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We consider a smooth hybrid inflation scenario based on a supersymmetric SU(2)L × SU(2)R ×

U(1)B−L model. The Higgs triplets involved in the model play a key role in inflation as well as in
explaining the observed baryon asymmetry of the universe. We show that the baryon asymmetry
can originate via non-thermal triplet leptogenesis from the decay of SU(2)L triplets, whose tiny
vacuum expectation values also provide masses for the light neutrinos.

I. INTRODUCTION

There exists an attractive class of supersymmetric models in which inflation is closely linked to the supersymmetric
grand unification scale [1–4]. Among these models, supersymmetric hybrid inflation (with minimal Kähler potential)
predicts a scalar spectral index close to 0.985 [1], to be compared with ns = 0.968±0.014 presented by WMAP7 [5].
Smooth hybrid inflation, a variant of supersymetric hybrid inflation, yields a spectral index of 0.97 if supergravity
effects are ignored. However, inclusion of supergravity corrections with minimal Kähler potential leads to higher
values of the spectral index even in this case [6]. It has been shown in [7, 8] that the predicted scalar spectral index
in smooth hybrid inflation model is affected if the non-minimal terms in the Kähler potential are switched on, and
ns close to the WMAP prediction is easily realized. For supersymmetric hybrid inflation with soft terms, it is also
possible to reduce ns to 0.968 [9].
Inflation in these models is naturally followed by leptogenesis [10]. Type I leptogenesis from the decay of right handed

neutrinos has been discussed in some details in recent papers [11], where the light neutrino masses are obtained from
type I seesaw. Care has to be exercised to ensure that leptogenesis is consistent with constraints that may arise from
the observed solar and atmospheric neutrino oscillations [12]. Light neutrino masses can also arise from the so-called
type II seesaw mechanism [13] in which heavy scalar SU(2)L triplets acquire tiny vacuum expectation values (vevs)
that can contribute to the masses of the observed neutrinos.
An interplay between type I and type II seesaw in the generation of light neutrino masses [14] is also a possibility

(for example, while considering a left-right symmetric model). If the right handed neutrinos all have superheavy
masses comparable to MGUT = O(1016 GeV) or close to it, the type I seesaw contribution to neutrino masses alone
would be too much small to be compatible with the neutrino oscillation data. A situation similar to this is adopted in
this paper where the triplet vev is the main source of light neutrino masses. It is well known that these triplet scalars
can play an additional important role by producing the desired lepton asymmetry [15, 16]. They could be present in
the early universe from the decay of the inflaton, and their own subsequent decay can lead to leptogenesis.
We implement this scenario (type II leptogenesis with smooth hybrid inflation) within a supersymmetric version of

the well known gauge symmetry SU(2)L× SU(2)R×U(1)B−L [17]. (Generalizations to other (possibly larger) gauge
symmetries seems quite plausible.) We restrict our attention to non-thermal leptogenesis which is quite natural within
an inflationary setting. (For type II thermal leptogenesis see [18, 19]). We work here in the framework of smooth
hybrid inflation [6, 20, 21] , taking into account the corrections arising from non-minimal Kähler potential. To make
the scenario as technically natural as possible, we impose some additional symmetries including a U(1)R symmetry
[1]. We find that the constraints from neutrino oscillations as well as leptogenesis can be satisfied with natural values
of the appropriate couplings.

II. HIGGS TRIPLETS IN LEFT-RIGHT MODEL

The quark and lepton superfields have the following transformation properties under the gauge group SU(3)c ×
SU(2)L × SU(2)R × U(1)B−L [17]:

Q = (3, 2, 1,
1

3
), Qc = (3∗, 1, 2,−1

3
), L = (1, 2, 1,−1), Lc = (1, 1, 2, 1).
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The Higgs sector consists of

H = (1, 2, 2, 0), ∆a
L = (1, 3, 1, 2), ∆̄a

L = (1, 3, 1,−2), a = 1, 2,

∆R = (1, 1, 3,−2), ∆̄R = (1, 1, 3, 2).

Our primary goal, as stated earlier, is the implementation of non-thermal type II leptogenesis, and to realize it
we consider two pairs of triplets ∆L, ∆̄L (indicated by index a = 1, 2) which, through mixing, can produce the CP
violation necessary for generating an initial lepton asymmetry [30]. The model also possesses a gauge singlet superfield
S which plays a vital role in inflation.
The superpotential is given by:

W = S
[ (∆R∆̄R)

2

M2
S

−M2
X

]

+
αab

MS

∆a
L∆̄

b
L∆R∆̄R +

γa

MS

HH∆̄a
L∆̄R + fa

1LL∆
a
L +

f2LcLc∆R + Y lLLcH + Y qQQcH, (1)

where a, b = 1, 2, and the SU(2), generation and color indices are suppressed. MX is a superheavy mass scale and
MS is the cutoff scale which controls the non-renormalizable terms in the superpotential. We take the matrix αab to
be real and diagonal (αab = δabαa) in our calculation for simplicity. The first two terms (in the square bracket) are
responsible for inflation. The importance of the remaining terms will be discussed later in connection with the inflaton
decay, reheating, leptogenesis and neutrino mass generation. A Z2 symmetry along with U(1)R global symmetry is
imposed in order to realize the above superpotential. The charges of all the superfields are listed in Table I. The
inclusion of the Z2 symmetry forbids terms like ∆a

L∆̄
b
L in the superpotential, but allows the term ∆a

L∆̄
b
L∆R∆̄R. This

ensures that the SU(2)L triplets are lighter than the superheavy right handed neutrinos. Apart from its importance in
realizing inflation (would be discussed in the next section), the global R-symmetry plays another important role in our
analysis. Its unbroken Z2 subgroup acts as ‘matter parity’, which implies a stable LSP, thereby making it a plausible
candidate for dark matter. We see from Table I that baryon number violating superpotential couplings QQQ, QcQcQc

and QQQL are forbidden by the U(1)R symmetry. This also holds for the higher dimensional operators, so that the
proton is essentially stable [22].

Charges S ∆a
L ∆̄a

L ∆R ∆̄R H L Lc Q Qc

R 2 2 0 0 0 1 0 1 0 1

Z2 1 1 -1 1 -1 1 1 1 1 1

TABLE I: R and Z2 charges of superfields.

III. SMOOTH HYBRID INFLATION

The superpotential term responsible for inflation is given by

Winf = S
[ (∆R∆̄R)

2

M2
S

−M2
X

]

. (2)

Note that under U(1)R, S carries the same charge as W and therefore guarantees the linearity of the superpotential
in S to all orders (thus excluding terms like S2 which could ruin inflation [1].). The scalar potential derived from
Winf is

Vinf =
∣

∣

∣

(∆R∆̄R)
2

M2
S

−M2
X

∣

∣

∣

2

+ 4|S|2 |∆R|2|∆̄R|2|
M4

S

(

|∆R|2 + |∆̄R|2
)

+D terms. (3)

Using the D-flatness condition |〈∆R〉| = |〈∆̄R〉|, we see that the supersymmetric vacuum lies at M = |〈∆R〉| =
|〈∆̄R〉| =

√
MXMS and 〈S〉 = 0. Defining ζ/2 = |∆0

R| = |∆̄0
R| and σ/

√
2 = |S|, one can rewrite the scalar potential

as [20, 21]

Vinf =
[ ζ4

16M2
S

−M2
X

]2

+
σ2ζ6

16M4
S

. (4)
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The importance of this potential in the context of inflation is discussed in [21]. Here we can briefly summarize it.
Although ζ = 0 is a flat direction, it is actually a point of inflection with respect to any value of σ. It also possesses two
(symmetric) valleys of local minima (containing the supersymmetric vacua) which are suitable for inflation. Unlike
‘regular’ supersymmetric hybrid inflation, the inclination of these valleys is already non-zero at the classical level and
the end of inflation is smooth. Hence, no topological defects are produced, which is a welcome feature of smooth
hybrid inflation [20, 21].
If we set M = MGUT = 2.86× 1016 GeV, and substitute in the expression for the quadrupole anisotropy, (δT/T )Q,

we find MX ≃ 1.8× 1015 GeV and MS ≃ 4.6 × 1017 GeV [6]. Here we have employed WMAP7 [5], measurement of
the amplitude of curvature perturbation (∆R) and set the number of e-foldings NQ ≃ 57. The value of σ is 1.3× 1017

GeV at the end of inflation (corresponding to the slow roll violating parameter, η =
M2

PV
′′

8πV = −1), and it is 2.7× 1017

GeV (σQ) at the horizon exit. The spectral index is estimated to be ns ≃ 0.97 (without supergravity corrections),
close to the value of ns from WMAP7.
Note that the supergravity corrections are important and this is studied in [6]. Once these are included (with

minimal Kähler potential), ns approaches unity (for M >∼ 1.5 × 1016 GeV) [6]. By lowering the scale M compared
to the MGUT , one can achieve ns in the acceptable range. However, in this case the inflaton field-value σQ would be
larger than the cutoff scale MS providing a threat to the effective field theory concept.
If we employ a non-minimal Kähler potential

K = |S|2 + |∆R|2 + |∆̄R|2 +
κS

4

|S|4
M2

p

, (5)

then along the D-flat direction |∆R| = |∆̄R|, the inflationary potential for σ2 ≫M2 isgiven by,

V = M4
X

[

1− κS

σ2

2M2
p

+
(

1− 7

2
κS + 2κ2

S

) σ4

8M4
p

− 2

27

M4

σ4

]

. (6)

The spectral index calculated from this potential is in the desired range (0.968 ± 0.014) for different choices of κS .
An analysis of this case is extensively studied in [8]. We have tabulated sets of values of M,MS, σQ in Table II
corresponding to different choices of κS with different predictions for the spectral index (for more examples, see Figs.
7 and 8 of [8]). With non minimal Kähler terms included, there arises the possibility of having observable tensor to
scalar ratio r, a canonical measure of gravity waves produced during inflation [23].

Set κS ns M (GeV) MS(GeV) σQ(GeV)

I 0 0.99 1.2 ×1016 1.8 ×1017 1.8 ×1017

II 0.005 0.968 2.2 ×1016 5.5 ×1017 2.1 ×1017

III 0.01 0.968 4 ×1016 1.5 ×1018 3 ×1017

TABLE II: For a given value of κS, the predicted values of the spectral index (ns), the gauge symmetry breaking scale (M),
the cutoff scale (MS), and the inflaton field at the time of horizon exit (σQ) are presented.

IV. REHEATING

Let us now discuss inflaton decay and reheating. The inflaton field(s) smoothly enter an era of damped oscillation

about the supersymmetric vacuum. The oscillating system consists of two scalar fields S and θ = (δθ + δθ̄)/
√
2

(δθ = ∆0
R −M and δθ̄ = ∆̄0

R −M) with a common mass minf = 2
√
2M M2

M2
S

, which decay into a pair of left triplets

(∆a
L, ∆̄

a
L) and their fermionic partners (∆̃a

L,
˜̄∆
a

L) respectively through the Lagrangian [see Eq.(2)]

Ls =
√
2αa

M

MS

minfS
∗∆a

L∆̄
a
L + h.c. , Lθ =

√
2αa

M

MS

θ∆̃a
L
˜̄∆
a

L + h.c.. (7)

The decay widths of both S and θ turn out to be

Γinf =
3

4π
α2
a

( M

MS

)2

minf =
3

4π

(Ma

M

)2

minf , (8)
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whereMa is the mass of the SU(2)L triplet given byMa = αa
M2

MS
(generated via the non-renormalizable superpotential

coupling αa

MS
∆a

L∆̄
a
L∆R∆̄R, after ∆R, ∆̄R acquire vevs). For this decay to be kinematically allowed, αa

<∼
√
2 M
MS

.

The splitting between M1 and M2 (i.e. between α1 and α2) will be important in estimating the lepton asymmetry.
The decay of inflaton into right-handed neutrinos is kinematically forbidden since the latter have superheavy mass
acquired from the renormalizable coupling f2LcLc∆R, with f2 of order unity.
The reheat temperature from the decay of the inflaton is TR ≃ 1

7

√
ΓMP , where Γ represents the total decay width

of the inflaton (here it is Γinf ), where MP = 2.4× 1018 GeV is the reduced Planck scale. Using the first set of values
for M,MS specified in Table II, one finds

TR ≃ 0.12× α
(

M
MS

)2√
MMP GeV, (9)

where α =
√

α2
1 + α2

2. With the parameters involved in Table II (set II and III), we find M/MS ∼ O(10−2). Hence
the reheat temperature is TR ∼ O(1010−11) GeV, where the constraint on αa is taken into account (α ∼ O(10−3)).
In its original form, the smooth hybrid inflationary scenario is somewhat constrained if the direct decay of inflaton

into gravitinos is considered in the supergravity framework [24]. However, for heavy gravitinos, the constraint can
be relaxed [24]. The exact calculation of the direct decay amplitude of the inflaton into gravitinos requires a better
understanding of the supersymmetry breaking sector and the form of the Kähler potential (we are assuming here a
non-minimal Kähler potential with unknown coefficients.) This is beyond the scope of this paper. Note that the
high reheat temperature we obtained above does not pose much threat if the gravitino is sufficiently heavy [25] (>∼ 60
TeV), in which case it can decay well before the onset of nucleosynthesis. However, the problem may reappear from
the LSPs (with mLSP ∼ 100 GeV) that are non-thermally produced from the decay of the gravitino. In ref [26], the
relic abundance of these LSPs is given by

ΩLSPh
2 ∼ 30

( mLSP

100 GeV

)

(

TR

1013 GeV

)

. (10)

Hence ΩLSPh
2 ∼ 3 × 10−2 for TR ∼ 1010 GeV, which is negligible [31]. In summary, we conclude that at the end

of inflation, the inflaton system has decayed away into SU(2)L triplets. We will show in the next section that the
subsequent decay of these SU(2)L triplets creates a lepton asymmetry, which is partially converted into the observed
baryon asymmetry via the electroweak sphaleron effects [28].

V. TYPE II NON-THERMAL LEPTOGENESIS AND NEUTRINO MASSES

In general both the right-handed neutrinos as well as the left-handed triplets can yield a lepton asymmetry in left-
right models [18]. However, in our case with superheavy (M ∼ 1016 GeV) right handed neutrinos, the Leptogenesis
would come mainly from the SU(2)L triplets. Note that we have considered two pairs of SU(2)L superfields, so that
the CP asymmetry would be nonzero.
The experimental value of the baryon to photon ratio is given by [5]

nB

nγ

≃ (6.5± 0.4)× 10−10. (11)

In this respect, the required lepton asymmetry is estimated to be
∣

∣

∣

nL

s

∣

∣

∣
≃ (2.67− 3.02)× 10−10. (12)

To estimate the lepton asymmetry we follow the analysis of ref [16]. The Higgs triplet ∆a
L decays into LL and HH

(see Fig. 1(a)), while ∆̄a
L decays into L̃L̃ and H̃H̃. The amount of CP violation in these decays is controlled by the

interference of the tree level process with one-loop diagram (see Fig. 1(b)) as described in [16].

The effective mass-squared matrix of the scalar triplets ∆a
L and ∆̄a

L is [16], ∆a†
L (M 2 )ab∆

b

L
+ ∆̄

a†
L
(M

′
2 )ab∆̄

b

L
, where

M
2 =

(

M2
1 − iΓ11M1 −iΓ12M2

−iΓ21M1 M2
2 − iΓ22M2

)

, (13)

and M
′
2 has a similar pattern with Γab replaced by Γ′

ab. The contributions to Γab (Γ′
ab) come from the absorptive

part of the one loop self-energy diagrams for ∆a
L → ∆b

L (∆̄a
L → ∆̄b

L),

ΓabMb =
1

8π
[Σij(f

a∗
1ijf

b
1ij)p

2
∆L

+MaMbg
agb∗] ,
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∆a
L

Li(H)

Lj(H)

∆a
L

H

H

∆b
L

Li

Lj

(a) (b)

FIG. 1: (a) Tree level decay(s) of ∆L into leptons (Higgs). (b) One loop self energy diagram for the generation of CP asymmetry.

Γ′
abMb =

1

8π
[Σij(f

a
1ijf

b∗
1ij)MaMb + p2∆̄L

ga∗gb], (14)

where i, j are generation indices, ga = γa( M
MS

) and p2∆ is the momentum squared of the incoming or outgoing particle.

The physical states χ1,2
+ , ξ1,2+ (with masses ∼ M1,2) can be obtained[32] by diagonalizing M

2 , M ′2 . Here we neglect

terms of order [
ΓijMj

M2
1
−M2

2

]2.

The CP asymmetries are then defined by [16]

ǫa = △L
Γ(χa

− → ll)− Γ(χa
+ → lclc)

Γχa
−

+ Γχa
+

,

=
M1M2

2π(M2
1 −M2

2 )

ΣijImf1
1ijf

2∗
1ijg

1g2∗

Σij |fa
1ij |2 + |ga|2

, (15)

and

ǫ
′a = △L

Γ(ξa+ → ll)− Γ(ξa− → lclc)

Γξa
+
+ Γξa

−

,

=
M1M2

2π(M2
1 −M2

2 )

ΣijImf1
1ijf

2∗
1ijg

1g2∗

Σij |fa
1ij |2 + |ga|2

, (16)

where the lepton number violation ∆L changes by 2 units. We note that ǫa = ǫ
′a.

The lepton asymmetry is given by

nL

s
≃ 3

2

TR

minf

Σa3[ǫ
a + ǫ

′a],

= Σa

3

2

TR

minf

3M1M2

π(M2
1 −M2

2 )

ΣijImf1
1ijf

2∗
1ijg

1g2∗

Σij |fa
1ij |2 + |ga|2

, (17)

where the ratio of the number density of the SU(2)L triplets (n∆) to the entropy density s is expressed as 3
2

TR

minf
. Once

this asymmetry is created, one should ensure that it is not erased by the lepton-number non-conserving interactions
(for example HH ← ∆L → LL, H̃H̃ ← ∆̄L → L̃L̃). As long as the SU(2)L triplet masses (Ma) are sufficiently larger

than TR (here TR

Ma
≃ 0.12

√
MMP

MS
with the specific choice of M,MS as given in Table II (set II and III), there will be

no significant wash-out factor, unlike thermal leptogenesis.
To estimate nL/s, we need to fix some parameters appearing in Eq.(17) which are also involved in the light neutrino

mass matrix. The neutrino mass matrix is represented by the type II see-saw relation

mν = 2fa
1ijv

a
∆L
−mT

DM−1
R mD ≡ mνII −mνI , (18)

where va∆L
are the SU(2)L triplet Higgs’s vevs. With the masses of all right handed neutrinos comparable to M , mνI

are too small to account for the solar and atmospheric neutrino data. Hence mνII provides the main contribution to
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FIG. 2: Contour plot for nL/s as a function of the parameters: p = M2/M1 and g <
∼

M/MS.

the neutrino mass matrix, namely

(mν)ij ≃ 2fa
1ij

ga

Ma

v2, (19)

where v ≃ 174 GeV. In order to estimate both the lepton asymmetry (Eq.(17)) and neutrino masses (through Eq.(19)),
we first simplify by assuming |g1| ≃ |g2| = g, |f1

1 | ≃ |f2
1 | = f1 (thus |Σijf

1
1ijf

2∗
1ij | ≃ Σij |f1ij |2). Then Eqs.(17) and (19)

can be expressed as

nL

s
≃ 9

π

TR

minf

× M1M2

M2
1 −M2

2

× Σij |f1ij |2g2
Σij |f1ij |2 + g2

,

≃ 0.374

π

√

MP

M
α× M1M2

M2
1 −M2

2

× Σij |f1ij |2g2
Σij |f1ij |2 + g2

, (20)

(mν)ij ≃ 2f1ijgv
2
( 1

M1
+

1

M2

)

, (21)

where we have substituted for TR and Ma and assumed the CP violating phase to be maximal.
The neutrino mass matrix mν can be diagonalized by

mν = U∗
νm

diag
ν U †

ν , (22)

where mdiag
ν = diag(mν1 ,mν2 ,mν3). In the basis where the charged lepton matrix is diagonal, Uν coincides with the

lepton mixing matrix. Using Eqs.(21), we get

nL

s
≃ 0.374

π

p
√

1 + p2

1− p2

√

MP

M

M1

M

MS

M
× Σij |mνij |2Fg2

Σij |mνij |2F + g4
, (23)

where F =
M2

1M
2
2

4v4(M1+M2)2
= p2

(1+p)2 ×
M2

1

4v4 . Here p determines the degree of degeneracy between M1 and M2, defined by

M2 = pM1. Since the parameter g is defined as ga = γa M
MS

, its maximum value is of order M
MS

. Finally, using the

current experimental limits for neutrino masses [29], one finds that Σij |mνij |2 is given by Σij |mνij |2 ≃ 0.0025 eV2,
where we have used the best fitted values of the neutrino mixing angles θ12, θ23, θ13 and mass squared differences
[29]. We have taken the lightest neutrino mass eigenvalue to be zero. In Fig. 2 we present the lepton asymmetry
as a function of p and g with α1 = 10−3. We see that nL/s can be of order the desired value (2 − 3) × 10−10 for
0.2 <∼ p <∼ 0.8 and g >∼ 2.5 × 10−4, which means γa ≃ O(0.01). It is worth mentioning that with these values one
finds that M1 and M2 are given by M1 ≃ 1012 GeV and M2 ≃ (2 − 8)× 1011 GeV. Therefore, M1,2/TR > 10, which
indicates that no washout should happen.
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VI. CONCLUSIONS

We have considered type II non-thermal leptogenesis in the context of smooth hybrid inflation. The scheme is
consistent with the observed solar and atmospheric neutrino oscillations. Although our discussion is based on the
gauge symmetry SU(2)L × SU(2)R × U(1)B−L, it is clear that it could be extended to other models which contain
suitable SU(2)L triplet scalars with tiny vevs responsible for the observed neutrino masses. The stability of the
proton will depend on the underlying gauge symmetry.
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