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Abstract

Using information from the marginality conditions of vertex operators for the AdS5×S5

superstring, we determine the structure of the dependence of the energy of quantum string
states on their conserved charges and the string tension ∼

√
λ. We consider states on the

leading Regge trajectory in the flat space limit which carry one or two (equal) spins in
AdS5 or S

5 and an orbital momentum in S5, with Konishi multiplet states being particular
cases. We argue that the coefficients in the energy may be found by using a semiclassical
expansion. By analyzing the examples of folded spinning strings in AdS5 and S5 as well as
three cases of circular two-spin strings we demonstrate the universality of transcendental
(zeta-function) parts of few leading coefficients. We also show the consistency with target
space supersymmetry with different states belonging to the same multiplet having the
same non-trivial part of the energy. We suggest, in particular, that a rational coefficient
(found by Basso for the folded string using Bethe Ansatz considerations and which, in
general, is yet to be determined by a direct two-loop string calculation) should, in fact,
be universal.

1Also at Lebedev Institute, Moscow.



1 Introduction and summary

Recent progress in understanding the integrable system that should be computing the spectrum
of the maximally supersymmetric example of AdS/CFT duality makes it important to further
develop a detailed matching of the Bethe ansatz predictions with quantum AdS5 × S5 string
energies extracted from the perturbative string theory. While direct near-flat-space expansion

of the quantum string theory determining the large tension (T =
√
λ

2π
) expansion of quantum

string energies with fixed quantum charges is still to be developed, here we shall follow the
“semiclassical” approach suggested in [1] (see also [2]) and recently applied in [3, 4, 6, 5]
to demonstrate the matching of the numerical results of the TBA for the Konishi operator
dimension interpolated from weak to strong coupling [7, 8, 9] with the perturbative string
theory prediction for the corresponding string energy.

Our motivation is to further understand the structure of the dependence of the string energy
on the string tension and its quantum numbers (spins) guided by the expected form of the string
vertex operator marginality conditions [1, 4] and recent progress on the Bethe ansatz side [10].
We shall consider several string states which belong (in the flat-space limit) to the leading
Regge trajectory and for the lowest values of the spins or the lowest value of the string level
represent states in the Konishi multiplet and discover the universality of some leading-order
coefficients in the expansion of their energies.

1.1 General structure of the inverse tension expansion of the energy

Let us start with describing the general form of the dependence of the energy E of a string state
on its quantum charges Qi in the large string tension expansion (

√
λ ≫ 1).1 As follows from

the structure of α′ expansion of 2d anomalous dimensions of the corresponding AdS5×S5 string
vertex operators [11, 12], the solution of the marginality condition should give E = E(Q,

√
λ)

in the following general form [1, 4]

E2 = 2
√
λ
∑

i

aiQi +
∑

i,j

bijQiQj +
∑

i

ciQi

+
1√
λ

(∑

i,j,k

dijkQiQjQk +
∑

i,j

eijQiQj +
∑

i

fiQi

)
+O( 1

(
√
λ)2

) , (1.1)

where Qi are supposed to be fixed in the limit
√
λ ≫ 1. The highest power of charges in 1

(
√
λ)n

term here is n + 2. This follows, e.g., from dimensional analysis, from the fact that higher
order terms in 2d anomalous dimension operator may contain higher derivative operators (e.g.,
E2 comes from SO(2, 4) Casimir originating from Laplacian on AdS5, etc.; see [12]) and also
from the fact that, in any theory, an (n + 1)-loop Feynman graph renormalizing a (vertex)
operator contains at most (n + 2) Wick contractions with fields in the (vertex) operator and
thus contributes to its dimension terms like Qm/(

√
λ)n with m ≤ n+ 2.

More explicitly, if we consider a string state with an orbital momentum J3 ≡ J in S5 and
one extra oscillator number N (corresponding, e.g., to an intrinsic spin component due to an

1Examples of these charges discussed below are spins S1, S2 in AdS5 and spins J1, J2, J3 in S5.
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extended nature of the string) which determines the value of an effective string level then (1.1)
is a consequence of the following 2d marginality condition2

0 = N +
1

2
√
λ
(−E2 + J2 + n02N

2 + n11N)

+
1

2(
√
λ)2

(n01NJ2 + n03N
3 + n12N

2 + n21N) +O( 1
(
√
λ)3

) . (1.2)

Including also some higher-order terms, the resulting expression for E2 may be written as3

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + ñ02J
2N2 + n04N

4 + n13N
3 + n22N

2 + n31N
)

+
1

(
√
λ)3

(
ñ01J

4N + ñ21J
2N + ñ12J

2N2 + n05N
5 + ...

)

+
1

(
√
λ)4

(
n̄11J

4N + ...
)
+ O( 1

(
√
λ)5

) . (1.3)

This expression follows under the assumption that in (1.2) E2 enters only in the 1-loop 1√
λ
term.

On general grounds, asE may be thought of as a global charge analogous to J , one might wonder
if (1.2) should also contain terms like 1

(
√
λ)k

(Ek+1+ ...+EmNn+ ...). However, terms depending

only on E (or on E and J) should be 2d scheme-dependent (like higher powers of Laplacian
in 2d anomalous dimension operator) and would also contradict BMN limit E = J in the
absence of other charges (N = 0) leading to spurious 1√

λ
dependent solutions of the marginality

condition; they should thus be absent in a scheme preserving target space supersymmetry.
Terms in (1.2) involving both E and N like 1

(
√
λ)k

EnNm with m+ n ≤ k + 1, may be present,

but in solving the marginality condition (1.2) for E in perturbative expansion in 1√
λ
they cannot

modify the leading-order solution E2 = 2
√
λN + ... and their perturbative treatment leads just

to redefinitions of coefficients already present in eq. (1.3). Note also that the presence of the
mixed terms JkNm terms reflects the fact that in curved space the center-of-mass and internal
degrees of freedom do not in general decouple.

2Here the (−E2 + J2 + ...) term is the 1-loop correction to the 2d (anomalous) dimension, the next term is
the 2-loop correction, etc., with all the terms at the same order in 1√

λ
being here on the same footing. This

expansion should emerge in the sigma model approach upon diagonalization of the 2d anomalous dimension
matrix (as, e.g., in the NSR approach or in the context of a pure spinor approach like the one discussed in [13]).
Here we ignore possible shifts of N and E by integers that depend on a choice of a reference vacuum state (in
the bosonic string context the l.h.s. of (1.2) should be equal to 2).

3Here the coefficient of J2 in the first line should be 1 to be consistent with the BMN limit N = 0. Again, we
assume that in general E and J may be redefined by possible constant shifts to be consistent with positions in
a supermultiplet (e.g., E(E − 4) = J(J +4)+ ... is equivalent to (E− 2)2 = (J +2)2 + ... for simplest point-like
states). This depends on a definition of string vacuum, see [4] for more details.
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Expanding (1.3) in large
√
λ for fixed N, J we get

E =

√
2
√
λN

[
1 +

A1√
λ
+

A2

(
√
λ)2

+
A3

(
√
λ)3

+O( 1
(
√
λ)4

)
]
, (1.4)

A1 =
1

4N
J2 +

1

4
(n02N + n11) , (1.5)

A2 = −1

2
A2

1 +
1

4
(n01J

2 + n03N
2 + n12N + n21)

=
1

4

[
n21 −

1

8
n2
11 + (n12 −

1

4
n11n02)N + (n03 −

1

8
n2
02)N

2
]
+O(J2) , (1.6)

A3 =
1

128

[
(n3

11 − 8n11n21 + 32n31) + (3n02n
2
11 − 8n11n12 − 8n02n21 + 32n22)N

+(3n2
02n11 − 8n03n11 − 8n02n12 + 32n13)N

2 + ...
]
. (1.7)

Substituting particular values of N and J into (1.3),(1.4) one can find the expansion of the
corresponding quantum string state energy, i.e. the strong-coupling expansion of the dimension
of the dual gauge-theory operator. Note that the first two terms in the r.h.s. of (1.3) have direct
flat-space interpretation, so that N plays the role of string level and the spinning string states
with maximal value of N for a given value on spin belong to the leading Regge trajectory. For
example, N = 0 corresponds to massless (supergravity) states and N = 2 to states on the first
excited string level which contains the Konishi long multiplet as its “floor” and also its “KK
descendants” with higher values of J obtained by tensoring with [0, J, 0] representation [14].
The states in the Konishi multiplet that we will consider here correspond to N = 2, J = 2, see
[1, 4].

The goal is thus to determine the coefficients nkm in (1.3). To achieve this one may use
the observation [1, 2] that a similar expansion of the string energy is also found by starting
with a solitonic string carrying the same types of charges as the vertex operator representing a
particular quantum string state and

(i) first performing the semiclassical expansion
√
λ ≫ 1 for fixed charge densities Qi =

1√
λ
Qi,

i.e. (N ,J ) = 1√
λ
(N, J), and then

(ii) expanding E in small values of Qi. Indeed, the limit Qi =
Qi√
λ
→ 0 should correspond to

taking
√
λ ≫ 1 for fixed values of the quantum charges Qi. Assuming that there is no order of

limits problem, the same coefficients nkm should be found in these two different approaches.

Writing (1.3) in terms of N ,J as
(

E√
λ

)2

= 2N + J 2 + n01J 2N + n02N 2 + n03N 3 + n04N 4 + ñ01J 4N + ñ02J 2N 2 + ...

+
1√
λ
(n11N + ñ11J 2N + n̄11J 4N + n12N 2 + ñ12J 2N 2 + n13N 3 + ...)

+
1

(
√
λ)2

(n21N + ñ21J 2N + n22N 2 + ...) +O( 1
(
√
λ)3

) , (1.8)

one can then interpret the coefficient nkm in (1.3) as a k-loop contribution to a term scaling as
Nm in the semiclassical expansion, i.e. n0m can be extracted from the classical string energy,
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n1m – from the 1-loop semiclassical correction, etc. Expanding E in (1.8) in small N for fixed
J we get

E√
λ
= J +

[N
J (1 + 1

2
n01J 2 + 1

2
ñ01J 4 + ...)

− N 2

2J 3

(
1 + (n01 − n02)J 2 + (ñ01 − ñ02 +

1
4
n2
01)J 4 + ...

)
+ ...

]

+
1√
λ

[ N
2J (n11 + ñ11J 2 + n̄11J 4 + ...) (1.9)

+
N 2

2J 3

(
− n11 + (n12 − 1

2
n01n11 − ñ11)J 2 + (ñ12 − n̄11 − 1

2
n01ñ11 − 1

2
ñ01n11)J 4 + ...

)

+
N 3

4J 5

(
3n11 + [3ñ11 − 2n12 + (3n01 − n02)n11]J 2

+
[
2(n13 − ñ12)− n01n12 + 3n̄11 + (3ñ01 − ñ02 +

3
4
n2
01)n11 + (3n01 − n02)ñ11

]
J 4 + ...

)
+ ...

]

+
1

(
√
λ)2

[ N
2J

(
n21 + ñ21J 2 + ...

)
+ ...

]
+O( 1

(
√
λ)3

) .

It should be noted that the quantum string sigma model loop (i.e. α′ ∼ 1√
λ
≪ 1) expansion in

(1.3) is of course different from the semiclassical loop expansion in (1.8): in (1.2) or (1.3) the
first order N term is classical, J2 + n02N

2 + n11N are 1-loop terms, etc., i.e. the coefficients
nkm, in general, appear at different loop orders in the two expansions.4 Note also that while
each ℓ-loop term in (1.3) is a polynomial of finite degree, (ℓ+ 1), in the charges, this does not
in general apply to the semiclassical expansion (1.8) where each term may contain an infinite
series of terms in the small J ,N expansion. To relate the two expansions one would need to
reorganize or even resum them.5 For example, the classical string energy term in (1.8) receives
contributions from all higher loop orders in (1.3), etc.6

Comparison of (1.9) or (1.4)–(1.7) to (1.3) shows that eq.(1.3) for the square of the energy
provides a much more “economical” description of the spectrum. Computing the semiclassi-
cal expansion (1.9) directly one finds indeed many relations between the coefficients there in
agreement with the general structure of E2 in (1.3).

The expression for E2 in (1.3) or in (1.8) may be formally organized as an expansion in small
N which will then look like an expansion in powers of N :

E2 = J2 + h1(λ, J)N + h2(λ, J)N
2 + h3(λ, J)N

3 + ... , (1.10)

4Note that nℓ1 (ℓ = 1, 2, ...) are still ℓ-loop coefficients in both expansions.
5In particular, considering J ≫ N expansion will lead to inverse powers of J in the semiclassical expansion

and thus will require a resummation to relate it to (1.3).
6Note also that “non-analytic” terms [1] like B2, B3, ... in the large

√
λ expansion of the energy

E =
√
2
√
λN

[
1+ A1√

λ
+ A2

(
√
λ)2

+ ...
]
+B1 +

B2√
λ
+ B3

(
√
λ)2

+ ..., which a priori could be present in the energy found

by using semiclassical expansion, should not actually appear if this approach is consistent: they would lead to
4
√
λ dependent terms in E2, i.e. E2 = 2

√
λN + 2

√
2N

[
B2

4
√
λ
+ B3

( 4
√
λ)3

+ ...
]
+ ... which cannot be present in the

standard sigma model perturbative computation of eigenvalues of 2d anomalous dimension matrix.
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where for fixed J and large λ the coefficient functions hk are given by

h1 = 2
√
λ+ n11 +

n21√
λ
+

n31

(
√
λ)2

+ ... + J2
(n01√

λ
+

ñ11

(
√
λ)2

+
ñ21

(
√
λ)3

+ ...
)
+ ... , (1.11)

h2 = n02 +
n12√
λ
+

n22

(
√
λ)2

+ ...+ J2
( ñ02

(
√
λ)2

+
ñ12

(
√
λ)3

+ ...
)
+ ... , (1.12)

h3 =
n03√
λ
+

n13

(
√
λ)2

+ ..., h4 =
n03

(
√
λ)2

+ ... . (1.13)

The corresponding expansion of E in small N for fixed J is then

E = J +
1

2J
h1(λ, J)N + ... , (1.14)

i.e. h1(λ, J) may be called, following [10], a “slope” function. In ref. [10] it was found exactly
in the case of the folded string with spin S in AdS5 (in this case N = S). While the coefficients
in the “slope” function h1 are expected, by analogy with the case in [10], to be rational (h1

is determined [10] by the asymptotic Bethe ansatz and is also not sensitive to the phase) the
coefficients in the next “curvature” function h2 are already transcendental (as we shall discuss
below n12 contains ζ3, ñ12 contains ζ5, etc) and h2 is expected to be sensitive to “wrapping”
corrections.

1.2 Summary of results for the coefficients

Below we shall consider the examples of “small” semiclassical spinning string states discussed
in [1, 4] that fall into the class of states described by (1.3),(1.8),(1.9). They correspond to
quantum string states with angular momentum J and few oscillator modes excited that are
responsible for non-zero components of intrinsic spin. More specifically, we shall consider and
compare the following solutions:7 two folded string cases: (S, J) and (J ′, J) and three rigid
two-spin circular string cases: (J1 = J2 ≡ J ′, J), (S1 = S2 ≡ S, J) and (S = J1 ≡ J ′, J). For
lowest values of the winding numbers these represent (in the flat space limit) states on the
leading Regge trajectory with the string level being N = S or N = J in the folded one-spin
cases and N = 2J ′ or N = 2S in the circular two-spin cases.

For example, for N = 2 these represent states on the first excited string level. In this case
all states with fixed J (i.e. on a fixed KK level [14]) should belong to a single long PSU(2, 2|4)
multiplet.8 Furthermore, the string states with N = 2, J = 2 are dual to particular states in
the Konishi multiplet on the gauge theory side [1, 4].

As all operators in a given supermultiplet should have the same 4d anomalous dimension,
that means that the corresponding string states should have the same target space energy (up
to constant integer or half-integer shifts reflecting their positions in the supermultiplet; such
shifts are ignored in (1.3)), i.e. the expression for EN=2 as a function of J and λ should be
universal, with E

N=2
(J = 2, λ) being equal to the dimension of the Konishi multiplet.

7We shall use the following notation: S1 and S2 will stand for spins in AdS5; J1 ≡ J ′ and J2 will be spins
in S5 and J3 ≡ J will be orbital momentum in S5.

8For example, the three circular string states in the flat space limit are related by Lorentz transformations
and thus belong to the same multiplet. This should remain so upon switching on the curvature.
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As follows from (1.3), this expected universality of the N = 2 value of the energy for any
J and

√
λ imposes the following invariance constraints on the coefficients of states within a

supermultiplet:

n01 = inv , 2n02 + n11 = inv , 4n03 + 2n12 + n21 = inv , (1.15)

2ñ02 + ñ11 = inv , 8n04 + 4n13 + 2n22 + n31 = inv , ... (1.16)

Note that these conditions relate different terms in the semiclassical loop expansion. Once the
values of these coefficients are known at least for one state in the multiplet, then (1.15),(1.16)
constrain the coefficients for other states.

Explicitly, these universal coefficients enter EN=2 in (1.3),(1.4) as follows

E
N=2

= 2
4
√
λ
[
1 +

a1√
λ
+

a2

(
√
λ)2

+
a3

(
√
λ)3

+O( 1
(
√
λ)4

)
]
, (1.17)

a1 = (A1)N=2
=

1

8
J2 +

1

4
(2n02 + n11) , (1.18)

a2 = (A2)N=2
= −1

2
a21 +

1

4
n01J

2 +
1

4
(4n03 + 2n12 + n21) , (1.19)

a3 = (A3)N=2
= −a1a2 +

1

4
(2ñ02 + ñ11)J

2 +
1

4
(8n04 + 4n13 + 2n22 + n31) . (1.20)

(ak)J=2 are then the coefficients of the string coupling expansion of the dimension of the Konishi
multiplet. a1 thus depends on tree-level n02 and 1-loop n11 coefficients; a2 depends on tree-level,
extra 1-loop n12 and also 2-loop n21 coefficients; a3 depends on tree-level, extra 1-loop ñ11, n13,
extra 2-loop n22 and also 3-loop n31 coefficients, etc.

In general, the highest loop order ℓ coefficient nℓ1 in aℓ originates from the slope function
h1 in (1.11) and thus should be rational (as was found for the (S, J) folded string state in
[10]).9 The subleading loop order coefficient nℓ−1,2 (for ℓ > 1) originating from h2 in (1.11)
should already be transcendental – containing zeta-function ζ(2ℓ− 1) ≡ ζ2ℓ−1. Also, nℓ−2,3 (for
ℓ > 2) should contain ζ2ℓ−1, etc. Then the highest transcendentality term in aℓ in (1.17) should
contain ζ2ℓ−1.

Indeed, as we shall see below the 1-loop coefficients n1k obey this pattern: n12 contains ζ3,
n13 contains ζ5, etc. What is unclear at the moment is if the 2-loop and higher coefficients in
h2, h3, ... (like n22, n32, ...) may contain other transcendental constants as well.10 It would be
important to carry out an explicit 2-loop computation of n22 to clarify this question.

It is interesting to note that the weak-coupling expansion of the anomalous dimension of the
Konishi multiplet states also contains ζk constants at 4 and 5 loops (see, e.g., [17] and refs.
there) while the transcendentality origin of higher loop coefficients here again appears to be an
open question (an answer should follow from an analytic solution of TBA equations at weak
coupling [7, 8]).

9In particular, for the (S, J) folded string state [10]: n11 = −1, n21 = − 1
4 , n31 = − 1

4 , n41 = − 25
64 , n51 =

− 13
16 , n61 = − 1073

512 , etc.
10For example, the 2-loop and higher order terms in the lnS coefficient of the large S limit of the folded

string energy expanded in 1√
λ
contain Dirichlet beta function constants K = β(2), etc. (as well as ζk) [15, 16].
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Let us now summarize what is known [1, 3, 4, 5, 10, 6] and what will be found below about
the coefficients nkm, ñkm in (1.3) using the semiclassical approach. We will try to identify the
general universality patterns in the structure of these coefficients. First, in all cases

n01 = 1 , ñ01 = −1

4
. (1.21)

The universality of n01 is in agreement with (1.15). This follows from the universal form of the
“near-BMN” expansion of the classical string energy:

E2 = J2 + 2N
√
λ+ J2 + ... = J2 +N

(
2
√
λ+

1√
λ
J2 − 1

4(
√
λ)3

J4 + ...
)
+ ... , (1.22)

where we assumed that N ≪ J ≪
√
λ. In other words, the first term in the semiclassical

expansion of the slope function h1 in (1.10) is universal: h1(λ, J) = 2
√
λ
√
1 + J 2 +O(J ).

The classical n02, n03 and the leading 1-loop n11 coefficients are also rational [1, 3]. We find
that in all cases

2n02 + n11 = 2 , (1.23)

verifying the first universality relation in (1.15). The value of ñ11 is determined by the term
linear in N in the 1-loop semiclassical energy computed for fixed J and small N and then
expanded in small J (see (1.9)). The results for the folded string [10, 6] and the circular string
results described below imply that in all cases

ñ11 = −n11 , n̄11 = n11 . (1.24)

More generally, these results imply the universality (for the states on the leading Regge trajec-
tory) of the J -dependence of the first two leading terms in the “slope” function h1 in (1.10)
expanded in the semiclassical limit

√
λ ≫ 1 with J = J√

λ
held fixed:

h1 = 2
√
λ
√

1 + J 2 +
n11

1 + J 2
+

1√
λ

[
n21 + ñ21J 2 +O(J 4)

]
+O(

1

(
√
λ)2

) . (1.25)

We find also that the leading term in the semiclassical expansion of h2 in (1.12) has the following
general form

h2 = n02 +
ñ02J 2

1 + J 2
+

1√
λ

[
n12 + ñ12J 2 +O(J 4)

]
+O( 1

(
√
λ)2

) . (1.26)

Again, by inspection in all cases we observed, in agreement with first relation in (1.16) we find,

2ñ02 + ñ11 = 0 , (1.27)

so that (using (1.23),(1.24))

ñ02 =
1

2
n11 = 1− n02 . (1.28)

8



The 1-loop coefficient n12 in (1.3),(1.26) contains a transcendental ζ3 part. This was first ob-
served in the small-spin expansion of the folded string [2, 18] and pulsating string [20] energy,
indicating also that higher-order 1-loop terms should contain ζ5, etc., constants. The compu-
tation of n12 for the circular 2-spin string with J1 = J2 ≡ J ′ (N = 2J ′) in [1] and for the folded
spinning string (N = S) in [6] led to the exactly same coefficient of ζ3 in n12, suggesting its
universality, i.e. that11

n12 = n′
12 − 3ζ3 , (1.29)

where n′
12 is a rational number depending on a particular string state on the leading Regge

trajectory. The universality of the ζ3 coefficient in (1.29) will be confirmed below also for the
two other examples of the “small” circular string solutions: with two equal spins S1 = S2 in
AdS5; with one one spin in AdS5 and one spin J1 ≡ J ′ in S5 with S = J ′, N = 2S (in ref.[1]
only n11 was computed in these cases).

As was found in [10] from the exact computation of the “slope” function h1 in (1.10) for
the “ground-state” (S, J) state in sl(2) sector (corresponding to the folded (S, J) string), the
2-loop coefficient n21 is rational and given by12

n21 = −1

4
. (1.30)

In view of (1.15) and the observed universality of ζ3 in n12 (1.29) the rationality of n21 should
apply also to other states under consideration. Indeed, using the values of n03 = −3

8
, n′

12 =
3
8

[6] and (1.30) [10] for the folded (S, J) string case the universality of the third combination in
(1.15) translates into

4n03 + 2n′
12 + n21 = −1 . (1.31)

Remarkably, as we shall find below, this constraint implies the same value (1.30) for the 2-loop
coefficient n21 also for the folded (J ′, J), circular (J1 = J2, J) and circular (S1 = S2, J) strings.
We thus suggest that this value n21 = −1

4
, like the value of the ζ3 coefficient in (1.29), should

again be the same for all the states on the leading Regge trajectory.13 This universality of n21

may help understand how to generalize the exact result of [10] for the function h1 in (1.10) to
states outside the sl(2) sector. While the direct 2-loop computation of n21 is yet to be done
for the circular string cases, the value (1.30) can be indirectly obtained from the knowledge of
the 1-loop coefficients by using the expected universality of the subleading a2 coefficient in the
dimension of the Konishi state (1.19).

Note that in view of (1.29) and (1.31) the coefficients in the Konishi multiplet energy (1.17)
take the following explicit form

(a1)J=2
= 1 , (a2)J=2

=
1

4
− 3

2
ζ3 . (1.32)

11The ζ3 coefficient is no longer universal for an m-folded string [6] but has simple m2 dependence (see also
section 2.2 below for the corresponding circular string case).

12The simplicity of this coefficient may a priori be surprising as it should be given by some 2-loop world-sheet
theory integral (with discrete sum over spatial momenta).

13The universality of this subleading coefficient in the slope function is supported by the fact that while n11 is
sensitive to the curvature of subspace where string moves (i.e. it changes sign between the AdS5 and S5 cases)
the 2-loop correction (determining, in particular, n21) depends on the square of the curvature.

9



The universality of (a1)J=2
= 1, i.e. the validity of (1.23) not only for the (S, J) folded [3] but

also for the small circular string cases was already verified in [1, 4].

Assuming the universality of the value of n21 in (1.30) we get from (1.31)

n′
12 = −3

8
− 2n03 . (1.33)

We shall explicitly confirm this relation (and thus the n21 = −1
4
prediction) in section 2 for the

circular J1 = J2 and S1 = S2 cases. In the case of the circular S = J ′ string one has n03 = −1
2

and then (1.33) implies n′
12 = 5

8
. The direct computation of n′

12 in this case will be discussed
in section 2.4 and Appendix C. As it will be explained in section 2.1, the result depends on a
choice of a summation prescription over the fluctuation frequencies. One particular summation
procedure discussed in Appendix C leads to n′

12 =
11
8
. While so far we were unable to identify

a prescription leading to the value n′
12 =

5
8
consistent with the universality of (1.30), we believe

it should exist. Further support of the universality of n21 comes from the folded (J ′, J) string
discussed in Appendix D where we show that in this case n03 =

1
8
and n′

12 = −5
8
, in agreement

with (1.33).

The 1-loop result for the (S, J) folded string in [6] (in eq. (B.5) there) and our present results
for the circular and (J ′, J) folded string cases all lead also to the following universal expression
for the coefficient ñ12 in (1.3),

ñ12 = ñ′
12 + 3ζ3 +

15

4
ζ5 , (1.34)

where ñ′
12 is a rational number depending on a particular state. Remarkably, like in the case

of n11 = −ñ11 in (1.24), the ζ3 term here is the same as in n12 in (1.29), up to the sign. The
coefficient ñ12 contributes to a higher subleading term a4 in the Konishi dimension (1.17).

The value of ñ12 can be found from the coefficient of the 1
2
√
λ
N 2J term in (1.9), i.e.

ñ12 − n̄11 −
1

2
(n01ñ11 + ñ01n11) = ñ12 −

3

8
n11 (1.35)

where we used (1.21). For example, for the (S, J) folded string the result of [6] gives (1.34)
with ñ′

12 = −27
16
.

The coefficient n13 can be found also by starting with solutions with J = 0, expanding in
small N and comparing to (1.4),(1.7) (see section 2): n13 is present in the N2 term in A3 in
(1.7) which appears at one loop order in the semiclassical expansion (as N2

(
√
λ)3

= N 2√
λ
). Our

1-loop results for the circular strings (N = 2J ′ = 2S) imply that

n13 = n′
13 + n′′

13ζ3 +
15

4
ζ5 , (1.36)

where n′
13 and n′′

13 are rational numbers. The coefficient of ζ5 is again universal. In the
semiclassical expansion of the energy at fixed J the coefficient n13 first appears in the 1

4
√
λ
N 3

J
term in (1.9), i.e. in the combination

2(n13 − ñ12)− n01n12 + 3n̄11 + (3ñ01 − ñ02 +
3

4
n2
01)n11 + (3n01 − n02)ñ11

= (2n′′
13 − 3)ζ3 + 2n′

13 − 2ñ′
12 − n′

12 − n2
11 + n11 , (1.37)
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where we first used (1.21),(1.29),(1.30),(1.28) and then (1.34) and (1.36). Note that ζ5 terms
cancel out in this combination. The absence of ζ5 in the coefficient of N 3/J term is seen in the
expression for the 1-loop energy for the AdS5 folded string in [6]; we will also find that the same
is true for the folded string in S5 and the three circular string examples. As for the ζ3 term in
(1.37) appearing in the coefficient of N 3/J in (1.9), the result of [6] and our results described
in section 2 and Appendix D imply that it depends on a particular solution. Thus n′′

13 is not
universal (we shall list its values for different solutions below). The results of [6] in the folded
(S, J) string case lead to n11 = −1, n′

12 =
3
8
, n′′

13 =
15
4
, ñ′

12 = −27
16

and thus n′
13 = − 9

16
.

We expect the 3-loop slope coefficient n31 to be rational for all states while the 2-loop coef-
ficient n22 to contain only ζ3 as its highest transcendentality part, i.e.

n22 = n′
22 + n′′

22ζ3 . (1.38)

Then the universality of the combination 8n04 + 4n13 + 2n22 + n31 in (1.16) is consistent with
the universality of the ζ5 coefficient in (1.36). Thus the next-order coefficient a3 in the first
excited string level state energy (1.20) should contain a ζ5 part.

Explicitly, as follows from the above discussion (cf. (1.27),(1.36)) the coefficients in the
energy (1.17) for the states on the first excited string level take the form:

a1 =
1

8
J2 +

1

2
, (1.39)

a2 = −1

2
a21 +

1

4
J2 − 1

4
− 3

2
ζ3 = − 1

128
J4 +

3

16
J2 − 3

8
− 3

2
ζ3 , (1.40)

a3 = −a1a2 + 2n04 + n13 +
1

2
n22 +

1

4
n31 (1.41)

=
1

4
a1(2a

2
1 − J2 + 1) + 2n04 + n′

13 +
1

2
n′
22 +

1

4
n31 + (

3

16
J2 +

3

4
+ n′′

13 +
1

2
n′′
22)ζ3 +

15

4
ζ5

The universality of a3 implies that the coefficient of ζ3 and thus n′′
13 +

1
2
n′′
22 should have state-

independent value. For the folded (S, J) string a1, a2 in (1.39),(1.40) appeared in [3, 6]. In this
case the 3-loop coefficient n31 can be inferred from the exact expression (A.2) for the “slope”
h1 in [10], i.e. n31 = −1

4
. Using also that for folded string solution n04 = 31

64
and the value for

n13 in (1.36) given by n13 = − 9
16

+ 15
4
ζ3 +

15
4
ζ5 (see [6] and (D.28)) we conclude that for this

state we should get

a3 =
1

1024
(J2 + 4)(J4 − 24J2 + 48) +

11

32
+

1

2
n′
22 +

1

2
(
3

8
J2 + 9 + n′′

22)ζ3 +
15

4
ζ5 (1.42)

To fix a3 we thus need to know the 2-loop coefficient n22 in h2 in (1.12). As the folded string is
an elliptic solution, the required direct 2-loop string computation appears to be hard. It should
be easier to find n22 for the rational circular J1 = J2 solution. In that case n31 should be again
rational, while (see (2.22)) n′

13 = − 3
16
, n′′

13 = −3
4
so that the coefficient of ζ3 in a3 is

1
2
(3
8
J2+n′′

22).
The universality of this coefficient could be checked by an independent computation of n22 by
another circular string, e.g., S1 = S2 one.

It would be interesting also to extend the numerical TBA analysis in [9] to test the universal
J dependence of a3 and extract the value of n22 for the folded string state. The J = 2, 3, 4 data
in [9] suggests that n22 ∼ −10.
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Let us now list the values of few leading coefficients nkm, ñkm for various folded and circular
spinning strings adding question marks next to the values that were not yet derived directly but
are conjectured to be true on the basis of the universality of (1.30) (see also table in Appendix
E). For the folded strings with one spin N in AdS5 or S5 and an S5 orbital momentum J one
finds:

• folded string in AdS5 with (S, J), N = S [2, 3, 6, 10]:

n01 = 1 , n02 =
3

2
, n03 = −3

8
, n04 =

31

64
, ñ02 = −1

2
,

n11 = −1 , ñ11 = 1 , n′
12 =

3

8
, n′′

13 =
15

4
, n21 = −1

4
; (1.43)

• folded string in S5 with (J ′, J), N = J ′ [19, 5]:

n01 = 1 , n02 =
1

2
, n03 =

1

8
, n04 =

1

64
, ñ02 =

1

2
,

n11 = 1 , ñ11 = −1 , n′
12 = −5

8
, n′′

13 = −3

4
, n21 = −1

4
(?) . (1.44)

The value of n12 in (1.29),(1.44) and ñ11 will be determined below in Appendix D following the
algebraic curve approach of [3, 5, 6].

For the circular strings with two equal spins in AdS5 or S
5 and an S5 momentum J one finds:

• circular string with (J1 = J2, J), N = J1 + J2 = 2J ′ [1, 4] (see also section 2.2):

n01 = 1 , n02 = 0 , n03 = 0 , n04 = 0 , ñ02 = 1 ,

n11 = 2 , ñ11 = −2 , n′
12 = −3

8
, n′′

13 = −3

4
, n21 = −1

4
(?) ; (1.45)

• circular string with (S1 = S2, J), N = S1 + S2 = 2S [1, 4] (see section 2.3 for ñ11 and n′
12):

n01 = 1 , n02 = 2 , n03 = −1 , n04 = 2 , ñ02 = −1 ,

n11 = −2 , ñ11 = 2 , n′
12 =

13

8
, n′′

13 =
15

4
, n21 = −1

4
(?) ; (1.46)

• circular string with (S = J ′, J), N = S + J ′ = 2S:14

n01 = 1 , n02 = 1 , n03 = −1

2
, n04 =

3

4
, ñ02 = 0 ,

n11 = 0 , ñ11 = 0 , n′
12 =

5

8
(?) , n′′

13 =
3

2
, n21 = −1

4
(?) . (1.47)

14Note that the values of all coefficients listed here are given by the mean average of the values for the J1 = J2
and S1 = S2 circular strings: symbolically, n(SJ) = 1

2 [n(JJ) + n(SS)]. An intuitive explanation for this may
be that since we are considering a near-flat-space expansion certain leading coefficients should be given just by
sums of independent contributions of oscillators in different dimensions. Then to leading order the AdS5 and
S5 directions should contribute similarly in the near-flat expansion, modulo signs due to opposite sign of the
curvature.
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It is useful also to add the corresponding expressions for the pulsating strings with N being
the oscillation number (see [20] and refs. there):15

• pulsating string in AdS5:

n01 = 1 , n02 =
5

2
, n03 = −13

8
,

n11 = −ñ11 = −3(?) , n′
12 =

23

8
(?) , n21 = −1

4
(?) ; (1.48)

• pulsating string in S5:

n01 = 1 , n02 = −1

2
, n03 = −1

8
,

n11 = −ñ11 = 3(?) , n′
12 = −1

8
(?) , n21 = −1

4
(?) , (1.49)

As discussed in [20], for N = 2 the pulsating strings should also represent states on the first
excited string level, i.e. in particular (for J = 2) states from the Konishi multiplet. With the
above values of nkm one indeed reproduces the coefficients in (1.32).

The rest of this paper is organized as follows. In the section 2 we first comment on the general
strategy of computing one-loop correction to the energy of classical solitons and then use it to
evaluate the one-loop contributions to the energy of the three “small” circular spinning strings.
The necessary characteristic polynomials are collected, in a factorized form, in Appendix B.
While the solutions with two spins in AdS5 or with two spins in S5 yield coefficients nkm in
line with the expectations and patterns outlined above, the rational terms in the result for the
circular string solution with one spin in AdS5 and one spin in S5 are found to be ambiguous,
depending on a choice of prescription for the summation of the characteristic frequencies. In
Appendix C we compute the one-loop correction to the energy of the same small circular
string solution using the algebraic curve approach and find a result consistent with a particular
worldsheet summation prescription. In Appendix A we discuss the structure of the leading
terms in the slope function h1 [10] in the semiclassical expansion. The one-loop correction to
the energy of folded string with spin in S5 is found in Appendix D. Appendix E contains table
with values of the leading coefficients discussed in this paper.

2 One-loop correction to energy of “small” circular strings

Below we shall revisit the semiclassical computation of 1-loop correction to energy of “small”
semiclassical circular strings discussed in [1, 4] with the aim to extend the expansion to next
subleading order allowing one to extract the value of the coefficient n12 in (1.3),(1.6) and thus
n′
12 in (1.29). In the case of the J1 = J2 string this was already done in [1] but we will review

this case as well for completeness.

15To get the required 1-loop coefficients n11 it appears that one is to take the fermions in [20] with antiperiodic
boundary conditions. The same applies to folded string cases discussed in [18, 20]; this removes ln 2 terms from
n11 present in the periodic-fermion results of [2, 18, 20]; it remains to see that at the end one establishes the
full agreement with the algebraic-curve computation of [3].
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2.1 General comments on computation of one-loop correction

We will be interested in computing 1-loop corrections to the energy of rigid circular spinning
strings in AdS5 × S5. While these solutions are among the simplest ones being stationary
and leading to fluctuation Lagrangian with constant coefficients this problem (addressed in the
past, e.g., in [21, 22, 23, 24, 35, 1]) turns out to be subtle. Expanding the string action near
the solution and using a static gauge on fluctuations one ends up with a quadratic fluctuation
operator ∆2 = diag(KB, KF ) for 8+8 coupled bosonic+fermionic fluctuation modes. Equivalent
result for ∆2 (restricted to “physical” subspace) is found in the conformal gauge where 2
massless bosonic modes decouple and their contribution is cancelled against the conformal
gauge ghost one. Since for all solutions we will consider the target-space time is proportional
to the world sheet one, t = κτ , the 1-loop correction to the target space energy can be found
as

E1 =
1

κ
E2d (2.1)

where E2d is 1-loop correction to energy of the world-sheet theory on R× S1

(τ ∈ (−T
2
, T
2
), T → ∞, σ ∈ (0, 2π)). Since in our case ∆2 has constant coefficients, E2d can be

found as 1
2T

ln det∆2 =
1
2T

ln detKF

detKB
. Even though ln det∆2 is UV finite16, the computation of its

finite part on 2d cylinder is potentially ambiguous – it may depend on how individual fluctuation
modes are defined and how their contributions are combined together. One complication is that
the space of bosonic fluctuations is multidimensional. Also, the lack of manifest Bose-Fermi
2d symmetry (like world-sheet supersymmetry in the NSR case) implies an extra ambiguity
in choice of a consistent regularization. On general grounds, the choice of a prescription for
computation of this quantum correction should be governed by the requirement of preservation
of underlying symmetries of the theory (i.e. conserved charges, including “hidden” ones) which
are “spontaneously broken” by a choice of a particular background we are expanding around. A
practical implementation of this starting directly with the GS AdS5 ×S5 string action remains
a non-trivial task.17

To give an example of possible ambiguities, consider a model where

E2d =
1
2

h∑

r=1

cr

∞∑

p1=−∞

∫
dp0
2π

ln
[
(p0 + ar)

2 − (p1 + kr)
2 +m2

r

]
. (2.2)

Here p1 is an integer momentum in S1 direction and the sum rules
∑h

r=1 cr = 0,
∑h

i=1 crm
2
r = 0

ensure that E2d is UV finite. The shifts ai and (integer) kr reflect particular choice of definitions
of fluctuation modes. If one splits the sum over fluctuations into h separate 2d integrals and
formally ignores the UV cutoffs in them one may shift the integration/summation variables so
that to completely eliminate the dependence on ar, kr. However, if one first combines all the
contributions into a single integrand the finite result will depend on ar, kr.

16See [35, 36] for discussions of the UV regularization of such determinants.
17Unfortunately, in more complicated 2-spin cases the integrability-based algebraic curve approach does not

appear to help with the problem of ambiguities in the summation over the fluctuation modes.
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To evaluate similar 1-loop expressions one may choose to diagonalize ∆2 first to get its
determinant over “flavor” indices as a product over roots of the corresponding characteris-
tic polynomials, PB,F (p0) =“det”KB,F =

∏
i[p0 − ω

(b,f)
i (p1)]. One particular prescription for

evaluating the resulting integral over p0 is to first Wick-rotate it (which is equivalent to iǫ
prescription p0 → p0 − iǫ).18 Then performing the integral one gets a sum of absolute values of
the characteristic frequencies

E2d (mod) =
1

4

16∑

i=1

∞∑

p1=−∞

(
|ω(b)

i (p1)| − |ω(f)
i (p1)|

)
. (2.3)

Alternatively, one may also treat the worldsheet theory expanded to quadratic order around
the classical solution as a collection of infinitely many coupled harmonic oscillators (found
by expanding the 2d fluctuation fields in Fourier series in σ) and evaluate the corresponding
vacuum energy using the 1-d Hamiltonian (operator) quantization method. As was discussed
in [25, 24], upon a diagonalization of the mixing, the contribution of each normal mode to the
energy will enter in the sum with a sign si = ±1 determined by a minor of the mixing matrix,
i.e. in this case we get

E2d (s) =
1

4

16∑

i=1

∞∑

p1=−∞

[
s
(b)
i,p1

ω
(b)
i (p1) − s

(b)
i,p1

ω
(f)
i (p1)

]
. (2.4)

While this expression is equivalent to (2.3) in some standard simple cases, this need not be true
in general.19 The computation in 1-d Hamiltonian quantization setting may be sensitive to low
values of p1 when sign of ωi may fluctuate with p1 and different treatments may correspond
to different choices of oscillator vacuum for low (zero) modes. At the same time, the signs of
sufficiently high mode number terms (i.e. with |p1| > n = finite number) cannot be sensitive
to them. Indeed, since the mixing of modes is subleading (at most linear) in p1 compared to
the free kinetic term, the mixing can be ignored for large p1; in particular,

|p1| > n : si,p1ωi(p1) = |ωi(p1)| . (2.5)

Since the transcendental (ζ3, ζ5, etc.) terms that may appear in the expression for the 2d
energy can originate solely from a summation over infinite range of p1 (the sum over any finite
set of modes can only produce a rational number) it follows that the transcendental parts of
the 2d energy should be controlled by the |p1| ≫ 1 limit and thus should not depend on a
sign prescription. Moreover, fluctuations with high mode numbers have large 2d energy and
thus probe only short worldsheet distances.20 Their contribution is thus less sensitive to details
of the classical solution which is chosen as an expansion point for the the worldsheet action

18It is not clear a priori why the standard iǫ prescription should be preferred given that 2d Lorentz invariance
is broken by the background.

19The expression in (2.4) may be thought of also as a result of a generalized iǫ prescription: p0 → p0 − is̃iǫ,
with siωi = s̃i|ωi|, s̃2i = 1.

20Classical scale invariance is broken by the background so this notion makes sense; “short distance” is
measured with respect to the characteristic scale of the background which is set by the parameters of the
solution.
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(they will, however, be sensitive to the “topological” features of the solution, such as winding
number). We may then expect that at least some of the coefficients of the transcendental terms
in E1 should be universal within a given Regge trajectory (parametrised by values of spins with
fixed values of windings). This explains, in particular, the universality of the ζ3 term in (1.29)
and of the ζ5 terms in (1.34) and (1.36).

The choice of signs si may itself be sensitive to the definition of the fluctuation modes (related
to shifts in fluctuation frequencies or choice of oscillator vacua that may also be different in
different gauge choices). In general, one expects that the whole summation prescription should
be determined by the requirement that the target space symmetry algebra is correctly realized
on quantum string states. There are more practical physical conditions that are easier to verify,
e.g., the vanishing of the one-loop correction to the energy in the limit in which all charges go
to zero. The one-loop correction should also vanish in the limit in which the classical solution
becomes supersymmetric (in cases where such limit exists)21 e.g., one may require consistency
with the BMN limit.

Another requirement one may impose is an analyticity in the smallest charge. Indeed, in the
presence of a large charge one may expect that turning on another charge should be smooth;
that is, the derivative of the energy with respect to the smallest charge evaluated at zero should
not be singular. This translates into the absence in E2d of fractional powers of small charges,
Qα with α < 1. Such a requirement of the absence of “non-analytic” terms (see [1]) turns
out to be consistent with the structure of the energy (1.3),(1.4) expected to follow from the
marginality condition for the corresponding vertex operator.

2.2 Circular string with spins J1 = J2 and orbital momentum J

We shall start with the “small” circular string in S5 described by the following classical solution
[21, 23, 1, 4] (t = κτ , XkXk = 1)

X1 + iX2 = a ei(wτ+mσ) , X3 + iX4 = a ei(wτ−mσ) , X5 + iX6 =
√
1− 2a2 eiντ

E2
0 = κ2 = ν2 + 4m2a2 = ν2 +

4m2J ′
√
m2 + ν2

, w2 = m2 + ν2 , (2.6)

J ′ ≡ J1 = J2 = a2w , J ≡ J3 = (1− 2a2) ν , ν =
J

1− 2J ′√
m2+ν2

.

In the limit a → 0 this becomes a short string with small spin J ′. m is a winding number
which is to be set to 1 to get a state on the leading Regge trajectory. For ν = 0 the classical
energy has the same expression as in flat space, E0 = 2

√
mJ ′. Expanding the classical string

energy E0 =
√
λE0 for J ′ = J ′√

λ
≪ 1, J = J√

λ
≪ 1 and assuming J 2 ≪ J ′ we get for m = 1

E0 = 2

√√
λJ ′

[
1 +

1√
λ

J2

8J ′ −
1

(
√
λ)2

( J4

128J ′2 − J2

4

)
+ . . .

]
. (2.7)

21Such a requirement may seem inconsistent with the fact that the exact target space energy should contain a
charge-independent term which describes the position of the corresponding state in a supersymmetry multiplet.
However, from the perspective of a quantum string state, this constant term is governed by the fermionic zero
mode content and should not be accessible semiclassically.
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More generally, if we expand in small J ′ for fixed ρ2 = J 2/(4mJ ′), we find

E0 = 2
√

1 + ρ2
√

m
√
λJ ′

[
1 +

1

m
√
λ

ρ2J ′

1 + ρ2

+
1

(m
√
λ)2

(4ρ2 + ρ4 − 2ρ6)J ′2

2(1 + ρ2)2
+ ...

]
, ρ2 =

J2

4m
√
λJ ′

. (2.8)

Expanding this further in the limit ρ → 0 we get back to (2.7) for m = 1. An alternative
expansion corresponding to J ′ ≪ 1 with fixed J (i.e. ρ ≫ 1) gives (cf. (1.10),(1.22),(1.26))

E0 = J +
2

J

√
m2λ+ J2 J ′ − 2m2λ(m2λ+ 2J2)

J3(m2λ+ J2)
J ′2 + ... . (2.9)

It is useful to perform the one-loop calculation in terms of the two independent semiclassical
parameters a and ν. We will first expand in small a at fixed ν and then expand in ν. An
important feature of this expansion is that all 1-loop integrals are then regularized in the IR
by a non-zero value of ν or J and therefore a2 and thus the spin J ′ will appear in the 1-loop
world-sheet energy only in integer powers, E2d =

∑
k fka

2k. A further expansion in small J
can then be carried out in the resulting coefficients.22 Then

E1 =
1

κ
E2d =

1

κ

[
f0(ν,m) + f1(ν,m) a2 + f2(ν,m) a4 + . . .

]

= e0(J , m) + e1(J , m)J ′ + e2(J , m)J ′2 + . . . . (2.10)

Note that as the expansion of κ or the classical energy (2.9) contains inverse powers of J , terms
of higher-order in J −1 in fi contribute to terms of lower order in the corresponding expansion
of ei. Note also that in view of (2.1) we have

E2 = E2
0 + 2

√
λE2d + ... = E2

0 + 2
√
λ
[
f0(ν,m) + f1(ν,m) a2 + f2(ν,m) a4 + ...

]
+ ... . (2.11)

To compute the 1-loop energy E2d we need the quadratic fluctuation operators KB,F or the
corresponding bosonic and fermionic characteristic polynomials. They can be extracted from
[22] and are listed in Appendix B.1. As discussed in the previous subsection, we need also

to choose an appropriate definition of ln detKB

detKF
or a quantization scheme in the Hamiltonian

approach. Since in the present case the characteristic polynomials depend on p0 only through
p20, for each mode number p1 we have a positive and a negative root which are equal in absolute
value. In the Hamiltonian approach it is then natural to define the vacuum energy as a graded
sum of the positive roots (cf. (2.4)). Such a prescription gives the same result as the path
integral approach with the “standard” iǫ prescription leading to (2.3). We then find that the

22Note that for fixed J the small J ′ expansions of a and κ (over which we are to divide E2d to get E1 in
(2.1)) are given by

a =
J ′1/2

(J 2 +m2)1/4
− J ′3/2J 2

(J 2 +m2)7/4
+O(J ′5/2) , κ = J +

2J ′√J 2 +m2

J − 2J ′2m2(2J 2 +m2)

J 2(J 2 +m2)
+O(J ′3)
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one-loop correction to the energy vanishes in the limit J ′ → 0. This is a required feature since
for J ′ = 0 (a = 0) and J 6= 0 the solution (2.6) reduces to a BMN geodesic.23

Let us summarize the results for the 1-loop coefficients (2.10) in the J ′ ≪ J ≪ 1 expansion.
Expanding E2d first in a at fixed ν and then expanding the result in small ν we find for the
coefficients fk in (2.10) (for m = 1):

f0(ν, 1) = 0 , f1(ν, 1) = 2− ν2 +
3

4
ν4O(ν6) , f2(ν, 1) = −3

4
− 6ζ3 +O(ν2) . (2.12)

Then e0(J , 1) = 0 and

e1(J , 1) =
2

J − 2J +O(J 3) , e2(J , 1) = − 4

J 3
+

2

J
(5
8
− 3ζ3

)
+O(J ) . (2.13)

Comparing this with the general expression for the energy (1.9) (here N = 2J ′) we conclude
that the resulting values of n11, n12, n

′
12, ñ11 are as given in (1.29),(1.45). The values of n11 and

n12 were already found in [1].

We can also find the exact dependence of f1 and e1 on J :

f1(ν, 1) =
2√

1 + ν2
, e1(J , 1) =

2

J (1 + J 2)
. (2.14)

Then the coefficient of J ′ in the energy, i.e. the semiclassical expansion for the corresponding
circular string analog of the “slope” [10] function is (see (1.10),(1.14))

h1 = 2
√
λ
√
1 + J 2 +

n11

1 + J 2
+ ... , n11 = 2 . (2.15)

Together with a similar expression found in the (S, J) folded string case [10, 6] this provides
an evidence of the universality of the general expression in (1.25).

Note that when formally expanded in large J , the function h1 in (2.15) takes the following
form: h1 = 2J + λ

J
(1 + 2

J
+ ...) + .... Here the 2

J
term is different by a factor of 2 from the

result for the leading 1-loop finite size correction found in [26]. This disagreement should not,
however, be surprising as the two expansions are derived in different limits (see also Appendix
A). In the present case, relevant for “short” strings, we assumed that J ′ ≪ 1 and J is fixed. In
contrast, the finite size correction calculation of [26] assumed the standard “fast string” limit
of J ′ ≫ 1, J ≫ 1 with J ′

J being fixed and then taken to be small.24

23Let us note that to carry out the calculation in a path integral approach in the case of J = 0 one should

write the p0 integral as
∫
dp0 ln

detKB

detKF

= −
∫
dp0 p0

d
dp0

ln detKB

detKF

. This integration by parts step here is legal

as ln detKB

detKF

vanishes fast enough at infinity. The resulting rational function may then be expanded in J ′ and

integrated without a difficulty.
24Let us recall the distinction between the “small” and “large” circular 2-spin solutions [21, 22]. The distinc-

tion is sharp at J ≡ J3 = 0: (i) the solution is “small” if J1 = J2 = J ′ is such that J ′ < 1
2 (here J = 0 since

ν = 0; this solution is stable); (ii) the solution is “large” if J ′ > 1
2 – (here J = 0 since a2 = 1

2 ; this solution
is unstable). For nonzero J the “small” solution may be defined by requiring that J 2 ≪ J ′; then its classical
energy still starts with

√
4J ′ and thus scales as λ1/4 for fixed J ′. The “large” solution is the one with J ∼ J ′

and J ≫ 1 so that E0 = J + 2J ′ + 1
J ǫ(J

′

J ) + .... It is stable if J ′ < 3
2J . While the “small’ and “large” cases

are smoothly connected for the folded spinning string, that does not apply to the circular 2-spin case as the two
expansions have different origins (a → 0 and a → 1√

2
).

18



Let us now present the results for the 1-loop coefficients fk(ν,m) in (2.10) in the case of
higher winding numbers m ≥ 1 (i.e. for states on subleading Regge trajectories):25

f0 f1 f2

m = 1 0 2− ν2 +O(ν4) −3
4
− 6× 14 × ζ3 +O(ν2)

m = 2 0 20− 17
2
ν2 +O(ν4) −89

6
− 6× 24 × ζ3 +O(ν2)

m = 3 0 60− 247
12
ν2 +O(ν4) −3357

40
− 6× 34 × ζ3 +O(ν2)

m = 4 0 376
3

− 4043
108

+O(ν4)ν2 −263939
945

− 6× 44 × ζ3 +O(ν2)

(2.16)

Simple inspection shows that the coefficient of ζ3 in f2 grows like m4. This dependence is
changed, however, after we express the parameters of the solution in terms of the spins, using,
in particular, the relation a2 = m−1J ′ + O(J 2). The coefficients ek(J , m) in (2.10) are then
found to be:

e0 e1 e2

m = 1 0 2
J − 2J +O(J 3) − 4

J 3 +
2
J
(
5
8
− 3× 12 × ζ3

)
+O(J )

m = 2 0 10
J − 11

2
J +O(J 3) − 40

J 3 +
2
J
(
319
48

− 3× 22 × ζ3
)
+O(J )

m = 3 0 20
J − 287

36
J +O(J 3) −120

J 3 + 2
J
(
3821
240

− 3× 32 × ζ3
)
+O(J )

m = 4 0 94
3J − 2233

216
J +O(J 3) − 752

3J 3 +
2
J
(
289367
10080

− 3× 42 × ζ3
)
+O(J )

(2.17)

As in the folded string case [6], the coefficient of ζ3 in e2 grows like m2, supporting the above
argument for the universality of the transcendental terms.26

It is possible to find higher orders in the small N = 2J ′ expansion of the one-loop correction
(2.10) to the energy:

E1 =
( 1
J − J + J 3 + . . .

)
N (2.18)

+
[
− 1

J 3
+ (

5

16
− 3

2
ζ3)

1

J − (
69

32
− 3

2
ζ3 −

15

8
ζ5)J − (

655

128
+

25

16
ζ3 +

15

8
ζ5 +

35

16
ζ7)J 3 + . . .

]
N 2

+
[ 3

2J 5
+ (

3

16
+

3

2
ζ3)

1

J 3
+ (

41

32
− 9

8
ζ3)

1

J − (
175

32
− 33

8
ζ3 −

25

8
ζ5 +

35

16
ζ7)J + . . .

]
N 3 + . . . .

We notice that through O(N 2) order all the transcendental terms are the same as in the case of
the folded string in AdS5 [6]; we will find them also to be the same for other two circular string
solutions and the folded string in S5. Comparing to the general expansion in (1.9) where the
corresponding coefficient is in (1.37) we find then the values of ñ12, n13 quoted in (1.34),(1.36)
with ñ′

12 = −57
16
, n′′

13 = −3
4
and n′

13 = − 3
16
.

25The GS fermions here are taken to be periodic for any m (see [27]).
26An interesting open question is how the quantum string states corresponding to folded and circular spinning

strings with m > 1 fit into supermultiplets at higher excited string levels. Note, however, that the pattern of
the 1

J 3 terms in e2 in (2.17) appears to be different from the one in [6].
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Let us now present the result for the 1-loop correction to the energy in the limit of small
J ′ and fixed ρ2 = J 2

4m
√
λJ ′

. At fixed ρ and J ′ ≪ 1 the relation between the parameters of the
solution and the charges is:

ν = 2ρ
√
mJ ′

[
1 +

2J ′

m
− 4J ′2 (ρ2 − 1)

m2
+O(J ′3)

]
,

κ = 2
√
mJ ′

√
1 + ρ2

[
1 +

J ′ρ2

m (1 + ρ2)
+

J ′2ρ2 (4 + ρ2 − 2ρ4)

2m2 (1 + ρ2)2
+O(J ′3)

]
,

a2 =
J ′2

m

[
1− 2J ′ρ2

m
+

J ′2 (6ρ4 − 8ρ2)

m2
+O(J ′3)

]
. (2.19)

We may use these expressions and fk in (2.10) given in (2.16) to find the fixed-ρ expansion of
E1. Indeed, since a2 ∝ J ′2 contains only positive powers of J ′ while κ and ν do not contain
inverse powers of J ′, higher orders in the small a and small ν expansion cannot affect lower
orders. For m = 1 we then find

E1 =

√
J ′

√
1 + ρ2

[
1 +

(
− 3 + 43ρ2 + 32ρ4

8(1 + ρ2)
− 3ζ3

)
J ′ +O(J ′2)

]
. (2.20)

Taking the limit ρ → 0 we may read off the value of the coefficient n12 in (1.4),(1.6) (here
n02 = 0)

n12 = −3

8
− 3ζ3 (2.21)

which is in agreement with (1.29),(1.45).

It is possible also to determine the transcendental part of the next terms in the small J ′

expansion of the one-loop energy directly at J = 0, extending the ρ = 0 limit of the expression
in (2.20) and showing that this limit can be safely taken in that equation:

(E1)J1=J2=J ′, J=0 =
√
J ′

[
1 +

(
− 3

8
− 3ζ3

)
J ′ + 2

(
− 3

16
− 3

4
ζ3 +

15

4
ζ5
)
J ′2 +O(J ′3)

]
.(2.22)

Comparing to (1.7) (where the transcendental part of the N2 term is contained in n13− 1
4
n02n12)

we find the value of n13 to be in agreement with (1.36) again with n′
13 = − 3

16
and n′′

13 = −3
4

(here n02 = 0).

2.3 Circular string with spins S1 = S2 and orbital momentum J

Let us now consider the small string with 2 equal spins in AdS5 orbiting big circle in S5

[21, 23, 1, 4] (Y 2
0 + Y 2

5 − YmYm = 1):

Y0 + iY5 =
√
1 + 2r2 eiκτ , Y1 + iY2 = r ei(wτ+mσ) , Y3 + iY4 = r ei(wτ−mσ) ,

X1 + iX2 = eiντ , w2 = κ2 +m2 , κ2 = 4m2r2 + ν2 , (2.23)

E0 = (1 + 2r2)κ = κ+
2κS√
m2 + κ2

, S = S1 = S2 = r2w , J = ν .
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Short string limit corresponds to r → 0 when the solution approaches its flat-space limit (for
ν = 0). The parameter κ determined from the conformal gauge condition may be written as

κ2 =
4m2

√
m2 + κ2

S + J 2 . (2.24)

Below we shall consider the case of m = 1. For small S and small J we get the following
“short” string expansion of the classical energy (E0 =

√
λE0):

E0 = 2
√
S

(
1 + S +

J 2

8S + ...
)
. (2.25)

In the limit of small S with fixed J we get

E0 = J +
2

J
√

1 + J 2 S − 2S2

J 3(1 + J 2)
+O(S3) . (2.26)

At small S with fixed ρ2 = J 2

4S we find instead

E0 =
√
S
[(

− 1

4ρ3
+

1

ρ
+ 2ρ

)
−
( 1

2ρ3
− 1

ρ
− 2ρ

)
S +

( 1

ρ3
− 5

ρ
− 4ρ− 2ρ3

)
S2 +O(S3)

]
(2.27)

As in the previous J1 = J2 case it is convenient to carry out the 1-loop calculation in terms of
ν and r and then evaluate the result in the two limits: (i) small S with fixed J or (ii) small S
with fixed ρ. As in (2.10) the 1-loop correction to the energy may be written as

E1 =
1

κ
E2d =

1

κ

[
f0(ν,m) + f1(ν,m) r2 + f2(ν,m) r4 + . . .

]

= e0(J , m) + e1(J , m)S + e2(J , m)S2 + . . . . (2.28)

Using the expressions for the characteristic polynomials in Appendix B.227 and the “standard”
choice of summation prescription (2.3) in which we keep unspecified the signs of the terms that
vanish in the r2 ∼ S → 0 limit we found that expanding first in r and then in ν the expansion
of the world-sheet energy E2d in (2.28) contains the following terms

E2d = E2d low + E2d high ,

E2d low =
[
− q

ν
− 7

3
+

235

216
ν2 +O(ν4)

]
r2 +

[ q

ν3
− 1565

432
+O(ν2)

]
r4 +O(r6) (2.29)

E2d high =
[1
3
− 19

216
ν2 +O(ν4)

]
r2 +

[2969
432

− 6ζ3 +O(ν2)
]
r4 +O(r6) . (2.30)

We split the result into the contribution of few “low” modes (p1 = 0,±1,±2) and the rest of
“higher” modes. The coefficient q of the singular in ν → 0 contributions depends on the signs
sp1 of low fermionic frequencies which vanish at r = 0 for p1 = ±1, i.e. q = 2+ s1 + s−1. There
is thus a choice of a sign prescription that ensures the absence of unwelcome singular terms in

27They can be obtained from those in the J1 = J2 case as the two solutions are related by an analytic
continuation effectively interchanging the AdS5 and S5 parts, a2 → −r2, κ → ν, etc.
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ν. The natural value for this coefficient is q = 0 as the complete two-dimensional energy of
the solution, whose 1-loop part is E2d above, is the right-hand side of eq. (1.2) and is therefore
expected to contain only even powers of J = ν. Setting thus q = 0, the resulting values of the
coefficients fk in (2.28) are

f0(ν, 1) = 0 , f1(ν, 1) = −2 + ν2 +O(ν4) , f2(ν, 1) =
13

4
− 6ζ3 +O(ν2) . (2.31)

Using that ν = J and

r2 =
S√

1 + J 2
− 2S2

(1 + J 2)2
+ ... , κ = J +

2

J
√
1 + J 2

S − 2(1 + 3J 2)

J 3(1 + J 2)2
S2 + ... , (2.32)

it follows that ek in (2.28) are given by

e0 = 0 , e1 = − 2

J + 2J +O(J 3) , e2 =
4

J 3
+

2

J
(5
8
− 3ζ3

)
+O(J ) . (2.33)

Comparing to (1.9) (here N = 2S) we find, in agreement with (1.29),(1.46), that in the present
case n01 = 1, n02 = 2, n11 = −2, ñ11 = 2, and

n12 =
13

8
− 3ζ3 . (2.34)

The value of n11 was previously found in [1]. The value n′
12 =

13
8
is the expected one, i.e. is in

agreement with (1.33), implying the universality of the value of the energy for the corresponding
(Konishi-multiplet) state with J = S = 2 on the lowest massive string level.

As in (2.18) we may determine the transcendental part of the higher order terms in the small
S expansion of the energy (N = 2S)28 :

E1 =
(
− 1

J + J − J 3 + . . .
)
N (2.35)

+
[ 1

J 3
+ (

5

16
− 3

2
ζ3)

1

J + (−93

32
+

3

2
ζ3 +

15

8
ζ5)J + . . .

]
N 2+

+
[
− 3

2J 5
+ (

3

2
ζ3 −

3

16
)
1

J 3
+ (

9

8
ζ3 −

41

32
)
1

J + (
363

32
− 43

8
ζ3 − 5ζ5 −

35

16
ζ7)J + . . .

]
N 3 + . . . .

Comparing to (1.9),(1.37) the O(JN 2) term here gives the value of ñ12 in (1.34) with ñ′
12 =

−105
16
. Together with the absence of ζ5 at O(N 3/J ), this determines n13 as quoted in eq. (1.36)

with n′
13 = −85

16
and n′′

13 =
15
4
.

Next, let us mention the case of small S expansion for fixed ρ2 = J 2

4S . Since the expressions
in (2.32) contain the exact J dependence, we may get the corresponding E1 from E2d in
(2.28),(2.31) (cf. (2.20))

E1 =

√
S√

1 + ρ2

[
− 1 +

(21
8

+ 4ρ2 − 3ζ3
)
S +O(S2)

]
. (2.36)

28It is interesting to mention that, in a small ν expansion of the coefficient f2(ν, 1) in E2d, at O(ν0) there is
only ζ3 term and at O(ν2) there is only ζ5 for both J1 = J2 and S1 = S2 cases. This implies that ζ3 in ñ12 has

the same origin as ζ3 in n12: the only difference in its coefficient comes from the expansion of a4

κ vs r4

κ .
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Taking the limit ρ → 0 we may read off again the value of the coefficient n12 in (1.4),(1.6),(2.34).29

Summing up the small ν expansion of the function f1(ν, 1) in (2.31) we may find the exact
form of e1(J , 1) in (2.33):

f1(ν, 1) = − 2√
1 + ν2

, e1(J , 1) = − 2

J (1 + J 2)
. (2.37)

These expressions are just negative of the corresponding functions in the J1 = J2 case in (2.14),
in agreement with the general expression (1.25) and the opposite signs of the n11 coefficients
in (1.45) and (1.46).

One may also perform the computation of E1 by setting J = 0 directly from the start.30

While similarly to the J1 = J2 string case the characteristic polynomials here depend only on p20
and thus for each mode number there are two roots equal in absolute value and opposite in sign,
a sign prescription similar to that of the J1 = J2 case in which the one-loop energy is given by
the graded sum of the positive roots of the characteristic polynomial (2.3) leads to an unwanted
feature: a non-zero value for E2d in the S → 0 limit (see also eq. (3.35) in [1]). As discussed in
Appendix A of [1], this constant term may be removed by a specific reorganization of modes
together with a change of integration variables, leading to a cancellation of the problematic
term at the level of the p0 integrand (so that a specific iǫ prescription was not necessary). The
same result may be obtained by adjusting the sign of just one root of each of the two fermionic
characteristic polynomials F1 and F2 which for p1 = ±1 scale as

√
S in the limit S → 0: their

signs should be such that their contribution adds up to zero.31 Then the “low” modes with
p1 = 0,±1,±2 contribute to the sum over the roots of the characteristic polynomial as:

E1 =
1

κ

(
E2d low + E2d high

)
, E2d low = −7r2

3
− 1565r4

432
+O(r6) , (2.38)

E2d high =

∞∑

p1=3

[
− 4

p1(1− p21)
r2 +

4− 17p21 + 137p41 − 40p61
p31(4− p21)(1− p21)

3
r4 +O(r6)

]
. (2.39)

Using that E2d high = 2
3
r2 + (2969

216
− 12ζ3)r

4 +O(r6) we find

E1 =
√
S
[
− 1 +

(21
8

− 3ζ3
)
S +O(S2)

]
, (2.40)

which is the same as the ρ = 0 limit of (2.36).

It is possible also to find the analog of (2.22), i.e. to determine the transcendental part of the
next terms in the expansion of the one-loop energy of the S1 = S2 string at J = 0, extending
(2.40) to next order:

(E1)S1=S2=S, J=0 =
√
S
[
− 1 +

(21
8

− 3ζ3
)
S + 2

(
− 59

8
+

21

4
ζ3 +

15

4
ζ5
)
S2 +O(S3)

]
.(2.41)

Comparing to (1.7) we conclude that the highest transcendental coefficient ζ5 at the next order
is again universal, leading to the expression for n13 in (1.36) again with n′

13 = −85
16

and n′′
13 =

15
4
.

29Note that in (2.36) we have the following combination: n′
12 − 1

4n11n02 = 13
8 + 1 = 21

8 .
30For J = ν = 0 one has κ = 2r = 2

√
S − 2S3/2 + 9S5/2 +O(S7/2), etc.

31Interestingly, the only effect of this choice is to remove the problematic term and thus to restore the expected
S → 0 limit (all related higher integer powers of S are simultaneously removed).
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2.4 Circular string with spins S = J ′ and orbital momentum J

The “mixed” AdS5 × S5 circular solution is described by (we set the two windings equal to 1)

Y0 + iY5 =
√
1 + r2 eiκτ , Y1 + iY2 = r ei(wτ+σ) , w2 = κ2 + 1 ,

X1 + iX2 = a ei(w
′τ−σ) , X3 + iX4 =

√
1− a2 eiντ , w′2 = ν2 + 1 , (2.42)

κ2 − ν2 = 2r2 + 2a2 , r2w = a2w′ ,

E0 = κ(1 + r2) , S = r2w = a2w′ = J ′ , J = (1− a2)ν . (2.43)

Note that this solution is “self-dual” under the analytic continuation interchanging AdS5 and
S5 parts: κ ↔ ν, r ↔ ia, w ↔ −w′. The parameters κ and ν may be expressed in terms of
the spins by solving the equations

κ2 − ν2 =
2S√
1 + κ2

+
2S√
1 + ν2

, J2 = ν − νS√
1 + ν2

. (2.44)

The classical energy has the following expansions

(E0)S≪1, J=fixed = J +
2

J
√
1 + J 2S − 2

J 3
S2 +O(S3) , (2.45)

(E0)S≪1, ρ2=J2

4S
=fixed

= 2
√

1 + ρ2
√
S
[
1 +

1 + 2ρ2

2(1 + ρ2)
S

−5 + 8ρ2 + 12ρ4 + 8ρ6

8(1 + ρ2)2
S2 +O(S3)

]
, (2.46)

(E0)J 2≪S≪1 = 2
√
S

(
1 +

1

2
S +

J 2

8S + ...
)
. (2.47)

As in the previous cases we shall carry out the 1-loop computation in terms of the parameters
ν and r and then evaluate the result in the small S limit with fixed J or fixed ρ2 = J 2

4S , i.e.
we will define fk and ek as in (2.28). We will need the following small S expansions of the
parameters:

κ = J +
2 + J 2

J
√
1 + J 2

S − 2 + 6J 2 + 3J 4

J 3(1 + J 2)2
S2 + ... , (2.48)

r =
S1/2

(1 + J 2)1/4
− 2 + J 2

2(1 + J 2)7/4
S3/2 + ... , ν = J +

J S√
1 + J 2

+
J S2

(1 + J 2)2
+ ... .

The corresponding characteristic polynomials are given in Appendix B.3. The summation
prescription in (2.4) may be fixed as follows. All frequencies which are nonzero in the BMN
limit (r → 0) are summed with uniform signs such that at p1 ≫ 1 they contribute positively
to the energy (this guarantees the vanishing of 1-loop correction to the BMN vacuum state).
The signs of some remaining frequencies are fixed by requiring the absence of r2

ν
terms in the

frequency sum. Few other signs are fixed by requiring that all O(r2) terms vanish (such terms
are expected to cancel due to opposite curvatures of AdS5 and S5). Then as in (2.29),(2.30)
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and (2.38) we may split the contribution of modes with p1 = −2, . . . , 2 from that of the higher
ones

E2d low =
[1
2

(
− 961

72
− 9

8
u
)
+

1

2

(141337
10368

+
21

16
u
)
ν2 +O(ν4)

]
r4 +O(r6) , (2.49)

E2d high =

∞∑

p1=3

[4p41 + 11p21 − 3

p31(1− p21)
3

+O(ν2)
]
r4 +O(r6)

=
[1033
144

− 6ζ3 +O(ν2)
]
r4 +O(r6) . (2.50)

Here the parameter u represents the still unfixed sum of 4 bosonic p1 = ±2 frequency signs; it
can take values u = −4,−2, 0, 2, 4. Then fk in the analog of (2.28) are

f0(ν, 1) = 0 , f1(ν, 1) = 0 , f2(ν, 1) =
1

2
− 9u

16
− 6ζ3 +O(ν2) . (2.51)

Expanding E1 first in small S at fixed J and then in small J we get

E1 =
1

κ
E2d =

[2n12

J +O(J )
]
S2 +O(S3) , (2.52)

n12 = n′
12 − 3ζ3 , n′

12 =
8− 9u

32
. (2.53)

This gives n′
12 = (11

8
, 13
16
, 1
4
) for u = (−4,−2, 0). The choice of n′

12 =
11
8
appears to be preferred

in the algebraic curve approach that we discuss in Appendix C. None of these choices leads to
n′
12 = 5

8
consistent with the universality of (1.30) observed for four other (two folded and two

circular) examples of the solutions. This suggests that a consistent summation prescription in
this S = J ′ case is yet to be identified.

Expanding in S for fixed ρ when

ν = 2ρS1/2 + 2ρS3/2 +O(S5/2) , κ = 2
√
1 + ρ2S1/2 − S3/2

√
1 + ρ2

+O(S5/2) , (2.54)

we get (cf. (2.20),(2.36))

E1 =

√
S√

1 + ρ2

[
(n′

12 − 3ζ3)S +O(S2)
]
, (2.55)

where n′
12 is the same as in (2.53).

Similarly to the J1 = J2 and S1 = S2 cases in (2.18),(2.35), the transcendental parts of the
higher terms in the small S expansion of E1 here are found to be (N = 2S)

E1 =
[
(
n′
12

2
− 3

2
ζ3)

1

J + (q1 +
3

2
ζ3 +

15

8
ζ5)J + . . .

]
N 2 (2.56)

+
[ q2
J 5

+ (q3 +
3

2
ζ3)

1

J 3
+

q4
J + (q5 −

5

8
ζ3 −

15

16
ζ5 −

35

16
ζ7)J + . . .

]
N 3 + . . .

where qk are rational numbers. The coefficient of JN 2 term again leads to the same universal
value of ñ12 in (1.34) with ñ′

12 = 2q1. At O(N 3) we should find that q2 = 3
4
n11 = 0 and that
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q3 = −1
2
n′
12. The absence of ζ5 in N 3/J term confirms again the universality of ζ5 in n13 in

(1.36), the absence of ζ3 implies that n′′
13 =

3
2
and the rational term fixes n′

13 = 2(q1+q4)+
1
2
n′
12.

It is also possible to determine unambiguously the transcendental part of E1 in the small S
expansion at J = 0 (cf. (2.22),(2.41))

(E1)S=J ′, J=0 =
√
S
[
(n′

12 − 3ζ3)S + 2(k3 +
9

4
ζ3 +

15

4
ζ5)S2 + . . .

]
, (2.57)

where k3 is a rational number. This again leads to n13 in eq. (1.36) with n′
13 = k3 +

1
4
n′
12

and n′′
13 = 3

2
(here n02 = 1). Consistency of the two values for n′

13 requires then that k3 =
2(q1 + q4) +

1
4
n′
12.
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Appendix A: Comments on small and large J expansions of h1(λ, J)

in eq. (1.10)

Let us comment on the exact expression for the slope function h1(λ, J) in (1.10) proposed in [10]
in the case of the folded spinning string state in the sl(2) sector and its possible generalizations
for other string states. One motivation to try understand the structure of h1 better is that
it determines, in particular, the value of the 2-loop coefficient n21 in (1.11) that is still to be
derived by a direct world-sheet computation.

It was suggested in [10] that the exact form of h1 function in the energy (dimension) (1.10) of
the sl(2) sector ground state corresponding in the semiclassical limit to the (S, J) folded string
in AdS5 is given by

h1 = 2
√
λ

d

d
√
λ
ln IJ(

√
λ) (A.1)

= 2
√
λ
√
1 + J 2 − 1

1 + J 2
−

1
4
−J 2

√
λ(1 + J 2)5/2

−
1
4
− 5

2
J 2 + J 4

(
√
λ)2(1 + J 2)4

+ ... (A.2)

= 2
√
λ+ J2 − λ

λ+ J2
− λ(1

4
λ− J2)

(λ+ J2)5/2
− λ(1

4
λ2 − 5

2
λJ2 + J4)

(λ+ J 2)4
+ ... , (A.3)

where IJ is the modified Bessel function and J = J√
λ
. The second line corresponds to the

string semiclassical expansion: λ ≫ 1 for fixed J ; the first term in it is the classical string
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contribution, the second is 1-loop term, the third is 2-loop one, etc. The third line is found by
rewriting the semiclassical result back in terms of J .

Starting with E =
√
J2 + h1(λ, J)N + ... in (1.10) and expanding it in semiclassical regime

with fixed J and small N we get

E = J +
N

2J
h1(λ, J) + ... = J +

N

2J

[
2
√
λ+ J2 − λ

λ+ J2
+ ...

]
+ ... . (A.4)

The 1-loop term − N
2J

1
1+J 2 was found directly in the semiclassical limit in [6]. As was mentioned

in section 1, this term is universal, i.e. found also for other semiclassical states (see (1.25)). This
expression can be expanded in several different limits and interpolates between some previously
known results. If we assume that J ≫ 1, i.e. J2 ≫ λ, then we get from (A.2)

h1 = 2J +
λ

J

(
1− 1

J
+

1

J2
+ ...

)
+ ... , (A.5)

implying that the expansion of E in the large J , small N
J limit is

E = J +N +
λ

2J2
N
(
1− 1

J
+

1

J2
+ ...

)
+O((

N

J
)2) . (A.6)

This matches the known tree level plus 1-loop result in string semiclassical expansion.32 Notice
that in (1− 1

J
+ 1

J2 + ...) in (A.5) the string 1-loop term − 1
J
came from the − λ

λ+J2 term in (A.2)

while the string 2-loop term + 1
J2 came from the − λ( 1

4
λ−J2)

(λ+J2)5/2
term in (A.2).

These two leading terms are, in fact, protected, i.e. are the same as on the 1-loop gauge
theory (spin chain) side where the 1

J
term is the leading finite size correction [29]. The structure

(1− 1
J
) of the leading correction appears to be universal: it is found also for the circular (S, J)

string [24, 29].33 This is consistent with the relations (1.24),(1.25). The linear in N
J
term comes

only from the zero-mode contribution on the string side or only from the non-anomalous finite-
size correction on the 1-loop gauge theory side. The next 1

J2 correction (1-loop on gauge theory
side and 2-loop on the semiclassical string theory side) which should again be protected was
computed on the spin chain side in [30] (to all orders in N

J
).34

If instead we consider the opposite limit of J ≪ 1, i.e. J2 ≪ λ, then we get from (1.6) [10]

h1 = 2
√
λ− 1−

1
4
− J2

√
λ

−
1
4
− J2

(
√
λ)2

−
25
64

− 13
8
J2 + 1

4
J4

(
√
λ)3

+ ... , (A.7)

implying the values n11 = −1, ñ11 = 1 and n21 = −1
4
in (1.11),(1.43). This value for the 1-

loop coefficient n11 in the small S semiclassical expansion (matching the one directly computed

32For folded string the 1
J term was found in Appendix D of [28].

33To see that there is no linear in S/J ≡ N/J term in the “anomalous” part of the 1-loop correction
Eanom = λ

2J2 (
∑∞

n=1[n
√
n2 + 4M2 − n2 − 2M2] where M2 = S

J (1 +
S
J ) one needs to differentiate this over M2

(the first derivative vanishes).
34As we have checked explicitly from the results in Appendix of [30], the same subleading 1/J2 finite-size

term as in (A.6) appears also for the circular (S, J) string state in the sl(2) sector (here J is the momentum
along the circle in S5 which the string is wound on). This suggests the universality of the terms given explicitly
in (A.6) in the sl(2) sector.

27



using the algebraic curve approach in [3]) has the same origin in (A.2) as the 1
J
string term in

(A.6): both come from two different limits of the the 1-loop semiclassical term − 1
1+J 2 there.

This confirms that this term should not be sensitive to wrapping (Luscher) corrections, being
at the same time the origin of a finite-size (and even non-anomalous) term at large J . This also
suggests that, like the coefficient of the − 1

J
term, n11 may be coming only from the zero-mode

contributions in the near folded-string expansion. This supports the claim [10] that h1(λ, J)
has its origin just in the asymptotic Bethe ansatz and is not even sensitive to the string phase.

One may expect to find similar expressions for the corresponding (J ′, J) folded string state in
the su(2) sector. Indeed, the folded string in S5 is related to its AdS5 counterpart by an analytic
continuation [31], implying (up to signs) (E, S; J) → (E; J ′, J), E = −J, S = J ′, J = −E. In
this case N = J ′ so we may expect to get similar relations as above up to some sign changes,
i.e.35

E2 = J2 + h1(λ, J) J
′ + ... , h1 = 2

√
λ
√

1 + J 2 +
1

1 + J 2
+ ... . (A.8)

Changing the of sign of the subleading term in (A.8) compared to (A.2) has two implications:
the signs of n11, of ñ11 and of the leading 1

J
term also change. Now n11 = 1 = −ñ11 as in (1.44)

in agreement with [1, 5] (see also Appendix D).36 For large J we get

E = J + J ′ +
λ

2J2
J ′(1 +

1

J
+

1

J2
+ ...) + ... , (A.9)

where the (1+ 1
J
) term is in agreement with the result for the finite size corrections from the spin

chain and the string sides (cf. eq.7.33,7.34 in [28]). As in the sl(2) sector case in (A.2),(A.5),
the subleading term 1

J2 in (A.9) should originate from the next (string 2-loop) term in h1 in
(A.8). The coefficient of this 1

J2 term should be universal in the su(2) sector, i.e. the same also
as for the circular string. Indeed, for the circular string in the su(2) sector we get (A.9) with
the same terms in the bracket (1+ 1

J
+ 1

J2 + ...), as one can see from [32] (these terms come from
non-anomalous finite size contribution only). Such a correction in the near-BMN expansion
was found also in [28]. It came out the same from the Bethe ansatz and the Landau-Lifshitz
approach, so it should be a protected one.37 Direct check of the universality of the 1

J2 term
requires a 2-loop computation on the string side. The knowledge of this 1

J2 term provides a
priori only a weak constraint on a possible next term in the expansion of h1 in (A.8), but there

is a natural guess: the direct analog of the − λ( 1
4
λ−J2)

(λ+J2)5/2
term in (A.3) reproduces both the 1

J2

term and the expected universal value of n21 in (1.30) (see (1.44)).

In the case of “small” circular strings with 2 internal spins we again find

h1 = 2
√
λ
√

1 + J 2 +
n11

1 + J 2
+ ... , (A.10)

35Note that this analytic continuation is not useful if J is fixed, while E ∼ λ1/4 ≫ 1 so there is no way of
interchanging E and J . It still works at large J and thus large E and explains why the sign of first finite size
correction changes: E = J + λN

2J2 (1− J−1 + J−2) translates into J = E − λN
2E2 (1 + E−1 + E−2) and then using

that E = J + ... we get the required result.
36The change of sign of the leading 1-loop string correction can be attributed to the change in sign of the

curvature between AdS5 and S5 [1].
37The fact that it comes out of the Landau-Lifshitz approach means that one does not need the full superstring

computation to reproduce it, provided one regularizes properly (in addition, only zero modes are expected to
contribute to this term).
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where e.g., for (J1 = J2 = J ′, J) case N = J1 + J2 = 2J ′ and n11 = 2 = −ñ11 (see (1.45)).
Indeed, according to (2.37), in this case

E1 =
N

J (1 + J 2)
+O(N 2) , h1(J ≫

√
λ) = 2J

[
1 +

λ

2J2
(1 +

n11

J
) + ...

]
. (A.11)

The term 1 + n11

J
with n11 = 2 here appears to be in contradiction with the form of the finite

size correction – (1 + 1
J
) times the classical λ

2J2N term – found earlier [26, 29].38 As already
mentioned below eq. (2.15) this is not really a disagreement as, in the 2-spin case, the two
expressions are derived in different limits: here we have J ′ ≪ 1 for fixed J , while in the
standard discussions of finite-size corrections in the thermodynamic limit one first assumes
J ′ ≫ 1, J ≫ 1, with J ′

J =fixed, and then may expand in J ′

J .

Appendix B: Characteristic polynomials for circular string
fluctuation frequencies

Rigid circular strings with two equal spins and orbital momentum J in S5 discussed in this
paper are homogeneous solutions for which the quadratic fluctuation operator has constant
coefficients. In Fourier transformed form this is a matrix depending on 2d momenta (p0, p1)
(with p1 being integer as σ ∈ (0, 2π)) whose determinant is thus a finite-order polynomial
in (p0, p1). The roots of this characteristic polynomial determine the fluctuation frequencies
p0 = ω(p1) that appear in the 1-loop correction to 2d energy (see (2.3) or (2.4)).

B.1 J1 = J2 string

The characteristic polynomials for this circular string have been derived in [21, 22]. The AdS5

fluctuations have the standard BMN type form with mass κ (expressed in terms of the other
independent parameters a and ν, see (2.6)) while the characteristic polynomial for the S5 part
is more complicated. Explicitly,

BAdS5

8 =
(
− p20 + p21 + ν2 + 4m2a2

)4
, (B.1)

BS5

8 =
[
(p20 − p21)

2 − 4ν2p20
]2 − 16(2a2 − 1)m4(p20 − p21)

2 (B.2)

+8m2
[
(a2 − 1)(p20 − p21)

2(p20 + p21)− 4ν2p20[(a
2 − 1)p20 + (1− 3a2)p21]

]

As discussed in [21, 22], the determinant of the fermionic quadratic operator is the square of
an operator expressed solely in terms of six-dimensional Dirac matrices. We note here that,
due to the chirality of six-dimensional spinors, this determinant (over spinor indices) further
factorizes:

detK10d
f = (detK6d

f )2 , detK6d
f = F1F2 , (B.3)

38This structure from expansion of eq.(2.23) in [29] to linear order in N : again only the analytic spin chain
side part or 0-mode string side part is contributing to it. It appears that the analytic finite size correction to the
linear in N term is universal: 1+ 1

L in compact (su(2), etc.) sector and 1− 1
L in noncompact (sl(2), etc) sector.

Here L = J +N is total length, its difference from J is irrelevant to leading order in N . The sign difference is
due to the analytic continuation between the sectors.
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where F1,2 are the corresponding fermionic characteristic polynomials

F1 = (p20 − p21)
2 + p20[ν(−

√
4a2m2 + ν2 − 3ν)− 2(a2 + 1)m2]

+p21[ν(ν −
√
4a2m2 + ν2) + (6a2 − 2)m2] (B.4)

+(a2 − 1)2m4 +m2ν[ν + (a2 − 1)
√
4a2m2 + ν2] + 1

2
ν3(ν −

√
4a2m2 + ν2) ,

F2 = (p20 − p21)
2 + p20[ν(

√
4a2m2 + ν2 − 3ν)− 2(a2 + 1)m2]

+p21[ν(ν +
√
4a2m2 + ν2) + (6a2 − 2)m2] (B.5)

+(a2 − 1)2m4 +m2ν[ν − (a2 − 1)
√
4a2m2 + ν2] + 1

2
ν3(ν +

√
4a2m2 + ν2) .

Using the relations between the parameters of the solution, one can check that the product
F1F2 reproduces the fermionic characteristic polynomial in [22].

B.2 S1 = S2 string

As was mentioned in section 2, this solution may be obtained from the J1 = J2, J by the
analytic continuation

κ ↔ ν , a2 ↔ −r2 . (B.6)

This observation may be used to find the corresponding characteristic polynomials from their
J1 = J2 counterparts. The bosonic ones are then

BAdS5

8 =
[
(p20 − p21)

2 − 4κ2p20
]2 − 16(2r2 − 1)m4(p20 − p21)

2

+8m2
[
(r2 − 1)(p20 − p21)

2(p20 + p21)− 4κ2p20[(r
2 − 1)p20 + (1− 3r2)p21]

]
, (B.7)

BS5

8 =
(
− p20 + p21 + ν2

)4
. (B.8)

The fermionic determinant has factorization property similar to that in the J1 = J2, J solution
(B.3) with

F1 = (p20 − p21)
2 + p20[−κ(ν + 3κ)− 2(−r2 + 1)m2]

+p21[κ(κ− ν)− 2(3r2 + 1)m2]

+(r2 + 1)2m4 +m2κ[κ− (r2 + 1)ν] + 1
2
κ3(κ− ν) , (B.9)

F2 = (p20 − p21)
2 + p20[κ(ν − 3κ)− 2(−r2 + 1)m2]

+p21[ν(ν + κ)− 2(3r2 + 1)m2]
+(r2 + 1)2m4 +m2κ[κ + (r2 + 1)ν] + 1

2
κ3(κ+ ν) . (B.10)

Upon setting ν = 0 we may recover the characteristic polynomials in [39].

B.3 S = J ′ string

Here the AdS5 bosonic characteristic polynomial can be directly extracted from [24] (from the
expression found before using the conformal gauge constraint).39 Then its S5 counterpart can

39One can check directly that the massless mode decouples in the characteristic polynomial for three coupled
AdS5 fluctuation modes that follows from the fluctuation Lagrangian in eq. (4.13) in [24].
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be found by using the “self-duality” property of the solution (2.42) under

κ ↔ ν , r ↔ ia , w ↔ −w′ . (B.11)

We end up with

BAdS5

8 = (p20 − p21)(−p20 + p21 + w2 − 1)2

×
[
(p20 − p21)

2 − 4p21(1 + r2) + 8p0p1(1 + r2)w − 4p20[−κ2r2 + (1 + r2)w2]
]

(B.12)

BS5

8 = (p20 − p21)(−p20 + p21 + w′2 − 1)2

×
[
(p20 − p21)

2 − 4p21(1− a2)− 8p0p1(1− a2)w′ − 4p20[ν
2a2 + (1− a2)w′2]

]
. (B.13)

As in the previous cases here the fermionic operator can be put into a block-diagonal form
where each block may be written in terms of the six-dimensional Dirac matrices. While the two
blocks are not identical, parity invariance requires that their determinants are the same. The
fact that six-dimensional spinors are chiral implies that the determinant of each block further
factorizes as in (B.3), where now

F1 = (p20 − p21)
2 + 2mp0p1

[
2a2(w′ +

κν

w
) + (w − w′)

]

+p21

[
− κν + 3ν2 + (w − 2w′)(w + w′)

]
− p20

[
κν + ν2 + w(w + w′)

]
(B.14)

+
1

4

[
− 2κν[w′(w + w′)− ν2] + 2ν4 + ν2(w − 3w′)(w + w′) + w′2(w + w′)2

]
,

F2 = (p20 − p21)
2 + 2mp0p1

[
2a2(w′ − κν

w
) + (w − w′)

]

+p21

[
κν + 3ν2 + (w − 2w′)(w + w′)

]
− p20

[
− κν + ν2 + w(w + w′)

]
(B.15)

+
1

4

[
2κν[w′(w + w′)− ν2] + 2ν4 + ν2(w − 3w′)(w + w′) + w′2(w + w′)2

]
.

Let us comment on derivation of these expressions (that reduce to the ones in [24] for a = 1
in (2.42)). In the κ-symmetry gauge θ1 = θ2 the quadratic part of the fermionic Lagrangian is
(see, e.g., [22, 24] and refs. there)

L = −2iηαβeAα θ̄Γ
ADβθ − ǫαβ θ̄ΓAΓ∗ΓBθe

A
αe

B
β (B.16)

where D = d + 1
4
ωABΓAB is the usual spinor covariant derivative. For the solution (2.42) the

2d projected combinations eAαΓA and ωAB
α ΓAB are:

eA0 ΓA = Γ0

√
1 + r2κ+ Γ4rw + Γ5

√
1− a2ν + Γ9aw

′

eA1 ΓA = m(Γ4r − Γ9a)

ωAB
0 ΓAB = 2κrΓ01 − 2(

√
1 + r2wΓ14 + aνΓ56 +

√
1− a2w′Γ69)

ωAB
1 ΓAB = m(−2

√
1 + r2Γ14 + 2

√
1− a2Γ69) (B.17)

where ΓA are the 10-d Dirac matrices; one should project the quadratic operator onto its
chiral part thus rendering it a 16 × 16 matrix. To evaluate the determinant of the quadratic
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fermionic operator we first notice that the matrices Γ2 and Γ3 in Γ∗ = iΓ01234 in (B.16) do not
appear elsewhere in the quadratic operator. The product Γ23 may therefore be diagonalized;
its diagonal entries are ±i. In this representation the quadratic operator is block-diagonal and
each block may be obtained from (B.16) and (B.17) by using for Γi and Γij the d=6 Dirac
matrices and Γ∗ = ±Γ014. Since the sign of Γ∗ affects only the sign of the Wess-Zumino term
which can also be changed by parity transformations, the determinants of the two blocks are
equal and thus the 10d determinant is a perfect square, as in the first equation in (B.3). Since
the 6d spinors are chiral, there exists a representation of the 6d Dirac matrices in which each
block of the quadratic operator is itself block-diagonal. Thus, the determinant of each block
further factorizes; each block is only a 4×4 matrix and its determinant can be easily evaluated
leading to the two factors F1 and F2 in eq. (B.3) given by (B.14),(B.15).

In section 2.4 we discussed the small r expansion of the energy of the S = J ′ string with
angular momentum J . For this purpose we need that

a = r

√
1 +

2r2

1 + ν2
, κ =

√
ν2 + 4r2 +

4r4

1 + ν2
, (B.18)

w =

√
1 + ν2 + 4r2 +

4r4

1 + ν2
, w′ =

√
1 + ν2 . (B.19)

Plugging these expressions in F1 and F2 and dividing by a factor of r4 we find that

F1,2 = c
(1,2)
0 + c

(1,2)
2 r2 + c

(1,2)
4 r4 + ... , (B.20)

with

c
(1)
0 = c

(2)
0 =

(
ν2 − p20 + p21 − 2p1 + 1

) (
ν2 − p20 + p21 + 2p1 + 1

)

c
(1)
2 =

8

(1 + ν2)3/2

[√
ν2 + 1

(
−2p20

(
4ν2 + p21 + 3

)
+ p40 +

(
p21 − 1

)2)

+4
(
ν2 + 1

)2
p0p1

]
(B.21)

c
(2)
2 =

8

(1 + ν2)3/2

[
4
(
ν2 + 1

)
p0p1 +

√
ν2 + 1

(
3ν4 + ν2

(
−4p20 + 4p21 + 6

)

+p40 − 2p20
(
p21 + 2

)
+ p41 + 3

)]
(B.22)

c
(1)
4 =

4

ν2(1 + ν2)5/2

[
32

(
ν3 + ν

)2
p0p1 +

√
ν2 + 1

(
4ν4

(
p21 − 6p20

)

+ν2
(
p40 − 2p20

(
p21 + 10

)
+ p41 + 4p21 + 3

)
+ 2

(
p20 + p21 + 1

) )]
(B.23)

c
(2)
4 =

4

ν2(1 + ν2)5/2

[
16

(
ν2 + 1

)
ν2p0p1 +

√
ν2 + 1

(
13ν6 + ν4

(
−14p20 + 14p21 + 24

)

+ν2
(
p40 − 2p20

(
p21 + 8

)
+ p41 + 8p21 + 9

)
− 2

(
p20 + p21 + 1

) )]
(B.24)

It is not difficult to construct higher orders in the small r expansion at fixed ν.

32



Appendix C: One-loop energy of S = J ′ circular string from the
algebraic curve approach

Here we shall revisit the computation of the 1-loop correction to the energy of the S = J ′

circular string solution (2.42) discussed in section 2.4 using the algebraic curve approach [35, 37]
to determine the fluctuation frequencies.

In order to focus on a near flat space expansion in the short string limit we will consider the
limit S → 0 for fixed ̺

̺ =
ν

2
√
S

. (C.1)

In section 2.4 in (2.46) we used instead

ρ =
J

2
√
S

= ̺
(
1− S√

1 + 4̺2S

)
. (C.2)

Note also that

S =
w2

√
1 + 2̺2w + ̺4w4 − ω(1 + 2̺2w − ̺2w3)

2(1 + 2̺2w)2
. (C.3)

C.1 Quasimomenta

The quasimomenta can be obtained by explicit diagonalization of the monodromy matrix [35];
for the S5 part the basic single cut quasimomenta vanishing at infinity are determined by

p̃(x) = −π + π
x− x̃1

x2 − 1

√
(x− x̃2)(x− ¯̃x2) , (C.4)

where the two roots x̃1, x̃2 are given by:

x̃1 = − 1

2̺
√
S +

√
1 + 4̺2S

,

x̃2 =

(√
1 + 4̺2S + 2̺

√
S
)(√

1 + 4̺2S + 2i
√

S
(√

1 + 4̺2S − S
)
− 2S

)

√
1 + 4̺2S

. (C.5)

The four S5 quasimomenta can be identified looking at the asymptotic x → ∞ behaviour of
p̃(x) and p̃(x−1), which is related to the conserved global charges:

x

2π
p̃(x) → S −J + . . . ,

x

2π
p̃(x−1) → −1− S − J + . . . (C.6)

Hence, we can identify:

p1̃(x) = −2π − p̃(x−1) , p2̃(x) = p̃(x) , p3̃(x) = −p̃2(x) , p4̃(x) = −p̃1(x). (C.7)

For the AdS5 quasimomenta, the basic function is given by:

p̂(x) = π
x− x̂3

x2 − 1

(√
x− x̂1

√
x− x̂2 − 1

)
, (C.8)
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where the x̂i are:

x̂1 =
(
x̂2x̂

2
3

)−1
, x̂2 = −2S + w − 2

√
S(S + w)

w(w −
√
w2 − 1)

, x̂3 = w −
√
w2 − 1 . (C.9)

Again, comparing with the asymptotic, the identification of the quasimomenta goes as follows:

p1̂(x) = −p̂(x−1) , p2̂(x) = p̂(x) , p3̂(x) = −p̂(x) , p4̂(x) = p̂(x−1) . (C.10)

C.2 Off-shell frequencies

Due to the symmetry of the circular string solution, all the fluctuation energies can be con-
veniently written as combinations of only two independent functions ΩA(x) = Ω2̂3̂(x) and
ΩS(x) = Ω2̃3̃(x) [37]:

ΩB1
(x) = Ω1̃4̃(x) = −ΩS(x

−1) + ΩS(0)

ΩB2
(x) = Ω2̃4̃(x) = Ω1̃3̃(x) =

1

2

[
ΩS(x)− ΩS(x

−1) + ΩS(0)
]

ΩB3
(x) = Ω1̂4̂(x) = −ΩA(x

−1)− 2

ΩB4
(x) = Ω2̂4̂(x) = Ω1̂3̂(x) =

1

2

[
ΩA(x)− ΩA(x

−1)
]
− 1

ΩF1
(x) = Ω2̂4̃(x) = Ω1̃3̂(x) =

1

2

[
ΩA(x)− ΩS(x

−1) + ΩS(0)
]

ΩF2
(x) = Ω2̃4̂(x) = Ω1̂3̃(x) =

1

2

[
ΩS(x)− ΩA(x

−1)
]
− 1

ΩF3
(x) = Ω1̃4̂(x) = Ω1̂4̃(x) =

1

2

[
−ΩS(x)− ΩA(x

−1) + ΩS(0)
]
− 1

ΩF4
(x) = Ω2̂3̃(x) = Ω2̃3̂(x) =

1

2
[ΩA(x)− ΩA(x)] . (C.11)

Following [37], the two functions ΩA(x) and ΩS(x) can be uniquely fixed imposing the correct
analytical and asymptotic properties for the perturbed quasimomenta p+ δp:

ΩS(x) = Ω2̃3̃(x) =
f̂(1)

f̃(1)

( f̃(x)

x− 1
− 1

)
+

f̂(−1)

f̃(−1)

( f̃(x)

x+ 1
− 1

)
,

ΩA(x) = Ω2̂3̂(x) = 2

(
x

x2 − 1
f̂(x)− 1

)
, (C.12)

where the two functions f̂(x) and f̃(x) are defined as

f̃(x) =
√

(x− x̃2)(x− ¯̃x2) , f̂(x) =
√

(x− x̂1)(x− x̂2) , (C.13)

with a suitable choice of the cuts.
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C.3 One-loop energy

Given the above set of off-shell frequencies ΩI = Ωi,j , I ∈ {A, S,B1,2,3,4, F1,2,3,4}, the corre-
sponding physical on-shell fluctuations energies associated to the (i, j) excitations with mode
number n, are given by

ω
(n)
I = ω

(n)
i,j = Ωi,j(xi,j

n ) , (C.14)

where, for any pair (i, j), xi,j
n is determined as the solution of the equation

pi(x
i,j
n )− pj(x

i,j
n ) = 2πn . (C.15)

The one-loop correction to the energy can be obtained as a sum over n and polarizations 40

E1 =
1

2

+∞∑

n=−∞

∑

i,j

(−1)Fi,jω
(n)
i,j . (C.16)

This sum is sensitive to integer shifts in the labeling of the frequencies n → n + δ; following
[35] here we propose to use the following choice:

E1 =
1

2

+∞∑

n=−∞

[
ω
(n−1)
S + ω

(n−1)
A + ω

(n−1)
B1

+ ω
(n−1)
B2

+ ω
(n+1)
B3

+ ω
(n)
B4

−2ω
(n−1)
F1

− 2ω
(n)
F2

− 2ω
(n)
F3

− 2ω
(n−1)
F4

]
. (C.17)

Then the final result in the short string limit has the same form as in (2.55))

E1 =
11
8
− 3ζ3√
̺2 + 1

S3/2 +O(S2) , (C.18)

corresponding to the rational part of n12 in (1.29),(2.53) being

n′
12 =

11

8
. (C.19)

The prescription (C.17) thus does not lead to the preferred choice n′
12 = 5

8
consistent with

the universal value (1.30) of the 2-loop coefficient n21. The value in (C.19) together with
universality of Konishi dimension implying eq. (1.31) then leads to n21 = −7

4
( n03 = −1

2
).

Making a natural guess about the structure of the leading term in the 2-loop correction to
he slope function we then get

E = E0 + E1 + E2 + ...

= 2
√
1 + ̺2

√
λ
√
S
[
1 +

1

2(̺2 + 1)
S +

8̺6 − 4̺4 − 16̺2 − 5

8(̺2 + 1)2
S2 + ...

]

+
n′
12 − 3ζ3√
̺2 + 1

S3/2 + ...+
1√
λ

n21

(̺2 + 1)3/2

√
S + ... . (C.20)

40In the algebraic curve formalism, the on-shell energies ω
(n)
i,j enter directly E1 and do not require 1/κ factors.
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Appendix D: One-loop energy of the (J ′, J) folded string from the
algebraic curve approach

Here we shall derive the 1-loop coefficients in (1.44) in the small spin expansion of the energy
of a folded string with spin J1 = J ′ and orbital momentum J3 = J representing a state in the
su(2) sector on the dual gauge theory side. This will a direct counterpart of the computation
done for the (S, J) folded string in [6].

D.1 Quasimomenta

The classical solution [38] for the folded string with spin J ′ and orbital momentum J in S5 is
related to the folded string with spin S in AdS5 and orbital momentum J in S5 by an analytical
continuation [31] implying a relation between the string profiles and the global conserved charges

(E; J ′, J) → (−J ;S,−E) . (D.1)

In the algebraic curve approach the quasimomenta for the (J ′, J) string can then be obtained
by an analytical continuation of the quasimomenta for the (S, J) string given in [3]. According
to [5] the S5 quasimomentum p2̃ as a function of the branch points is expressed in terms of
the elliptic functions:

p2̃(x) = π − i 2πE0
(

a

a2 − 1
− x

x2 − 1

) √
b

a

a2 − 1

b2 − 1

√
|a| − i a

|a| − i a

a− x

a− x

√
a

a

|a| − i a

|a| − i a

a + x

a + x

− 8πabJ ′

(b− a)(ab+ 1)
F1(x)−

2πE0 (a− b)√
(a2 − 1)(b2 − 1)

F2(x), (D.2)

F1(x) = iF
(
i sinh−1

√
−a− b

a + b

a− x

a + x
,
(a + b)2

(a− b)2

)
, (D.3)

F2(x) = iE
(
i sinh−1

√
−a− b

a+ b

a− x

a+ x
,
(a+ b)2

(a− b)2

)
, (D.4)

where Re(a), Im(a) > 0, b = −a and

J =
1

2π

ab− 1

ab

[
bE

(
1− a2

b2

)
+ aK

(
1− a2

b2

)]
,

J ′ = − 1

2π

ab+ 1

ab

[
bE

(
1− a2

b2

)
− aK

(
1− a2

b2

)]
, (D.5)

E0 = − 1

πb

√
(a2 − 1)(b2 − 1)K

(
1− a2

b2

)
.

The inversion symmetry provides the other sphere quasimomenta through the relations

p2̃(x) = −p3̃(x) = −p1̃(x
−1) = p4̃(x

−1). (D.6)

Since the motion in the AdS5 part is trivial, the corresponding quasimomenta are simply

p1̂,2̂(x) = −p3̂,4̂(x) = 2πE0
x

x2 − 1
. (D.7)
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D.2 Off-shell frequencies

The symmetry of the solution allows to express all the off-shell fluctuation frequencies as com-
binations of only two independent functions [5]:

ΩA(x) =
2

x2 − 1

(
1 + x

f(1)− f(−1)

f(1) + f(−1)

)
, (D.8)

ΩS(x) =
4

f(1) + f(−1)

( f(x)

x2 − 1
− 1

)
, (D.9)

where (f(x))2 = (x− a)(x− a)(x− b)(x− b). The complete list of the frequencies is given by:

Ω2̃ 3̃(x) = ΩS(x), Ω2̂ 3̂(x) = ΩA(x),

Ω1̃ 4̃(x) = −ΩS(x
−1) + ΩS(0),

Ω2̃ 4̃(x) = Ω1̃ 3̃(x) =
1

2
[ΩS(x)− ΩS(x

−1) + ΩS(0)],

Ω1̂ 4̂(x) = Ω2̂ 4̂(x) = Ω1̂ 3̂(x) = Ω2̂ 3̂(x),

Ω2̂ 4̃(x) = Ω1̃ 3̂(x) = Ω1̃ 4̂(x) = Ω1̂ 4̃(x) =
1

2
[ΩA(x)− ΩS(x

−1) + ΩS(0)],

Ω2̃ 4̂(x) = Ω1̂ 3̃(x) = Ω2̂ 3̃(x) = Ω2̃ 3̂(x) =
1

2
[ΩS(x) + ΩA(x)]. (D.10)

The off-shell frequencies provide the fluctuation energies when evaluated on the solutions of the
equations:

pi(x
i,j
n )− pj(x

i,j
n ) = 2 π n. (D.11)

D.3 One-loop correction to the energy

We have computed the one-loop energy correction E1 in the two limits. The first one is moti-
vated by the analysis in [33] and is defined as

J ′ → 0, t ≡ J√
2J ′ = fixed . (D.12)

In this limit, the classical energy is given by

E0√
2J ′ =

√
t2 + 1 +

4t2 + 1

8
√
t2 + 1

J ′ +
−32t6 − 16t4 + 28t2 + 3

128 (t2 + 1)3/2
J ′2 + ... . (D.13)

For the one-loop correction we find

E1 =
∑

p≥0

ap(t) (J ′)p+
1

2 = a0(t) (J ′)1/2 + a1(t) (J ′)3/2 + ... , (D.14)

a0(t) =
1

2
√
2 (t2 + 1)

, a1(t) = −16 t4 + 25 t2 + 6

8
[
2 (t2 + 1)

]3/2 − 3

2
√
2 (t2 + 1)

ζ3. (D.15)
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Adding the classical energy and re-expanding at large λ for fixed J ′, J , this gives

E2 = 2
√
λJ ′ +

1

2
J ′2 + J ′ + J2 +

1√
λ

[1
8
J ′3 + J ′ J2 +

(
− 5

8
− 3 ζ3

)
J ′2 +

1

8
J ′
]
+ ... , (D.16)

leading to the values of the coefficients nij in (1.44). The resulting value

n′
12 = −5

8
(D.17)

is perfectly consistent with the universality of the two-loop coefficient n21 in (1.30), i.e. as
follows from (1.31),

n21 = −1

4
. (D.18)

As in [33], expanding E1 at large t we recover the expansion in small J ′ for fixed small J :

E1 =
( 1

2J − 1

2
J + ...

)
J ′ +

(
− 1

2J 3
+

−1
8
− 3ζ3

2J + ...
)
J ′2

+
( 3

4J 5
+

3
8
+ 3ζ3

2J 3
+ ...

)
J ′3 +

(
− 5

4J 7
+

−23
8
− 9ζ3

4J 5
+ ...

)
J ′4 + ... . (D.19)

The second limit is
J ′ → 0 , J = fixed . (D.20)

In this limit, the classical energy reads41

E0 = J +

√
J 2 + 1

J J ′ − 3J 2 + 2

4J 3
(
J 2 + 1

) J ′2 +
15J 6 + 33J 4 + 28J 2 + 8

16J 5
(
J 2 + 1

)5/2 J ′3 + ... . (D.21)

For the one loop correction we find

E1 = e1(J )J ′ + e2(J )J ′2 + e3(J )J ′2 + . . . , (D.22)

and, at order J ′2,

E1 =
J ′

2J (1 + J 2)
+
[−21J 4 − 29J 2 + 1

16J 3
(
J 2 + 1

)5/2 −
∞∑

n=2

n2
(
J 2 + 2n2 − 1

)

J 3
(
n2 − 1

)2(J 2 + n2
)3/2

]
J ′2 + ... (D.23)

This expression is very similar to the one for the (S, J) folded string found in [6]:

E
(S,J )
1 = − S

2J (1 + J 2)
+
[3J 4 + 11J 2 + 17

16J 3
(
J 2 + 1

)5/2 −
∞∑

n=2

n2
(
J 2 + 2n2 − 1

)

J 3
(
n2 − 1

)2(J 2 + n2
)3/2

]
S2+ ... (D.24)

The only differences are in the sign of the first term (i.e. the sign of the 1-loop term in the
“slope” function (1.25)) and in the coefficients of the contributions of low modes in the second
term.

41Equivalently, E2
0 = J 2 + 2

√
λ
√
1 + J 2 J ′ + 1+2J 2

2(1+J 2) J ′2 + .... For comparison, in the (S, J) folded string

case E2
0 = J 2 + 2

√
λ
√
1 + J 2 S + 3+2J 2

2(1+J 2) S2 + ....
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Extending the calculation to the order J ′3 we find the following correction to E1

e3(J ) =
150J 8 + 456J 6 + 202J 4 + 8J 2 − 27

64J 5 (J 2 + 1)4
(D.25)

+

∞∑

n=2

1

2J 5 (J 2 + 1)3/2 (n2 − 1)4 (J 2 + n2)5/2

[ (
8J 4 + 17J 2 + 10

)
n10

+2
(
10J 6 + 9J 4 − 13J 2 − 14

)
n8 + 2

(
3J 8 − 19J 6 − 43J 4 − 17J 2 + 7

)
n6

−2
(
6J 8 + 2J 6 − 13J 4 − 9J 2 + 2

)
n4 −J 2

(
2
(
J 4 + 5J 2 + 7

)
J 2 + 7

)
n2

]
.

Expanding the coefficients of each power of J ′ in (D.23) in small J we get explicitly (here
N = J ′; cf. (2.18),(2.35),(2.56))

E1 =
( 1

2J − J
2

+
J 3

2
+ . . .

)
J ′

+
[
− 1

2J 3
+

1

J
(
− 1

16
− 3

2
ζ3

)
+ J

(
− 9

32
+

3

2
ζ3 +

15

8
ζ5

)

+J 3
(125
128

− 25

16
ζ3 −

15

8
ζ5 −

35

16
ζ7

)
+ . . .

]
J ′2

+
[ 3

4J 5
+

1

J 3

( 3

16
+

3

2
ζ3

)
+

1

J
( 1

32
− 9

8
ζ3

)

+J
(1
8
+ 3ζ3 +

35

16
ζ5 −

35

16
ζ7

)
+ · · ·

]
J ′3 + . . . . (D.26)

This is in perfect agreement with the expansion (D.19) found in the case of fixed t = J√
2J ′

.

From this expansion one extracts, in particular, the following values (cf. (1.9),(1.35),(1.37))

n12 = −5

8
− 3 ζ3 , ñ12 = − 3

16
+ 3ζ3 +

15

4
ζ5 , n13 = − 7

16
− 3

4
ζ3 +

15

4
ζ5 . (D.27)

For comparison, the corresponding values for the (S, J) folded string that follow from the analog
of (D.26) in [6] are:

n12 =
3

8
− 3 ζ3 , ñ12 = −27

16
+ 3ζ3 +

15

4
ζ5 , n13 = − 9

16
+

15

4
ζ3 +

15

4
ζ5 . (D.28)

The value of n′′
13 = −3

4
in (1.36) for the folded (J ′, J) string in (D.27) is the same as for the

J1 = J2 circular string found in sect 2.2; n′′
13 = 15

4
for the folded (S, J) string in (D.28) is the

same as for the S1 = S2 circular string found in sect 2.3.

Similarly to the cases of the (S, J) folded string [6] and the circular strings discussed in
section 2, the coefficient of J ′3/J in (D.26) does not contain ζ5, supporting the universality
of the transcendental terms in ñ12 in (1.34) and of the ζ5 term in n13 in (1.36). Note also that
the highest transcendentality ζ7 term in the coefficient of J J ′3 in (D.26) is also universal, i.e.
has the same value (−35/16) as in [6] and in all circular string cases (cf. (2.18),(2.35),(2.56)).
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Appendix E: Summary of coefficients

Here we summarize the known values of the leading coefficients in E2 in (1.3) for two single-
spin folded and three equal-spin circular solutions. We omitted the values of ñ′

12, n
′
13 for the

circular S = J ′ solution that appear to be scheme-dependent (see section 2.4). We added
question marks to the values that were not computed directly but are expected on the basis
of universality of the Konishi multiplet dimension. Let us recall the definitions of n′

km, n
′′
km as

rational coefficients in n12, ñ12, n13:

n12 = n′
12 − 3ζ3 , ñ12 = ñ′

12 + 3ζ3 +
15

4
ζ5 , n13 = n′

13 + n′′
13ζ3 +

15

4
ζ5 .

nij (S, J) (J ′, J) (J1 = J2, J) (S1 = S2, J) (S = J ′, J)

n01 1 1 1 1 1

ñ01 −1
4

−1
4

−1
4

−1
4

−1
4

n02
3
2

1
2

0 2 1

ñ02 −1
2

1
2

1 −1 0

n03 −3
8

1
8

0 −1 −1
2

n04
31
64

1
64

0 2 3
4

n11 −1 1 2 −2 0

ñ11 1 −1 −2 2 0

n11 −1 1 2 −2 0

n′
12

3
8

−5
8

−3
8

13
8

5
8
(?)

ñ′
12 −27

16
− 3

16
−57

16
−105

16
−

n′
13 − 9

16
− 7

16
− 3

16
−85

16
−

n′′
13

15
4

−3
4

−3
4

15
4

3
2

n21 −1
4

−1
4
(?) −1

4
(?) −1

4
(?) −1

4
(?)

Table 1: Summary of coefficients in eq. (1.3).
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