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According to the standard prescriptions, zero-temperature string theories can be extended to finite
temperature by compactifying their time directions on a so-called “thermal circle” and implement-
ing certain orbifold twists. However, the existence of a topologically non-trivial thermal circle leaves
open the possibility that a gauge flux can pierce this circle — i.e., that a non-trivial Wilson line (or
equivalently a non-zero chemical potential) might be involved in the finite-temperature extension.
In this paper, we concentrate on the zero-temperature heterotic and Type I strings in ten dimen-
sions, and survey the possible Wilson lines which might be introduced in their finite-temperature
extensions. We find a rich structure of possible thermal string theories, some of which even have
non-traditional Hagedorn temperatures, and we demonstrate that these new thermal string theories
can be interpreted as extrema of a continuous thermal free-energy “landscape”. Our analysis also
uncovers a unique finite-temperature extension of the heterotic SO(32) and E8 × E8 strings which
involves a non-trivial Wilson line, but which — like the traditional finite-temperature extension
without Wilson lines — is metastable in this thermal landscape.

I. INTRODUCTION AND MOTIVATION

One of the most profound observations in theoretical physics is the relationship between finite-temperature quan-
tum theories and zero-temperature quantum theories which are compactified on a circle. Indeed, the fundamental
idea behind this so-called “temperature/radius correspondence” is that the free-energy density of a theory at finite
temperature T can be reformulated as the vacuum-energy density of the same theory at zero temperature, but with
the Euclidean time dimension compactified on a circle of radius R = (2πT )−1. This connection between temperature
and geometry is a deep one, stretching from quantum mechanics and quantum field theory all the way into string
theory.
This extension to string theory is truly remarkable, given that the geometric compactification of string theory gives

rise to numerous features which do not, at first sight, have immediate thermodynamic analogues or interpretations. For
example, upon spacetime compactification, closed strings accrue not only infinite towers of Kaluza-Klein “momentum”
states but also infinite towers of winding states. While the Kaluza-Kelin momentum states are easily interpreted in a
thermal context as the Matsubara modes corresponding to the original zero-temperature states, it is not a priori clear
what thermal interpretation might be ascribed to these winding states. Likewise, as a more general (but not unrelated)
issue, closed-string one-loop vacuum energies generally exhibit additional symmetries such as modular invariance which
transcend field-theoretic expectations. While the emergence of modular invariance is clearly understood for zero-
temperature geometric compactifications, the need for modular invariance is perhaps less obvious from the thermal
perspective in which one would simply write down a Boltzmann sum corresponding to each string state which survives
the GSO projections.
Both of these issues tended to dominate the earliest discussions of string thermodynamics in the mid-1980’s.

Historically, they were first flashpoints which seemed to show apparent conflicts between the thermal and geometric
approaches which had otherwise been consistent in quantum field theory. However, it is now well understood that
there are ultimately no conflicts between these two approaches [1, 2]. Indeed, modular invariance emerges naturally
upon relating the integral of the Boltzmann sum over the “strip” in the complex τ -plane to the integral of the partition
function over the fundamental domain of the modular group [3]. Likewise, thermal windings emerge naturally as a
consequence of modular invariance and can be viewed as artifacts arising from this mapping between the strip and
the modular-group fundamental domain.
There is, however, one additional feature which can generically arise when a theory experiences a geometric com-

pactification: because of the topologically non-trivial nature of the compactification, it is possible for a non-zero
gauge flux to pierce the compactification circle. In other words, the compactification might involve a non-trivial
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Wilson line. Viewed from the thermodynamic perspective, this corresponds to nothing more than the introduction of
a chemical potential. However, as we shall see, this is ultimately a rather unusual chemical potential: it is not only
imaginary but also temperature-dependent. Such chemical potentials have occasionally played a role in studies of
finite-temperature field theory (particularly finite-temperature QCD [4]). However, with only a few exceptions, such
chemical potentials (and the Wilson lines to which they correspond) have not historically played a significant role in
discussions of finite-temperature string theory.
At first glance, it might seem reasonable to hope (or simply postulate) that Wilson lines should play no role in

discussions of finite-temperature string theory. However, Wilson lines play such a critical role in determining the
allowed possibilities for self-consistent geometric compactifications of string theory that it is almost inevitable that
they should play a significant role in finite-temperature string theories as well. Indeed, the temperature/radius
correspondence essentially guarantees this. Thus, it is natural to expect that theories with non-trivial Wilson lines
will be an integral part of the full landscape of possibilities for string theories at finite temperature — i.e., that they
will be part of the full “thermal string landscape”.
A heuristic argument can be invoked in order to illustrate the connection that might be expected between Wilson

lines and string theories at finite temperature. As we know, thermal effects treat bosons and fermions differently and
thereby necessarily break whatever spacetime supersymmetry might have existed at zero temperature. However, in
string theory there are tight self-consistency constraints which relate the presence or absence of spacetime supersym-
metry to the breaking of the corresponding gauge symmetry, and these connections hold even at zero temperature.
For example, the E8 × E8 heterotic string in ten dimensions is necessarily supersymmetric, and it is inconsistent to
break this supersymmetry without simultaneously introducing a non-trivial Wilson line (or in this context, a gauge-
sensitive orbifold twist) which also breaks the E8 × E8 gauge group. Indeed, the two are required together. Even for
the SO(32) gauge group, a similar situation arises: although there exist two SO(32) heterotic strings, one supersym-
metric and the other non-supersymmetric, the ZZ2 orbifold which relates them to each other is not simply given by the
SUSY-breaking action (−1)F , where F is the spacetime fermion number. Rather, the required orbifold which twists
the supersymmetric SO(32) heterotic string to become the non-supersymmetric SO(32) heterotic string is given by
(−1)FW where W is a special non-zero Wilson line which acts non-trivially on the gauge degrees of freedom. This
example will be discussed further in Sect. IV. Indeed, such a Wilson line is needed even though we are not breaking
the SO(32) gauge symmetry in passing from our supersymmetric original theory to our final non-supersymmetric
theory. Such examples indicate the deep role that Wilson lines play in zero-temperature string theory, and which they
might therefore be expected to play in a finite-temperature context as well.
In this paper, we shall undertake a systematic examination of the role that such Wilson lines might play in string

thermodynamics. We shall concentrate on the zero-temperature heterotic and Type I strings in ten dimensions, and
survey the possible Wilson lines which might be introduced in their finite-temperature extensions. As we shall see,
this gives rise to a rich structure of possible thermal string theories, and we shall demonstrate that these new thermal
string theories can be interpreted as extrema of a continuous thermal free-energy “landscape”. In fact, some of these
new thermal theories even have non-traditional Hagedorn temperatures, an observation which we shall discuss (and
explain) in some detail. Our analysis will also uncover a unique finite-temperature extension of the heterotic SO(32)
and E8 × E8 strings which involves a non-trivial Wilson line, but which — like the traditional finite-temperature
extension without Wilson lines — is metastable in this thermal landscape. Such new theories might therefore play an
important role in describing the correct thermal vacuum of our universe.
This paper is organized as follows. In order to set the stage for our subsequent analysis, in Sect. II we provide general

comments concerning string theories at finite temperature and in Sect. III we discuss the possible role that Wilson
lines can play in such theories. We also discuss the equivalence between such thermal Wilson lines and temperature-
dependent chemical potentials. In Sect. IV, we then survey the specific Wilson lines that may self-consistently be
introduced when constructing our thermal theories, concentrating on the two supersymmetric heterotic strings in
ten dimensions as well as the supersymmetric Type I string in ten dimensions. In Sect. V, we demonstrate that
non-trivial Wilson lines can also affect the Hagedorn temperatures experienced by these strings, and show how such
shifts in the Hagedorn temperature can be reconciled with the asymptotic densities of the zero-temperature bosonic
and fermionic string states. Then, in Sect. VI, we extend our discussion in order to consider continuous thermal
Wilson-line “landscapes” for both heterotic and Type I strings. It is here that we discuss which Wilson lines lead to
“stable” and/or “metastable” theories. Finally, in Sect. VII, we conclude with some general comments and discussion.
An Appendix summarizes the notation and conventions that we shall be using throughout this paper.

II. STRINGS AT FINITE TEMPERATURE

We begin by discussing the manner in which a given zero-temperature string model can be extended to finite
temperature. This will also serve to establish our conventions and notation. Because of its central role in determining
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the thermodynamic properties of the corresponding finite-temperature string theory, we shall focus on the calculation
of the one-loop string thermal partition function Zstring(τ, T ). The situation is slightly different for closed and open
strings, so we shall discuss each of these in turn.

A. Closed strings

In order to begin our discussion of closed strings at finite temperature, we begin by reviewing the case of a one-loop
partition function for a closed string at zero temperature. Our discussion will be as general as possible, and will
therefore apply to all closed strings, be they bosonic strings, Type II superstrings, or heterotic strings. For closed
strings, the one-loop partition function is defined as

Zmodel(τ) ≡ Tr (−1)F qHR qHL (1)

where the trace is over the complete Fock space of states in the theory, weighted by a spacetime statistics factor
(−1)F . Here q ≡ exp(2πiτ) where τ is the one-loop (torus) modular parameter, and (HR, HL) denote the worldsheet
energies for the right- and left-moving worldsheet degrees of freedom, respectively. Note that in general, Zmodel is
the quantity which appears in the calculation of the one-loop cosmological constant (vacuum-energy density) of the
model:

Λ(D) ≡ − 1
2 MD

∫

F

d2τ

(Im τ)2
Zmodel(τ) (2)

where D is the number of uncompactified spacetime dimensions, where M ≡Mstring/(2π) is the reduced string scale,
and where

F ≡ {τ : |Re τ | ≤ 1
2 , Im τ > 0, |τ | ≥ 1} (3)

is the fundamental domain of the modular group. Of course, the quantity in Eq. (2) is divergent for the compactified
bosonic string as a result of the physical bosonic-string tachyon.
Given the general form for the zero-temperature one-loop string partition function in Eq. (1), it is straightforward

to construct its generalization to finite temperature. As is well known in field theory, the free-energy density Fb,f of
a boson (fermion) in D spacetime dimensions at temperature T is nothing but the zero-temperature vacuum-energy
density Λ of a boson (fermion) in D spacetime dimensions, where the (Euclidean) timelike dimension is compactified
on a circle of radius R ≡ 1/(2πT ) about which the boson (fermion) is taken to be periodic (anti-periodic). We shall
refer to this observation as the “temperature/radius correspondence”. This correspondence generally extends to string
theory as well [1, 2], state by state in the string spectrum. However, for closed strings there is an important extra
ingredient: we must include not only the “momentum” Matsubara states that arise from the compactification of the
timelike direction, but also the “winding” Matsubara states that arise due to the closed nature of the string. Indeed,
both types of states are necessary for the modular invariance of the underlying theory at finite temperature. As a
result, a given zero-temperature string state will accrue not a single sum of Matsubara/Kaluza-Klein modes at finite
temperature, but actually a double sum consisting of the Matsubara/Kaluza-Klein momentum modes as well as the
Matsubara winding modes.
The final expressions for our finite-temperature string partition functions Z(τ, T ) must also be modular invariant,

satisfying the constraint Z(τ, T ) = Z(τ + 1, T ) = Z(−1/τ, T ). Because our thermal theory necessarily includes two
groups of momentum quantum numbers (namely those with m ∈ ZZ as well as those with m ∈ ZZ + 1/2) which are
treated separately (corresponding to spacetime bosons and fermions respectively), modular invariance turns out to
imply that winding numbers n ∈ ZZ which are even will likewise be treated separately from those that are odd. As a
result, the most general thermal string-theoretic partition function will take the form [5–8]

Zstring(τ, T ) = Z(1)(τ) E0(τ, T ) + Z(2)(τ) E1/2(τ, T )
+ Z(3)(τ) O0(τ, T ) + Z(4)(τ) O1/2(τ, T ) . (4)

Here E0,1/2 and O0,1/2 represent the thermal portions of the partition function, namely the double sums over ap-
propriate combinations of thermal momentum and winding modes [5]. Specifically, the E0,1/2 functions include the
contributions from even winding numbers n along with either integer or half-integer momenta m, while the O0,1/2

functions include the contributions from odd winding numbers n with either integer or half-integer momentam. These
functions are defined explicitly in the Appendix. Likewise, the terms Z(i) (i = 1, ..., 4) represent the traces over those
subsets of the zero-temperature string states in Eq. (1) which accrue the corresponding thermal modings at finite
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temperature. For example, Z(1) represents a trace over those string states in Eq. (1) which accrue even thermal
windings n ∈ 2ZZ and integer thermal momenta m ∈ ZZ, and so forth. Modular invariance for Zstring as a whole is

then achieved by demanding that each Z(i) transform exactly as does its corresponding E/O function.

In the T → 0 limit, it is easy to verify that O0 and O1/2 each vanish while E0, E1/2 → M/T with M ≡ 1/
√
α′. As

a result, we find that

Zstring(T ) → M
T

[
Z(1) + Z(2)

]
as T → 0 . (5)

The divergent prefactor proportional to 1/T in Eq. (5) is a mere rescaling factor which reflects the effective change
of the dimensionality of the theory in the T → 0 limit. Specifically, this is an expected dimensionless volume factor
which emerges as the spectrum of surviving Matsubara momentum states becomes continuous. However, we already
know that Zmodel in Eq. (1) is the partition function of the zero-temperature theory. As a result, we can relate Eqs. (1)
and (4) by identifying

Zmodel = Z(1) + Z(2) . (6)

We see, then, that the procedure for extending a given zero-temperature string model to finite temperature is
relatively straightforward. Any zero-temperature string model is described by a partition function Zmodel, the trace
over its Fock space. The remaining task is then simply to determine which states within Zmodel are to accrue
integer modings around the thermal circle, and which are to accrue half-integer modings. Those that are to accrue
integer modings become part of Z(1), while those that are to accrue half-integer modings become part of Z(2). In
this way, we are essentially decomposing Zmodel in Eq. (6) into separate components Z(1) and Z(2). Once this is
done, modular invariance alone determines the unique resulting forms for Z(3) and Z(4). The final thermal partition
function Zstring(τ, T ) is then given in Eq. (4). In complete analogy to Eq. (2), we can then proceed to define the
(D − 1)-dimensional vacuum-energy density

Λ(D−1) ≡ − 1
2 MD−1

∫

F

d2τ

τ22
Zstring(τ, T ) (7)

(where τ2 ≡ Imτ), whereupon the corresponding D-dimensional free-energy density F (T ) is given by

F (T ) = T Λ(D−1) . (8)

As we see from this discussion, the only remaining critical question is to determine how to decompose Zmodel

as in Eq. (6) into the pieces Z(1) and Z(2) — i.e., to determine which states within Zmodel are to accrue integer
thermal modings (and thereby be included within Z(1)), and which are to accrue half-integer modings (and thereby
be included within Z(2)). However, this too is relatively simple. In general, a given string model will give rise to
states which are spacetime bosons as well as states which are spacetime fermions. In making this statement, we are
identifying “bosons” and “fermions” on the basis of their spacetime Lorentz spins. (By the spin-statistics theorem,
this is equivalent to identifying these states on the basis of their Bose-Einstein or Fermi-Dirac quantizations.) As a
result, we can always decompose Zmodel into separate contributions from spacetime bosons and spacetime fermions:

Zmodel = Zboson + Zfermion . (9)

However, the temperature/radius correspondence instructs us that bosons should be periodic around the thermal
circle, and fermions should be anti-periodic around the thermal circle. In the absence of any other effects, a field
which is periodic around the thermal circle will have integer momentum quantum numbers m ∈ ZZ, while a field which
is anti-periodic will have half-integer momentum quantum numbers m ∈ ZZ+ 1/2. Thus, given the decomposition in
Eq. (9), the standard approach which is taken in the string literature is to identify

Z(1) = Zboson , Z(2) = Zfermion . (10)

This makes sense, since Z(1) corresponds to the E0 sector which accrues integer thermal Matsubara modes m ∈ ZZ

while Z(2) corresponds to the E1/2 sector which accrues half-integer thermal Matsubara modes m ∈ ZZ+1/2. Indeed,
the choice in Eq. (10) is the unique choice which reproduces the standard Boltzmann sum for the states in the string
spectrum.
We can illustrate this procedure by explicitly writing down the standard thermal partition functions for the ten-

dimensional supersymmetric SO(32) and E8 × E8 heterotic strings at finite temperature. At zero temperature, both
of these string theories have partition functions given by

Zmodel = Z
(8)
boson (χV − χS)L (11)
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where Z
(8)
boson denotes the contribution from the eight worldsheet bosons and where the contributions from the right-

moving worldsheet fermions are written in terms of the barred characters χi of the transverse SO(8) Lorentz group.
These quantities are defined in the Appendix. By contrast, L denotes the contributions from the left-moving (internal)
worldsheet degrees of freedom. Written in terms of products χiχj of the unbarred characters χi of the SO(16) gauge
group, these left-moving contributions are given by

L =

{
χ2
I + χ2

V + χ2
S + χ2

C for SO(32)
(χI + χS)

2 for E8 × E8 .
(12)

States which are spacetime bosons or fermions contribute to the terms in Eq. (11) which are proportional to χV or
χS , respectively. The standard Boltzmann prescription in Eq. (10) therefore leads us to identify

Z(1) = Z
(8)
boson χV L , Z(2) = −Z(8)

boson χS L , (13)

whereupon modular invariance requires that

Z(3) = −Z(8)
boson χC L , Z(4) = Z

(8)
boson χI L . (14)

We therefore obtain the thermal partition functions

Z(τ, T ) = Z
(8)
boson ×

{
χV E0 − χS E1/2 − χC O0 + χI O1/2

}
L . (15)

This is indeed the standard result in the string literature [7].

B. Type I strings

We now turn to the case of Type I strings. Such strings, of course, have both closed and open sectors. Because
Type I strings are unoriented, their one-loop vacuum vacuum energies receive four separate contributions: those from
the closed-string sectors have the topologies of a torus and a Klein bottle, while those from the open-string sectors
have the topologies of a cylinder and a Möbius strip. We therefore must consider four separate partition functions:
ZT, ZK, ZC, and ZM.
At zero temperature, both ZT and ZK are traces over the closed-string states in the theory:

ZT(τ) ≡ 1
2 Tr (−1)F qHR qHL , ZK(τ) ≡ 1

2 Tr Ω (−1)F qHR qHL (16)

where Ω is the orientation-reversing operator which exchanges left-moving and right-moving worldsheet degrees of
freedom. Thus, taken together, the sum ZT + ZK represents a single trace over those closed-string states which
are invariant under Ω, as appropriate for an unoriented string. Note that because of the presence of the orientifold
operator Ω within ZK, the Klein-bottle contribution ZK can ultimately be represented as a power series in terms of
a single variable q ≡ exp(2πiτ) where τ represents the modulus for double-cover of the torus, as given in Eq. (A9).
Likewise, corresponding to this are the traces over the open-string states in the theory:

ZC(τ) ≡ 1
2 Tr (−1)F qH , ZM(τ) ≡ 1

2 Tr Ω (−1)F qH , (17)

where H is the open-string worldsheet energy and where q ≡ exp(2πiτ) with τ defined in Eq. (A9). The presence of
Ω within ZM guarantees that ZC +ZM represents a single trace over an orientifold-invariant set of open-string states.
Extending these contributions to finite temperatures is also straightforward. The extension of the torus contribution

ZT to finite temperatures proceeds exactly as discussed above for closed strings, ultimately leading to an expression of

the same form as in Eq. (4), with four different thermal sub-contributions {Z(1)
T , Z

(2)
T , Z

(3)
T , Z

(4)
T }. The corresponding

finite-temperature Klein-bottle contributions can be derived from the finite-temperature torus contribution by imple-
menting the orientifold projection in the finite-temperature trace, ultimately leading to an expression which can be
recast in the form

ZK(τ, T ) = Z
(1)
K (τ) E(τ, T ) + Z

(2)
K (τ) E ′(τ, T ) (18)

where the thermal functions E and E ′ are defined in Eq. (A5) and serve as the open-string analogues of the closed-
string thermal E0,1/2 functions. Likewise, the open-string sector extends to finite temperatures in complete analogy
with the closed-string sector, by associating certain states with E and others with E ′:

ZC(τ, T ) = Z
(1)
C (τ) E(τ, T ) + Z

(2)
C (τ) E ′(τ, T )

ZM(τ, T ) = Z
(1)
M (τ) E(τ, T ) + Z

(2)
M (τ) E ′(τ, T ) . (19)
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Note that E(T ) and E ′(T ) become equal as T → 0. It therefore follows that Z
(1)
X + Z

(2)
X = ZX for X ∈ {K,C,M}.

Once these four partition functions are determined, the corresponding free-energy density is easily calculated. The
contribution from the torus to the free-energy density is given by

FT(T ) = − 1
2 T M9

∫

F

d2τ

τ22
ZT(τ, T ) , (20)

in complete analogy with Eqs. (7) and (8). By contrast, the remaining contributions to the free-energy density are
each given by

FX(T ) = − 1
2 T M9

∫ ∞

0

dτ2
τ22

ZX(τ2, T ) where X ∈ {K,C,M} . (21)

The total free-energy density of the thermal string model is then given by

F (T ) = FT(T ) + FK(T ) + FC(T ) + FM(T ) . (22)

Thus, just as for closed strings, we see that the art of extending a given zero-temperature Type I string theory to
finite temperatures ultimately boils down to choosing the manner in which the zero-temperature partition functions

ZT and ZC are to be decomposed into the separate thermal contributions Z
(1,2)
T and Z

(1,2)
C respectively. Once these

choices are made, the rest follows uniquely: modular invariance dictates Z
(3,4)
T , and orientifold projections determine

Z
(1,2)
K and Z

(1,2)
M . Moreover, just as for closed strings, it turns out that the traditional Boltzmann sum is reproduced

in the finite-temperature theory by making the particular choices for Z
(1,2)
T and Z

(1,2)
C such that the spacetime bosonic

(fermionic) states within Z
(1,2)
T and Z

(1,2)
C are associated with E0 (E1/2) and E (E ′) respectively.

To illustrate this procedure, let us consider the single self-consistent zero-temperature ten-dimensional Type I string
model which is both supersymmetric and anomaly-free: this is the SO(32) Type I string [1]. Note that this string
can be realized as the orientifold projection of the ten-dimensional zero-temperature Type IIB superstring, whose
partition function is given by

ZIIB = Z
(8)
boson (χV − χS) (χV − χS) . (23)

Here Z
(8)
boson denotes the contribution from the eight worldsheet coordinate bosons, just as for the heterotic strings

discussed above, and the contributions from the left-moving (right-moving) worldsheet fermions are written in terms of
the holomorphic (anti-holomorphic) characters χV,S,C (χV,S,C) of the transverse SO(8) Lorentz group. Implementing
the orientifold projection is relatively straightforward, and leads to the Type I contributions

torus : ZT(τ) = 1
2 Z

(8)
boson (χV − χS) (χV − χS)

Klein : ZK(τ2) = 1
2 Z

′(8)
boson (χV − χS)

cylinder : ZC(τ2) = 1
2 N

2 Z
′(8)
boson (χV − χS)

Mobius : ZM(τ2) = −1
2 N Ẑ

′(8)
boson (χ̂V − χ̂S) , (24)

where we have used the notation and conventions defined in the Appendix. Tadpole anomaly cancellation ultimately
requires that we take N = 32, thereby leading to the SO(32) gauge group. Note that while the cylinder contribution
scales as N2 [representing the sum of the dimensionalities of the symmetric and anti-symmetric tensor representations
of SO(32)], the Möbius contribution scales only as N (representing their difference).
Given the results for the zero-temperature SO(32) Type I theory in Eq. (24), it is straightforward to construct

their finite-temperature extension. Within the torus contribution in Eq. (24), we recognize that the states which are
spacetime bosons are those which contribute to χV χV +χSχS , while those that are spacetime fermions contribute to
χV χS + χSχV . Following the standard Boltzmann description, we thus identify

Z
(1)
T = 1

2 Z
(8)
boson (χV χV + χSχS)

Z
(2)
T = − 1

2 Z
(8)
boson (χV χS + χSχV ) . (25)

Similar reasoning for the cylinder contribution in Eq. (24) also leads us to identify

Z
(1)
C = 1

2 N
2 Z

′(8)
boson χV

Z
(2)
C = − 1

2 N
2 Z

′(8)
boson χS . (26)
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Given these choices, the remaining terms in the total thermal partition function are determined through modular
transformations and orientifold projections, leading to the final finite-temperature result

torus : ZT(τ, T ) = 1
2 Z

(8)
boson ×

{
[χV χV + χSχS ]E0

− [χV χS + χSχV ]E1/2
+ [χIχI + χCχC ]O0

− [χIχC + χCχI ]O1/2

}

Klein : ZK(τ2, T ) = 1
2 Z

′(8)
boson (χV − χS) E

cylinder : ZC(τ2, T ) = 1
2 N

2 Z
′(8)
boson (χV E − χS E ′)

Mobius : ZM(τ2, T ) = − 1
2 N Ẑ

′(8)
boson (χ̂V E − χ̂S E ′) . (27)

This, too, is the standard result in the string-thermodynamics literature.

III. WILSON LINES AND IMAGINARY CHEMICAL POTENTIALS

As we have seen in the previous section, there is a simple procedure by which a given zero-temperature string
model can be extended to finite temperatures. Indeed, because of constraints coming from modular invariance and/or
orientifold projections, we have relatively little choice in how this is done. For closed strings, the only freedom we
have is related to how our (torus) partition function Zmodel is decomposed into Z(1) and Z(2) — i.e., into the separate
contributions that determine which of the zero-temperature states in the theory are to receive integer modings m ∈ ZZ

around the thermal circle, and which states are to receive half-integer modings m ∈ ZZ + 1/2. Likewise, for Type I
strings, we have an additional freedom which concerns how the same choice is ultimately made for the open-string
sectors. However, once those choices are made, all of the resulting thermal properties of the theory are completely
determined.
As discussed in the previous section, the standard prescription is to identify those states which are spacetime

bosons with integer modings m ∈ ZZ around the thermal circle, and those which are spacetime fermions with half-
integer modings m ∈ ZZ + 1/2. Indeed, this is ultimately the unique choice for which the resulting string partition
functions correspond to the standard field-theoretic Boltzmann sums for each string state (a fact which is most
directly evident after certain Poisson resummations are performed, essentially transforming our theory from the so-
called F -representation we are using here to the so-called S-representation in which the modular invariance of the
torus contributions is not manifest).
Given this observation, it might seem that there is therefore no choice in how our zero-temperature string theories are

extended to finite temperatures. However, this is not entirely correct. It is certainly true that the temperature/radius
correspondence instructs us to treat bosonic states as periodic around the thermal circle and fermionic states as
anti-periodic. However, this does not necessarily imply that all bosonic states will correspond to integer momentum
modings m ∈ ZZ, or that all fermionic states will correspond to half-integer momentum modings m ∈ ZZ+1/2. Indeed,
in the presence of a non-trivial Wilson line, this result can change.
In order to understand how this can happen, let us first recall how the standard “temperature/radius correspon-

dence” is derived (see, e.g., Ref. [9]). As is well known, this correspondence is most directly formulated in quantum
field theory (as opposed to string theory) and ultimately rests upon the algebraic similarity between the free-energy
density of a thermal theory and the vacuum-energy density of the zero-temperature theory in which the Euclidean
timelike direction is geometrically compactified on a circle. This similarity can be demonstrated as follows. Let us
begin on the thermal side, and consider the thermal (grand-canonical) partition functions corresponding to a single
real D-dimensional bosonic field and a single D-dimensional fermionic field of mass m:

Zb,f (T ) =
∏

p

(1∓ e−Ep/T )∓1 (28)

with E2
p
≡ p · p +m2. In Eq. (28), the products are over all (D − 1)-dimensional spatial momenta p. Given these

thermal partition functions, the corresponding D-dimensional free-energy densities are given by

Fb,f (T ) ≡ − T logZb,f(T ) = ± T

∫
dD−1

p

(2π)D−1
log(1∓ e−Ep/T ) . (29)
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However, thanks to certain infinite-product representations for the hyperbolic trigonometric functions, it is an algebraic
identity that

log(1∓ e−E/T ) =
1

2

∞∑

n=−∞

log
[
E2 + 4π2(n+ c∓)

2T 2
]

+ ... (30)

where c− = 0 and c+ = 1/2. In writing Eq. (30), we have followed standard practice and dropped terms beyond the
infinite products as well as terms which compensate for the dimensionalities of the arguments of the logarithms. We
therefore find that

Fb,f (T ) = ± T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log
[
E2

p
+ 4π2(n+ c∓)

2T 2
]

+ ... (31)

On the zero-temperature side, by contrast, we can consider the zero-point one-loop vacuum-energy density corre-
sponding to a single real quantum field of mass m in D uncompactified dimensions:

Λ ≡ 1
2 (−1)F

∫
dDp

(2π)D
log(p2 +m2) . (32)

Here (−1)F indicates the spacetime statistics of the quantum field (= 1 for a bosonic field, = −1 for a fermionic field).
Moreover, if we imagine that the time dimension is compactified on a circle of radius R (so that the integral over p0

can be replaced by a discrete sum), and if the quantum field in question is taken to be periodic (P) or anti-periodic
(A) around this compactification circle, then Eq. (32) takes the form

ΛP,A = 1
2

1

2πR
(−1)F

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log[p · p+m2 + (n+ cP,A)
2/R2] (33)

where cP = 0, cA = 1/2. Given these results, it is now possible to make the “temperature/radius correspondence”:
comparing Eq. (31) with Eq. (33), we see that we can identify the free-energy density Fb,f of a boson (fermion) in D
spacetime dimensions at temperature T with the zero-temperature vacuum-energy density ΛP,A of a boson (fermion)
in D spacetime dimensions, where a (Euclidean) timelike dimension is compactified on a circle of radius R ≡ 1/(2πT )
about which the boson (fermion) is taken to be periodic (anti-periodic).
Given this derivation of the temperature/radius correspondence, it may at first glance seem that the identification

of bosons and fermions with integer and half-integer modings around the thermal circle is sacrosanct. However, let us
consider what happens when we repeat this derivation in the presence of a non-trivial gauge field Aµ on the geometric
(zero-temperature) side. When we calculate the vacuum energies of our bosonic or fermionic quantum field in the

presence of a non-trivial gauge field Aµ, we must use the kinematic momenta Πµ ≡ pµ − ~λ · ~Aµ where ~λ is the charge
(expressed as a vector in root space) of the field in question. Of course, if the field Aµ is pure-gauge (i.e., with
vanishing corresponding field strength) and our spacetime geometry is trivial, then this change in momenta from pµ

to Πµ will have no physical effect. However, if we are compactifying on a circle, there is always the possibility that our
compactification encloses a gauge-field flux. As in the Aharonov-Bohm effect, this then has the potential to introduce
a non-trivial change in modings for fields around this circle, even if the gauge field Aµ is pure-gauge at all points
along the compactification circle. Indeed, such a flat (pure-gauge) background for the gauge field Aµ is nothing but
a Wilson line.
To be specific, let us first consider the situation in which our compactification circle of radius R completely encloses

a U(1) magnetic flux of magnitude Φ which is entirely contained within a radius ρ < R. At all points along
the compactification circle, this then corresponds to a U(1) gauge field Aµ whose only non-zero component is the
component Ai = −Φ/(2πR) along the compactified dimension. Because of the non-trivial topology of the circle, we
then find that the shift from pµ to Πµ for a state with U(1) charge λ induces a corresponding shift in the corresponding
modings:1

n

R
→ n

R
+

1

2πR
λΦ . (34)

1 This discussion of the effects of Wilson lines is mostly field-theoretic. For closed strings, however, there will also be an additional shift
due to the possible appearance of a non-trivial winding number. This will be discussed below, but we shall disregard these additional
shifts here since since they play no essential role in the present discussion.
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While this result holds for U(1) gauge fields, it is easy to generalize this to the gauge fields of any gauge group G. For
any gauge group G, we can describe a corresponding gauge flux in terms of the parameters Φi for each i = 1, ..., r,

where r is the rank of G. Collectively, we can write ~Φ as a vector in root space. Likewise, the gauge charge of any

given state can be described in terms of its Cartan components λi for i = 1, ..., r; collectively, ~λ is nothing but the
weight of the state in root space. We then find that the modings are shifted according to

n

R
→ n

R
+

1

2πR
~λ · ~Φ . (35)

As a result, complex fields which are chosen to be periodic (P) or anti-periodic (A) around the compactification circle
will have vacuum energies given by

ΛP,A =
1

2πR
(−1)F

∫
d3p

(2π)3

∞∑

n=−∞

log

[
E2

p
+

1

R2

(
n+ cP,A +

1

2π
~λ · ~Φ

)2
]

(36)

where E2
p
≡ p · p + m2. Note that in each case, the underlying periodicity properties of the field are unaffected.

Rather, it is the manifestations of these periodicities in terms of the modings which are affected by the appearance
of the Wilson line.
This, then, explains how a non-trivial Wilson line can produce unexpected modings due to the non-trivial compact-

ification geometry. However, we still wish to understand the appearance of such a Wilson line thermally. What is the
thermal analogue of the non-trivial Wilson line? Or, phrased somewhat differently, what effect on the thermal side
can restore the temperature/radius correspondence if a non-trivial Wilson line has been introduced on the geometric
side?
It turns out that introducing a non-trivial Wilson line on the geometric side corresponds to introducing a non-zero

chemical potential on the thermal side. In fact, this chemical potential will be imaginary. To see this, let us reconsider
the partition functions of complex bosons and fermions in the presence of a non-zero chemical potential µ ≡ iµ̃ where
µ̃ ∈ IR. In general, a complex bosonic field will have a grand-canonical partition function given by

Zb(T ) =
∏

p

[
1 + e−(Ep−µ)/T + e−2(Ep−µ)/T + ...

] [
1 + e−(Ep+µ)/T + e−2(Ep+µ)/T + ...

]
(37)

where the two factors in Eq. (37) correspond to particle and anti-particle excitations respectively. The corresponding
free energy Fb(T ) ≡ −T logZb then takes the form

Fb(T ) = T

∫
dD−1

p

(2π)D−1

{
log[1− e−(Ep−µ)/T ] + log[1− e−(Ep+µ)/T ]

}

=
T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

{
log[(Ep − µ)2 + 4π2n2T 2] + log[(Ep + µ)2 + 4π2n2T 2]

}

=
T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log[(E2
p
− µ̃2 + 4π2n2T 2)2 + 4µ̃2E2

p
]

=
T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log[E4
p
+ 2E2

p
(4π2n2T 2 + µ̃2) + (4π2n2T 2 − µ̃2)2]

=
T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log[E4
p
+ 2E2

p
(2πnT + µ̃)2 + 2E2

p
(−2πnT + µ̃)2

+ (2πnT + µ̃)2(−2πnT + µ̃)2]

=
T

2

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

{
log[E2

p
+ (2πnT + µ̃)2] + log[E2

p
+ (−2πnT + µ̃)2]

}

= T

∫
dD−1

p

(2π)D−1

∞∑

n=−∞

log[E2
p
+ (2πnT + µ̃)2] . (38)

In Eq. (38), the second equality follows from the algebraic identities in Eq. (30) while the final equality results upon
exchanging n → −n in the second term. Thus, comparing the result in Eq. (38) with the result in Eq. (36), we see
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that the free energy of a bosonic field at temperature T is equal to the vacuum energy of a periodically-moded field
on a circle of radius R, where R ≡ 1/(2πT ) and where

µ̃ = (~λ · ~Φ)T =⇒ µ = i (~λ · ~Φ)T . (39)

A similar result holds for complex fermions and anti-periodic fields, with the same chemical potential. We thus
conclude that the introduction of a non-trivial Wilson line on the geometric side corresponds to the introduction
of an imaginary, temperature-dependent chemical potential on the thermal side. This result is well known in field
theory [4], and has also recently been discussed in a string-theory context [10].
Before concluding, we should remark that the above discussion has been somewhat field-theoretic. Indeed, if we

define the Wilson-line parameter

~ℓ ≡
~Φ

2π
= −

~A

2πT
, (40)

then our primary result is that a non-trivial Wilson line ~ℓ induces a shift in the momentum quantum number of the
form

m → m+ ~λ · ~ℓ (41)

for a state carrying charge ~λ with respect to the gauge field constituting the Wilson line. This result is certainly true
in quantum field theory, and also holds by extension for open-string states. However, closed-string states can carry
not only momentum quantum numbers m but also winding numbers n which parametrize their windings around the
thermal circle. This is important, because in the presence of a non-zero winding mode n, a non-trivial Wilson line

shifts not only the momentum m but also the charge vector ~λ of a given state, so that Eq. (41) is generalized to [11]




m → m+ ~λ · ~ℓ− n~ℓ · ~ℓ/2
n → n
~λ → ~λ− n~ℓ .

(42)

It is clear that Eq. (42) reduces to Eq. (41) for n = 0.

IV. SURVEYING POSSIBLE WILSON LINES

We have already seen in Sect. II that the manner in which a zero-temperature string theory is extended to finite
temperature depends on the choice as to which zero-temperature states are to be associated with integer momenta
m ∈ ZZ around the thermal circle, and which are to be associated with half-integer momenta m ∈ ZZ + 1/2. Once
this decision is made, the thermal properties of the resulting theory are completely fixed. Moreover, we have seen
in Sect. III that there is considerable freedom in making this choice, depending on whether (and which) Wilson
lines might be present. Indeed, in principle, each choice of Wilson line leads to an entirely different thermal theory.
While all of these thermal theories necessarily reduce back to the starting zero-temperature theory as T → 0, they
each represent different possible finite-temperature extensions of that theory which correspond to different possible
chemical potentials which might be introduced into their corresponding Boltzmann sums. Indeed, viewed from this
perspective, we see that the traditional Boltzmann choices merely correspond to one special case: that without a
Wilson line, for which the corresponding chemical potential vanishes.
As an example, let us consider the supersymmetric SO(32) heterotic string. At zero temperature, the partition

function of this theory is

Zmodel = Z
(8)
boson (χV − χS)

(
χ2
I + χ2

V + χ2
S + χ2

C

)
, (43)

and without a Wilson line we would normally decompose this into the separate thermal contributions Z(1) and Z(2)

by making the associations

Z(1) = Z
(8)
boson χV

(
χ2
I + χ2

V + χ2
S + χ2

C

)

Z(2) = −Z(8)
boson χS

(
χ2
I + χ2

V + χ2
S + χ2

C

)
. (44)
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Indeed, this is precisely the decomposition discussed in Sect. II, which leads to the standard Boltzmann sum. However,
there are in principle other ways in which the zero-temperature partition function in Eq. (43) might be meaningfully
decomposed. For example, let us consider an alternate decomposition of the form

Z(1) = Z
(8)
boson

[
χV (χ2

I + χ2
V ) − χS (χ2

S + χ2
C)

]

Z(2) = Z
(8)
boson

[
χV (χ2

S + χ2
C) − χS (χ2

I + χ2
V )

]
. (45)

Unlike the standard Boltzmann decomposition, this alternate decomposition treats spacetime bosonic and fermionic
states in ways which are also dependent on their corresponding gauge quantum numbers. Specifically, while vectorial
representations of the SO(32) gauge group are treated as expected, with spacetime bosons having integer momentum
modings m ∈ ZZ and spacetime fermions having half-integer momentum modings m ∈ ZZ + 1/2, the spinorial repre-
sentations of the left-moving SO(32) gauge group have the opposite behavior, with spacetime bosons associated with
modings m ∈ ZZ + 1/2 and spacetime fermions associated with modings m ∈ ZZ. [Note, in this connection, that the
SO(16) × SO(16) character combination χ2

S + χ2
C is nothing but the SO(32) character χS , and likewise χ2

I + χ2
V is

nothing but χI .] However, as we have seen in Sect. III, such “wrong” modings can be easily understood as the effects
of a non-trivial Wilson line. Indeed, looking at Eq. (42), we see that the results in Eq. (45) are obtained directly

if our Wilson line ~ℓ is chosen such that ~λ · ~ℓ = 1/2 (mod 1) for states in spinorial representations of SO(32), while
~λ · ~ℓ = 0 (mod 1) for states in vectorial representations of SO(32). Given that λi ∈ ZZ for vectorial representations of

SO(32) and λi ∈ ZZ+ 1/2 for spinorial representations of SO(32), we see that a simple choice such as ~ℓ = (1, 0, ..., 0)
can easily accomplish this.
However, at this stage, we have no knowledge as to whether or not such a Wilson line represents a legitimate choice

for the SO(32) heterotic string. For example, we have no idea whether such a Wilson-line choice is compatible with
a worldsheet interpretation in which the possible choices of Wilson lines are tightly constrained by numerous string
self-consistency constraints. Moreover, along the same lines, we do not know what other Wilson lines might also be
available.
In order to explore all of the potential possibilities, we shall therefore proceed to survey the set of all possible Wilson

lines which might be self-consistently introduced when attempting to extend a given zero-temperature string theory
to finite temperatures. As we shall see, however, the situation is somewhat different for closed strings and Type II
strings. We shall therefore consider these two cases separately.

A. Closed strings

In general, there are two classes of closed strings which are supersymmetric and hence perturbatively stable: Type II
superstrings and heterotic strings. In ten dimensions, however, the Type II superstrings lack gauge symmetries; thus
no possible Wilson lines can exist in their extensions to finite temperatures. For this reason, when discussing closed
strings, we shall concentrate on the ten-dimensional supersymmetric SO(32) and E8 × E8 heterotic strings. Note,
however, that in lower dimensions, all of the closed strings will accrue additional gauge symmetries as a result of
compactification — indeed, this holds for Type II strings as well as heterotic. Thus, in lower dimensions, the sets of
allowed Wilson lines in each case are likely to be much more complex than we are considering here.
In general, the temperature/radius correspondence provides us with a powerful tool to help determine the allowed

Wilson lines that may be introduced when forming our thermal theory: we simply replace the temperature T with
1/(2πR) and consider the corresponding problem of introducing a Wilson line into the geometric compactification
of our original zero-temperature theory. For example, if we are seeking the set of allowed Wilson lines that can be
introduced into the construction of the finite-temperature ten-dimensional SO(32) heterotic theory, we can instead
investigate the allowed Wilson lines that may be introduced upon compactifying the zero-temperature SO(32) theory
to nine dimensions. In principle, the latter problem can be studied through any number of formalisms having to do with
the construction of self-consistent zero-temperature string models — such model-building formalisms are numerous
and include various orbifold constructions, Narain lattice constructions, constructions based on free worldsheet bosons
and fermions, and so forth.
However, for closed strings, it turns out that T-duality leads to a significant simplification: while the R → ∞

(or T → 0) limit reproduces our original string model in the original D spacetime dimensions, and while taking
0 < R <∞ leads to a string model in D−1 spacetime dimensions, the formal R → 0 (or T → ∞) limit actually yields
a new string theory which is back in D spacetime dimensions! Moreover, the structure of the finite-temperature string
partition function in Eq. (4) guarantees that this new D-dimensional theory is nothing but a ZZ2 orbifold of our original
D-dimensional theory; indeed, while the original theory in the R → ∞ limit has the partition function Z(1)+Z(2), the
final theory in the R → 0 limit has the partition function Z(1) + Z(3). In some sense, the thermal theory in (D − 1)
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dimensions interpolates between the original D-dimensional theory at T = 0 and a different D-dimensional theory as
T → ∞, these two D-dimensional theories being ZZ2 orbifolds of each other. Thus, the allowed Wilson lines that may
be introduced into the finite-temperature extension of a given zero-temperature closed string theory are in one-to-one
correspondence1 with the set of allowed ZZ2 orbifolds of that theory — i.e., the set of ZZ2 orbifolds which reproduce
another self-consistent string theory in D dimensions.
This correspondence provides us with exactly the tool we need, because the complete set of self-consistent heterotic

string theories in ten dimensions is known. Indeed, these have been classified in Ref. [12], and it turns out that in
addition to the supersymmetric SO(32) and E8 × E8 heterotic theories, there are only seven additional heterotic
theories in ten dimensions. These are the tachyon-free SO(16)×SO(16) string model [13, 14] as well as six tachyonic
string models with gauge groups SO(32), SO(8)× SO(24), U(16), SO(16)× E8, (E7)

2 × SU(2)2, and E8.
However, not all of these models can be realized as ZZ2 orbifolds of the original supersymmetric SO(32) or E8 ×E8

models. Indeed, of the seven non-supersymmetric models listed above, only four are ZZ2 orbifolds of the supersymmetric
SO(32) string; likewise, only four are ZZ2 orbifolds of the E8 × E8 string. These ZZ2 orbifold relations are shown in
Fig. 1.
It is important to note that there also exists a non-trivial ZZ2 orbifold relation which directly relates the supersym-

metric SO(32) and E8 ×E8 strings to each other. However, it is easy to see that this orbifold must be excluded from
consideration. On the thermal side, we know that finite-temperature effects necessarily treat bosons and fermions
differently and will therefore necessarily break whatever spacetime supersymmetry might have existed at zero tem-
perature. This implies that we must restrict our attention to those ZZ2 orbifolds which project out whatever gravitino
might have existed in our original D-dimensional model. The ZZ2 orbifold relating the supersymmetric SO(32) and
E8 ×E8 strings to each other does not have this property. Likewise, there also exists a non-trivial ZZ2 orbifold [specif-
ically (−1)F ] which maps the supersymmetric SO(32) and E8 × E8 heterotic strings to chirality-flipped versions of
themselves . This somewhat degenerate orbifold actually corresponds to the situation without a Wilson line, and has
thus already been implicitly considered in Eq. (15).

SO(32)

non−SUSY
SO(32)

SO(8) x 
SO(24)

SO(16) x
SO(16)

(SU2)
(E7)    x2

2
SO(16)
x E8

E8xE8

U(16) E8

FIG. 1: Possible Wilson-line choices for the supersymmetric SO(32) and E8 ×E8 heterotic strings, each corresponding to a ZZ2

orbifold which breaks spacetime supersymmetry. Note that the SO(16) × SO(16) string is unique in that it can be realized as
a ZZ2 orbifold of either the SO(32) or E8 × E8 heterotic strings; it is also the only non-supersymmetric heterotic string in ten
dimensions which is tachyon-free. By contrast, each of the remaining six non-supersymmetric strings in ten dimensions has a
physical tachyon with worldsheet energies HL = HR = −1/2.

1 At a technical level, this correspondence is easy to understand. Starting from a given zero-temperature theory in D dimensions, one may
construct the corresponding thermal theory through a specific sequence of steps: first, one compactifies the zero-temperature theory
on a circle of radius 2R = 1/(πT ), and then one orbifolds the resulting theory by the ZZ2 action (−1)F T W where F is the spacetime
fermion number, where T denotes a half-shift around the thermal circle, and where W (the Wilson line) indicates an additional specific
orbifold action which is sensitive to the gauge quantum numbers of each state. The resulting (D − 1)-dimensional thermal theory then
has the property that the original D-dimensional theory is reproduced as T → 0, and that a new D-dimensional theory emerges in
the formal T → ∞ limit. Moreover, it can also be shown that the new theory which emerges in the T → ∞ limit is a ZZ2 orbifold
of the original theory, where the ZZ2 orbifold in this case is nothing but (−1)FW . Thus, for each Wilson line W which is involved
in construction of the thermal theory in (D − 1)-dimensions, there is a corresponding orbifold (−1)FW which directly relates the two
“endpoint” D-dimensional theories to each other.
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Given these results, we see that there are only four non-trivial candidate Wilson-line choices for the finite-
temperature SO(32) heterotic string. Likewise, there are only four candidate Wilson-line choices for the finite-
temperature E8 ×E8 heterotic string. For each of these Wilson-line choices, we can then construct the corresponding
finite-temperature theory.
It is straightforward to write down the partition functions of these finite-temperature theories, some of which have

already appeared in various guises in previous work (see, e.g., Refs. [5, 15, 16]). In each case, we shall follow the
exact notations and conventions established in the Appendix. However, for convenience, we shall also establish one
further convention. Although the anti-holomorphic (right-moving) parts of these partition functions will always be
expressed in terms of the (barred) characters χi of the transverse SO(8) Lorentz group, it turns out that we can
express the holomorphic (left-moving) parts of each of these partition functions in terms of the (unbarred) characters
χiχj associated with the group SO(16)× SO(16). Indeed, it turns out that such a rewriting is possible in each case
regardless of the actual gauge group G of the ten-dimensional model that is produced by the ZZ2 orbifold. Of course,
if SO(16)× SO(16) is a subgroup of G, then such a rewriting is meaningful and the characters which appear in the
resulting partition function correspond to the actual gauge-group representations which appear in spectrum of the
model. By contrast, if SO(16)×SO(16) is not a subgroup of G, then such a rewriting is merely an algebraic exercise;
the SO(16)× SO(16) characters then have no meaning beyond their q-expansions, and can appear with non-integer
coefficients. In all cases, however, these expressions represent the true partition functions of these thermal theories as
far as their q-expansions are concerned. We shall therefore follow these conventions in what follows.
Let us begin by considering the zero-temperature supersymmetric SO(32) heterotic string, which has the partition

function given in Eq. (43). For this string, our four possible finite-temperature extensions are then as follows. In each
case we shall label each of the possibilities according to the T → ∞ model produced by the corresponding ZZ2 orbifold.
The partition function of the thermal model associated with the ZZ2 orbifold producing the non-supersymmetric SO(32)
heterotic string is given by

ZSO(32) = Z
(8)
boson ×

{
[χV (χ2

I + χ2
V ) − χS (χ2

S + χ2
C)] E0

+ [χV (χ2
S + χ2

C) − χS (χ2
I + χ2

V )] E1/2
+ [χI (χIχV + χV χI) − χC (χSχC + χCχS)] O0

+ [χI (χSχC + χCχS) − χC (χIχV + χV χI)] O1/2

}
, (46)

while the partition functions of the thermal models associated the ZZ2 orbifolds that produce the the SO(8)×SO(24),
U16, and SO(16)× SO(16) models are respectively given by

ZSO(8)×SO(24) = Z
(8)
boson ×

{
[χV (χ2

I +
1

4
χ2
V +

3

4
χ2
S) − χS (

1

4
χ2
S +

3

4
χ2
V + χ2

C)] E0

+ [χV (
1

4
χ2
S +

3

4
χ2
V + χ2

C) − χS (χ2
I +

1

4
χ2
V +

3

4
χ2
S)] E1/2

+ [χI (
1

2
χIχV +

3

2
χV χC) − χC (

1

2
χSχC +

3

2
χIχS)] O0

+ [χI (
1

2
χSχC +

3

2
χIχS) − χC (

1

2
χIχV +

3

2
χV χC)] O1/2

}
, (47)

ZU(16) = Z
(8)
boson ×

{
[χV (χ2

I +
1

16
χ2
V +

15

16
χ2
S) − χS (

1

16
χ2
S +

15

16
χ2
V + χ2

C)] E0

+ [χV (
1

16
χ2
S +

15

16
χ2
V + χ2

C) − χS (χ2
I +

1

16
χ2
V +

15

16
χ2
S)] E1/2

+ [χI (
1

8
χIχV +

15

8
χV χC) − χC (

1

8
χSχC +

15

8
χIχS)] O0

+ [χI (
1

8
χSχC +

15

8
χIχS) − χC (

1

8
χIχV +

15

8
χV χC)] O1/2

}
, (48)

and

ZSO(16)×SO(16) = Z
(8)
boson ×

{
[χV (χ2

I + χ2
S) − χS (χ2

V + χ2
C)] E0

+ [χV (χ2
V + χ2

C) − χS (χ2
I + χ2

S)] E1/2
+ [χI (χV χC + χCχV ) − χC (χIχS + χSχI)] O0

+ [χI (χIχS + χSχI) − χC (χV χC + χCχV )] O1/2

}
. (49)
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Note that as T → 0, each of these expressions reduces to the partition function of the zero-temperature supersymmetric
SO(32) heterotic string in Eq. (43), as required.
As is easy to verify, these four different thermal extensions of the supersymmetric SO(32) heterotic string correspond

to the Wilson lines

non−SUSY SO(32) : ~ℓ = ((1)n(0)16−n) for n ∈ 2ZZ+ 1

SO(8)× SO(24) : ~ℓ = ((12 )
4(0)12) or ((32 )

4(0)12)

SO(16)× SO(16) : ~ℓ = ((12 )
8(0)8) or ((32 )

8(0)8)

U(16) : ~ℓ = ((ℓ)16) for ℓ ∈ { 1
4 ,

3
4 ,

5
4 ,

7
4} . (50)

Indeed, because our original supersymmetric SO(32) heterotic theory contains only vectorial and spinorial represen-

tations of SO(32), each of the individual components of the Wilson line ~ℓ is defined only modulo 2.
A similar situation exists for the zero-temperature E8 × E8 heterotic string, which has partition function

Z
(8)
boson (χV − χS) (χI + χS)

2 (51)

The partition function of the thermal extension of this model associated with the ZZ2 orbifold producing the non-
supersymmetric SO(16)× E8 model is given by

ZSO(16)×E8
= Z

(8)
boson ×

{
[χV χI − χS χS ] E0

+ [χV χS − χS χI ] E1/2
+ [χI χV − χC χC ] O0

+ [χI χC − χC χV ] O1/2

}
× (χI + χS) , (52)

while the partition functions of the thermal models associated with the (E7)
2 × SU(2)2, E8, and SO(16) × SO(16)

orbifolds are respectively given by

Z(E7)2×SU(2)2 = Z
(8)
boson ×

{
[χV (χ2

I +
1

4
χIχS +

3

4
χ2
S) − χS (

1

4
χ2
S +

7

4
χIχS)] E0

+ [χV (
1

4
χ2
S +

7

4
χIχS) − χS (χ2

I +
1

4
χIχS +

3

4
χ2
S)] E1/2

+ [χI (
1

4
χIχV +

7

4
χV χS) − χC (

1

4
χSχS +

7

4
χIχS)] O0

+ [χI (
1

4
χSχS +

7

4
χIχS) − χC (

1

4
χIχV +

7

4
χV χS)] O1/2

}
, (53)

ZE8 = Z
(8)
boson ×

{
[χV (χ2

I +
1

16
χIχS +

15

16
χ2
S) − χS (

1

16
χ2
S +

31

16
χIχS)] E0

+ [χV (
1

16
χ2
S +

31

16
χIχS) − χS (χ2

I +
1

16
χIχS +

15

16
χ2
S)] E1/2

+ [χI (
1

16
χIχV +

31

16
χV χS) − χC (

1

16
χSχS +

31

16
χIχS)] O0

+ [χI (
1

16
χSχS +

31

16
χIχS) − χC (

1

16
χIχV +

31

16
χV χS)] O1/2

}
, (54)

and

ZSO(16)×SO(16) = Z
(8)
boson ×

{
[χV (χ2

I + χ2
S) − χS (χIχS + χSχI)] E0

+ [χV (χIχS + χSχI) − χS (χ2
I + χ2

S)] E1/2
+ [χI (χV χC + χCχV ) − χC (χ2

V + χ2
C)] O0

+ [χI (χ
2
V + χ2

C) − χC (χV χC + χCχV )] O1/2

}
. (55)

Once again, using the identities listed in the Appendix, it is straightforward to verify that each of these expressions
reduces to Eq. (51) as T → 0. Moreover, the expressions in Eqs. (49) and (55) are actually equal as the result of the
further identity on SO(16) characters given by

χIχS + χSχI = χ2
V + χ2

C . (56)
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This is ultimately the identity which is responsible for the fact that the two expressions within Eq. (12) are equal at
the level of their q-expansions, i.e., that the ten-dimensional supersymmetric SO(32) and E8 × E8 heterotic strings
have the same bosonic and fermionic state degeneracies at each mass level.
As an aside, it is interesting to note that all of these thermal functions can be written in a common form parametrized

by a single integer ζ:

Z
(8)
boson ×

{ [
χV

(
χ2
I +

1

ζ
χ2
V +

ζ − 1

ζ
χ2
S

)
− χS

(
χ2
C +

1

ζ
χ2
S +

ζ − 1

ζ
χ2
V

)]
E0

+

[
χV

(
χ2
C +

1

ζ
χ2
S +

ζ − 1

ζ
χ2
V

)
− χS

(
χ2
I +

1

ζ
χ2
V +

ζ − 1

ζ
χ2
S

)]
E1/2

+

[
χI

(
1

ζ
χIχV +

1

ζ
χV χI +

ζ − 1

ζ
χV χC +

ζ − 1

ζ
χCχV

)

− χC

(
1

ζ
χSχC +

1

ζ
χCχS +

ζ − 1

ζ
χ2
V +

ζ − 1

ζ
χ2
C

)]
O0

+

[
χI

(
1

ζ
χSχC +

1

ζ
χCχS +

ζ − 1

ζ
χ2
V +

ζ − 1

ζ
χ2
C

)

− χC

(
1

ζ
χIχV +

1

ζ
χV χI +

ζ − 1

ζ
χV χC +

ζ − 1

ζ
χCχV

)]
O1/2

}
. (57)

In particular, the values ζ = {1, 2, 4, 8, 16, 32,∞} correspond to the partition functions in Eqs. (46), (52), (47), (53),
(48), (54), and (49) [or (55)] respectively, where Eq. (56) has been used wherever needed.

FIG. 2: Free-energy densities F (T ) in units of 1
2
M10 = 1

2
(Mstring/2π)

10, plotted as functions of the normalized temperature
T/M for the SO(32) heterotic string (left plot) and E8 × E8 heterotic string (right plot). In each case, the free energies are
shown for the four corresponding choices of allowed non-trivial Wilson lines. We see that in general F (T ) → 0 as T → 0,
in accordance with the spacetime supersymmetry which exists at zero temperature. At non-zero temperatures, however, the
spacetime supersymmetry is necessarily broken. Interestingly, we see that the non-trivial Wilson line which leads to the smallest
free-energy density in each case is the one which breaks the gauge group minimally: for the SO(32) string, this is the Wilson
line associated with the the non-supersymmetric SO(32) orbifold, while for the E × E8 heterotic string, this is the Wilson
line associated with the SO(16) × E8 orbifold. With the sole exception of the Wilson line leading to the SO(16) × SO(16)
heterotic string, each of the non-trivial Wilson-line choices in each case leads to a free energy which is negative for all T > 0
and which diverges discontinuously at the critical temperature TH ≡ M/

√
2 (indicated in each case with a solid black dot).

These divergences arise in each case due to the existence of a thermal winding state which is massive for all T < TH , massless
at T = TH , and tachyonic for all T > TH , signalling a Hagedorn transition at T = TH .
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It is also instructive to examine the free-energy densities F (T ) associated with each of these possible Wilson-line
choices. As we have seen, for each thermal partition function Z(τ, T ) listed above, the corresponding free-energy
density F (T ) is given by Eq. (8). Following this definition, we then obtain the results shown in Fig. 2.
We observe from Fig. 2 that the non-trivial Wilson line which minimizes the free-energy density in each case is

the one which breaks the gauge group minimally. For the SO(32) string, this is the Wilson line associated with the
non-supersymmetric SO(32) orbifold, while for the E×E8 heterotic string, this is the Wilson line associated with the
non-supersymmetric SO(16) × E8 orbifold. It is tempting to say, therefore, that these particular non-trivial Wilson
lines are somehow “preferred” in some dynamical sense over the others. However, this assumption presupposes the
existence of a mechanism by which these Wilson lines can smoothly be deformed into each other with finite energy
cost. Given that these Wilson lines ultimately correspond to fluxes which are not only constrained topologically but
also presumably quantized, such Wilson-line-changing transitions would require exotic physics (such as might occur
on a full thermal landscape). We shall discuss the structure of such a landscape in Sect. VI. We also note that for
both of our supersymmetric heterotic strings, there remains the traditional option of constructing a thermal theory
without a non-trivial Wilson line. It turns out that the free energies corresponding to these choices are numerically
almost identical (but ultimately slightly smaller) than those of the non-supersymmetric SO(32) and SO(16) × E8

cases plotted in Fig. 2. These features will be discussed further in Sect. VI.
We see, then, that have been able to construct four new thermal theories for the supersymmetric SO(32) heterotic

string as well as four new thermal theories for the supersymmetric E8 × E8 heterotic string. Each of these theories
has the novel feature that a non-trivial Wilson line has been introduced when constructing the finite-temperature
extension, or equivalently that a non-trivial temperature-dependent chemical potential has been introduced into the
Boltzmann sum. Each of these theories reduces to the correct supersymmetric theory as T → 0, and moreover each is
modular invariant for all temperatures T . Even more importantly, the temperature/radius correspondence guarantees
that in each case, the temperature variable T — like the radius variable R to which it corresponds — is a bona-fide
modulus of the theory, able to be freely changed without disturbing the worldsheet self-consistency of the string.
Despite the fact that the non-trivial Wilson lines we have introduced in each case have led to certain unorthodox
modings for our string states around the thermal circle, none of these theories violates any spin-statistics relations.
Indeed, the spin-statistics theorem relates the spacetime Lorentz spin of a given quantum field to its thermal statistics,
and the temperature/radius correspondence relates such thermal statistics to the periodicity of such a field around
the thermal circle. Indeed, it is only the relation between this periodicity and the resulting algebraic moding which
is altered as a result of the non-trivial Wilson line.

B. Type I strings

We now turn our attention to the corresponding situation for Type I strings. In ten dimensions, there is a single
self-consistent Type I string model which is both supersymmetric and anomaly-free: this is the SO(32) Type I
string [1]. Our goal is therefore to survey the possible Wilson lines which can be introduced when formulating its
thermal extension.
As discussed in Sect. II, the ten-dimensional zero-temperature SO(32) Type I string has a partition function given

in Eq. (24), and its extension to finite temperature without Wilson lines is given in Eq. (27). However, just as for
the heterotic strings, we expect that new thermal possibilities can be constructed when non-trivial Wilson lines are
introduced [16–18].
In general, as discussed in Sect. II, there are two kinds of Wilson lines which might be introduced for Type I

theories. First, there are Wilson lines that might be introduced into the closed-string sectors of such theories, much
along the lines we have already discussed for the heterotic strings. However, the closed-string sectors of Type I strings
are essentially Type II superstrings (indeed, these are the strings from which the Type I strings can be obtained
by orientifolding), and in ten dimensions the perturbative states of such Type II strings do not carry gauge charges.
Thus, for the ten-dimensional Type I string, it is not possible to introduce a non-trivial Wilson line in the closed-string
sector. This guarantees that the results for ZT(τ, T ) and ZK(τ, T ) given in Eq. (27) will remain invariant regardless
of what happens in the open-string sector.
The question then boils down to determining the allowed Wilson lines that might be introduced in the open-string

sector of the ten-dimensional Type I string. Indeed, because the states contributing to the cylinder and Möbius
partition functions carry SO(32) gauge charges, their modings in Eq. (27) are potentially affected by the presence of
an SO(32) Wilson line. Fortunately, thanks to the temperature/radius correspondence, this problem can be mapped
to the purely geometric issue of determining the allowed Wilson lines that can be introduced when compactifying
the Type I string to nine dimensions on a circle — indeed, the fact that we continually refer to “Wilson lines” and
“thermal circles” already implicitly presupposes that this can be done! It turns out that the allowed Wilson lines fall
into two distinct classes.
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The first class consists of Wilson lines of the form

~ℓ = (12 ,
1
2 ,

1
2 , ..., 0, 0, 0, ...) (58)

where the number of non-zero components is given by n, with 0 ≤ n < 16. The n = 0 special case corresponds to the
case without a Wilson line, and in general we shall define n1 ≡ 2n and n2 ≡ 32− n1. For Wilson lines of this form,
the Möbius contribution in Eq. (27) turns out to be independent of n, and thus remains the same as in Eq. (27) for
all n > 0:

Mobius : ZM(τ2, T ) = − 1
2 Ẑ

(8)
open (n1 + n2) (χ̂V E − χ̂S E ′) . (59)

However, we find that the cylinder contribution in Eq. (27) now takes the form

cylinder : ZC(τ2, T ) = 1
2 Z

(8)
open ×

{
[(n2

1 + n2
2)χV − 2n1n2χS ] E

− [(n2
1 + n2

2)χS − 2n1n2χV ] E ′
}
. (60)

It is easy to demonstrate that as a result of the shift induced by this Wilson line, the gauge group of the resulting
model is broken to SO(n1) × SO(n2). [In the T-dual picture, the choice of the Wilson line in Eq. (58) indicates
that we have simply moved n1 of the original 32 D8-branes in this theory to the opposite side of the thermal circle.]
Note, however, that the appearance of this Wilson line has also induced states with the “wrong” thermal modings to
appear in Eq. (60). Specifically, we see from Eq. (60) that we now have spacetime spinors accruing integer thermal
momentum modes within E , while we also have spacetime vectors accruing half-integer thermal modes within E ′.
The second “class” of Wilson lines we shall consider consists of a single Wilson line of the form

~ℓ = (14 ,
1
4 ,

1
4 , ...,

1
4 ) . (61)

For this Wilson line, the cylinder and Möbius partition functions in Eq. (27) now take the form

cylinder : ZC(τ2, T ) = 1
2 Z

(8)
open ×

{
[2nnχV − (n2 + n2)χS ] E

− [2nnχS − (n2 + n2)χV ] E ′
}

Mobius : ZM(τ2, T ) = − 1
2 Ẑ

(8)
open (n+ n)

(
−χ̂S E + χ̂V E ′

)
(62)

where n = n = 16. In this case, the Wilson line has deformed the gauge group of our original SO(32) theory to U(16).

Note that the alternate Wilson line ~ℓ = (34 ,
3
4 ,

3
4 , ...,

3
4 ) produces the same theory. In either case, however, we once

again observe that the Wilson line has induced states to appear in Eq. (62) with the “wrong” thermal modings.
It should be stressed that when discussing the possible “allowed” Wilson lines, we are not enforcing the possible

open-string NS-NS tadpole-anomaly constraints for all temperatures (as might normally be done within a more general
Type I model-building framework). Indeed, only the SO(16)× SO(16) and U(16) cases outlined above satisfy these
constraints and completely avoid NS-NS tadpole divergences at all temperatures; in all other cases, these constraints
are satisfied only for temperatures below the Hagedorn temperature. However, this approach is justified in this context
because we are not seeking to avoid the possible emergence of open-string tachyons. In fact, such tachyons and the
divergences they induce are both desired and expected, since these are precisely the features which ultimately trigger
the Hagedorn transition for Type I strings.
It should also be stressed that there are many different ways of obtaining the models discussed in this section.

While one approach involves compactifying the ten-dimensional supersymmetric Type I string on the thermal circle
in the presence of various Wilson lines, it is also possible to compactify the Type II string directly on the thermal
circle, implementing the orientifold projection only after this compactification is performed (see, e.g., Ref. [19]). The
different allowed choices for open-string sectors in this orientifold projection then yield the models we have constructed
here. Regardless of the approach taken, however, we see that there are only a finite set of self-consistent possibilities
which are available as potential finite-temperature extensions of the zero-temperature Type I string.
Given the set of Wilson lines outlined above, we can now examine their corresponding free energies F (T ). As

discussed in Sect. II, for Type I string models the corresponding free-energy density receives separate contributions
from the torus, the Klein bottle, the cylinder, and the Möbius amplitudes; these are shown in Eqs. (20), (21), and
(22). In particular, several particular Wilson lines will interest us, such as those which yield the gauge groups we have
considered for heterotic strings:

non− SUSY SO(32) : ~ℓ = ((0)16)

SO(8)× SO(24) : ~ℓ = ((12 )
4(0)12)

SO(16)× SO(16) : ~ℓ = ((12 )
8(0)8)

U(16) : ~ℓ = ((14 )
16) or ((34 )

16) . (63)
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FIG. 3: Free-energy densities F (T ) in units of 1
2
M10 = 1

2
(Mstring/2π)

10, plotted as functions of the normalized temperature
T/M for the zero-temperature ten-dimensional SO(32) Type I string extended to finite temperature. (a) Left plot: Individual
torus, cylinder, and Möbius contributions to F (T ) for the SO(32) case without a Wilson line. We see that in general each
contribution vanishes as T → 0, in accordance with the spacetime supersymmetry which exists at zero temperature; likewise,
the Klein-bottle contribution vanishes for all temperatures. Note that the Möbius contribution remains finite at the critical
Hagedorn temperature TH ≡ M/

√
2, while the torus contribution diverges discontinuously at TH (as indicated with a solid dot)

and the cylinder contribution diverges continuously as T → TH . (b) Right plot: Total free-energy densities F (T ) corresponding
to the Wilson-line choices associated with the gauge groups SO(32), SO(8)×SO(24), SO(16)×SO(16), and U(16). Note that
it is the SO(32) case which minimizes the free energy. Like the analogous case of the ten-dimensional SO(32) heterotic string
shown in Fig. 2, this is also the choice which preserves the zero-temperature gauge symmetry. However, unlike the case of the
heterotic string, we see that the corresponding free energy in the Type I case actually grows without bound as the T → TH , a
feature which suggests that the Hagedorn temperature is actually a limiting temperature for the Type I string rather than the
location of a phase transition.

The results are shown in Fig. 3. Note that several of these results have also appeared in a different context in Ref. [16].
It is straightforward to understand the general features shown in Fig. 3. First, we recall from the above discussion

that all four of these possible finite-temperature extensions share the same torus and Klein-bottle contributions to the
free-energy density: as shown in Fig. 3(a), the torus contribution is relatively small and negative for T > 0, remaining

finite until it diverges discontinuously at the critical temperature T/M = 1/
√
2, while the Klein-bottle contribution

actually vanishes as a result of the identity χV = χS which holds for the characters of the transverse SO(8) Lorentz
group. Thus, as expected, it is the cylinder and Möbius contributions which are responsible for the relative differences
between these different Wilson-line choices.
Let us first consider the Wilson-line cases following from the choice in Eq. (58). As indicated above, these cases all

share the same Möbius contribution as well. Like the torus contribution, the Möbius contribution is also relatively
small for T > 0; however, unlike the torus contribution, we see from Fig. 3(a) that it is positive rather than negative

and does not diverge, even at T/M = 1/
√
2. Indeed, if these were the only three contributions in the SO Wilson-line

cases, we would obtain the total curve which is shown in Fig. 3(b) for SO(16)×SO(16). In this case, the discontinuous

divergence at T = M/
√
2 is solely due to the closed-string tachyon coming from the torus amplitude in Fig. 3(a).

However, for all other cases with n1 6= n2, we also have a relatively huge cylinder contribution which is negative for
T > 0, with FC(T ) → ∞ smoothly as T → M/

√
2. In fact, recalling the SO(8) character identity χV = χS , we see

from Eq. (60) that the overall general magnitude of this contribution is proportional to

n2
1 + n2

2 − 2n1n2 = (n1 − n2)
2 = (32− n)2 . (64)

Thus the n = 0 case (i.e., the case with vanishing Wilson line) has the most negative cylinder contribution and
correspondingly the most negative total free-energy density from amongst the choices with gauge groups SO(n1) ×
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SO(n2).
Of course, it still remains possible that the U(16) case in Eq. (61) might yield a free-energy density which is even

more negative. However, since 2nn = (n2+n2) when n = n, we see that the cylinder contribution in Eq. (62) actually
vanishes for this case. The Möbius contribution remains small but switches sign, becoming negative, but it continues
to remain finite, even at T = M/

√
2. [Indeed, as discussed above, only in the U(16) and SO(16) × SO(16) cases

are all open-string tachyons avoided.] As a result, the free-energy density in the U(16) case remains small, diverging

discontinuously at T = M/
√
2 only because of the closed-string tachyon in the torus amplitude.

Comparing Fig. 3 for the Type I string with the analogous plot for the SO(32) heterotic string in Fig. 2, we see
certain superficial similarities. For example, the set of permitted gauge groups is similar in each case, and moreover
Wilson-line choice in each case that leads to the minimum free energy is the one that breaks the gauge group minimally.
However, we stress that despite such superficial similarities, there remains one fundamental distinction between the
heterotic and Type I cases: except for the cases involving the particular SO(16)×SO(16) and U(16) Wilson lines, the

Type I cases lead to free-energy densities which actually diverge smoothly as the Hagedorn temperature TH = M/
√
2

is approached, i.e., F (T ) → −∞ as T → TH , while the corresponding heterotic free-energy densities actually remain
finite as T → TH . This feature is already well known in the string-thermodynamics literature: it is a direct result of the
open-string tachyon at TH = M/

√
2, and suggests that the Hagedorn temperature is actually a limiting temperature

for Type I strings rather than the location of a phase transition.

V. WILSON LINES AND THE HAGEDORN TEMPERATURE

As we have seen, one of the most prominent aspects of thermal string theories is the existence of a Hagedorn
transition at which the string free-energy density diverges. However, the introduction of a non-trivial Wilson line can
actually change the temperature at which this transition takes place. This is particularly true for heterotic strings, and
we have already seen evidence of this fact in Fig. 2: the free-energy densities corresponding to the different possible
Wilson-line choices all diverge at critical temperatures which differ from the Hagedorn temperature TH = (2−

√
2)M

normally associated with the heterotic string without Wilson lines.
In some sense, it is to be expected that the introduction of non-trivial Wilson lines can affect the resulting Hagedorn

temperature, since we have seen that such Wilson lines affect the thermal partition function as a whole. However, we
can equivalently associate the Hagedorn temperature with the asymptotic densities of bosonic and fermionic states in
the original zero-temperature theory, and the zero-temperature theory is clearly independent of the introduction of a
non-trivial thermal Wilson line. Our goal in this section is to explain these different perspectives, and to show how
they can ultimately be reconciled with each other in the presence of a non-trivial Wilson line. For concreteness, we
shall focus on the case of the SO(32) and E8 × E8 heterotic strings, and examine the consequences of moving from
the standard thermal theories in Eq. (15) which do not involve non-trivial Wilson lines to the new thermal theories
[such as those in Eqs. (46) through (49) for SO(32), and those in Eqs. (52) through (55) for E8 × E8] which do.

A. The Hagedorn transition: UV versus IR

We begin with several preliminary remarks concerning the Hagedorn transition and its dual UV/IR nature.
The Hagedorn transition is one of the central hallmarks of string thermodynamics. Originally encountered in the

1960’s through studies of hadronic resonances and the so-called “statistical bootstrap” [20–22], the Hagedorn transition
is now understood to be a generic feature of any theory exhibiting a density of states which rises exponentially as
a function of mass. In string theory, the number of states of a given total mass depends on the number of ways in
which that mass can be partitioned amongst individual quantized mode contributions, leading to an exponentially
rising density of states [1]. Thus, string theories should exhibit a Hagedorn transition [3, 7, 23–25]. Originally, it
was assumed that the Hagedorn temperature is a limiting temperature at which the internal energy of the system
diverges. However, later studies demonstrated that for closed strings the internal energy actually remains finite at
this temperature. This then suggests that the Hagedorn temperature is merely the critical temperature corresponding
to a first- or second-order phase transition.
There has been much speculation concerning possible interpretations of this phase transition, including a breakdown

of the string worldsheet into vortices [24] or a transition to a single long-string phase [25]. It has also been speculated
that there is a dramatic loss of degrees of freedom at high temperatures [7]. Over the past two decades, studies of the
Hagedorn transition have reached across the entire spectrum of modern string-theory research, including open strings
and D-branes, strings with non-trivial spacetime geometries (including AdS backgrounds and pp-waves), strings in
magnetic fields, N=4 strings, tensionless strings, non-critical strings, two-dimensional strings, little strings, matrix



20

models, non-commutative theories, as well as possible cosmological implications and implications for the brane world.
A brief selection of papers in many of these areas appears in Refs. [8, 26–38].
In general, determining the Hagedorn temperature associated with a given finite-temperature thermal partition

function is relatively straightforward. Given this thermal partition function, the one-loop free-energy density F (T ) is
given by the modular integral in Eq. (8), whereupon the full panoply of thermodynamic quantities such as the internal
energy U , entropy S, and specific heat cV then follow from the standard definitions U ≡ F −TdF/dT , S ≡ −dF/dT ,
and cV ≡ −Td2F/dT 2. In string theory, the Hagedorn transition is usually associated with a divergence or other
discontinuity in the free energy F (T ) as a function of temperature. It turns out that are only two ways in which such
a divergence may arise within the expression in Eq. (8).
First, of course, is the possibility of a divergence or discontinuity due to the well-known exponential rise in the

degeneracy of string states which contribute to Zstring(τ, T ). This may be considered an ultraviolet (UV) divergence
because it is triggered by the behavior of the extremely massive portion of the string spectrum. However, it turns
out that this rise in the state degeneracies ultimately does not cause F (T ) to diverge. To understand why, we may
expand Z(τ, T ) in the form

∑
MN aMNq

MqN where q ≡ e2πiτ , where (M,N) describe the right- and left-moving
worldsheet energies (with thermal contributions included), and where aMN describe the corresponding degeneracies
of bosonic minus fermionic states. Although the degeneracies aMN indeed experience exponential growth of the generic

form aMN ∼ exp
(
CR

√
M + CL

√
N
)
where CL,R are positive coefficients, the contribution of each such state to the

modular integrand in Eq. (8) is suppressed according to |qMqN | ∼ exp[−2πτ2(M +N)]. For all τ2 > 0 and sufficiently
large (M,N), this exponential suppression easily overwhelms the exponential rise in the degeneracy of states. As a
result, the integrand in Eq. (8) remains convergent everywhere except as τ2 → 0. However, this dangerous UV region
is explicitly excised from the fundamental domain F in Eq. (3). Thus, we conclude that the expression in Eq. (8) does
not suffer from any UV divergences resulting from the exponential growth in the asymptotic degeneracies of states.
On the other hand, the expression in Eq. (8) may experience a divergence due to on-shell states within Zstring(τ, T )

which may become massless or tachyonic at specific critical temperatures. For example, as the temperature increases,
there may exist a critical temperature TH at which certain states which were massive for T < TH become massless at
T = TH and ultimately tachyonic for T > TH . This can therefore be considered an infrared (IR) divergence. Since
such on-shell tachyons correspond to states with worldsheet energies M = N < 0, their contributions to the modular
integral in Eq. (8) grow as (qq)N ∼ exp(+4πτ2|N |). The contributions from the (infrared) τ2 → ∞ region of the
fundamental domain then lead to a divergence for F (T ).
Thus, a study of the Hagedorn transition in string theory essentially reduces to a study of the tachyonic structure

of Zstring(τ, T ) as a function of temperature. Before proceeding further, however, we caution that we have reached
this conclusion only because we have chosen to work in the so-called F -representation for F (T ) given in Eq. (8).
By contrast, utilizing Poisson resummations and modular transformations [3], we can always rewrite F (T ) as the
integration of a different integrand Z ′

string(τ, T ) over the strip

S ≡ {τ : |Re τ | ≤ 1
2 , Im τ > 0} . (65)

In such an S-representation, the IR divergence as τ2 → ∞ is transformed into a UV divergence as τ2 → 0. This
formulation thus has the advantage of relating the Hagedorn transformation directly to a UV phenomenon such as
the exponential rise in the degeneracy of states. However, both formulations are mathematically equivalent; indeed,
modular invariance provides a tight relation between the tachyonic structure of a given partition function and the
rate of exponential growth in its asymptotic degeneracy of states [39–42]. In the following, therefore, we shall utilize
the F -representation for F (T ) and focus on only the tachyonic structure of Zstring(τ, T ), but we shall comment on
the connection to the asymptotic degeneracy of states in Sect. V.C.

B. Effect of Wilson lines on Hagedorn temperature

So what then are the potential tachyonic states within Zstring(τ, T ), and at what temperatures TH do they first arise?
Note that we are concerned with states whose masses are temperature-dependent: positive at temperatures below
a certain critical temperature, zero at the critical temperature, and tachyonic at temperatures immediately above
the critical temperature. The sudden appearance of such new “thermally massless” states at a critical temperature
TH is the signal of the appearance of the long-range order normally associated with a phase transition, and the fact
that such states generally become tachyonic immediately above TH reflects the instabilities which are also normally
associated with a phase transition.
As a result, in order to derive the Hagedorn temperature of a given theory, it is sufficient to search for states within

the thermal partition function Zstring(τ, T ) whose masses decrease as a function of temperature, reaching (and perhaps
even crossing) zero at a certain critical temperature. We shall refer to such states as “thermally massless” at the
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critical temperature. Since thermal effects always provide a positive contribution to the squared masses of any states,
such states must intrinsically be tachyonic at zero temperature. In other words, for such thermally massless states,
masslessness is achieved at the critical temperature TH as the result of a balance between a tachyonic non-thermal mass
contribution (arising from the characters χiχjχk within Zstring) and an additional positive temperature-dependent
thermal mass contribution (arising from the thermal E ,O functions).
We can quantify this mathematically as follows. A given state with worldsheet energies (HR, HL) will contribute a

term of the form qHRqHL to the characters χiχjχk within Zstring. Likewise, as evident from their definitions in the
Appendix, the thermal E ,O functions will make an additional, thermal contribution to these energies which is given
by

[∆HR,∆HL] = [ 14 (ma− n/a)2, 1
4 (ma+ n/a)2] (66)

where (m,n) are respectively the momentum and winding quantum numbers around the thermal circle and where
a ≡ T/M = T/(2πMstring). The conditions for thermal masslessness then become

HR + 1
4 (ma− n/a)2 = 0 , HL + 1

4 (ma+ n/a)2 = 0 , (67)

which together imply the useful relation mn = HR − HL. Since the thermal contributions in Eq. (66) are strictly
non-negative (and are not zero, according to our assumption of thermal masslessness), we see that the possibility of
obtaining a thermally massless state requires that either HL or HR (or both) must be negative, and neither can be
positive. In other words, the zero-temperature state contributing within the characters χiχjχk within Zstring must be
a tachyon which is either on-shell (if HR = HL) or off-shell (if HR 6= HL); this tachyonic mode is then “dressed” with
specific thermal contributions in order to become massless at the critical temperature aH . Moreover, if our solution
to Eq. (67) has non-zero n, then such a state will be massive for all temperatures below this critical temperature, as
desired. It will also usually be tachyonic for temperatures immediately above this critical temperature.
Given these observations, our procedure for determining the Hagedorn temperature corresponding to a given thermal

partition function Zstring(τ, T ) is then fairly straightforward. First, we identify any zero-temperature states which are
tachyonic (either on- or off-shell) contributing to the characters appearing within Zstring(τ, T ). For each such state,
we then attempt to solve the conditions in Eq. (67), subject to the constraints that (m,n) are restricted to the values
which are appropriate for the corresponding thermal function (i.e., m ∈ ZZ or ZZ+1/2 and n ∈ 2ZZ or 2ZZ+1). If such
a solution exists and has non-zero n, then we have succeeded in identifying a massive state in the full thermal theory
which will become massless at the corresponding critical temperature aH . This then signals a Hagedorn transition.
In situations where multiple thermally massless states exist, the Hagedorn temperature is identified as the lowest
of the corresponding critical temperatures, since the presumed existence of a phase transition at that temperature
invalidates any analysis based on Zstring at temperatures above it.
Let us now calculate the Hagedorn temperatures corresponding to the heterotic partition functions Zstring(τ, T ) in

Sect. IV. We focus first on the standard heterotic results without Wilson lines, as given in Eq. (15). For both the
SO(32) and E8 × E8 cases, we find that the sector χIχ

2
IO1/2 is the sector which is capable of providing thermally

massless states at the lowest possible temperature. Indeed, solving the conditions for masslessness in Eq. (67), we
see that the (HR, HL) = (−1/2,−1) off-shell tachyon within χIχ

2
I — dressed with the thermal excitations (m,n) =

±(1/2, 1) within O1/2 — becomes thermally massless at the critical temperature TH = 2M/(2 +
√
2) = (2−

√
2)M.

This, of course, is nothing but the traditional Hagedorn temperature associated with the SO(32) and E8×E8 heterotic
strings.
By contrast, let us now examine the thermal partition functions for the SO(32) string which are constructed using

non-trivial Wilson lines. For example, if we concentrate on the partition function in Eq. (46), we now find that the
term χI(χIχV +χV χI)O0 is the one which gives rise to thermally massless level-matched states at the lowest possible
temperature. Indeed, the SO(16)×SO(16) character (χIχV +χV χI) gives rise to 32 on-shell (HR, HL) = (−1/2,−1/2)
tachyons, and these are nothing but the 32 tachyons of the non-supersymmetric SO(32) heterotic string which serves
as the T → ∞ endpoint of the corresponding Wilson-line orbifold. Moreover, we find that the (m,n) = (0,±1)

thermal excitations of these states are massless at TH = M/
√
2, massive below this temperature, and tachyonic above

it. Indeed, there are no other tachyonic sectors within Eq. (46) which could give rise to other phase transitions at

lower temperatures. Thus the Hagedorn temperature associated with Eq. (46) is actually given by TH = M/
√
2,

not TH = (2 −
√
2)M, and agrees with the locations of the divergences indicated in Fig. 2. Remarkably, this new

temperature is exactly the same as the Hagedorn temperature of the Type I and Type II strings.
The same is true for Eqs. (47) and (48) as well: each of these thermal partition functions corresponds to TH =

M/
√
2, not TH = (2−

√
2)M. This makes sense, since each of these Wilson lines corresponds to a non-supersymmetric

heterotic model containing on-shell tachyons with worldsheet energies (HR, HL) = (−1/2,−1/2). Indeed, the only
exception is the partition function in Eq. (49). This too makes sense, since the Wilson line in this case corresponds the
SO(16) × SO(16) heterotic string model. Although non-supersymmetric, this string model is tachyon-free. Indeed,
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for the partition function given in Eq. (49), we find that off-shell tachyons with (HR, HL) = (−1/2, 0) arise within
the term χI(χIχS + χSχI)O1/2; these, when dressed with the (m,n) = ±(1/2,−1) thermal excitations within O1/2,

become massless at TH =
√
2M. This is the lowest temperature at which such thermally massless states appear,

which identifies this as the Hagedorn temperature corresponding to the SO(16)× SO(16) Wilson line.
A similar situation exists for the possible thermal extensions of the E8 × E8 string. Examining Eq. (52), we see

that only the sector χIχV χIO0 is capable of giving rise to thermally massless level-matched states; once again, these
are the tachyons with energies (HR, HL) = (−1/2,−1/2) within χIχV χI , dressed with the (m,n) = (0,±1) thermal

excitations within O0. These states are massless at TH = M/
√
2, massive below this temperature, and tachyonic

above it. Thus, we see that TH = M/
√
2 emerges as the Hagedorn temperature following from Eq. (52) as well.

Indeed, the same is also true for Eqs. (53) and (54), while we find that TH =
√
2M for Eq. (55). These results are

precisely in one-to-one correspondence with those for the SO(32) string.
We conclude, then, that the existence of non-trivial Wilson lines in the formulation of finite-temperature heterotic

strings has, in most cases, shifted the corresponding heterotic Hagedorn temperature from TH = (2 −
√
2)M to

TH = M/
√
2. Remarkably, this is the same Hagedorn temperature as that associated with Type II strings. It is easy

to understand why this is the case. Without a non-trivial Wilson line, our thermal heterotic theories are described
by Eq. (15), and the lowest mode contributing within χIχ

2
I is the (tachyonic) ground state of the heterotic theory,

with non-level-matched vacuum energies (HR, HL) = (−1/2,−1). However, as we have seen, turning on the Wilson
lines leading to Eqs. (46), (47), and (48) in the SO(32) case, or to Eqs. (52), (53), and (54) in the E8 × E8 case,
effectively projects this non-level-matched state out of the finite-temperature theory and leaves behind only the “next-
deepest” tachyon with (HR, HL) = (−1/2,−1/2) within χIχIχV . Thus, with these Wilson lines turned on, this new
tachyon becomes the effective ground state of the theory. However, this “next-deepest” tachyon has exactly the same
worldsheet energies (HR, HL) = (−1/2,−1/2) as the ground state of the Type II string. Thus it is not surprising
that the presence of the non-trivial Wilson line shifts the corresponding heterotic Hagedorn temperature in such a
way that it now matches the Type II value.

C. Reconciling the shifted Hagedorn temperature with the asymptotic degeneracies of states

As discussed in Sect. V.A, our analysis of the Hagedorn temperature has thus far been based on an analysis of
the tachyonic structure of our thermal partition functions. Yet we know that there is a tight relation between the
Hagedorn temperature of a given theory and the exponential rate of growth of its asymptotic degeneracies of bosonic
and fermionic states. Specifically, if gM denotes the number of string states with mass M , then the thermal partition
function is given by Z(T ) =

∑
gMe

−M/T . However, if gM ∼ eαM as M → ∞, then Z(T ) diverges for T ≥ TH ≡ 1/α.
This appears to provide a firm link between the Hagedorn temperature and the asymptotic degeneracy of states.
Of course,

∑
gMe

−M/T is not a proper string-theoretic partition function. However, even when we utilize a proper
string-theoretic partition function Zstring(τ, T ) and calculate a proper string-theoretic amplitude as in Eq. (3) in the
S-representation, the same basic argument continues to apply.
We are thus left with the critical question: How can we justify a shifted Hagedorn temperature TH = M/

√
2 for

heterotic strings, given that the zero-temperature bosonic and fermionic densities of heterotic states are apparently
unchanged? This question is particularly urgent, given that the feature which is inducing this shift in the Hagedorn
temperature — namely the introduction of a non-trivial thermal Wilson line — does not affect the zero-temperature
theory in any way. Specifically, an increase in the Hagedorn temperature of the heterotic string from the traditional
value TH = 2M/(2+

√
2) to a new, higher value TH = M/

√
2 would seem to require a corresponding decrease in the

exponential rate of growth of the asymptotic density of heterotic string states. In what sense can we understand such
a decrease?
To answer this question, let us look again at the original partition function of the zero-temperature ten-dimensional

SO(32) heterotic string model in Eq. (43). Recall that χV and χS indicate the transverse SO(8) Lorentz spins of
the different states which contribute in this theory. As a result of spacetime supersymmetry, this partition function
vanishes identically — i.e., all of its level-degeneracy coefficients are identically zero. There is no exponential growth
here at all. But of course one does not examine the total partition function in order to derive a Hagedorn temperature;
one instead looks at its separate bosonic and fermionic contributions. Ordinarily, these contributions would be
identified on the basis of the Lorentz spins of these states as

Z
(bosonic)
SO(32) = Z

(8)
boson χV (χ2

I + χ2
V + χ2

S + χ2
C) , Z

(fermionic)
SO(32) = −Z(8)

boson χS (χ2
I + χ2

V + χ2
S + χ2

C) , (68)

and indeed each of these expressions separately exhibits an exponential rise in the degeneracy of states which is
consistent with the traditional heterotic Hagedorn temperature.
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But what do we really mean by “bosonic” and “fermionic” in this context? For most purposes, we would identify
states as “bosonic” or “fermionic” based on their Lorentz spins, as above. Moreover, by the spin-statistics theorem,
this is equivalent to identifying states as bosonic or fermionic based on their zero-temperature quantization statistics.
However, for the purposes of computing a Hagedorn temperature, we should really be focused on a thermodynamic

definition of “bosonic” and “fermionic” wherein we identify states as bosons or fermions on the basis of their Matsubara
frequencies, i.e., on the basis of their modings around the thermal circle. Of course, under normal circumstances, all
three of these identifications are equivalent. However, we have already seen in Sect. III that this chain of equivalences
is modified in the presence of a non-trivial Wilson line: certain states which are “bosonic” in terms of their Lorentz
spins and zero-temperature quantization statistics can nevertheless have half-integer modings m ∈ ZZ + 1/2 around
the thermal circle, while other states which are “fermionic” in terms of their Lorentz spins and zero-temperature
quantization statistics can nevertheless have integer modings m ∈ ZZ around the thermal circle. Thus, in the presence
of a non-trivial Wilson line, certain bosonic states can behave as fermions from a thermodynamic standpoint, and
certain fermionic states can behave as bosons.
We emphasize that this is not a violation of the spin-statistics theorem. Indeed, the spin-statistics theorem is

believed to hold without alteration in string theory, providing a connection between the Lorentz spin of a state and its
zero-temperature quantization statistics [1]. Rather, as discussed in Sect. III, the effect of the Wilson line is to modify
the thermodynamic manifestation of these properties as far as their Matsubara modings are concerned. For issues
pertaining to zero-temperature physics, these thermodynamic manifestations may be of little consequence. However,
when we seek to understand the thermal properties of a theory, these modifications are critical.
Therefore, if we seek to understand the spectra of bosonic and fermionic states in the heterotic string for thermo-

dynamic purposes , we should return to the partition function in Eq. (43) and separate this expression into individual
contributions from bosonic and fermionic states on the basis of their Matsubara modings around the thermal circle.
It is here where the Wilson line comes into play.
Let us begin by considering the case of the SO(32) string. Without a Wilson line, we know that bosonic states

will correspond to integer Matsubara modings m ∈ ZZ and fermionic states will correspond to half-integer modings
m ∈ ZZ+1/2. This corresponds to the traditional identifications in Eq. (68), and these lead to the traditional Hagedorn

temperature TH = (2 −
√
2)M.

However, under the influence a non-trivial Wilson line, these identifications can change. For example, let us consider
the case of the Wilson line corresponding to Eq. (46). In this case, the “bosonic” contributions to Eq. (43) must be
identified as those which multiply the thermal sum E0 in Eq. (46), while the “fermionic” contributions to Eq. (43) must
be identified as those which multiply the thermal sum E1/2 in Eq. (46). In other words, we replace the identifications
in Eq. (68) with

Z̃
(bosonic)
SO(32) = Z

(8)
boson

[
χV (χ2

I + χ2
V ) − χS (χ2

S + χ2
C)

]
,

Z̃
(fermionic)
SO(32) = −Z(8)

boson

[
χS (χ2

I + χ2
V ) − χV (χ2

S + χ2
C)

]
. (69)

In the presence of the non-trivial Wilson line, it is therefore these expressions which serve to define our separate
bosonic and fermionic contributions to Eq. (43), and indeed their sum

Z̃
(bosonic)
SO(32) + Z̃

(fermionic)
SO(32) (70)

correctly reproduces the expression in Eq. (43).
Given these results, we can now calculate the exponential rates of growth in the degeneracies of the states contribut-

ing to Z̃
(bosonic)
SO(32) and Z̃

(fermionic)
SO(32) in Eq. (69). We find that while each individual term within Z̃

(bosonic)
SO(32) and Z̃

(fermionic)
SO(32)

in Eq. (69) continues to exhibit the traditional rate of growth associated with the traditional Hagedorn temperature

for heterotic strings, the minus signs within Z̃
(bosonic)
SO(32) and Z̃

(fermionic)
SO(32) have the net effect of cancelling this dominant

exponential behavior, leaving behind only a smaller exponential rate of growth for the state degeneracies corresponding

to Z̃
(bosonic)
SO(32) and Z̃

(fermionic)
SO(32) . Moreover, as expected, this smaller exponential rate of growth precisely matches the

rate of growth that corresponds to the new (increased) heterotic Hagedorn temperature TH = M/
√
2. Similar results

also hold the Wilson lines associated with Eqs. (47) and (48).
It may seem strange that two terms, each exhibiting a dominant exponential growth rate, can be subtracted and

leave behind a sub-dominant exponential growth rate. Yet this phenomenon is well known for modular functions
such as these, and has been shown to operate in other string-theoretic contexts [39–41, 43]. We emphasize that this

subtraction is relevant only in the sense that it deforms the exponential growth rate when we count Z̃
(bosonic)
SO(32) and

Z̃
(fermionic)
SO(32) separately. Each string state still continues to appear with positive unit weight in the string Fock space,
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as always, and still contributes to the overall partition function with unit weight and an appropriate sign (positive
for spacetime bosons, negative for spacetime fermions).
Similar results hold for the E8 ×E8 heterotic string. Without a Wilson line, the usual identification of bosonic and

fermionic states is nothing but

Z
(bosonic)
E8×E8

= Z
(8)
boson χV (χI + χS)

2 , Z
(fermionic)
E8×E8

= −Z(8)
boson χS (χI + χS)

2 . (71)

However, in the presence of the Wilson line associated with Eq. (52), we find that our new thermal identification of
bosonic and fermionic states is given by

Z̃
(bosonic)
E8×E8

= Z
(8)
boson (χV χI − χS χS) (χI + χS)

Z̃
(fermionic)
E8×E8

= −Z(8)
boson (χS χI − χV χS) (χI + χS) . (72)

Just as with the SO(32) string, the minus signs within Eq. (72) lead to state degeneracies which show a reduced
exponential growth — one which is precisely in accordance with the new, increased heterotic Hagedorn temperature
associated with this Wilson line. Similar results also hold the Wilson lines associated with Eqs. (53) and (54).
This, then, is the essence of the manner in which the asymptotic density of states is ultimately reconciled with

the modified Hagedorn temperature for heterotic strings. The presence of the non-trivial Wilson line “deforms”
the thermal identification of bosonic and fermionic states, trading states between the separate sets of bosonic and
fermionic states in such a way that the net exponential rate of growth for the asymptotic state degeneracy of each set
is reduced.
There are also other ways to understand this result. For example, one might argue on general conformal-field-

theory (CFT) grounds that such a change in the Hagedorn temperature should not be possible. After all, there exists
a general result which relates the Hagedorn temperature of a given closed-string theory to the central charges (cR, cL)
of its underlying worldsheet CFT’s:

TH =

(√
cL
24

+

√
cR
24

)−1

M . (73)

For Type II strings, we have (cR, cL) = (12, 12), while for heterotic strings, we have (cR, cL) = (12, 24). However, in
deriving Eq. (73), there is only place in which the central charges enter: this is in setting the ground-state energies
(HR, HL) = (−cR/24,−cL/24). Moreover, as we have seen in Sect. V.B, the Wilson line has effectively projected the
true heterotic ground state with (HR, HL) = (−1/2,−1) out of the spectrum, leaving behind only the “next-deepest”
tachyon with (HR, HL) = (−1/2,−1/2) to serve as the effective ground state of the theory. Thus, in the presence of
the Wilson line, the effective central charges of the theory become (cR, cL) = (12, 12), just as for Type II strings.
We see, then, that the introduction of a non-trivial Wilson line induces both a shift in the vacuum energy of the

effective ground state and a shift in the asymptotic rates of growth for the state degeneracies. These shifts, of course,
are flip sides of the same coin, deeply related to each other through modular transformations. Indeed, these are
nothing but equivalent UV/IR descriptions of the same phenomenon, all arising due to the existence of the non-trivial
Wilson line. Under Poisson resummation, a half-integer shift in the moding of a given set of string states around
the thermal circle translates into an overall ZZ2 phase (i.e., a minus sign) in front of the corresponding character
in the partition function. Thus the Wilson line, which shifts the apparent thermal modings of certain states in the
theory, necessarily induces a corresponding change in the asymptotic state degeneracies and a corresponding shift in
the Hagedorn temperature of the theory.
We thus conclude that the introduction of a non-trivial Wilson line has the potential to change the Hagedorn

temperature of the resulting thermal theory, and in many cases actually shifts this temperature from its traditional
heterotic value to a new value which is the same as that associated with Type I and Type II strings. Indeed, although
the heterotic string would näıvely appear to have a slightly lower Hagedorn temperature than the Type II string due
to its non-level-matched ground state, we see that the introduction of a non-trivial Wilson line has the potential to
eliminate this discrepancy. Such Wilson lines deform the effective worldsheet central charges of the heterotic theory as
far as its thermal properties are concerned, and lead to new, effective ground states for the theory as well as modified
rates of exponential growth for the corresponding bosonic and fermionic densities of states. Both effects then alter
Hagedorn temperature of the heterotic string, and potentially bring it into agreement with the Type I and Type II
value.

D. The “spectrum” of Hagedorn temperatures: A general classification

As we have seen in Sect. V.B, the thermal heterotic theories without Wilson lines have the Hagedorn temperature
TH = (2−

√
2)M; indeed, this is the case because the relevant partition functions in Eq. (15) each contain a term of
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the form χIχ
2
IO1/2. Indeed, such a term encapsulates the contribution of the (HR, HL) = (−1/2,−1) tachyon, and

this is the state which, when dressed with the thermal excitations (m,n) = ±(1/2, 1) within O1/2, is massive at low

temperatures but becomes massless at TH = (2 −
√
2)M.

By contrast, we found that this state is projected out of the thermal partition function when non-trivial Wilson
lines are introduced. For example, for the Wilson lines leading to Eqs. (46) and (52), we found that the “next-
deepest” remaining tachyons have worldsheet energies (HR, HL) = (−1/2,−1/2); indeed, these are the tachyons
which contribute to the terms χIχV χIO0 which appear within Eqs. (46) and (52). These tachyons, when dressed with

the (m,n) = (0,±1) thermal excitations within O0, are massless at TH = M/
√
2, massive below this temperature,

and tachyonic above it. Thus, TH = M/
√
2 emerges as the Hagedorn temperature corresponding to these choices of

Wilson lines. We found that this result also holds for the Wilson lines leading to Eqs. (47), (48), (53), and (54). By

contrast, we found that the Hagedorn temperature is TH =
√
2M for the Wilson lines leading to Eqs. (49) and (55).

Indeed, in these cases, even the (HR, HL) = (−1/2,−1/2) tachyons are projected out of the spectrum, so that the
lowest possible remaining tachyons have (HR, HL) = (−1/2, 0) and contribute to the O1/2 sector.
Given these results, it is natural to wonder whether other Hagedorn temperatures might also be possible. Indeed, one

might even wonder whether there exist Wilson lines for which the Hagedorn transition might be avoided completely!
Of course, neither of these options is possible for the supersymmetric heterotic strings in ten dimensions, for we
have presented a complete classification of all self-consistent Wilson lines in such cases, and our results are quoted
above. However, in lower dimensions, this might no longer be the case. In fact, in lower dimensions, even the Type II
superstrings can have non-trivial Wilson lines which are associated with the gauge symmetries that emerge upon
compactification. Thus, these questions become relevant for Type II strings as well as heterotic.
Towards this end, we shall now provide a general classification all of the Hagedorn temperatures which can ever

be realized for closed strings with non-trivial Wilson lines. Our analysis will apply to all closed strings, both Type II
and heterotic.
For concreteness, we shall restrict our attention to theories built from only ZZ2 orbifolds, so that HL,R are quantized

in half-integer values. Given the heterotic constraints HL ≥ −1 and HR ≥ −1/2 (which also subsume the Type II
constraints HL,R ≥ −1/2), we then find that there are only eight different terms which could possibly appear in
Zstring(τ, T ) and trigger a Hagedorn transition. These are listed in Table I, along with their corresponding thermal
excitations and Hagedorn temperatures [obtained by solving Eq. (67)]. It is interesting to note the mathematical fact
that these terms come in “dual” pairs under which TH/M → 2M/TH and (E0, E1/2,O0,O1/2) → (E0,O0, E1/2, O1/2).
Roughly speaking, this duality corresponds to exchanging the direction of the corresponding “interpolating” thermal
partition functions, exchanging the T = 0 and T → ∞ endpoints. Although this “thermal duality” phenomenon has
played a significant role in other work [1, 3, 6, 7, 44, 45]), it will not be critical for the following discussion. We can
therefore view the emergence of this duality within Table I as a mere mathematical curiosity.

HR HL Thermal Function Thermal Modes (m,n) TH/M
A −1/2 −1 O1/2 ±(1/2, 1) 2−

√
2

(also 2 +
√
2)

B −1/2 −1/2 E0 (0, n), n ∈ 2ZZ |n|/
√
2

(m, 0), m ∈ ZZ
√
2/|m|

C −1/2 −1/2 O0 (0, n), n ∈ 2ZZ+ 1 |n|/
√
2

D −1/2 −1/2 E1/2 (m, 0), m ∈ ZZ+ 1/2
√
2/|m|

E 0 −1/2 O1/2 ±(1/2, 1)
√
2

F −1/2 0 O1/2 ±(1/2,−1)
√
2

G 0 −1 O0 ±(1, 1) 1

H 0 −1 E1/2 ±(1/2, 2) 2

TABLE I: Complete set of possible terms (labeled A through H) which can potentially trigger a Hagedorn transition for string
models built with ZZ2 orbifolds. As discussed in the text, Case A is responsible for the traditional heterotic Hagedorn transition,
while Case C with n = 1 is responsible for the traditional Type II Hagedorn transition as well as the “shifted” heterotic Hagedorn
transition. Cases B and D can only arise in theories which are already tachyonic (and hence unstable) at zero temperature,
while Case H is guaranteed to arise for all heterotic strings which are supersymmetric at zero temperature. Observe that all
of these possibilities come in “dual” pairs under which TH/M → 2M/TH and (E0, E1/2,O0,O1/2) → (E0,O0, E1/2, O1/2). Thus
the two possibilities within Cases A and B are dual to each other, while Cases C and G are dual to Cases D and H respectively
(and vice versa). By contrast, Cases E and F are each self-dual. Note that Cases A, G, and H are unique to heterotic strings,
while all other cases can in principle arise in both heterotic and Type II strings.
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As we have already seen, Case A is responsible for the traditional heterotic Hagedorn transition and leads to the
lowest possible Hagdorn temperature TH = (2−

√
2)M. Likewise, Case C with n = 1 is responsible for the traditional

Type II Hagedorn transition as well as the shifted heterotic Hagedorn transitions with TH = M/
√
2. Indeed, this

case produces what is ultimately the “next-lowest” Hagedorn temperature, and as such it dominates [when present
within Zstring(τ, T )] over any other terms which may also simultaneously appear within Zstring(τ, T ). Indeed, in ten
dimensions, our complete enumeration of all possible non-trivial Wilson lines in the heterotic case has demonstrated
that Case C with n = 1 arises in all but SO(16)× SO(16) cases. By contrast, the SO(16)× SO(16) Wilson lines are
examples of Case F.
Ultimately, the question of which of these terms ends up dominating for a given string model in D < 10 dimensions

is likely to be addressable only on a case-by-case basis. Nevertheless, it is easy to see that Cases B and D can only
arise for string models which are already tachyonic (and hence unstable) at zero temperature; this follows from the
fact that the solutions for their corresponding Hagedorn temperatures, as shown in Table I, always include the cases
with n = 0 or m → ∞. This can also be seen by taking the direct T → 0 limit of the terms in each of these cases.
Thus, Cases B and D need not concern us further.
Given this situation, it is natural to wonder whether there are any Wilson-line choices for which the Hagedorn

transition is eliminated completely — i.e., string models in which no thermally massless states appear at any temper-
ature, and in which none of the remaining cases listed in Table I arise. However, we shall now prove that this cannot
happen for any heterotic string which is supersymmetric at zero temperature, regardless of its spacetime dimension.
In particular, we shall demonstrate that Case H will always arise for such strings, giving rise to a Hagedorn transition
at TH = 2M if no earlier Hagedorn transition has occurred at lower temperature.
Our argument is completely general since it is based on considerations of the most generic massless states in the

perturbative heterotic string: those associated with the gravity multiplet. Recall that in the heterotic string, the
graviton is realized in the Neveu-Schwarz sector as

graviton: gµν ⊂ b̃µ
−1/2|0〉R ⊗ αν

−1|0〉L (74)

where b̃µ
−1/2 and αν

−1 are respectively the excitations of the right-moving worldsheet Neveu-Schwarz fermion ψ̃µ and

left-moving worldsheet coordinate boson Xν. Since the Neveu-Schwarz heterotic-string ground state has vacuum
energies (HR, HL) = (−1/2,−1), the states in Eq. (74) are both level-matched and massless, with (HR, HL) = (0, 0).
These states include the spin-two graviton, the spin-one antisymmetric tensor field, and the spin-zero dilaton.
In a similar vein, any model exhibiting spacetime supersymmetry must also contain the gravitino state, realized in

the Ramond sector of the heterotic string as

gravitino: g̃αν ⊂ {b̃0}α|0〉R ⊗ αν
−1|0〉L . (75)

Here {b̃0}α schematically indicates the Ramond zero-mode combinations which collectively give rise to the spacetime
Lorentz spinor index α, as required for the spin-3/2 gravitino state.
Regardless of the particular GSO projections inherent in the particular string model under consideration, we know

that the graviton state in Eq. (74) must always appear in the string spectrum. Likewise, if the model has spacetime
supersymmetry, we know that the gravitino state in Eq. (75) must exist as well. However, it is then straightforward
to show that this implies that certain additional off-shell tachyons must also exist in the string spectrum. Specifically,
regardless of the particular GSO projections, the off-shell spectrum will always contain a spin-one “proto-graviton”
state φµ in the Neveu-Schwarz sector:

proto-graviton: φµ ≡ b̃µ
−1/2|0〉R ⊗ |0〉L ; (76)

likewise, if the model is spacetime supersymmetric, the off-shell spectrum will always contain a spin-1/2 “proto-
gravitino” state ψα in the Ramond sector:

proto-gravitino: ψα ≡ {b̃0}α|0〉R ⊗ |0〉L . (77)

Note that these are the same states as the graviton/gravitino, except that in each case the left-moving bosonic
excitation is lacking. However, it is important to realize that GSO projections are completely insensitive to the

presence or absence of excitations of the worldsheet coordinate bosonic fields . This is indeed a general property of
GSO projections. Thus, since the graviton is always present in the on-shell spectrum, it then follows that the proto-
graviton must also always be present in the off-shell spectrum; likewise, if the model is supersymmetric and the
gravitino is present in the on-shell spectrum, then the proto-gravitino must also always be present in the off-shell
spectrum. Thus, we conclude that the proto-graviton and proto-gravitino are two off-shell tachyons with worldsheet
energies (HR, HL) = (0,−1) which generically appear in all supersymmetric heterotic string models.
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This does not, in and of itself, guarantee that these states will contribute to the thermal partition function
Zstring(τ, T ) within the specific O1/2 or E1/2 sectors that Cases G or H would require. Fortunately, however, it
is not too difficult to determine which sectors will contain these states. Like the graviton and gravitino states from
which they are derived, these proto-graviton and proto-gravitino states must exist in the zero-temperature theory and
thus must survive the zero-temperature limit. This implies that these states must appear in the E sectors, not the
O sectors. Moreover, since neither of these states carries any gauge charges, neither can be affected by the presence
of a Wilson line. As a result, we know that the (bosonic) proto-graviton state must appear in the E0 sector (which
has integer modings around the thermal circle), while the (fermionic) proto-gravitino state must appear in the E1/2
sector (which has half-integer modings).
Given these results, we conclude that while the proto-graviton state will never lead to any of the cases in Table I,

the proto-gravitino state leads directly to Case H. Moreover, as we have argued on general grounds, this state is
always present in any heterotic model which is supersymmetric at zero temperature. As a result, we conclude that
the proto-gravitino state — dressed with (m,n) = ±(1/2, 2) thermal excitations — will always exist and trigger a
Hagedorn-like transition at temperature TH = 2M (provided no other phase transition has occurred at any lower
temperature).
This transition is somewhat different from the typical Hagedorn transition, however. In general, the total spacetime

mass Mtot of a given (HR, HL) state dressed with (m,n) thermal excitations varies with the temperature T according
to

α′M2
tot = 2

[
HR + 1

4 (ma− n/a)2 +HL + 1
4 (ma+ n/a)2

]
(78)

where a ≡ T/M. However, for the proto-gravitino (Case H), this becomes

α′M2
tot =

a2

4
+

4

a2
− 2 , (79)

whereupon we see that the thermal excitation of the proto-gravitino state never becomes tachyonic! Indeed, this state
is massive for all a < 2, and merely hits masslessness at a = 2 before becoming massive again at higher temperatures.
Of course, this result is completely consistent with the fact that the proto-gravitino state is fermionic, since the
existence of a physical fermionic tachyon at any temperature would violate Lorentz invariance.
However, given that this state never becomes tachyonic, it is natural to wonder whether this state can ever give rise

to a Hagedorn transition. Indeed, since no tachyon ever develops, the free-energy density F (T ) will never diverge. To
study this issue, let us define the vacuum amplitude V(T ) ≡ F (T )/T , whereupon we observe that the (m,n) = (1/2, 2)
thermal excitation of the proto-gravitino state makes a contribution to V(T ) given by

V(T ) = − 1
2MD−1

∫

F

d2τ

τ22
τ
1−D/2
2

√
τ2

1

q

[
q(a/2−2/a)2/4q(a/2+2/a)2/4

]
+ ...

= − 1
2MD−1

∫

F

d2τ

τ22
τ
1−D/2
2

√
τ2 e2πτ2 e−πτ2(a

2/4+4/a2) + ... (80)

where we have left the temperature a ≡ T/M arbitrary. Note that the leading 1/q factor in the first line of Eq. (80)
represents the zero-temperature contribution from the proto-gravitino, with (HR, HL) = (0,−1), while the remaining
factor in brackets represents the thermal contribution with (m,n) = (1/2, 2). Likewise, we have carefully recorded all
factors of τ2 ≡ Im τ : two factors of τ2 arise in the denominator from the modular-invariant measure of integration,
(1−D/2) factors arise in the numerator from the zero-temperature partition function, and an additional factor

√
τ2

arises in the numerator from the definitions of the E ,O thermal sums. However, at a = 2, this expression reduces to

V(T )
∣∣∣∣
a=2

= − 1
2MD−1

∫

F

d2τ

τ22
τ
1−D/2
2

√
τ2 + ... (81)

and as τ2 → ∞, this contribution scales like

∫ ∞ dτ2

τ
(1+D)/2
2

. (82)

This contribution is therefore finite for all D ≥ 2. This, of course, agrees with our usual expectation that a massless
state does not lead to a divergent vacuum amplitude in two or more spacetime dimensions.
It is important to realize that even though V(T ) remains finite for all temperatures, a phase transition still occurs;

indeed the sudden appearance of a new massless state at a critical temperature signals the appearance of a new
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long-range order that was not present previously. Therefore, in order to elucidate the effects of this massless state, let
us now investigate temperature derivatives of V(T ). As evident from the second line of Eq. (80), each temperature
derivative d/dT ∼ d/da brings down an extra factor of τ2. In general, this thereby increases the tendency towards
divergence of our thermodynamic quantities.
Our results are as follows. The contribution of this thermally excited proto-gravitino state to the first derivative

dV/da is given by

dV
da

= πMD−1

∫

F

d2τ

τ22
τ
1−D/2
2

√
τ2 τ2

(
a

4
− 4

a3

)
e2πτ2 e−πτ2(a

2/4+4/a2) + ..., (83)

but at the temperature a = 2 we see that the factor in parentheses within Eq. (83) actually vanishes:

dV
da

∣∣∣∣
a=2

= 0 . (84)

It turns out that this is a general property, reflecting nothing more than the fact that the slope of the mass function
in Eq. (79) vanishes at its minimum, as it must. However, taking subsequent derivatives and evaluating at a = 2, we
find the general pattern

dpV
dap

∣∣∣∣
a=2

= MD−1

∫

F

d2τ

τ22
τ
1−D/2
2

√
τ2 fp(τ2) + ... (85)

where fp(τ2) for p ≥ 2 is a rank-r polynomial in τ2 of the form

fp(τ2) = Ap τ
r
2 + Bp τ

r−1
2 + Cpτ

r−2
2 ... , (86)

where

r =

{
p/2 for p even
(p− 1)/2 for p odd ,

(87)

and where the leading coefficients Ap are positive for p = 1, 2 (mod 4) and negative for p = 0, 3 (mod 4), with
alternating signs for the lower-order coefficients Bp, Cp, etc. Given these extra leading powers of τ2, we thus find that
as a result of the proto-gravitino state,

dpV
dT p

diverges for

{
D ≤ p for p odd
D ≤ p+ 1 for p even .

(88)

Equivalently, in D ≥ 2 spacetime dimensions, the proto-gravitino state results in a divergence that first occurs for
dpV/dT p, where

p =
{
D for D even
D − 1 for D odd .

(89)

This divergence then corresponds to a very weak, pth-order phase transition. In particular, for D = 4, this would be a
fourth-order phase transition in which d2cV /dT

2 diverges, causing dcV /dT to experience a discontinuity, the specific
heat cV itself to experience a kink, and the internal energy function to have a discontinuous change in curvature.
Similar kinds of phase transitions have also been discussed for two-dimensional heterotic strings in Ref. [38], and for
Type I strings with non-trivial Wilson lines in Ref. [10]. These results for heterotic strings were first discussed in
Ref. [46].
We stress that it is not merely the masslessness of this thermally-enhanced proto-gravitino state that results in this

phase transition. It is the fact that this masslessness is achieved thermally, with non-trivial thermal momentum and
winding quanta, that induces this phase transition. By contrast, a regular massless state such as the usual graviton
or gravitino does not contribute to any temperature derivatives of V .
Thus, we conclude that for supersymmetric heterotic strings, it is never possible to completely evade a Hagedorn-

like phase transition. Indeed this result holds regardless of the specific Wilson line chosen when constructing the
finite-temperature theory. However, the phase transition associated with the proto-gravitino state appears only at the
relatively high temperature TH ≡ 2M, and thus will be completely irrelevant if tachyon-induced Hagedorn transitions
appear at lower temperatures.



29

VI. A GLOBAL THERMAL “LANDSCAPE”: STABILITY AND METASTABILITY FOR

FINITE-TEMPERATURE STRINGS

Finally, in order to obtain a more global sense of the thermodynamic relations between different Wilson-line choices
discussed in Sect. IV — and also in order to perform a more detailed comparison between the Type I and heterotic
cases — we now enlarge our perspective and consider the general space of allowed Wilson lines for these thermal
string theories. Our goal is to understand the behavior of the corresponding free energies of these theories as the
underlying Wilson lines are allowed to vary. Note that in general, we could also consider the variation of a whole host of
background fields and other moduli (such as the dilaton and temperature, or equivalently the thermal compactification
radius); such analyses appear, e.g., in Refs. [47, 48]. Indeed, generic issues arising within this context are not only
the dilaton-runaway problem but also a temperature-runaway problem (a stringy “greenhouse” effect!). However, for
the purposes of our discussion, it will be sufficient to restrict our attention to those flat background gauge fields with
vanishing field strengths — i.e., to the space of allowed Wilson lines in these thermal theories.
Such an analysis is also important for another reason. As we have discussed, our approach to generating the

finite-temperature extension of a given zero-temperature string model is to treat these Wilson lines as free parameters
that allow us to scan across all possible finite-temperature thermal partition functions, and to attempt to identify
which Wilson line might lead to a minimum of the free energy with respect to variations of the Wilson line. Of
course, in doing this we have tacitly been assuming that such a minimum is unique and is thus a global minimum.
However, this need not be the case: such solutions might also correspond to local minima. In other words, adopting
a terminology that suggests the possibility of “tunnelling” transitions between theories with different Wilson lines,
we may refer to our preferred Wilson-line choice as leading to a thermal vacuum which is either thermodynamically
stable or thermodynamically metastable within this sixteen-dimensional space. Resolving this issue therefore requires
understanding something of the global structure of the free energy as a function of the possible Wilson-line choices.

A. The thermal SO(32) Type I landscape

In this section, it will prove simpler to begin by considering the case of the Type I string. We have already seen
in Sect. IV that the SO(32), SO(8)×SO(24), SO(16)× SO(16), and U(16) cases correspond respectively to Wilson-
line parameters given in Eq. (63). However, we now shall enlarge our discussion by considering each of the sixteen

components of ~ℓ to be an independent general free parameter, and examine the free energy F (T ) as a function over
the resulting sixteen-dimensional parameter space {ℓi}, i = 1, ..., 16.
In general, it is relatively easy to calculate the general expressions that describe the Type I component partition

functions as general functions of the sixteen parameters {ℓi}, i = 1, ..., 16. As we have discussed in Sect. IV, since
the closed-string states are neutral with respect to the SO(32) gauge group, their contributions to the total torus
and Klein-bottle amplitudes are insensitive to the appearance of the Wilson line. As a consequence, the results for
ZT(τ, T ) and ZK(τ, T ) in Eq. (27) remain valid even when a Wilson line is turned on. By contrast, as discussed
above, the states contributing to the cylinder and Möbius partition functions carry gauge charges and consist of an
anti-symmetric tensor (the adjoint representation) of the gauge group as well as a (reducible) symmetric tensor of the
gauge group. If we denote by ΛS and ΛA the sets of gauge charges associated with these symmetric and anti-symmetric
representations, respectively, we then find using the results in Eq. (41) that an arbitrary Wilson line parametrized by
~ℓ causes the thermal cylinder and Möbius partition functions in Eq. (27) to take the shifted forms [17, 49]:

cylinder : ZC(τ2, T ) = 1
2 Z

(8)
open

∑

m∈ZZ


 ∑

~λ∈ΛA

(
χV Pm+~λ·~ℓ − χSPm+

1
2+

~λ·~ℓ

)
+

∑

~λ∈ΛS

(
χV Pm+~λ·~ℓ − χSPm+

1
2+

~λ·~ℓ

)


Mobius : ZM(τ2, T ) = 1
2 Ẑ

(8)
open

∑

m∈ZZ


 ∑

~λ∈ΛA

(
χ̂V Pm+~λ·~ℓ − χ̂SPm+

1
2+

~λ·~ℓ

)
−

∑

~λ∈ΛS

(
χ̂V Pm+~λ·~ℓ − χ̂SPm+

1
2+

~λ·~ℓ

)
 .

(90)

It is straightforward to check that in the special case with ~ℓ = 0, these expressions recombine to reproduce the results
in Eq. (27), with the 1

2N(N + 1)-dimensional symmetric representation of SO(32) and the 1
2N(N − 1)-dimensional

anti-symmetric representation of SO(32) adding and subtracting to produce the overall multiplicities N2 and N
respectively.
Given the general expressions given in Eqs. (90), we can now examine the corresponding free-energy thermal

“landscape”. Performing this analysis is relatively straightforward. Setting to zero the first derivatives of these
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partition functions with respect to the 16 parameters ℓi gives us the critical points of this theory — note that
this condition also ensures the consistency of the string vacuum in question by ensuring that all one-loop one-point
functions vanish. Whether the extremum in question is a local maximum, minimum, or saddle point (or potentially
even lying along a flat direction) can then be determined by examining the Hessian matrix of second derivatives.
Our results are not unexpected. As already anticipated, our thermodynamically preferred SO(32) case corresponds

to a local minimum which also turns out to be a global minimum. Thus this solution is thermodynamically stable. By
contrast, each of the other cases listed in Eq. (63) is either a saddle point or local maximum. There are no metastable
local (but not global) minima.
It proves instructive to consider a two-dimensional projection of this sixteen-dimensional parameter space. One

such projection which distinctly captures all of the cases in Eq. (63) comes from restricting our attention to Wilson
lines of the form

~ℓ = ((ℓ)n(0)16−n) (91)

where ℓ and n are taken to be our two free parameters, with 0 ≤ ℓ < 1 and 0 ≤ n ≤ 16. In the T-dual theory, this
Wilson line corresponds to having n D8-branes coincident at the point 2πℓ on the thermal circle and the remaining
(16− n) D8-branes coincident with an orientifold fixed plane. In terms of these two parameters (ℓ, n), the four cases
in Eq. (63) are given by

non−SUSY SO(32) : (ℓ, n) =





(0, n) for any n
(ℓ, 0) for any ℓ ∈ ZZ

(12 , 16)

SO(8)× SO(24) : (ℓ, n) = (12 , 4) and (12 , 12)

SO(16)× SO(16) : (ℓ, n) = (12 , 8)

U(16) : (ℓ, n) = (14 , 16) and (34 , 16) . (92)

Although n is restricted to an integer, we will allow n to range continuously within the range 0 ≤ n ≤ 16. Non-integer
values of n can be interpreted physically in the T-dual theory as effectively capturing the dynamics of a configuration
with a total of 16 branes (and 16 image branes), some of which may be located at points other than 0 and 2πℓ.
In Fig. 4 we plot the total Type I free-energy density F (T ) as a function of n and φ ≡ 2πℓ. As we see from Fig. 4,

each of the cases we have examined in Eq. (92) appears as a critical point. Moreover, the non-SUSY SO(32) theory
appears as the global minimum. It is worth noting that the contour plot in Fig. 4 corresponds to a fixed reference
temperature T = 2M/3. As the temperature decreases, this contour becomes increasingly flat, becoming completely

FIG. 4: Two views of the Type I free-energy density F (T ) in units of 1
2
M10, plotted as a function of Wilson-line parameters

(φ, n) for fixed reference temperature T = 2M/3, where φ ≡ 2πℓ. The points corresponding to the specific cases listed in
Eq. (92) are also indicated.
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flat at T = 0 (signalling the restoration of spacetime supersymmetry). On the other hand, as the temperature

increases, the variations in this contour plot grow without bound, ultimately diverging as T → M/
√
2 (signalling the

approach to the Hagedorn transition).
It is also worth noting that this contour plot is periodic in the φ variable, with a periodicity of magnitude ∆φ = 2π

(or equivalently ∆ℓ = 1). This periodicity arises because the perturbative Type I string contains states in only
those “vectorial” SO(32) representations (corresponding to the adjoint representation, the symmetric tensor, end

the singlet) whose SO(32) charges ~λ have integer coefficients. By contrast, if the perturbative Type I string had

contained states in spinorial representations of SO(32) (with charge vectors ~λ containing half-integer components),
the periodicity of the resulting free-energy contour plot would have been twice as large, with ∆φ = 4π. In such a
case, we could expand the list of Wilson lines in Eq. (63), formally distinguishing two different classes of Wilson lines
which preserve the SO(32) gauge group of the Type I model:

SO(32)A : ~ℓ = ((1)n(0)16−n) for n ∈ 2ZZ

SO(32)B : ~ℓ = ((1)n(0)16−n) for n ∈ 2ZZ+ 1 . (93)

The case with vanishing Wilson line is thus of type SO(32)A. Of course, since the perturbative SO(32) Type I string
does not contain SO(32) spinorial states, both classes of Wilson lines lead to the same thermal Type I model.

B. The thermal SO(32) heterotic landscape

For the purpose of comparison, we now subject the ten-dimensional supersymmetric SO(32) heterotic string to the
same analysis.
The effects of Wilson lines on the thermal heterotic string are similar to the effects of Wilson lines on the thermal

Type I string, with one notable exception: the fact that the heterotic string is closed implies that the thermal string
spectrum contains not only momentum modes but also winding modes around the thermal circle. The effects of
Wilson lines therefore affect both of these quantum numbers, as indicated in Eq. (42).
Given this, it is straightforward to generate the heterotic thermal partition functions which include the effects of

generalized Wilson lines. To do this, we can begin with the thermal partition function corresponding to the special

case with ~ℓ = 0:

Z(τ, T ) = Z
(8)
boson ×

{
χV (χI + χS) E0

− χS (χI + χS) E1/2
− χC (χI + χS) O0

+ χI (χI + χS) O1/2

}
(94)

where the holomorphic χi functions are the characters associated with the SO(32) gauge group. We can then use the

results in Eq. (42) in order to incorporate the effects of a general Wilson line ~ℓ. To do this, we first recall from the
Appendix that the E and O functions in Eq. (94) are given by double sums of the form given in Eq. (A2), where the
thermal momentum and winding numbers in the sum in Eq. (A2) are restricted to the sets

E0 : Λ0,0 ≡ {m ∈ ZZ, n even}
E1/2 : Λ 1

2 ,0
≡ {m ∈ ZZ+ 1

2 , n even}

O0 : Λ0,1 ≡ {m ∈ ZZ, n odd}
O1/2 : Λ 1

2 ,1
≡ {m ∈ ZZ+ 1

2 , n odd} . (95)

Likewise, we recognize that

χI + χS =
1

η16

∑

~λ∈ΛSO(32)

q
~λ·~λ/2 (96)

where η is the Dedekind eta-function and where the lattice of SO(32) weights ~λ associated with the character sum
χI + χS is given by

ΛSO(32) =

{
λi ∈ ZZ,

16∑

i=1

λi ∈ 2ZZ

}
⊕

{
λi ∈ ZZ+ 1

2 ,

16∑

i=1

λi ∈ 2ZZ

}
. (97)
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Given this, we then find that a general Wilson line ~ℓ deforms the expression in Eq. (94) to take the form

Z[τ, ~ℓ, T ] = Z
(8)
boson ×

{
χV Ξ[~ℓ, 0, 0]

− χS Ξ[~ℓ, 1/2, 0]

− χC Ξ[~ℓ, 0, 1]

+ χI Ξ[~ℓ, 1/2, 1]
}

(98)

where

Ξ[~ℓ, r, s] ≡
√
τ2

η16

∑

~λ∈ΛSO(32)

∑

m,n∈Λr,s

q(
~λ−n~ℓ)·(~λ−n~ℓ)/2 q[(m+δm)a−n/a]2/4 q[(m+δm)a+n/a]2/4 (99)

with δm ≡ ~λ · ~ℓ − n~ℓ · ~ℓ/2. Indeed, the general expression in Eq. (98) is modular invariant for all values of ~ℓ and
successfully reproduces the partition functions associated with each of the thermal heterotic interpolations discussed
in Sect. IV for the specific Wilson-line choices listed in Eq. (50). Note, in particular, that the SO(32) heterotic
string contains states transforming in spinorial representations of SO(32) (i.e., representations which have charge
components λi ∈ ZZ + 1/2). As a result, the possible Wilson-line parameters ℓi must now be considered modulo 2
rather than modulo 1. As we shall discuss further below, this is an important distinction relative to the Type I case.
Despite the existence of the general expression in Eq. (98), it is important to bear in mind that not all Wilson lines

~ℓ correspond to self-consistent heterotic models. Indeed, as discussed in Sect. IV, only the explicit choices listed in
Eq. (50) satisfy all necessary worldsheet constraints and lead to self-consistent heterotic models. We shall nevertheless

consider the general unconstrained sixteen-dimensional parameter space of arbitrary Wilson-line choices ~ℓ in order to
compare with the Type I case.
Given the general expression in Eq. (98), we can now examine the mathematical behavior of the corresponding

free-energy density F (T ) as a function over the resulting sixteen-dimensional parameter space {ℓi}, i = 1, ..., 16.
Unlike the Type I case, however, we find that there are now two distinct classes of minima:

SO(32)A =⇒ global (stable) minima

SO(32)B =⇒ local (metastable) minima . (100)

The free energies associated with these two classes of minima are nearly equal, since these two classes of Wilson
lines differ only in their treatment of the spinorial SO(32) states, and such states have large conformal dimensions
hS = hC = 2 and consequently do not appear until the second or third excited string mass level. Their contributions
to the overall free energy F (T ) are thus highly suppressed, and indeed their free energies differ so minimally that the
difference between their free-energy curves as a function of temperature would not even be visible in Fig. 2(a)!
We have also verified that each of the other Wilson-line choices in Eq. (50) corresponds to either a saddle point or

a local maximum in the full sixteen-dimensional parameter space {ℓi}. Thus, we see that the SO(32)A and SO(32)B
choices are unique in that they are the only ones which correspond to minima in this space.
As in the Type I case, it is also instructive to consider the heterotic free energy as a contour over the two-dimensional

Wilson-line “landscape” (ℓ, n) parametrized in Eq. (91). As discussed above, the perturbative heterotic SO(32) string
spectrum contains states transforming in spinorial SO(32) representations; as a result, our Wilson lines must now be
considered modulo ∆φ = 4π rather than ∆φ = 2π, where φ = 2πℓ. The resulting contour plot is shown in Fig. 5.
As we have seen, the free energies in the Type I case are dominated by their cylinder contributions — contributions

which do not even exist in the heterotic case. Likewise, the free energies in the heterotic case are completely described
by modular-invariant expressions which include the contributions from not only momentum modes but also winding
modes. Nevertheless, we see that the qualititative shape of the heterotic contour in Fig. 5 bears a striking similarity
to the qualitative shape of the Type I contour in Fig. 3. In both cases, the SO(32) points indicate the minima of the
contours, while all other critical points in Eq. (50) are saddle points and/or local maxima.
Of particular interest are the points along the central “valley” at φ = 2π. These points alternate behaviors,

corresponding to SO(32)A Wilson lines for even n and SO(32)B Wilson lines for odd n. For the Type I string, of
course, we saw that both cases lead to identical physics. However, for the heterotic string, these choices lead to different
physics: the first choice leads to the standard thermal theory with Hagedorn temperature T = (2−

√
2)M, while the

second corresponds to a thermal theory with a non-trivial Wilson line, one with Hagedorn temperature T = M/
√
2.

As discussed in Sect. II, the first option is the “traditional” choice in which essentially no non-trivial Wilson line is
introduced; indeed, this choice reproduces the Boltzmann sum without a chemical potential. By contrast, as discussed
in Sect. IV, the second option involves a non-trivial Wilson line and thus introduces a non-trivial chemical potential
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FIG. 5: The heterotic free-energy density F (T ) in units of 1
2
M10, plotted as a function of Wilson-line parameters (φ ≡ 2πℓ, n)

for T = 2M/3. The points corresponding to the specific cases listed in Eq. (50) are also indicated, and these exactly match
the critical points of the Type I theory illustrated in Fig. 4. Unlike the perturbative Type I case, however, this plot is periodic
in φ with period ∆φ = 4π; this is a direct consequence of the massive states which exist in the perturbative heterotic SO(32)
string and transform in spinorial representations of the gauge group. As a result, the points along the central “valley” at
φ = 2π alternate between SO(32)A and SO(32)B Wilson lines for even and odd n respectively. Note that both classes of
SO(32) Wilson lines lead to local free-energy minima in the full sixteen-dimensional {ℓi} parameter space. However, unlike the
perturbative Type I case, these two classes of Wilson lines do not lead to the same physics. Thus, we see that there exist two
distinct heterotic analogues of the single Type I SO(32) thermal theory.

into the Boltzman sum. Nevertheless, in this general “landscape” framework, we now see that all of these differences
boil down to a single distinction: choosing odd n versus even n along this central valley. As we have seen, both
options place us at local minima in the full sixteen-dimensional {ℓi} parameter space.
In some sense, this observation brings our discussion full circle. On the surface, it might have seemed unexpected

that there exists a non-trivial Wilson line which — like the vanishing Wilson line — leads to a (meta)stable vacuum.
However, we now see that this is not a “random” Wilson line which has this property: this is the unique Wilson
line which preserves the heterotic gauge group, and it is also precisely the unique non-zero Wilson line which is
paired with the vanishing Wilson line along the central valley. Moreover, comparing the heterotic and Type I thermal
landscapes, we see that this is the only possible non-trivial Wilson line which yields a legitimate counterpart to the
standard thermal theory on the Type I side. Indeed, in terms of matching the physics on the Type I side, we see from
Fig. 5 that both the SO(32)A and SO(32)B classes of Wilson lines are on equal footing and are in this sense equally
compelling as thermal extensions of the ten-dimensional supersymmetric SO(32) heterotic string. In fact, it is only
due to the existence of SO(32) spinorial states on the heterotic side that the two Wilson-line choices inherent in the
SO(32)A and SO(32)B theories lead to distinct heterotic physics.
Finally, before concluding, we remark that the existence of the general expression in Eq. (98) also allows us to

deduce the corresponding heterotic Hagedorn temperature as a function of ~ℓ:

TH(~ℓ) =

√
2M√

3− ~ℓ · ~ℓ +
√
8− 4~ℓ · ~ℓ

(101)

where ~ℓ · ~ℓ is evaluated in the range 0 ≤ ~ℓ · ~ℓ ≤ 2. We thus find that
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SO(32)A : ~ℓ · ~ℓ = 0 =⇒ TH = (2−
√
2)M

SO(32)B, SO(8)× SO(24), U(16) : ~ℓ · ~ℓ = 1 =⇒ TH = M/
√
2

SO(16)× SO(16) : ~ℓ · ~ℓ = 2 =⇒ TH =
√
2M , (102)

in accordance with our previous expectations from Fig. 2(a). Of course, the existence of a single expression such as that

in Eq. (101) reflects the fact that variations in ~ℓ do not change which massive thermal mode in the general heterotic
spectrum first becomes massless (and potentially also tachyonic) as a function of temperature, thereby triggering the
Hagedorn transition.

C. Two distinct thermal theories for heterotic strings?

Given these results, it is perhaps time to take stock of where we stand.
On the Type I side, we have seen that we can turn on a variety of Wilson lines. Although all of these possibilities

correspond to extrema of the corresponding free-energy densities F (T ), we have seen that only the SO(32) case
without a Wilson line yields a local or global minimum. This case corresponds to the standard thermal extension of
the Type I string that usually appears in the literature.
On the heterotic side, by contrast, the situation is more complicated. For the supersymmetric SO(32) heterotic

string, the standard case without a Wilson line [the so-called SO(32)A theory] continues to provide a global minimum.
However, although the set of self-consistent Wilson lines which may be introduced is more restricted than for the
Type I string, we find that there exists a unique non-trivial Wilson line for the SO(32) heterotic string which also
leads to a local minimum of the free-energy density: this is the Wilson line leading to the so-called SO(32)B theory.
Although we have not examined the corresponding E8 × E8 thermal “landscape” in this paper, we believe that a

similar situation also exists for the E8 × E8 heterotic string. Once again, the standard case without a Wilson line
[which we may call the (E8 × E8)A theory] continues to provide a global minimum. However, here too there exists a
unique non-trivial Wilson line which is completely analogous to that for the SO(32)B theory and which is also likely
to lead to a local minimum of the free-energy density: this is the Wilson line which corresponds to the SO(16)× E8

orbifold in Eq. (52). We may therefore analogously refer to this as the (E8 × E8)B theory, and we shall assume in
what follows that it, like its SO(32)B counterpart, is metastable.
These two sets of theories are summarized in Tables II and III, and it is readily apparent that these theories

share close similarities with each other. In each case, the ‘A’ theories correspond to thermal theories without Wilson

lines, while the ‘B’ theories correspond to the Wilson line ~ℓ = (1, 015). Both options lead to thermal theories which
are locally stable within the thermal landscape, and indeed these are the only theories which have this property.
Moreover, as remarked in Sect. IV for the case of the SO(32) string, the free-energy difference between the ‘A’ theory
and the corresponding ‘B’ theory is extremely small — indeed, such differences would not even be visible on the plots
in Fig. 2. Consequently, even though the ‘B’ theories are technically only metastable, there is very little dynamical
“force” which would cause our universe to flow from the ‘B’ state to the corresponding ‘A’ state. (Phrased more
precisely, an instanton analysis of the transitions from the ‘B’ vacua to the ‘A’ vacua would lead to a very small
decay width or equivalently an extremely long lifetime for the ‘B’ theories.) As a result, it is quite possible that our
universe, if somehow “born” in the ‘B’ state, might reside there essentially forever. However, as briefly mentioned
in Sect. IV, even this notion presupposes the existence of transitions between theories with different Wilson lines —
something which is not at all obvious, given the quantized topological nature of the Wilson lines themselves.
We are therefore faced with a situation in which both the ‘A’ theories and the ‘B’ theories may be considered as

legitimate “ground” states for our thermal heterotic strings. Indeed, as we have explicitly seen in the case of the
SO(32) landscapes in Sect. VI.B, both the SO(32)A and SO(32)B thermal heterotic theories have equal claims to be
considered as the legitimate heterotic analogue of the SO(32) Type I thermal theory.
It is quite remarkable that the heterotic string gives rise to such a situation. However, this phenomenon ultimately

rests upon the existence of a unique Wilson line which simultaneously has all of the properties needed in order to
endow the resulting ‘B’ theories with these critical features. As we have seen, the Type I string a priori has a richer
set of allowed Wilson lines, yet none of these has the required properties.
Given the existence of these ‘B’ theories, many questions naturally arise. For example, it is well known that the zero-

temperature supersymmetric SO(32) Type I and heterotic strings are related to each other under strong/weak coupling
S-duality relations. One naturally wonders, therefore, whether such S-duality relations extend to finite temperatures.
However, as we have seen, the “landscape” of the SO(32) heterotic string at finite temperature includes not only the
SO(32)A theory but also the SO(32)B theory. It would therefore be interesting to understand how this “doubling”
phenomenon can be reconciled with the existence of a unique thermal SO(32) theory on the Type I side [50].
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SO(32)A theory SO(32)B theory

zero-temperature theory ZSO(32) = Z
(8)
boson (χV − χS) (χI + χS)

general Wilson line ~ℓ = {ℓi}, ℓi ∈ ZZ,
∑16

i=1
ℓi = even ~ℓ = {ℓi}, ℓi ∈ ZZ,

∑16

i=1
ℓi = odd

sample Wilson line ~ℓ = ((0)16) ~ℓ = ((1)(0)15)

Z = Z
(8)
boson ×

{
Z = Z

(8)
boson ×

{

χV (χI + χS) E0 (χV χI − χSχS) E0

thermal partition function − χS(χI + χS) E1/2 + (χV χS − χSχI) E1/2

− χC(χI + χS)O0 + (χIχV − χCχC)O0

+ χI(χI + χS)O1/2

}
+ (χIχC − χCχV )O1/2

}

stability globally stable locally stable

Hagedorn temperature TH = (2−
√
2)M TH = M/

√
2

TABLE II: Two possible thermal theories for the finite-temperature SO(32) heterotic string in ten dimensions. The SO(32)A
theory is traditionally assumed in the string literature [7], while the SO(32)B theory involves a non-trivial Wilson line (or
equivalently a non-trivial chemical potential). All holomorphic characters correspond to the SO(32) gauge group. As we
have seen, both theories are equally compelling as heterotic analogues of the thermal Type I SO(32) theory, and both locally
minimize the corresponding free-energy density and are thus locally stable within the thermal heterotic “landscape”. Unlike
the traditional SO(32)A thermal heterotic theory, the SO(32)B thermal heterotic theory more closely resembles the thermal
Type I and Type II strings by sharing a common Hagedorn temperature and exhibiting a non-supersymmetric formal T → ∞
limit.

Another important question concerns whether there might be some other way (e.g., through dynamical means, or
perhaps through self-consistency arguments) in order to develop a thermal “vacuum selection” criterion and thereby
assert that only one of these theories is preferred or allowed, and the other excluded. This question will be examined
in Refs. [51, 52]. It is well known, for example, that the SO(32)A theory has a number of unexpected and disturbing
features, the least of which is the fact that the T → ∞ limit of this theory is again supersymmetric. This is also
true of the (E8 × E8)A theory. This property is completely surprising, given our expectation that finite-temperature
effects should treat bosons and fermions differently, and is very different from what occurs for Type I and Type II
thermal theories. Indeed, this behavior leads to several disturbing features (see, e.g., the discussion in Ref. [7]). By
contrast, the SO(32)B theory is relatively natural from this point of view: the T → ∞ limit of this theory lacks
spacetime supersymmetry, but preserves the underlying SO(32) gauge symmetry. Even in the E8 × E8 case, the ‘B’
theory has a non-supersymmetric T → ∞ limit yet breaks the gauge symmetry as minimally as possible. Thus, if we
could somehow argue that the ‘B’ theories are the unique correct thermal heterotic theories, we would then reach the
remarkable conclusion that all string theories in ten dimensions, whether open or closed, whether Type I or Type II
or heterotic, actually have a unique Hagedorn temperature. In other words, we would be in the aesthetically pleasing
situation in which we could assert a existence of a single Hagedorn temperature for string theory as a whole. This
issue is discussed further in Refs. [51, 52].
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(E8 ×E8)A theory (E8 ×E8)B theory

zero-temperature theory ZSO(32) = Z
(8)
boson (χV − χS) (χI + χS)

2

general Wilson line ~ℓ = {ℓi}, ℓi ∈ ZZ, ~ℓ = {ℓi}, ℓi ∈ ZZ,∑8

i=1
ℓi = even ,

∑16

i=9
ℓi = even

∑8

i=1
ℓi = odd ,

∑16

i=9
ℓi = even

sample Wilson line ~ℓ = ((0)16) ~ℓ = ((1)(0)15)

Z = Z
(8)
boson ×

{
Z = Z

(8)
boson ×

{

χV (χI + χS)
2 E0 (χV χI − χSχS) E0

thermal partition function − χS(χI + χS)
2 E1/2 + (χV χS − χSχI) E1/2

− χC(χI + χS)
2 O0 + (χIχV − χCχC)O0

+ χI(χI + χS)
2 O1/2

}
+ (χIχC − χCχV )O1/2

}

× (χI + χS)

stability globally stable locally stable

Hagedorn temperature TH = (2−
√
2)M TH = M/

√
2

TABLE III: Two possible thermal theories for the finite-temperature E8×E8 heterotic string in ten dimensions. The (E8×E8)A
theory is traditionally assumed in the string literature [7], while the (E8 × E8)B theory involves a non-trivial Wilson line (or
equivalently a non-trivial chemical potential). Each holomorphic character corresponds to the SO(16) gauge group. Unlike the
traditional (E8 × E8)A thermal heterotic theory, the (E8 × E8)B thermal heterotic theory more closely resembles the thermal
Type I and Type II strings by sharing a common Hagedorn temperature and exhibiting a non-supersymmetric formal T → ∞
limit. Note the similarity between this table and Table II: essentially the E8 × E8 partition functions in each case can be
obtained from the corresponding SO(32) functions by viewing the left-moving characters as corresponding to SO(16) rather
than SO(32) and multiplying by an additional modular-invariant factor (χI + χS). This tight similarity between these two
groups of theories suggests that both the (E8 × E8)A and (E8 × E8)B theories locally minimize the corresponding free-energy
density and are thus locally stable within the thermal heterotic “landscape”.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the consequences of introducing a non-trivial Wilson line (or equivalently a non-trivial
chemical potential) when formulating string theories at finite temperature. We focused on the heterotic and Type I
strings in ten dimensions, and surveyed the possible Wilson lines which might be introduced when extending these
strings to finite temperature. We found a rich structure of resulting thermal string theories, and showed that in the
heterotic case, some of these new thermal theories even have Hagedorn temperatures which are shifted from their
usual values. Remarkably, these shifts in the Hagedorn temperature are not in conflict with the densities of bosonic
and fermionic states which are exhibited by their zero-temperature counterparts. We also demonstrated that our new
thermal string theories can be interpreted as extrema of a continuous thermal free-energy “landscape”. Finally, as part
of this study, we also uncovered a pair of unique finite-temperature extensions of the heterotic SO(32) and E8 × E8

strings which involve a non-trivial Wilson line, but which are nevertheless metastable in this thermal landscape. As
we have argued, these new thermal theories (the so-called ‘B’ theories discussed in Sect. VI.C) represent bona fide
alternatives to the traditional thermal heterotic strings, and may be viewed as equally legitimate candidate finite-
temperature extensions of the zero-temperature SO(32) and E8 × E8 heterotic strings in ten dimensions. Indeed, as
we have seen, the analysis in this paper also illustrates that the SO(32)A and SO(32)B heterotic theories are on equal
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footing as potential heterotic analogues of the thermal SO(32) Type I string.
Clearly, many outstanding questions remain. For example, in this paper we have found that for each of the

supersymmetric heterotic strings in ten dimensions, there exists a unique non-trivial Wilson line which leads to a
metastable theory. However, it would be interesting to understand more generally for which string theories this will
be the case. Likewise, we have found that these new Wilson lines lead to an increased Hagedorn temperature. It is
therefore natural to wonder whether there might exist situations in which metastable Wilson lines manage to avoid
the Hagedorn transition entirely.
It is also important to realize that in the Type I case, our analysis has essentially focused on those Wilson lines

associated with the open-string sector. In ten dimensions, this was a legitimate restriction, as one cannot introduce
Wilson lines in the closed-string sector of ten-dimensional Type I strings. However, it would clearly be of great interest
to examine the situation in lower dimensions. In lower dimensions, perturbative Type II strings can have non-trivial
gauge groups which are generated by compactification. As a result, there can be non-trivial Wilson lines that are
associated with such Type II compactifications, and therefore the potential Type I orientifolds of such models can
quickly become quite numerous. In particular, the set of candidate thermal extensions of a given Type I string model
might include models which are distinct in terms of their closed-string sectors as well as their open-string sectors.
Of course, our analysis in this paper is subject to a number of important caveats. First, we have been dealing with

one-loop string vacuum amplitudes, and likewise considering only the tree-level (non-interacting) particle spectrum.
Thus, we are neglecting all sorts of particle interactions. Gravitational effects, in particular, can be expected to change
the spectrum quite dramatically, and have recently been argued to eliminate the Hagedorn transition completely by
deforming the resulting spectrum away from the expected exponential rise in the degeneracy of states. However, the
purpose of this paper has been to show that even within the non-interacting string theory which has been studied
for more than two decades, the introduction of non-trivial Wilson lines can have significant effects on the resulting
thermal theories.
This work has clearly focused on the thermal behavior of string theories at temperatures below the Hagedorn

transition. As such, it is not clear that these results will shed any light on that feature which remains the most
mysterious aspect of string thermodynamics: the nature of the Hagedorn transition itself. However, the involvement
of non-trivial Wilson lines may eventually have ramifications in this regard that are not yet apparent.
In this paper we have restricted our attention to the thermal properties of perturbative Type I and heterotic strings,

especially when non-trivial Wilson lines are introduced into the mix. However, it would clearly be of great interest
to consider the implications of these results at the non-perturbative level, once D-branes and other non-perturbative
structures are included. In particular, it would be interesting to study the possible implications of these results for the
thermodynamics of Dp-branes [53, 54] as well as for the cosmological applications of finite-temperature D-branes [55].
In this connection, it would also be interesting to understand the thermal consequences of our observations within the
recent brane-world scenarios, as these frameworks involve a subtle dynamical interplay between bulk (closed-string)
physics and brane (open-string) physics. Likewise, it would also be interesting to extend our results to non-flat
backgrounds in order to address important questions such as the thermodynamics of black holes, the AdS/CFT
correspondence, and so forth.
Continuing this line, it would also be interesting to understand the implications of these results for the existence of

strong/weak coupling duality relations at finite temperature. It is certainly aesthetically pleasing that the heterotic
and Type I Hagedorn temperatures can be brought into agreement through the introduction of non-trivial Wilson lines,
and this immediately raises the question whether the zero-temperature heterotic/Type I dualities can be extended to
finite temperature. In particular, although the perturbative Type I string lacks states transforming as SO(32) spinors
— which is ultimately the reason why the SO(32)A and SO(32)B theories are equivalent on the Type I side — such
states do emerge non-perturbatively [56]. Thus we can expect that the non-perturbative Type I theory will have a
thermal behavior which is even closer to that of the perturbative heterotic string, and for which a non-trivial Wilson
line might be examined as well. These issues will be examined in more detail in Ref. [50].
But above all, perhaps the most pregnant issue is the existence of the so-called ‘B’ theories, and the roles these

theories may ultimately play in the general structure of string theory at finite temperature. Given that the ‘A’ and
the ‘B’ theories appear to be equally compelling as finite-temperature extensions of the traditional zero-temperature
heterotic strings, it remains to investigate whether there might be a thermal vacuum selection principle that favors
one over the other (see, e.g., Refs. [51, 52]). Moreover, if no such selection principle exists, it will be important to
study the different physics to which they each lead, and the possibility of phase transitions between them. These
issues clearly warrant further study.
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Appendix A: Useful Trace Formulae

In this Appendix, we collect the mathematical expressions which are used in this paper for the traces over relevant
string Fock spaces. These results also serve to define our notations and conventions.

1. Thermal Sums

For any temperature T , we define the corresponding dimensionless temperature a ≡ 2πT/Mstring ≡ T/M where

M ≡Mstring/(2π) = (2π
√
α′)−1. We also define the associated thermal radius R ≡ (2πT )−1. A field compactified on

a circle with this radius then accrues integer Matsubara momentum and winding modes around this thermal circle,
resulting in left- and right-moving spacetime momenta of the forms

pR =
1√
2α′

(ma− n/a) , pL =
1√
2α′

(ma+ n/a) . (A1)

Here m and n respectively represent the momentum and winding quantum numbers of the field in question. The
contribution to the partition function from such thermal modes then takes the form of the double summation

Zcirc(τ, T ) =
√
τ2

∑

m,n∈ZZ

qα
′p2

R/2qα
′p2

L/2 =
√
τ2

∑

m,n∈ZZ

q(ma−n/a)2/4 q(ma+n/a)2/4 (A2)

where q ≡ exp(2πiτ) and where τ1,2 respectively denote Re τ and Im τ . Note that Zcirc → 1/a as a → 0, while
Zcirc → a as a→ ∞.
The trace Zcirc is sufficient for compactifications on a thermal circle. However, in this paper we are interested in

compactifications on ZZ2 orbifolds of the thermal circle. Towards this end, we introduce [5] four new functions E0,1/2
and O0,1/2 which are the same as the summation in Zcirc in Eq. (A2) except for the following restrictions on their
summation variables:

E0 = {m ∈ ZZ, n even}
E1/2 = {m ∈ ZZ+ 1

2 , n even}
O0 = {m ∈ ZZ, n odd}

O1/2 = {m ∈ ZZ+ 1
2 , n odd} . (A3)

Note that these functions are to be distinguished from a related (and also often used) set of functions with the same
names in which the roles of m and n are exchanged. Under the modular transformation T : τ → τ +1, the first three
functions are invariant while O1/2 picks up a minus sign; likewise, under S : τ → −1/τ , these functions mix according
to




E0
E1/2
O0

O1/2


 (−1/τ) = 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1







E0
E1/2
O0

O1/2


 (τ) . (A4)

In the a→ 0 limit, O0 and O1/2 each vanish while E0, E1/2 → 1/a; by contrast, as a→ ∞, E1/2 and O1/2 each vanish
while E0,O0 → a/2. Clearly, E0 +O0 = Zcirc.
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The thermal E/O functions are primarily of relevance for closed strings, since such strings have both momentum
and winding modes. For open strings, by contrast, we instead define the thermal functions

E ≡
∑

m∈ZZ

Pm , E ′ ≡
∑

m∈ZZ

Pm+1/2 , (A5)

where Pm ≡ √
τ2 exp(−π2m2a2τ2), with a ≡ T/M = 2πT/Mstring. Note that E is the open-string analogue of E0,

while E ′ is the open-string analogue of E1/2. Indeed, the remaining closed-string functions O0,1/2 do not have open-
string analogues because they both involve non-trivial winding modes, and winding modes do not survive the sorts of
direct orientifold projections that we implement in this paper in order to construct our thermal Type I string models.

2. SO(2n) characters

We begin by recalling the standard definitions of the Dedekind η and Jacobi ϑi functions:

η(q) ≡ q1/24
∞∏

n=1

(1− qn) =

∞∑

n=−∞

(−1)n q3(n−1/6)2/2

ϑ1(q) ≡ 2

∞∑

n=0

(−1)nq(n+1/2)2/2

ϑ2(q) ≡ 2q1/8
∞∏

n=1

(1 + qn)2(1− qn) = 2

∞∑

n=0

q(n+1/2)2/2

ϑ3(q) ≡
∞∏

n=1

(1 + qn−1/2)2(1 − qn) = 1 + 2
∞∑

n=1

qn
2/2

ϑ4(q) ≡
∞∏

n=1

(1 − qn−1/2)2(1 − qn) = 1 + 2

∞∑

n=1

(−1)nqn
2/2 . (A6)

These functions satisfy the identities ϑ3
4 = ϑ2

4+ϑ4
4 and ϑ2ϑ3ϑ4 = 2η3. Note that ϑ1(q) has a vanishing q-expansion

and is modular invariant; its infinite-product representation has a vanishing coefficient and is thus not shown. This
function is nevertheless included here because it plays a role within string partition functions as the indicator of the
chirality of fermionic states, as discussed below.
The partition function of n free bosons is given by

Z
(n)
boson ≡ τ2

−n/2 (ηη)−n . (A7)

By contrast, the characters of the level-one SO(2n) affine Lie algebras are defined in terms of both the η- and the
ϑ-functions. Recall that at affine level one, the SO(2n) algebra for each n ∈ ZZ has four distinct representations:
the identity (I), the vector (V ), the spinor (S), and the conjugate spinor (C). In general, these representations have
conformal dimensions {hI , hV , hS , hC} = {0, 1/2, n/8, n/8}, and their characters are given by

χI = 1
2 (ϑ3

n + ϑ4
n)/ηn = qhI−c/24 (1 + n(2n− 1) q + ...)

χV = 1
2 (ϑ3

n − ϑ4
n)/ηn = qhV −c/24 (2n+ ...)

χS = 1
2 (ϑ2

n + i−nϑ1
n)/ηn = qhS−c/24 (2n−1 + ...)

χC = 1
2 (ϑ2

n − i−nϑ1
n)/ηn = qhC−c/24 (2n−1 + ...) (A8)

where the central charge is c = n at affine level one. The vanishing of ϑ1 implies that χS and χC have identical q-
expansions; this is a reflection of the conjugation symmetry between the spinor and conjugate spinor representations.
When SO(2n) represents a transverse spacetime Lorentz group, the distinction between S and C is equivalent to
relative spacetime chirality; the choice of which spacetime chirality is to be associated with S or C is a matter of
convention. Note that the special case SO(8) has a further triality symmetry under which the vector and spinor
representations are indistinguishable. Thus, for SO(8), we find that χV = χS , an identity already given below
Eq. (A6) in terms of ϑ-functions.
The above results are primarily of relevance for closed strings, where τ is the complex torus modular parameter

and where q ≡ (2πiτ). However, with only small modifications, these functions can also be used to describe the
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partition-function contributions in Type I strings. In general, the one-loop Type I partition function includes not only
a closed sector with contributions from a torus and a Klein bottle, but also an open sector with contributions from
a cylinder and a Möbius strip. It turns out that all four of these contributions can be written in terms of the above
CFT characters χ, which are strictly defined as functions of q ≡ (2πiτ). Indeed, all that changes is the definition of
τ : for the torus, τ will continue to represent the complex modulus, while for the Klein bottle, cylinder, and Möbius
strip, τ will instead represent the modulus of the double-covering torus:

τ ≡





τ1 + iτ2 for torus
2iτ2 for Klein bottle
1
2 iτ2 for cylinder
1
2 iτ2 +

1
2 for Möbius strip .

(A9)

Likewise, the contribution from worldsheet bosons will also change from that in Eq. (A7) to

Z
′(n)
boson = τ

−n/2
2 η−n . (A10)

Finally, in this paper we shall also define the hatted characters χ̂i ≡ exp(−iπhi)χi, where hi are the conformal weights
of the corresponding primary fields Φi in the underlying CFT. Thus, the hatted characters are explicitly real. These
characters are particularly useful for expressing the contributions from the Möbius sectors.
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