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Abstract

We make a systematic investigation on the two-body nonleptonic decays Bc → D
(∗)
(s)P , D

(∗)
(s)V ,

by employing the perturbative QCD approach based on kT factorization, where P and V denote

any light pseudoscalar meson and vector meson, respectively. We predict the branching ratios

and direct CP-asymmetries of these Bc decays and also the transverse polarization fractions of

Bc → D∗
(s)V decays. It is found that the non-factorizable emission diagrams and annihilation

type diagrams have remarkable effects on the physical observables in many channels, especially

the color-suppressed and annihilation-dominant decay modes. A possible large direct CP-violation

is predicted in some channels; and a large transverse polarization contribution that can reach

50% ∼ 70% is predicted in some of the Bc → D∗
(s)V decays.
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I. INTRODUCTION

The Bc meson is the only quark-antiquark bound system (b̄c) composed of both heavy

quarks with different flavors, and are thus flavor asymmetric. It can decay only via weak

interaction, since the two flavor asymmetric quarks (b and c) can not annihilate into gluons

or photon via strong interaction or electromagnetic interaction. Because each of the two

heavy quarks can decay individually, and they can also annihilate through weak interaction,

Bc meson has rich decay channels and provides a very good place to study nonleptonic weak

decays of heavy mesons, to test the standard model and to search for any new physics signals

[1].

Since the current running LHC collider will produce much more Bc mesons than ever

before, a lot of theoretical studies of the nonleptonic Bc weak decays have been performed

using different approaches. For example, the spectator-model [2], the light-front quark model

(LFQM) [3, 4], the relativistic constituent quark model (RCQM) [5], the QCD factorization

approach (QCDF) [6], the Perturbative QCD approach (pQCD) [7–10], and so on. Among

the numerous decay channels, there is one category with only one charmed meson in the final

states. They are rare decays, but with possible large direct CP asymmetry, since there are

both penguin and tree diagrams involved. These decays have ever been studied in Ref. [3]

using the naive factorization approach. But they consider only the contribution of current-

current operators at the tree level, and thus no direct CP asymmetry is predicted. They

also have difficulty to predict those pure penguin type or annihilation dominant type decays,

such as Bc → D+φ, D+
s K̄

0, D+
s φ. Ref. [5] discussed some semileptonic and nonleptonic Bc

weak decays and CP-violating asymmetries by using RCQM model based on the Bethe-

Salpeter formalism. They do not include the contributions of annihilation type diagrams,

either. Since the annihilation type contributions are found to be important in the B meson

non-leptonic decays [11] and also significant in the Bc decays [12], one needs further study

these channels carefully.

In this paper, we calculate all the processes of a Bc meson decays to one D
(∗)
(s) meson and

one light pseudoscalar meson (P) or vector meson (V) in pQCD approach. It is well-known

that Bc meson is a nonrelativistic heavy quarkonium system. Thus the two quarks in the

Bc meson are both at rest and non-relativistic. Since the charm quark in the final state D

meson is almost at collinear state, a hard gluon is needed to transfer large momentum to the
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spectator charm quark. In the leading order of mc/mBc
∼ 0.2 expansion, the factorization

theorem is applicable to the Bc system similar to the situation of B meson [13]. Utilizing

the kT factorization instead of collinear factorization, this approach is free of endpoint sin-

gularity. Thus the diagrams including factorizable, nonfactorizable and annihilation type,

are all calculable. It has been tested in the study of charmless B meson decays successfully

[14], especially for the direct CP asymmetries [15]. For the charmed decays of B meson, it

is also demonstrated to be applicable in the leading order of the mD/mB expansion [16–21].

Our paper is organized as follows: We review the pQCD factorization approach and then

perform the perturbative calculations for these considered decay channels in Sec.II. The

numerical results and discussions on the observables are given in Sec.III. The final section

is devoted to our conclusions. Some details related functions and the decay amplitudes are

given in the Appendix.

II. THEORETICAL FRAMEWORK

For the charmed Bc decays we considered, the weak effective Hamiltonian Heff for b →
q′(q′ = d, s) transition can be written as [22]

Heff =
GF√
2
{
∑

q=u,c

ξq[(C1(µ)O
q
1(µ) + C2(µ)O

q
2(µ)) +

10
∑

i=3

Ci(µ)Oi(µ)]}, (1)

with the Cabbibo-Kobayashi-Maskawa (CKM) matrix element ξq = Vqq′V
∗
qb. Oi(µ) and

Ci(µ) are the effective four quark operators and their QCD corrected Wilson coefficients,

respectively. Their expressions can be found easily for example in Ref. [22].

With these quark level weak operators, the hardest work is left for the matrix element

calculation between hadronic states 〈DM |Heff |Bc〉. Since both perturbative and non-

perturbative QCD are involved, the factorization theorem is required to make the calcu-

lation meaningful. The perturbative QCD approach [14] is one of the methods to deal with

hadronic B decays based on kT factorization. At zero recoil of D meson in the semi-leptonic

Bc decay, both c and b quark can be described by heavy quark effective theory. However,

when the D meson is at maximum recoil, which is the case of two body non-leptonic Bc

decay, the final state mesons at the rest frame of Bc meson are collinear, so as to the con-

stituent quarks (c and other light quarks) inside. Since the spectator c quark in the Bc

meson is almost at rest, a hard gluon is then needed to transform it into a collinear object in
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the final state meson. This makes the perturbative calculations into a 6-quark interaction.

In this collinear factorization calculation, endpoint singularity usually appears in some of

the diagrams. The QCD factorization approach [23] just parameterize those diagrams with

singularity as free parameters; while in the so-called soft-collinear effective theory [24], peo-

ple separate these incalculable part to an unknown matrix element. In our pQCD approach,

we studied these singularity and found that they arise from the endpoint where longitudinal

momentum is small. Therefore, the transverse momentum of quarks is no longer negligible.

If one pick back the transverse momentum, the result is finite.

Because the intrinsic transverse momentum of quarks is smaller than the b quark mass

scale, therefore we have one more scale than the usual collinear factorization. Additional

double logarithms appear at the perturbative QCD calculations. These large logarithms will

spoil the perturbation expansion, thus a resummation is required. This has been done to

give the so called Sudakov form factors [25]. The single logarithm between the W boson

mass scale and the factorization scale t in pQCD approach has been absorbed into the

Wilson coefficients of four quark operators. The decay amplitude is then factorized into the

convolution of the hard subamplitude, the Wilson coefficient and the Sudakov factor with

the meson wave functions, all of which are well-defined and gauge invariant. Therefore, the

three-scale factorization formula for exclusive nonleptonic B meson decays is then written

as

C(t)⊗H(x, t)⊗ Φ(x)⊗ exp

[

−s(P, b)− 2

∫ t

1/b

dµ

µ
γq(αs(µ))

]

, (2)

where C(t) are the corresponding Wilson coefficients. The Sudakov evolution exp[−s(P, b)]

[25] are from the resummation of double logarithms ln2(Pb), with P denoting the dominant

light-cone component of meson momentum. γq = −αs/π is the quark anomalous dimension

in axial gauge. All non-perturbative components are organized in the form of hadron wave

functions Φ(x), which can be extracted from experimental data or other non-perturbative

method. Since non-perturbative dynamics has been factored out, one can evaluate all pos-

sible Feynman diagrams for the six-quark amplitude straightforwardly, which include both

traditional factorizable and so-called “non-factorizable” contributions. Factorizable and non-

factorizable annihilation type diagrams are also calculable without endpoint singularity.

The meson wave function, which describes hadronization of the quark and anti-quark

inside the meson, is independent of the specific processes. Using the wave functions deter-
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mined from other well measured processes, one can make quantitative predictions here. For

the light pseudoscalar meson, its wave function can be defined as [26]

Φ(P, x, ξ) =
i

2Nc
γ5[/PφA

P (x) +m0φ
P
P (x) + ξm0(/n/v − 1)φT

P (x)], (3)

where P is the momentum of the light meson, and x is the momentum fraction of the quark

(or anti-quark) inside the meson. When the momentum fraction of the quark (anti-quark)

is set to be x, the parameter ξ should be chosen as +1(−1). The distribution amplitudes

φA
P (x), φ

P
P (x) and φT

P (x) are given in Appendix C.

For the light vector mesons, both longitudes (L) and transverse (T) polarizations are

involved. Their wave functions are written as [7]

ΦL
V (x) =

1√
2Nc

{MV /ǫ
∗L
V φV (x) + /ǫ∗LV /Pφt

V (x) +MV φ
s
V (x)}αβ ,

ΦT
V (x) =

1√
2Nc

{MV /ǫ
∗T
V φν

V (x) + /ǫ∗TV /PφT
V (x) + iMV ǫµνρσγ5ǫ

∗ν
T nρvσφa

V (x)}αβ , (4)

where ǫ
L(T )
V denotes the longitudinal (transverse) polarization vector. And convention ǫ0123 =

1 is adopted for the Levi-Civita tensor. The distributions amplitudes are also presented in

Appendix C.

Consisting of two heavy quarks (b,c), the Bc meson is usually treated as a heavy quarko-

nium system. In the non-relativistic limit, the Bc wave function can be written as [7]

ΦBc
(x) =

ifB
4Nc

[(/P +MBc
)γ5δ(x− rc)], (5)

with rc = mc/MBc
. Here, we only consider one of the dominant Lorentz structure, and

neglect another contribution in our calculation [27].

In the heavy quark limit, the two-particle light-cone distribution amplitudes of D(s)/D
∗
(s)

meson are defined as [21]

〈D(s)(P2)|qα(z)c̄β(0)|0〉 =
i√
2Nc

∫ 1

0

dxeixP2·z[γ5(/P2 +mD(s)
)φD(s)

(x, b)]αβ ,

〈D∗
(s)(P2)|qα(z)c̄β(0)|0〉 = − 1√

2Nc

∫ 1

0

dxeixP2·z[/ǫ(/P2 +mD∗

(s)
)φD∗

(s)
(x, b)]αβ . (6)

We use the following relations derived from HQET to determine fD∗

(s)
[28]

fD∗

(s)
=

√

mD(s)

mD∗

(s)

fD(s)
. (7)
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For the D
(∗)
(s) meson wave function, we adopt the same model as of the B meson [8]

φD(s)
(x, b) = ND(s)

[x(1 − x)]2 exp

(

−
x2m2

D(s)

2ω2
D(s)

− 1

2
ω2
D(s)

b2

)

(8)

with shape parameters ωD = 0.6 for D/D∗ meson and ωDs
= 0.8 for Ds/D

∗
s meson. Here, a

larger ωDs
parameter than ωD characterize the fact that the s quark in Ds meson carries a

larger momentum fraction than the light quark (u,d) in the D meson.

At leading order, there are eight types of diagrams that may contribute to the Bc →
D

(∗)
(s)P , D

(∗)
(s)V decays as illustrated in Fig.1. The first line are the emission type diagrams,

with the first two contributing to the usual form factor; the last two so-called non-factorizable

diagrams. The second line are the annihilation type diagrams, with the first two factorizable;

the last two non-factorizable.
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Bc D

P/V

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1: The leading order Feynman diagrams for the decays Bc → D
(∗)
(s)P,D

(∗)
(s)V .

A. Amplitudes for Bc → D(s)P decays

We mark LL, LR, SP to denote the contributions from (V −A)(V −A), (V −A)(V +A)

and (S − P )(S + P ) operates, respectively. The amplitudes from factorizable diagrams (a)

and (b) in Fig.1 are as following:

FLL
e = 2

√

2

3
CffBfPπM

4
B

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2φD(x2, b2)×

{[(1− 2rD)x2 + (rD − 2)rb]αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

−(rD − 2)rD(x1 − 1)αs(tb)he(αe, βb, b2, b1)St(x1) exp[−Sab(tb)], (9)

where rD = mD/MB, rb = mb/MB; CF = 4/3 is a color factor; fP is the decay constant of

pseudoscalar meson (P). The factorization scales ta,b are chosen as the maximal virtuality of

internal particles in the hard amplitude, in order to suppress the higher order corrections [29].

The function he are displayed in the Appendix B. The factor St(x) is the jet function from

the threshold resummation, whose definitions can be found in [8]. The terms proportional
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to r2D have been neglected for small values. We can calculate the form factor from eq.(9)

if we take away the Wilson coefficients and fP . For the (V − A)(V + A) operates, we

have FLR
e = −FLL

e since only axial-vector current contributes to the pseudoscalar meson

production. For the (S − P )(S + P ) operates the formula is different:

FSP
e = −4

√

2

3
CffBfPπM

4
B

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2φD(x2, b2)×

{[rD(4rb − x2 − 1)− rb + 2]αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

+[rD(2− 4x1) + x1]αs(tb)he(αe, βb, b2, b1)St(x1) exp[−Sab(tb)]. (10)

For the nonfactorizable emission diagram (c) and (d), the decay amplitudes of three types

operates are:

MLL
e =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD(x2, b2)φ
A
P (x3)×

{[rD(1− x1 − x2) + x1 + x3 − 1]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]−

[rD(1− x1 − x2) + 2x1 + x2 − x3 − 1]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]},

(11)

MLR
e =

8

3
CFfBπM

4
BrP (1 + rD)

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD(x2, b2)×

{[(x1 + x3 − 1 + rD(2x1 + x2 + x3 − 2))φP
P (x3) +

(x1 + x3 − 1 + rD(x3 − x2))φ
T
P (x3)]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

−[(x1 − x3 + rD(2x1 + x2 − x3 − 1))φP
P (x3) + (x3 − x1 +

rD(x3 + x2 − 1))φT
P (x3)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (12)

MSP
e =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD(x2, b2)φ
A
P (x3)×

{[rD(x1 + x2 − 1)− 2x1 − x2 − x3 + 2]

αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]−

[x3 − x1 − rD(1− x1 − x2)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (13)

where rP = mP
0 /MB, with mP

0 as the chiral mass of the pseudoscalar meson P.

For the factorizable emission diagram (e) and (f), we keep the mass of the c-quark in D
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meson, while the mass of the light quark is neglected. The amplitudes are given as follows:

FLL
a = FLR

a = −8CFfBπM
4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD(x2, b2)×

{[φA
P (x3)(x3 − 2rDrc) + rP [φ

P
P (x3)(2rD(x3 + 1)− rc) + φT

P (x3)

(rc + 2rD(x3 − 1))]]αs(te)he(αa, βe, b2, b3) exp[−Sef(te)]St(x3)−

[x2φ
A
P (x3) + 2rP rD(x2 + 1)φP

P (x3)]

αs(tf)he(αa, βf , b3, b2) exp[−Sef(tf )]St(x2)}, (14)

FSP
a = 16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD(x2, b2)×

{[−φA
P (x3)(2rD − rc) + rP [φ

P
P (x3)(4rcrD − x3) + φT

P (x3)x3]]

αs(te)he(αa, βe, b2, b3) exp[−Sef (te)]St(x3)− [x2rDφ
A
P (x3) +

2rPφ
P
P (x3)]αs(tf)he(αa, βf , b3, b2) exp[−Sef (tf)]St(x2)}; (15)

and that of the nonfactorizable annihilation diagram (g) and (h) are

MLL
a = −8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD(x2, b2)×

{[φA
P (x3)(rc − x1 + x2) + rP rD[φ

T
P (x3)(x2 − x3) +

φP
P (x3)(4rc − 2x1 + x2 + x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

+[−φA
P (x3)(rb + x1 + x3 − 1) + rP rD[(x2 − x3)φ

T
P (x3)− φP

P (x3)

(4rb + 2x1 + x2 + x3 − 2)]]αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (16)

MLR
a =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD(x2, b2)×

{[−φA
P (x3)rD(rc + x1 − x2) + rP [−φT

P (x3)(−rc − x1 + x3)

+φP
P (x3)(rc + x1 − x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)] +

[−φA
P (x3)rD(−rb + x1 + x2 − 1) + rP [(−rb + x1 + x3 − 1)

(φP
P (x3) + φT

P (x3))]]αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (17)

MSP
a = −8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD(x2, b2)×

{[−φA
P (x3)(x1 − x3 − rc) + rP rD[−φT

P (x3)(x2 − x3)

+φP
P (x3)(4rc − 2x1 + x2 + x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)] +

[−φA
P (x3)(rb + x1 + x2 − 1) + rP rD[(−4rb − 2x1 − x2 − x3 + 2)φP

P (x3)

−(x2 − x3)φ
T
P (x3))]]αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (18)
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With the functions obtained in the above, the total decay amplitudes of 10 decay channels

for the Bc → D(s)P can be given by

A(Bc → D0π+) = ξu[a1FLL
e + C1MLL

e ] + ξc[a1FLL
a + C1MLL

a ]

−ξt[(C3 + C9)(MLL
e +MLL

a ) + (C5 + C7)(MLR
e +MLR

a )

+(C4 +
1

3
C3 + C10 +

1

3
C9)(FLL

a + FLL
e )

+(C6 +
1

3
C5 + C8 +

1

3
C7)(FSP

a + FSP
e )], (19)

√
2A(Bc → D+π0) = ξu[a2FLL

e + C2MLL
e ]− ξc[a1FLL

a

+C1MLL
a ]− ξt[(

3

2
C10 − C3 +

1

2
C9)MLL

e − (C3 + C9)MLL
a

+(−C5 +
1

2
C7)MLR

e + (−C4 −
1

3
C3 − C10 −

1

3
C9)FLL

a +

(C10 +
5

3
C9 −

1

3
C3 − C4 −

3

2
C7 −

1

2
C8)FLL

e

+(−C6 −
1

3
C5 +

1

2
C8 +

1

6
C7)FSP

e − (C5 + C7)MLR
a

+(−C6 −
1

3
C5 − C8 −

1

3
C7)FSP

a ], (20)

√
2A(Bc → D+ηq) = ξu[a2FLL

e + C2MLL
e ] + ξc[a1FLL

a + C1MLL
a ]

−ξt[(2C4 + C3 +
1

2
C10 −

1

2
C9)MLL

e + (C3 + C9)MLL
a

+(C5 −
1

2
C7)MLR

e + (C5 + C7)MLR
a + (C4 +

1

3
C3 + C10 +

1

3
C9)FLL

a + (
7

3
C3 +

5

3
C4 +

1

3
(C9 − C10))FLL

e + (2C5 +
2

3
C6

+
1

2
C7 +

1

6
C8)FLR

e + (C6 +
1

3
C5 −

1

2
C8 −

1

6
C7)FSP

e

+(C6 +
1

3
C5 + C8 +

1

3
C7)FSP

a ], (21)

A(Bc → D+ηs) = −ξt[(C4 −
1

2
C10)MLL

e + (C6 −
1

2
C8)MSP

e + (C3 +
1

3
C4

−1

2
C9 −

1

6
C10)FLL

e + (C5 +
1

3
C6 −

1

2
C7 −

1

6
C8)FLR

e ], (22)

√
2A(Bc → D+

s ηq) = ξ′u[a2FLL
e + C2MLL

e ]− ξ′t[(2C4 +
1

2
C10)MLL

e +

(2C6 +
1

2
C8)MSP

e + (2C3 +
2

3
C4 +

1

2
C9 +

1

6
C10)FLL

e

+(2C5 +
2

3
C6 +

1

2
C7 +

1

6
C8)FLR

e ], (23)
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A(Bc → D+
s ηs) = ξ′c[a1FLL

a + C1MLL
a ]− ξ′t[(C3 + C4 −

1

2
(C10 + C9))MLL

e

+(C3 + C9)MLL
a + (C5 −

1

2
C7)MLR

e + (C5 + C7)MLR
a

+(C4 +
1

3
C3 + C10 +

1

3
C9)FLL

a + (C6 −
1

2
C8)MSP

e +

2

3
(2(C3 + C4)− (C9 + C10))FLL

e + (C5 +
1

3
C6 −

1

2
C7 −

1

6
C8)FLR

e

+(C6 +
1

3
C5 −

1

2
C8 −

1

6
C7)FSP

e + (C6 +
1

3
C5 + C8 +

1

3
C7)FSP

a ],

(24)

A(Bc → D+
s K̄

0) = ξc[a1FLL
a + C1MLL

a ]− ξt[(C3 −
1

2
C9)MLL

e

+(C3 + C9)MLL
a + (C5 −

1

2
C7)MLR

e + (C5 + C7)MLR
a

+(C4 +
1

3
C3 + C10 +

1

3
C9)FLL

a +

(C4 +
1

3
C3 −

1

2
C10 −

1

6
C9)FLL

e + (C6 +
1

3
C5 −

1

2
C8

−1

6
C7)FSP

e + (C6 +
1

3
C5 + C8 +

1

3
C7)FSP

a ], (25)

A(Bc → D+
s π

0) = ξ′u[a2FLL
e + C2MLL

e ]− ξ′t[(
1

2
(3C9 + C10)FLL

e

+
1

2
(3C7 + C8))FLR

e +
3

2
C10MLL

e +
3

2
C8MSP

e ], (26)

with the CKM matrix element ξi = VidV
∗
ib and ξ′i = VisV

∗
ib(i = u, c, t). The combinations

Wilson coefficients a1 = C2 + C1/3 and a2 = C1 + C2/3. The total decay amplitude of

A(Bc → D0K+) and A(Bc → D+K0) can be obtained from (19) and (25), respectively,

with the following replacement:

A(Bc → D0K+) = A(Bc → D0π+)|π→K,ξi→ξ′i
,

A(Bc → D+K0) = A(Bc → D+
s K̄

0)|Ds→D,ξi→ξ′i
. (27)

It should be noticed that, in (21), (22), (23) and (24), the decay amplitudes are for the

mixing basis of (ηq, ηs). For the physical state (η, η′), the decay amplitudes are

A(Bc → D+η) = A(Bc → D+ηq) cosφ−A(Bc → D+ηs) sinφ,

A(Bc → D+η′) = A(Bc → D+ηq) sinφ+A(Bc → D+ηs) cosφ,

A(Bc → D+
s η) = A(Bc → D+

s ηq) cosφ−A(Bc → D+
s ηs) sinφ,

A(Bc → D+
s η

′) = A(Bc → D+
s ηq) sinφ+A(Bc → D+

s ηs) cosφ, (28)
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where φ = 39.3◦ is the mixing angle between the two states.

(

η
η′
)

=
(

cos φ − sin φ
sinφ cosφ

)(

ηq
ηs

)

. (29)

B. Amplitudes for Bc → D(s)V decays

In Bc → D(s)V decays, the vector meson is longitudinally polarized. In the leading power

contribution, the formula of each Feynman diagram for Bc → D(s)V is similar to that of the

Bc → D(s)P modes, but with the replacements

fP → fV , rP → rV , φA
P → φV , φP

P → −φs
V , φT

P → φt
V . (30)

The total decay amplitude for Bc → D(s)V can be obtained through the substitutions in

(19)- (27):

π → ρ, K → K∗, ηq → ω, ηs → φ. (31)

C. Amplitudes for Bc → D∗
(s)V decays

The decay amplitude of Bc → D∗
(s)V can be decomposed into

A(ǫD∗ , ǫV ) = AL +ANǫD∗T · ǫV T + iAT ǫαβρσn
αvβǫρD∗T ǫ

σ
V T (32)

where ǫD∗T (ǫV T ) is the transverse polarization vector for D∗(V ) meson. AL corresponds to

the contributions of longitudinal polarization; AN and AT corresponds to the contributions

of normal and transverse polarization, respectively. The factorization formulae for the lon-

gitudinal, normal and transverse polarizations are all listed in Appendix A. There are also

10 channels for Bc → D∗
(s)V decay modes. We can obtain the total decay amplitudes from

those in Bc → D(s)V with replacing D(s) by D∗
(s).

D. Amplitudes for Bc → D∗
(s)P decays

For Bc → D∗
(s)P , only the longitudinal polarization of D∗

(s) will contribute. We can obtain

their amplitudes from the longitudinal polarization amplitudes for the Bc → D∗
(s)V decays

with the following replacement in the distribution amplitudes:

fV → fP , rV → rP , φV → φA
P , φs

V → φP
P , φt

V → φT
P . (33)

12



In fact, the Bc → D∗
(s)P decays amplitude are the same as the Bc → D(s)P ones only at

leading power under the hierachy MBc
≫ mD(∗) ≫ ΛQCD. An explicit derivation shows that

the difference between the two kinds of channels occurs at O(rD(∗)) and at the twist-3 level

in eq.(9)-eq.(18).

III. NUMERICAL RESULTS AND DISCUSSIONS

The numerical results of our calculations depend on a set of input parameters. We list

the decay constants of various mesons and parameters of hadronic wave functions in Table

I. For η − η′ system, the decay constants fq and fs in the quark-flavor basis have been

extracted from various related experiments [30, 31]

fq = (1.07± 0.02)fπ, fs = (1.34± 0.06)fπ. (34)

For the CKM matrix elements, the quark masses etc., we adopt the results from [32]

|Vub| = (3.89± 0.44)× 10−3, |Vud| = 0.97425, |Vcb| = 0.0406, |Vcd| = 0.23

|Vus| = 0.2252, |Vcs| = 1.023, γ = (73+22
−25)

◦,

mc = 1.27GeV, mb = 4.2GeV, mπ
0 = 1.4GeV,

mK
0 = 1.6GeV, m

ηq
0 = 1.07GeV, mηs

0 = 1.92GeV, Λ5
QCD = 0.112GeV. (35)

For the considered Bc → D(s)P , Bc → D∗
(s)P and Bc → D(s)V decays, the branching

ratios BR and the direct CP asymmetry Adir
CP for a given mode can be written as

BR =
GF τBc

32πMB
(1− r2D)|A|2, Adir

CP =
|Ā|2 − |A|2
|Ā|2 + |A|2 (36)

where the decay amplitudes A have been given explicitly in Sec. II for each channel. Ā is

the corresponding charge conjugate decay amplitude, which can be obtained by conjugating

the CKM matrix elements in A.

Our numerical results of CP averaged branching ratios and direct CP asymmetries for

Bc → D(s)P and Bc → D(s)V decays are listed in Tables II and III, respectively. The

dominant topologies contributing to these decays are also indicated through the symbols T

(color-allowed tree), C (color-suppressed tree), P (penguin) and A (annihilation). The first

theoretical error in all our tables is referred to the D(s) meson wave function: (1) The shape

parameter ωD = 0.60± 0.05 for D/D∗ meson and ωDs
= 0.80± 0.05 for Ds/D

∗
s meson; (2)
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TABLE I: The decay constants and the hadronic meson wave function parameters taken from the

light-cone sum rules [33].

The decay constants (MeV)

fBc fD fDs fπ fK fρ fT
ρ fω fT

ω fφ fT
φ fK∗ fT

K∗

489 206.7 ± 8.9 257.5 ± 6.1 131 160 209 165 195 145 231 200 217 185

Values of Gegenbauer moments

π K ηq ηs

aP1 – 0.17 – –

aP2 0.25 0.115 0.115 0.115

aP4 -0.015 -0.015 -0.015 -0.015

ρ ω φ K∗

a
‖
1 – – – 0.03

a
‖
2 0.15 0.15 0.18 0.11

a⊥1 – – – 0.04

a⊥2 0.14 0.14 0.14 0.10

The decay constant fD = (206.7 ± 8.9)MeV for D meson and fDs
= (257.5 ± 6.1)MeV for

Ds meson. The second error is from the combined uncertainty in the CKM matrix elements

Vub and the angle of unitarity triangle γ, which are given in eq.(35). The third error arises

from the hard scale t varying from 0.75t to 1.25t, which characterizing the size of next-to-

leading order QCD contributions. Most of the branching ratios are sensitive to the hadronic

parameters and the CKM matrix elements. The CP asymmetry parameter is only sensitive

to the next-to-leading order contributions, since the uncertainty of hadronic parameters are

mostly canceled by the ratios.

We also cite theoretical results for the relevant decays evaluated in LFQM model [3] and

RCQM model [5] to make a comparison in Tables II and III. Our pQCD results are generally

close to RCQM results but differ substantially from the ones obtained by LFQM. This is

due to the fact that LFQM used a smaller form factors FBc→D(q2 = 0) = 0.086 at maximum

recoil, which is rather smaller than other model predictions [4] and also another covariant

LFQM results [34]. In fact, these model calculations all give consistent form factors at the

zero coil region, considering only soft contributions by the overlap between the initial and

final state meson wave functions, which is good at the zero recoil region. At the maximum-

recoil region, which is the case for non-leptonic B decays, the soft contribution is suppressed,

since a hard gluon is needed, as discussed in the previous section. Furthermore LFQM only

consider the contribution of current-current operators at the tree level, therefore they cannot

14



TABLE II: CP averaged branching ratios and direct CP asymmetries for Bc → D(s)P decays,

together with results from RCQM and LFQM.

BR(10−7) Adir
CP (%)

channels Class This work RCQMa LFQM This work RCQM

Bc → D0π+ T 26.7+3.1+6.0+0.8
−3.5−5.6−0.6 22.9 4.3 −41.2+4.5+11.1+0.8

−4.6−7.8−1.2 6.5

Bc → D+π0 C,A 0.82+0.24+0.55+0.06
−0.16−0.41−0.01 2.1 0.067 2.3+6.3+1.4+15.0

−3.0−0.8−18.8 -1.9

Bc → D0K+ A,P 47.8+17.2+2.2+5.4
−9.1−1.7−3.6 44.5 0.35 −34.8+4.9+7.4+1.8

−2.6−3.7−1.3 -4.6

Bc → D+K0 A,P 46.9+15.6+0.3+7.4
−12.3−0.3−4.6 49.3 – 2.3+0.4+0.9+0.0

−0.2−0.5−0.0 -0.8

Bc → D+η C,A 0.92+0.15+0.21+0.03
−0.15−0.25−0.00 – 0.087 40.8+0.0+18.4+15.6

−2.9−14.0−13.5 –

Bc → D+η′ C,A 0.91+0.12+0.16+0.06
−0.10−0.20−0.03 – 0.048 −14.0+0.6+4.6+15.9

−1.5−5.2−11.9 –

Bc → D+
s π

0 C,P 0.41+0.04+0.01+0.02
−0.04−0.02−0.02 – 0.0067 46.7+1.4+6.3+2.5

−1.4−11.8−2.8 –

Bc → D+
s K̄

0 A,P 2.1+0.9+0.3+0.3
−0.6−0.3−0.2 1.9 – 54.3+6.9+5.3+0.0

−7.2−8.0−0.3 13.3

Bc → D+
s η A,P 17.3+1.7+0.5+3.3

−1.8−0.6−1.2 – 0.009 2.8+0.0+0.4+1.1
−0.1−0.7−1.2 –

Bc → D+
s η

′ A,P 51.0+4.9+0.4+6.7
−5.4−0.3−3.5 – 0.0048 1.1+0.1+0.2+0.7

−0.0−0.2−0.6 –

awe use the results of decay widths in [5] , but we take τBc
= 0.453ps to estimate the branching ratio

TABLE III: CP averaged branching ratios and direct CP asymmetries for Bc → D(s)V decays,

together with results from RCQM and LFQM.

BR(10−7) Adir
CP (%)

channels Class This work RCQM LFQM This work RCQM

Bc → D0ρ+ T 66.2+7.6+16.0+1.6
−7.6−14.1−1.3 60.0 13 −24.5+2.6+5.3+0.3

−0.4−3.2−0.8 3.8

Bc → D+ρ0 C,A 1.4+0.1+0.5+0.1
−0.2−0.5−0.2 3.9 0.2 79.8+0.3+11.2+3.4

−5.8−19.6−10.7 -3.0

Bc → D0K∗+ A,P 25.9+2.7+0.9+1.5
−3.0−0.8−0.8 34.7 0.68 −66.2+1.8+15.1+0.7

−0.6−6.5−0.0 -6.2

Bc → D+K∗0 A,P 19.1+3.3+0.1+0.7
−2.5−0.0−0.7 28.8 – 3.5+0.0+0.5+0.5

−0.1−0.8−0.3 -0.8

Bc → D+ω C,A 1.9+0.3+0.5+0.0
−0.3−0.6−0.0 – 0.15 −3.6+3.9+1.3+13.4

−1.2−1.6−10.7 –

Bc → D+φ P 0.008+0.001+0.0+0.001
−0.001−0.0−0.001 – – – –

Bc → D+
s ρ

0 C,P 0.95+0.10+0.02+0.04
−0.09−0.01−0.04 – – 50.2+1.0+5.9+2.5

−1.1−11.9−3.2 –

Bc → D+
s K̄

∗0 A,P 1.4+0.2+0.0+0.1
−0.2−0.1−0.1 1.0 – 61.0+0.0+6.5+4.5

−0.3−14.2−3.6 13.3

Bc → D+
s ω C,P 0.31+0.03+0.07+0.07

−0.03−0.07−0.05 – 0.016 44.9+0.8+17.1+10.3
−1.6−14.9−13.6 –

Bc → D+
s φ A,P 27.0+4.8+0.1+2.0

−1.2−0.0−0.4 15.7 0.0048 3.3+0.0+0.4+0.3
−0.3−0.8−0.4 -0.8

give predictions for those modes without tree diagram contributions like Bc → D+K0 and

Bc → D+
s K̄

0. For the color suppressed decays (C), our predictions differ from the ones of

RCQM, since in these modes, the contributions from the non-factorizable emission diagram

and annihilation diagram dominated the branching ratio, which are not calculable in RCQM.

Our numerical results of the CP averaged branching ratios and direct CP asymmetries
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for Bc → D∗
(s)P decays are listed in Table IV, together with the RCQM model predictions.

Again, our results are similar with RCQMmodel for the tree dominant mode (T). But for the

annihilation dominant and penguin dominant modes (A,P), the branching ratios obtained

in the RCQM are one order of magnitude smaller than ours. The reason is that these decay

amplitudes are governed by the QCD penguin parameters a4 and a6 in the combination

a4 + Ra6 [35] in the factorization hypothesis. The coefficient R arises from the penguin

operator O6, where R > 0 for B → PP , R = 0 for PV and V V final states, and R < 0 for

B → V P , the second meson in the final states is the one emitted from vacuum. Therefore,

the branching ratios of various type decays have the following pattern in the factorization

approach

BR(Bc → DP ) > BR(Bc → DV ) ∼ BR(Bc → D∗V ) > BR(Bc → D∗P ) (37)

as a consequence of the interference between the a4 and a6 penguin terms. In the contrary,

we have additional non-factorization contributions and large annihilation type contributions

in the pQCD approach, which spoils the relation in eq.(37).

As expected, the annihilation type diagrams give large contributions in the Bc meson de-

cays, because the annihilation type diagram contributions are enhanced by the CKM factor

V ∗
cbVcq [7, 36]. For the b → d process, | V

∗

cb
Vcd

V ∗

ub
Vud

| = 2.5; For the b → s process, | V
∗

cb
Vcs

V ∗

ub
Vus

| = 47.

The annihilation diagram contributions are the dominant contribution in some b → s pro-

cesses. Therefore, we have the ratio relation BR(Bc→D(∗)0K(∗)+)

BR(Bc→D(∗)+K(∗)0)
≈ 1 for these two annihilation

dominant b → s transition processes.

For the color suppressed decays (C), our predictions differ from the ones of RCQM,

since in these modes, the contributions from the non-factorizable emission diagram and

annihilation diagram dominated the branching ratio, which are not calculable in RCQM.

For example in decays Bc → D(∗)+(π0, η, η′, ρ0, ω), the non-factorizable contribution, which

is proportional to the large Wilson coefficient C2, is the dominant contribution. In fact,

the annihilation diagrams can also give relatively large contributions for the enhancement

by CKM factor. We also find that the twist-3 distribution amplitudes play an important

role, especially in the factorizable annihilation diagrams. As stated in section IID, the

Bc → DP (V ) decay amplitudes are different from Bc → D∗P (V ) ones only at twist-3

level. The numerical results show that the contributions from factorizable annihilation

diagrams have an opposite sign between the two type channels. For example, this results
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TABLE IV: CP averaged branching ratios and direct CP asymmetries for Bc → D∗
(s)P decays,

together with results from RCQM.

BR(10−7) Adir
CP (%)

channels Class This work RCQM This work RCQM

Bc → D∗0π+ T 18.8+2.0+4.1+0.4
−2.0−3.5−0.5 19.6 64.0+12.0+6.1+0.7

−7.6−13.0−0.5 1.5

Bc → D∗+π0 C,A 1.3+0.4+0.2+0.0
−0.3−0.3−0.0 0.66 9.6+3.3+3.4+10.8

−2.7−3.3−8.8 -2.1

Bc → D∗0K+ A,P 73.5+31.0+0.8+0.7
−23.4−1.1−0.4 4.9 25.0+4.4+3.2+0.1

−4.1−6.1−0.3 -8.2

Bc → D∗+K0 A,P 77.8+25.4+0.2+7.2
−24.0−0.2−5.2 2.8 −0.3+0.0+0.0+0.0

−0.0−0.0−0.0 -8.2

Bc → D∗+η C,A 0.34+0.14+0.19+0.04
−0.09−0.15−0.00 – −2.0+0.0+0.7+22.8

−2.4−1.5−30.0 –

Bc → D∗+η′ C,A 0.15+0.08+0.08+0.03
−0.05−0.06−0.01 – −41.8+17.5+13.0+24.3

−24.5−13.0−19.2 –

Bc → D∗+
s π0 C,P 0.27+0.02+0.03+0.01

−0.04−0.02−0.02 – 29.9+2.4+5.3+1.8
−1.9−8.2−1.5 –

Bc → D∗+
s K̄0 A,P 1.6+0.2+0.1+0.2

−0.3−0.1−0.1 0.21 −3.3+0.4+0.6+0.9
−1.0−0.4−0.4 13.3

Bc → D∗+
s η A,P 16.7+5.3+0.3+0.1

−4.0−0.2−0.3 – −0.7+0.2+0.2+0.6
−0.2−0.0−0.3 –

Bc → D∗+
s η′ A,P 14.4+6.6+0.1+0.5

−4.6−0.1−0.6 – 0.02+0.01+0.00+0.55
−0.02−0.01−0.52 –

TABLE V: CP averaged branching ratios, direct CP asymmetries and the transverse polarizations

fractions for Bc → D∗
(s)V decays, together with results from RCQM.

BR(10−7) Adir
CP (%) RT (%)

channels Class This work RCQM This work RCQM This work

Bc → D∗0ρ+ T 55.3+8.6+11.9+1.5
−5.0−11.1−1.4 59.7 −24.1+3.0+4.2+0.4

−3.4−2.7−0.4 3.8 16.4+2.5+2.0+0.3
−1.7−1.4−0.1

Bc → D∗+ρ0 C,A 3.8+1.0+0.5+0.1
−0.8−0.6−0.1 13.0 30.2+0.0+2.6+5.4

−1.5−5.8−7.6 -3.0 54.3+1.8+4.0+0.5
−0.9−2.4−0.4

Bc → D∗0K∗+ A,P 161+59+5+11
−40−4−9 37.7 −14.9+1.1+3.1+0.3

−0.8−1.7−0.1 -6.2 52.6+1.5+2.3+1.3
−1.1−1.8−0.7

Bc → D∗+K∗0 A,P 172+57+1+11
−42−1−9 30.6 0.4+0.0+0.0+0.0

−0.0−0.1−0.0 -0.8 57.4+0.6+0.1+0.9
−0.7−0.1−0.4

Bc → D∗+ω C,A 2.4+0.4+0.9+0.2
−0.6−0.7−0.1 – −7.8+1.0+2.6+5.8

−0.0−3.4−5.0 – 56.0+1.2+9.6+0.7
−0.5−6.5−0.7

Bc → D∗+φ P 0.004+0.001+0+0
−0−0−0.001 – – – 11.4+22.3+0.0+5.3

−5.4−0.0−6.9

Bc → D∗+
s ρ0 C,P 0.72+0.08+0.03+0.02

−0.08−0.03−0.03 – −29.3+1.3+7.6+1.4
−1.1−4.5−0.9 -3.0 11.2+0.5+2.1+0.2

−0.3−1.4−0.1

Bc → D∗+
s K̄∗0 A,P 4.3+1.3+0.4+0.3

−1.0−0.3−0.2 2.9 6.2+0.1+1.3+0.0
−0.3−1.8−0.1 13.3 68.8+2.1+3.9+0.8

−2.3−4.4−0.4

Bc → D∗+
s ω C,P 0.26+0.03+0.04+0.07

−0.01−0.05−0.04 – −21.3+5.3+6.8+7.9
−4.6−6.8−4.7 – 49.5+8.8+2.1+4.4

−10.9−1.2−2.8

Bc → D∗+
s φ A,P 137.3+39.3+0.5+10.5

−27.8−0.5−7.5 38.8 0.3+0.1+0.1+0.0
−0.1−0.1−0.0 -0.8 67.5+2.1+0.1+1.4

−3.1−0.2−1.5

in a constructive interference between non-factorizable emission diagrams and factorizable

annihilation diagrams for Bc → D∗+π0, but a destructive interference for Bc → D+π0.

This makes BR(Bc → D∗+π0) larger than BR(Bc → D+π0). Similarly, we have BR(Bc →
D∗+ρ0) > BR(Bc → D+ρ0). However, for Bc → D(∗)+η(η′), while the dd̄ part contributes

to the annihilation diagrams, the constructive or destructive interference situation are just

the reverse, and BR(Bc → D∗+η(η′)) are smaller than BR(Bc → D+η(η′)).

For another kind of b → s processes, the decays Bc → D
(∗)+
s (π0, ρ0, ω) have a small
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branching ratio at O(10−8) due to the absent annihilation diagram contributions, and the

emission diagram contributions suppressed by CKM matrix elements |V ∗
ubVus|. Since the

contribution of penguin operator is comparable to the one of tree operator, the interference

between the two contributions is large. As a result, a big CP asymmetry is predicted in these

decays. The branching ratio is even smaller ∼ 10−10 and no CP violation for Bc → D(∗)+φ

decays, since there are only penguin diagrams contributions. All these and other rare decays

are also important, since they are quite sensitive to new physics contributions.

For the Bc → D∗
(s)V decays the branching ratios and the transverse polarization fractions

RT are given as

BR =
GF τBc

32πMB

(1− r2D)
∑

i=0,+,−

|Ai|2, RT =
|A+|2 + |A−|2

|A0|2 + |A+|2 + |A−|2
, (38)

where the helicity amplitudes Ai have the following relationships with AL,N,T

A0 = AL, A± = AN ±AT . (39)

Our numerical results of the CP averaged branching ratios, direct CP asymmetries and

the transverse polarization fractions for Bc → D∗
(s)V decays are shown in Table V. The

transverse polarization contributions are usually suppressed by the factor rV or rD∗ com-

paring with the longitudinal polarization contributions, thus we do have relatively small

transverse polarization factions for the tree-dominant decay (RT (Bc → D∗0ρ+) = 16.4%)

and the pure penguin type decay (RT (Bc → D∗+φ) = 11.5%). For the pure emission type

decay Bc → D∗+
s ω, the transverse polarization faction is large because the non-factorizable

emission diagram induced by operate O6 can enhance the transverse polarization sizably.

The fact that the non-factorizable contribution can give large transverse polarization contri-

bution is also observed in the B0 → ρ0ρ0, ωω decays [37]. For other decays, the annihilation

type contributions dominate the branching ratios due to the large Wilson coefficients. There-

fore, the transverse polarizations take a larger ratio in the branching ratios, which can reach

50% ∼ 70%. This is similar to the case of B → φK∗ and various B → ρK∗ decays [38, 39].

From Table V, one can also see that our branching ratios for Bc →
D∗+K∗0, D∗0K∗+, D∗+

s K̄∗0, D∗+
s φ decays, are about 2 to 5 times larger than those in RCQM

model, due to the sizable contributions of transverse polarization amplitudes. Another point

should be addressed that the annihilation contributions with a strong phase have remark-

able effects on the direct CP asymmetries in these decays. As a result, our predictions are

18



somewhat larger than those from RCQM.

IV. CONCLUSION

In this paper, we investigate the two body non-leptonic decays of Bc meson with the

final states involving one D
(∗)
(s) meson in the pQCD approach based on kT factorization. It is

found that the non-factorizable emission and annihilation type diagrams are possible to give

a large contribution, especially for those color suppressed modes and annihilation diagram

dominant modes. All the branching ratios and CP asymmetry parameters are calculated

and the ratios of the transverse polarization contributions in the Bc → D∗
(s)V decays are

estimated. Because of the different weak phase and strong phase from tree diagrams, penguin

diagrams and annihilation diagrams, we predict a possible large direct CP-violation in some

channels. We also find that the transverse polarization contributions in some channels, which

mainly come from the non-factorizable emission diagrams or annihilation type diagrams, are

large.

Generally, our predictions for the branching ratios in the tree-dominant Bc decays are in

good agreements with that of RCQM model. But we have much larger branching ratios in

the color-suppressed, annihilation diagram dominant Bc decays, due to the included non-

factorizable diagrams and annihilation type diagrams contributions.
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Appendix A: factorization formulas for Bc → D∗V

We mark L, N and T to denote the contributions from longitudinal polarization, normal

polarization and transverse polarization, respectively.

FLL,L
e = 2

√

2

3
πCffBfVM

4
B

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)×

{[x2 − 2rb + rD(rb − 2x2)]αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

+[r2D(x1 − 1)]αs(tb)he(αe, βb, b2, b1)St(x1) exp[−Sab(tb)]}, (A1)

FLL,N
e = 2

√

2

3
πCffBfVM

4
BrV

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)×

{[rb − 2 + rD(x2 + 1− 4rb)]αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)

+rD[2x1 − 1]αs(tb)he(αe, βb, b2, b1)St(x1) exp[−Sab(tb)]}, (A2)

FLL,T
e = 2

√

2

3
πCffBfVM

4
BrV

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)×

{[rb − 2 + rD(1− x2)]αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

−rDαs(tb)he(αe, βb, b2, b1)St(x1) exp[−Sab(tb)]}, (A3)

FLR,L
e = FLL,L

e , FLR,N
e = FLL,N

e , FLR,T
e = FLL,T

e . (A4)

The factorizable emission topology contribution FSP,i
e (i = L,N, T ) vanishes due to the

conservation of charge parity.

MLL,L
e = −8

3
πCffBM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)φV (x3){[1− x1

−x3 − rD(x1 + x2 − 1)]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)] + [−1 + 2x1

+x2 − x3 − rD(x1 + x2 − 1)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A5)

MLL,N
e =

8

3
πCffBM

4
BrV

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2){[(x1 + x3 − 1)

φν
V (x3) + 2rD(x3 − x2)φ

a
V (x3)]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

−[(−2rD(1− 2x1 − x2 + x3)− x1 + x3)φ
ν
V (x3) + 2(rD(1− x2 − x3)

−2x1 + 2x3)φ
a
V (x3)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A6)
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MLL,T
e =

8

3
πCffBM

4
BrV

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{[(x1 + x3 − 1)φν
V (x3)− 2rD(2x1 + x2 + x3 − 2)φa

V (x3)]

αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

−[(x3 − x1)φ
ν
V (x3) + 2(rD(2x1 + x2 − x3 − 1)− 2x1 + 2x3)φ

a
V (x3)]

αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A7)

MLR,L
e = −8

3
πCffBM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)φV (x3)×

{[(x1 + x3 − 1 + rD(x2 − x3))φ
s
V (x3) + (x1 + x3 − 1−

rD(2x1 + x2 + x3 − 2))φt
V (x3)]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

−[(x1 − x3 − rD(1− x2 − x3))φ
s
V (x3)− (x1 − x3 + rD(1− 2x1

−x2 + x3))φ
t
V (x3)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A8)

MLR,T
e = MLR,N

e = −8

3
πCffBM

4
BrD

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)

φT
V (x3)(x1 + x2 − 1){αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

+αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A9)

MSP,L
e = −8

3
πCffBM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)φV (x3){[2− 2x1

−x2 − x3 + rD(x1 + x2 − 1)]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]−

[x3 − x1 − rD(x1 + x2 − 1)]αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A10)

MSP,N
e = −8

3
πCffBM

4
BrV

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{[(x1 + x3 − 1− 2rD(2x1 + x2 + x3 − 2))φν
V (x3)− (x1 + x3 − 1)φa

V (x3)]

αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

+(x1 − x3)(φ
ν
V (x3)− φa

V (x3))αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A11)

MSP,T
e =

8

3
πCffBM

4
BrV

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{[(x1 + x3 − 1− 2rD(2x1 + x2 + x3 − 2))φa
V (x3)− (x1 + x3 − 1)φν

V (x3)]

αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

+(x1 − x3)(φ
a
V (x3)− φν

V (x3))αs(td)he(βd, αe, b3, b2) exp[−Scd(td)]}, (A12)

21



FLL,L
a = 8CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2){[−x3φV (x3)

+rcrV (φ
t
V (x3)− φs

V (x3))]αs(te)he(αa, βe, b2, b3) exp[−Sef (te)]St(x3) +

[x2φV (x3) + 2rV rD(x2 − 1)φs
V (x3)]

αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf )]St(x2)}, (A13)

FLL,N
a = −8CFfBπM

4
BrD

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2){[rV (x3 − 1)φa

V (x3)

−rcφ
T
V (x3) + rV (x3 + 1)φν

V ]αs(te)he(αa, βe, b2, b3) exp[−Sef(te)]St(x3)

−rV [(x2 + 1)φν
V (x3)− (x2 − 1)φa

V (x3)]

αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf )]St(x2)}, (A14)

FLL,T
a = 8CFfBπM

4
BrD

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{[rV (x3 + 1)φa
V (x3)− rcφ

T
V (x3) + rV (x3 − 1)φν

V (x3)]

αs(te)he(αa, βe, b2, b3) exp[−Sef(te)]St(x3)

+rV [(−x2 − 1)φa
V (x3) + (x2 − 1)φν

V (x3)]

αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf )]St(x2)}, (A15)

FLR,L
a = FLL,L

a , FLR,N
a = FLL,N

a , FLR,T
a = FLL,T

a , (A16)

FSP,L
a = 16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2){[rcφV (x3)

+rV x3(φ
s
V (x3)− φt

V (x3))]αs(te)he(αa, βe, b2, b3) exp[−Sef (te)]−

[rDx2φV (x3)− 2rV φ
s
V (x3)]αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf)]}, (A17)

FSP,N
a = −16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{rD[φT
V (x3)− 2rcrV φ

ν
V (x3)]αs(te)he(αa, βe, b2, b3) exp[−Sef (te)]

+rV (φ
ν
V (x3) + φa

V (x3))αs(tf )he(αa, βf , b3, b2) exp[−Sef(tf )]}, (A18)

FSP,T
a = −16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3φD∗

(s)
(x2, b2)×

{rD[φT
V (x3)− 2rcrV φ

a
V (x3)]αs(te)he(αa, βe, b2, b3) exp[−Sef(te)]

+rV (φ
ν
V (x3) + φa

V (x3))αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf )]}, (A19)
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MLL,L
a =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2){[(x1 − x2 − rc)

φV (x3)− rDrV [(x2 − x3)φ
s
V (x3)− (2x1 − x2 − x3)φ

t
V (x3)]]

αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]− [(1− rb − x1 − x3)φV (x3)

−rDrV [(x3 − x2)φ
s
V (x3) + (2x1 + x2 + x3 − 2)φt

V (x3)]]

αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A20)

MLL,N
a = −16

3
CFfBπM

4
BrDrV

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)φ

ν
V (x3)×

{rcαs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

−rbαs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A21)

MLL,T
a = −16

3
CFfBπM

4
BrDrV

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)φ

a
V (x3)×

{rcαs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

−rbαs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A22)

MLR,L
a =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2){[rD(x1 − x2 + rc)

φV (x3) + rV (−x1 + x3 − rc)(φ
s
V (x3) + φt

V (x3))]

αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]− [−rD(x1 + x2 − rb − 1)φV (x3)

+rV (x1 + x3 − rb − 1)(φs
V (x3) + φt

V (x3))]

αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A23)

MLR,T
a = MLR,N

a =
8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2)×

{[rV (x1 − x3 + rc)(φ
ν
V (x3) + φa

V (x3))− rD(x1 − x2 + rc)φ
T
V (x3)]

αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)] +

[rV (x1 + x3 − rb − 1)(φν
V (x3) + φa

V (x3)) + rD(1 + rb − x1 − x2)φ
T
V (x3)]

αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A24)

23



MSP,L
a =

8

3
CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2φD∗

(s)
(x2, b2){[(x1 − x3 − rc)

φV (x3)− rDrV [(x3 − x2)φ
s
V (x3)− (2x1 − x2 − x3)φ

t
V (x3)]]

αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]− [(1− rb − x1 − x2)φV (x3)

−rDrV [(x2 − x3)φ
s
V (x3) + (2x1 + x2 + x3 − 2)φt

V (x3)]]

αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (A25)

MSP,N
a = MLL,N

a , MSP,T
a = −MLL,T

a . (A26)

Appendix B: scales and related functions in hard kernel

We show here the functions he, coming from the Fourier transform of hard kernel.

he(α, β, b1, b2) = h1(α, b1)× h2(β, b1, b2),

h1(α, b1) =

{

K0(
√
αb1), α > 0

K0(i
√
−αb1), α < 0

h2(β, b1, b2) =

{

θ(b1 − b2)I0(
√
βb2)K0(

√
βb1) + (b1 ↔ b2), β > 0

θ(b1 − b2)J0(
√
−βb2)K0(i

√
−βb1) + (b1 ↔ b2), β < 0

(B1)

where J0 is the Bessel function and K0, I0 are modified Bessel function with K0(ix) =

π
2
(−N0(x) + iJ0(x)). The hard scale t is chosen as the maximum of the virtuality of the

internal momentum transition in the hard amplitudes, including 1/bi(i = 1, 2, 3):

ta = max(
√

|αe|,
√

|βa|, 1/b1, 1/b2), tb = max(
√

|αe|,
√

|βb|, 1/b1, 1/b2),

tc = max(
√

|αe|,
√

|βc|, 1/b2, 1/b3), td = max(
√

|αe|,
√

|βd|, 1/b2, 1/b3),

te = max(
√

|αa|,
√

|βe|, 1/b2, 1/b3), tf = max(
√

|αa|,
√

|βf |, 1/b2, 1/b3),

tg = max(
√

|αa|,
√

|βg|, 1/b1, 1/b2), th = max(
√

|αa|,
√

|βh|, 1/b1, 1/b2), (B2)
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where

αe = (1− x1 − x2)(x1 − r2D)M
2
B, αa = −x2x3(1− r2D)M

2
B,

βa = [r2b − x2(1− r2D)]M
2
B, βb = −(1 − x1)(x1 − r2D)M

2
B,

βc = −(1− x1 − x2)[1− x1 − x3(1− r2D)]M
2
B,

βd = (1− x1 − x2)[x1 − x3 − r2D(1− x3)]M
2
B,

βe = [r2c − x3 − (1− x3)r
2
D]M

2
B, βf = −x2(1− r2D)]M

2
B,

βg = [r2c − (x1 − x3(1− r2D))(x1 − x2)]M
2
B,

βh = [r2b − (1− x1 − x3 + x3r
2
D)(1− x1 − x2)]M

2
B. (B3)

The Sudakov factors used in the text are defined by

Sab(t) = s(
MB√
2
x1, b1) + s(

MB√
2
x2, b2) +

5

3

∫ t

1/b1

dµ

µ
γq(µ) + 2

∫ t

1/b2

dµ

µ
γq(µ),

Scd(t) = s(
MB√
2
x1, b2) + s(

MB√
2
x2, b2) + s(

MB√
2
x3, b3) + s(

MB√
2
(1− x3), b3)

+
11

3

∫ t

1/b2

dµ

µ
γq(µ) + 2

∫ t

1/b3

dµ

µ
γq(µ),

Sef(t) = s(
MB√
2
x2, b2) + s(

MB√
2
x3, b3) + s(

MB√
2
(1− x3), b3)

+2

∫ t

1/b2

dµ

µ
γq(µ) + 2

∫ t

1/b3

dµ

µ
γq(µ),

Sgh(t) = s(
MB√
2
x1, b1) + s(

MB√
2
x2, b2) + s(

MB√
2
x3, b2) + s(

MB√
2
(1− x3), b2),

+
5

3

∫ t

1/b1

dµ

µ
γq(µ) + 4

∫ t

1/b2

dµ

µ
γq(µ), (B4)

where the functions s(Q, b) are defined in Appendix A of [8]. γq = −αs/π is the anomalous

dimension of the quark.
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Appendix C: Light-Cone Distribution Amplitudes

Here, we specify the light-cone distribution amplitudes (LCDAs) for pseudoscalar and

vector mesons. The expressions of twist-2 LCDAs are [7]

φA
P (x) =

fP√
6
3x(1− x)[1 + aP1 C

3/2
1 (t) + aP2 C

3/2
2 (t) + aP4 C

3/2
4 (t)],

φV (x) =
fV√
6
3x(1− x)[1 + a

‖
1VC

3/2
1 (t) + a

‖
2V C

3/2
2 (t)],

φT
V (x) =

fT
V√
6
3x(1− x)[1 + a⊥1VC

3/2
1 (t) + a⊥2V C

3/2
2 (t)], (C1)

and those of twist-3 ones are

φP
P (x) =

fP

2
√
6
[1 + (30η3 −

5

2
ρ2P )C

1/2
2 (t)− (η3ω3 +

9

20
ρ2P (1 + 6aP2 ))C

1/2
4 (t)],

φt
P (x) =

fP

2
√
6
[1 + 6(5η3 −

1

2
η3ω3 −

7

20
ρ2P − 3

5
ρ2Pa

P
2 )(1− 10x+ 10x2)],

φt
V (x) =

3fT
V

2
√
6
t2, φs

V (x) = − 3fT
V

2
√
6
t, φν

V (x) =
3fT

V

8
√
6
(1 + t2), φa

V (x) = − 3fT
V

4
√
6
t, (C2)

where t = 2x− 1, fV and fT
V are the decay constants of the vector meson with longitudinal

and transverse polarization, respectively. For all pseudoscalar mesons, we choose η3 = 0.015

and ω3 = −3 [26]. The mass ratio ρπ(K) = mπ(K)/m
π(K)
0 and ρηq(s) = 2mq(s)/mqq(ss), and the

Gegenbauer polynomials Cν
n(t) read

C
1/2
2 (t) =

1

2
(3t2 − 1), C

1/2
4 (t) =

1

8
(3− 30t2 + 35t4), C

3/2
1 (t) = 3t,

C
3/2
2 (t) =

3

2
(5t2 − 1), C

3/2
4 (t) =

15

8
(1− 14t2 + 21t4). (C3)
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[8] Jian-Feng Cheng, Dong-Sheng Du, and Cai-Dian Lü Eur. Phy. J. C. 45, 711 (2006).
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