, there
are no transitions at any value pf

A. Effect of the baryon number cutoff

The data displayed above was obtained using a cst@ff= 4 in the sum over baryon number,
but the results shown are quite insensitive to increasiagtitoff tosnax= 6, and even to decreas-
ing the limit to smax= 2. The reason for this insensitivity is that the phase ttams occur at
values of the baryon number density which are very small @egpto the cutoff. Only when the
chemical potential is raised to values such that the numéesity becomes comparable 4gax
does the cutoff dependence become apparent. To illustrstelépendence, we fig = 0.1257
andk = 0.02 (where we have found a transitiontat= 1.2), and compute the Polyakov lines and
number density over a wider range jof

The results, fop < 10 andsmax= 2,4, are shown in Fig. 4. We see th@rU) and(TrU ™) are
comparable to one another and@f1) until (n) approaches the cutoff is Beyond that point,
(TrU) falls exponentially ag~*, and(TrU™) diverges ag", exactly as in the W) theory, and
the results are no longer valid for the S (case. Wherin) saturates the cutoff then, in order to
probe a larger range @f, it is necessary to increasgax. For the purpose of determining the phase
diagram, howevesnax= 4, which can be interpreted as a limit of no more than four basyper
lattice site, appears to be more than sufficfent.

8 It should be emphasized that saturation ofghg cutoff has nothing to do with the Pauli principle, and copasd-
ing limit on baryons per site. That limit is not really seerthie simple effective spin model discussed here.
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Transition points for imaginary p

k=0.02 (upper),0.04(lower), 1st order transitions

014 T T T T T T
@ 013 ¢ . A . . e 8 i
012 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 35
Im(p)
k=0.07, 1st order and crossover
013 T . ‘ R . T T T ; °
@  0.12 ° ° E
Oll 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
Im(p)
k=0.12, 1st order and crossover
013 T T T T T T
0.12 - oo ° B
< 0.11 E
01 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5

Im(p)

FIG. 3. Some transition points for Polyakov line models iaf-1m(u) plane, for imaginary values of the
chemical potential, at several valueskof Filled circles indicate first order transition points, apgrcles
indicate a crossover.

B. The leading correction to the mean field free energy

Going back to eqg. (7), we have

et = ()mi = < eJx> : (38)
X,k mf
The product is over all links, where
I = B{(TUT =) (THU, g = ) + (T = u)(TrU] = w) | (39)

and the() 1 notation denotes the expectation value with respect to #genrfield action, as in (7).
The expansion of exp| generates products of terms such)ad,...J,,, where thd; denote links,
some of which may be the same. BecaliBgU])ms = u and(Tr[U))m¢ = v, it is clear that the
expectation values of such products are only non-zero if @aclpoint of a linkj appearing in
the product is also an endpoint of at least one other link appg in the product. The simplest
product whose expectation value is non-vanishing, coimgithe minimum number af factors,
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k=0.02, B=0.1257

k=0.02, B=0.1257

10 1000 ‘
Smax=2 Smax=2
Smax=4 Smax=4
**************** ) 100 E
A ’ A
% 2 10¢
[ . =
Voo Vo e
1y 7
0.01 . . . . T 0.1 i . . . . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
H H
(@) (TrU) vs. . (b) (Tru™) vs. .

k=0.02, f=0.1257

<n>

(c) number density vau.

FIG. 4. Observable$TrU), (TruT) and(n) vs. u at fixedk = 0.02 andB = 0.1257, for two values of the
cutoff smax Note that these observables are independent of the baitgooltoffsyay, until a little beyond
u = 4, which is well past the value qf at the first order transition.

is simply the product of, J, on the same link. Therefore, to leading order, we approx@mat

o OF _ <|—| e.]x_’k>
x,K mf
~ |_| <eJX'k>mf

X,K

<[] 5 dm)- (40)
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Now
<‘J>%k>mf = Bz <(TI’U; — V)Z(TrUX+R _ u)2

(U —v) (TrUx — u)(TrU,,  — u) (TrUXTHA( —V) + h.c.>

mf

_op? {((TFUTFU>mf B uz) (<TI’UTTI’UT>mf _VZ) + ((TrUTrUT>mf — UV>2]

=267 [ ({(&TU)2)me — u?) ({(e HTUT2)me — v2)

+<((e“TrU)(e“TrUT)>mf—u’\/)1 : (41)
and we use
<(e“TrU)m(e‘“TrUT)”>mf = ﬁ <%) i (%) r‘G(A’, B). (42)

Putting all the pieces together, the free energy per unitraelis

f(A',B') = 2Bduv— f(A,B), (43)

where

- 2 2
f = logG(AB) + dlog {1+ B2 { (é s u’z) (é o°c _\/2)

1 06, \°
+<65A/08'_“‘/) }] ’ (49

andG(A',B') is as defined in (31). Note that the terms inside the logaritivtrich correct the
leading mean field expression, depend on fluctuations arthewhean field values.

The variational parametess, B’ are again derived by minimizing(A’, B"), which implies

B/_K_i~_o

2Bd oA

A—-k 9 =

26d o8 O (49)

whose roots may again be determined numerically. It is @lfdrae thatu = (TrU),v= (TrUT),
which can be seen as follows: Define

Z=¢'T= / DU€’ exp {Z(ATrUX +BTU| . (46)
X
Then it is clear that
10 = 0 =
<TrU)_\—/0—AIogZ_6—Af : 47)

Applying the first of egs. (45), and the definitions (13), wevaratu = (TrU). In the same way,
we can show that = (TrUT). Thus the correspondence between the variational paresngte

13
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FIG. 5. —F in lowest order mean field theory, and in mean field + next legorder. Inclusion of the next
leading order can change a first-order transition to a cvessas seen clearly in Fig. 6.

and the observablegdrU), (TrUT) is maintained exactly, in fact to all orders beyond the legdi
mean field expressions.

k=0.02, u=1.38 k=0.02, u=1.38
0.7
LAL e
12} ] 065 | -
A A oel
S osf =
= =
v 0.6 [ v 0.55
0.4t 1
......................... 0.5 | ____..-'
0.2 1 "
0 ‘ ‘ ‘ 0.45 ‘ ‘ ‘
0.12424 0.12428 0.12432 0.12436 0.12484 0.12488 0.12492 0.12496
(a) mean field (b) mean field + NLO

FIG. 6. Closeup of TrU) in the transition region, at = 0.02 andu = 1.38, showing the effect of inclusion

of the leading correction to the mean field free energy. Withihclusion of the leading correction, this
is the endpoint of thex = 0.02 line of transitions, down from the valye= 1.67, which is the endpoint

without the first correction.

We can now study how inclusion of the leading correction wilhdify the phase diagram
shown in Fig. 2. It turns out that the location of the phasaditéon points changes very little.
Generally, at fixedk, u, the value of8 at the transition changes by less than one percent. What
does change significantly are the endpoints of the firstromd@sition lines. For example, at
k = 0.02, the endpoint of the transition line wasjat= 1.67, 3 = 0.1213. Inclusion of the first
correction brings the endpoint down o= 1.38 3 = 0.1249. The free energy at lowest order
(mf), and the free energy after inclusion of the first cofectmf+nlo) is shown in figure 5.
The free energy changes substantially, but the transitiomt tnardly at all (fromB = 0.1243 to
B = 0.1249). However, att = 1.38, theorder of the transition changes, from first order in the
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FIG. 7. Phase diagram of the Polyakov line model (1) for th€33group, obtained via mean field methods,
now including contributions at next-to-leading order (NL®he main effect of the NLO corrections is that
the endpoints of the first-order transition lines at fixedccur at lesser values @, as compared to the
leading order result.

leading mean-field approximation, to a sharp crossover wvitetirst correction is included. In
figure 6 we show a closeup of ti@rU ) in the near neighborhood of the transition in both cases.

We also find that ak = 0.04, the endpoint of the line of first order transitions mowvesf
U =0.87 B=0.1211tou = 0.46, B = 0.1246. Atk = 0.045 the line of transitions shrinks to
a point, atu =0, 8 = 0.1245. Beyonk = 0.045, there are no transitions. The corresponding
phase diagram, including the leading correction, is showfig. 7.

So the first correction to mean field is taking us in the rigiection, in the sense of bringing
the endpoint of the first order transition line to smallerwes ofu. Mercado and Gattringer [5]
find that the endpoints of the first-order transition lines lacated at yet smaller values pf It
would be interesting to see if the next higher-order coiestgenerated by exj would bring the
endpoints still closer to the endpoints found in ref. [5]. \&ave this exercise for a future study.

V. EFFECTIVE SPIN MODELS AND FULL QCD

It seems to be easier to solve effective spin models at fimiganical potential, by a variety
of methods, than to solve full QCD at finite chemical potdntighis means that if we knew the
effective spin models corresponding to full QCD at releyaoints in the plane of temperature and
guark chemical potential, then by solving the effective gledve could determine the QCD phase
diagram. We know how to derive the effective spin model in gtreng coupling and hopping
parameter expansions; for= 0 this has been done in [14, 15], and for£ O in [6]. Ref. [6]
uses high-order strong-coupling/hopping parameter esipas to derive an effective spin model,
which is then used to determine critical couplings. We shiihk it desirable, however, to be

15



able to extract the effective spin model without relianceetther the hopping parameter or the
strong-coupling expansioris.

In principle the effective Polyakov line model is derivedrr full QCD by integrating out
the quark and gauge field variables, under the constraitthieaPolyakov lines are fixed. It is
convenient to impose a temporal gauge on the periodic éatticwhich all timelike links are set
to the unit matrix except on a single time slites 0 say. Then the effective theory, at chemical
potentialu = 0, is defined by integrating over all quark fields and link sates with the exception
of the timelike links at =0, i.e.

Z(,B,T, mf) = /DUO(X7O)/DUkaDw eSQCD
— [ DUo(x,0) €%l 8

where 3 is the gauge couplingl = 1/N; is the temperature in lattice units witly the lattice
extension in the time direction, and; represents the set of quark masses. Because temporal
gauge has a residual symmetry under time-independent geugdormations, it follow tha®. ¢ 1
is invariant undetJo(x,0) — g(x)Ug(x,0)g"(x), and therefore can depend on the timelike links
only through their eigenvalues. This just means ®at is a Polyakov line action of some kind.

Let Sgco denote the QCD action with a chemical potential, which canltained fromSycp
by the following replacement of timelike links &at= O:

o = Socn|Uo(x, 0) = €4HUo(x,0),Ug (x,0) — & MU (x,0)| . (49)

The effective Polykov line action, at finite chemical potahis defined via

Z(u,B,T,me) = / DUo(,0) / DU DD Y esen

. / DUo(x, 0) e rlVol] (50)

As already mentioned, the integration owdy, ¥, ¢ can be carried out in a strong gauge-
coupling and hopping parameter expansion, to ob&in and ngf. It is not hard to see that
each contribution t&:¢ s in the strong coupling + hopping parameter expansion of i@&)s into
a corresponding contribution ngf, in the expansion of (50), by the replacement

Uy — evHU, | Ul — e ™MHyf (51)

where we have identifiedy = Up(x,0). Since this mapping holds to all orders in the strong-
coupling + hopping expansion, it is reasonable to assunteatthalds in general, i.e.
S [Uy, U] = SorUx — MHU, U — e MHy T (52)

e

Equation (52) is a rather trivial, but potentially powerfdéntity. It suggests that if, by some
means, one could obta& ¢ at fixed {3, ms, T} and chemical potentigi = 0, then one would
immediately also have the effective actiﬁgﬂf at the same set of parametéy$ m;, T}, butany
chemical potentialt, by the replacement shown. Unfortunately, there is someegenf ambiguity
in S¢f atu = 0. Suppose we have some ansatzSQrf[Ux,Uj], depending on some small set of

7 For efforts at deriving the effective Polyakov line modepimre gauge theories, c.f. [16] and references therein.
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parameters, which we would like to fix by comparing to the th#ory aty = 0. The problem is
that whatever ansatz we make f&s ¢, there is another form which is identical to that ansatz at
u = 0, but differs under (51). In the case of SU(3), the identity

1
T = = (TrUy)2 = TruZ] (53)
allows us to replace T everywhere i ¢ by the right hand side of (53), but this again produces
quite a different theory gt # 0 under the rule (52). Of course a similar identity holds fdd,[ so

we can convert the origin&. ¢ s to another theory which may be symmetriddp UQ, but which
has quite a different extension to finite chemical potential

It may be possible to overcome this ambiguity, however. 8gppve take the timelike link
variables at = 0 to be U(3), rather than SU(3) matrices. Then the ambiguity  (53) is no
longer present, but the effective spin theory still only elegls on the eigenvalues of the U(3) ma-
trices. Then let us suppose that we have some reasonabte s ¢ in a physically interesting
range of parametei®, ms, T, e.g.

Serr= Y IX=y)TIUJTIUJ]+ Y I (x—y) (Tr[Ux]Tr[Uy] +TrU]Tr[u) ]) + S V(UU)),
Xy

Xy X

(54)

whereJ(x), J'(x) are parametrized by a few constants (such as nearest andeaeist neighbor
couplings), and/ (Uy,UJ) can be limited to a few terms involving the characters of U(B)that
case, the effective spin model is specified by a handful o$tons{c; }, which of course depend
on{B,ms, T}.

Since there is no sign problem @at= 0 andUyx = Up(x,t = 0) € U(3), it should be possible to
numerically simulate both the effective theory and thetludlory. Then one can imagine a number
of strategies for obtaining the constafits }. One possibility is to simply calculate an appropriate
set of observables in both theories (Polyakov lines in werigepresentations and Polyakov line
correlators), and fix the set of constafits} in S+ so that the two theories yield the same re-
sults. Or perhaps some variant of the inverse Monte Carlbodetould be applied [16]. A third
procedure is inspired by a recent study of the Yang-Millauwaw wavefunctional [17]. The idea
is to select a finite set d¥l timelike link configurations

U =u{’(xt=0)eU(@3),i=12..M}, (35)

where each membué') of the set specifies the timelike link variables at everyigpaite x and

t = 0. Then the Monte Carlo simulation of the full theory proce@dthe usual way, except that
on thet = 0O timeslice, one member of the given set of timelike link cguafations is selected by
the Metropolis algorithm, and all timelike links on that Bslice are updated simultaneously. Let
N; be the number of times that tith configuration is selected by the algorithm, &gl = 5 Ni.
Then it is not hard to show that

exp|SerlU )] i 56
exp[&ff[u(i)]] _NtoltrEij' (56)

Information derived from a number of such simulations, easimg a different set of configua-
tions att = 0, can in principle completely determine the;}. However, since thgN;} vary
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exponentially withS;¢ ¢, the variation ofS; ¢ within a given set must be kept relatively small, i.e.
0S:i1 ~5—7, in order to ensure a reasonable acceptance rate for albersrof the set. For de-
tails of the algorithm, and its application to the vacuum gfanctional of pure Yang-Mills theory,
cf. [17].

Once the set of constan{g;} is found, by whatever method, the effective theory at finite
chemical potentialsé‘ff, for any u but the same s€t3, ms, T}, is given by the identity (52). The

final step is simply to note that SU(8) U(3), so that the theory we Warfsé‘ff, is obtained by
restricting thdJ, matrices to the SU(3) subset. Equivalently, since we caayswexpress the U(3)
matrices a$

Uc=exgius?® | U] = exp—i6 (USV®)T (57)

the conversion fron% to S, is obtained by settin@y = —iN;p.

With the effective Polyakov line modé&f; in hand, the theory can be solved by the mean
field approach discussed above, or by other methods suchngseolLangevin [1-3], the flux
representation [5], or reweighting [6]. To check that thehmod is working atu # 0, one would
compare full QCD with the effective spin model at, e.g., dnoalimaginary u, where theu-
dependence of the full theory can be obtained by other means.

This approach can be expected to break down at sufficientig Ja. At some point, terms in
the potential involving high powers &f, andU,], which might be negligible for computing ob-
servables ati = 0 because they are multiplied by very small coefficients|ccbacome important
under the replacement (52). To what extent this effect whibit the study of the phase diagram
remains to be seen.

There is no doubt that determining the set of const&at$ in full QCD would be computa-
tionally demanding. As a first step, it may be worth trying xtract the effective spin theory from
gauge theories with scalar, rather than fermionic, makatdi

VI. CONCLUSIONS

The mean field expansion for effective spin models with a égbahpotential turns out to have
an interesting structure. The constraint takingNJ{io SUN) is responsible for the-dependence
of the free energy, and this constraint introduces an igfigitm whose index, as it turns out, can
be interpreted as the baryon number at each site. The parfitnction can then be formally
expressed in terms of a baryon fugacity expansion.

If we ignore the distinction between first-order and crogs@oints, then even the lowest order
mean field equations do a reasonably good job of accountimghiase structure. The main error
lies in the location of the endpoints of first-order tramsitiines, which occur, for fixed, at
higher values ofz than those determined by other methods. The first corretaitime mean field
result moves those endpoints in the right direction, i.éowcer values ofu. It remains to be seen
whether realistic results for the endpoints would be olat@iftom still higher orders in the mean
field expansion.

We have also commented on the problem of deriving effectpie siodels from full QCD,
and on certain subtleties associated with continuing timsdels from zero to finite chemical
potential. We have suggested that a method which was p&yiapplied to study the Yang-Mills

8 Allowing for the Z3 subgroup of SU(3), the anglk can be restricted to the ran{fe2r/3).
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vacuum wavefunctional may be useful in this context, andehiopdiscuss this further at a later
time.
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