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Abstract

We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in

which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying

geometry, whose intersection can give rise to chiral fermions. The energy scale associated with

string physics is assumed to be near the Planck mass. To develop our program in the simplest way,

we work within the construct of a minimal model with gauge-extended sector U(3)B × Sp(1)L ×

U(1)IR×U(1)L. The resulting U(1) content gauges the baryon numberB, the lepton number L, and

a third additional abelian charge IR which acts as the third isospin component of an SU(2)R. All

mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal

in hypercharge Y and in an anomaly free linear combination of IR and B − L. The anomalous

Z ′ gauge boson obtains a string scale Stückelberg mass via a 4D version of the Green-Schwarz

mechanism. To keep the realization of the Higgs mechanism minimal, we add an extra SU(2)

singlet complex scalar, which acquires a VEV and gives a TeV-scale mass to the non-anomalous

gauge boson Z ′′. The model is fully predictive and can be confronted with dijet and dilepton data

from LHC8 and, eventually, LHC14. We show that MZ′′ ≈ 3 − 4 TeV saturates current limits

from the CMS and ATLAS collaborations. We also show that for MZ′′ . 5 TeV, LHC14 will

reach discovery sensitivity & 5σ. After that, we demostrate in all generality that Z ′′ milli-weak

interactions could play an important role in observational cosmology. Finally, we examine some

phenomenological aspects of the supersymmetric extension of the D-brane construct.

∗On leave of absence from CPHT Ecole Polytechnique, F-91128, Palaiseau Cedex.
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I. INTRODUCTION

With the turn on of the Large Hadron Collider (LHC) at CERN, a new era of discovery

has just begun [1–4]. The SU(3)C × SU(2)L × U(1)Y Standard Model (SM) of electroweak

and strong interactions was once again severely tested with a dataset corresponding to an

integrated luminosity of ∼ 5 fb−1 of pp collisions collected at
√
s = 8 TeV. The LHC8 data

have shown no evidence for new physics beyond the SM.

However, there is another side to the story. The concordance model of cosmology –the flat

expanding universe containing 5% baryons, 20% dark matter, and 75% dark energy– con-

tinues to be put on a firmer footing through observations of the Supernova Search Team [5–

7], the Supernova Cosmology Project [8–10], the Wilkinson Microwave Anisotropy Probe

(WMAP) [11, 12], the Sloan Digital Sky Survey (SDSS) [13–16], and the Hubble Space

Telescope [17]. While not yet rock solid experimentally, from these observations it is evident

that in order to describe the physics of the early universe, and thereupon particle interac-

tions at sub-fermi distances, new theoretical concepts are necessary, which go beyond the

SM.1

Arguably, another major driving force behind the consideration of physics beyond the

SM is the huge disparity between the strength of gravity and of the SM forces. This hier-

archy problem suggests that new physics could be at play at the TeV-scale. To be more

specific, the non-zero vacuum expectation value of the scalar Higgs doublet sets the scale

of electroweak interactions. However, due to the quadratic sensitivity of the Higgs mass to

quantum corrections from an aribitrarily high mass scale, with no new physics between the

energy scale of electroweak unification, MEW ∼ 1 TeV, and the vicinity of the Planck mass,

MPl ∼ 1019 GeV, the Higgs mass must be fine-tuned to an accuracy of O(1032). Therefore,

it is of interest to identify univocal footprints that can plausible arise in theories with the

capacity to describe physics over this colossal range of scales. Among various attempts in

this direction, string theory is perhaps the most successful candidate and also the most am-

bitious approach since besides the SM gauge interactions it includes also the gravitational

force at the quantum level [19, 20].

In recent years there has been achieved substantial progress in connecting string theory

1 It appears likewise from experimental evidence of neutrino flavor oscillations by the mixing of different

mass eigenstates that the SM has to be extended [18].
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with particle physics and cosmology. Important advances were fueled by the realization of

the vital role played by D-branes [21, 22] in connecting string theory to phenomenology.

This has permitted the formulation of string theories with string scale setting in at TeV

scales, and together with large extra dimensions [23].

There are two peerless phenomenological consequences for TeV scale D-brane string com-

patifications: the emergence of Regge recurrences at parton collision energies
√
ŝ ∼ string

scale ≡ Ms; and the presence of one or more additional U(1) gauge symmetries, beyond

the U(1)Y of the SM. The latter follows from the property that the gauge group for open

strings terminating on a stack of N identical D-branes is U(N) rather than SU(N) for

N > 2. (For N = 2 the gauge group can be Sp(1) ∼= SU(2) rather than U(2).) In a series of

recent publications we have exploited both these properties to explore and anticipate new-

physics signals that could potentially be revealed at LHC. Regge recurrences most distinctly

manifest in the γ+ jet [24, 25] and dijet [26–30] spectra resulting from their decay.2 The

extra U(1) gauge symmetries beyond hypercharge have (in general) triangle anomalies, but

are cancelled by the Green-Schwarz mechanism [33]. In addition there can be also massive

U(1) gauge bosons, which are associated to 4D non-anomalous Abelian gauge symmetries,

but however originate from anomalous U(1)’s in six dimensions. In both cases, these U(1)

gauge bosons get Stückelberg masses. Since in these D-brane models Ms is assumed to be

O(TeV), the presence of these generic U(1)’s may be amenable to experimental tests at the

LHC [34–36].

In this work we take a related but different approach studying new physics effects of

D-brane models with the conventional assumption TeV ≪Ms .MPl. The gauge symmetry

also arises from a product of U(N) groups, guaranteeing extra U(1) gauge bosons in the

spectrum. The weak hypercharge is identified with a linear combination of anomalous U(1)’s

which itself is anomaly free. As indicated in the preceding paragraph, the extra anomalous

U(1) gauge bosons generically obtain a string scale Stückelberg mass. The U(1) symmetries

2 The amplitudes of lowest massive Regge excitations that include 2 → 2 scattering processes involving 4

gauge bosons, or 2 gauge bosons and 2 quarks, are universal [26]. Therefore, the s-channel pole terms of

the average square amplitudes contributing to γ+ jet and dijet topologies can be obtained independent of

the details of the compactification scheme. For phenomenological purposes, the poles need to be softened

to a Breit-Wigner form by obtaining and utilizing the correct total widths of the resonances [31]. The

recent search for such narrow resonances in data collected during the LHC8 run, excludes a string scale

below 4.69 TeV [32].
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survive as global selection rules in the effective low energy theory. Such anomalous gauge

bosons are now very heavy and out of the LHC reach.

However, in some D-brane models there exists non-anomalous and also massless U(1)

gauge symmetries in addition to hypercharge. Namely, under certain topological conditions

the associated gauge bosons can remain massless and obtain a low mass scale via the ordinary

Higgs mechanism. Some phenomenological aspects of these kind of U(1) gauge bosons were

recently discussed in [37]. In this paper we first revisit the prospects of detecting such TeV-

scale gauge bosons in particular at the LHC, and then we show in all generality that their

milli-weak interactions could play an important role in observational cosmology.

Before proceeding with an outline of the paper, we sketch some issues surrounding the

choice of a non-supersymmetric formulation. To avoid the fine tuning inherent in the hier-

archy problem, the overwhelmingly favored approach is the introduction of supersymmetry

(SUSY). However, for the present study, this presents a difficult technical problem: the full

complexity of the scale of SUSY breaking has been pushed by experiment into the TeV

region, which coincides with the energy scale involved in searching for the extra U(1) gauge

bosons. In the absence of an experimental signal for the onset of SUSY breaking, we will

extract from string theory the choice of the U(1) gauge assignments, as well as the quiver

structure of the fermionic couplings. In principle, SM-like non-SUSY vacua exist in the

string landscape [38–40]. Throughout most of this work we will operate within that vacuum

structure. However, before concluding we will also discuss in some detail the phenomenology

of supersymmetric vacua and the technical problems associated with a phenomenologically

viable breaking of an additional U(1) symmetry in a SUSY background.

The layout of the paper is as follows. In Sec. II we outline the basic setting of intersecting

D-brane models and discuss general aspects of the effective low energy theory inhereted from

properties of the overarching string theory. After that, we particularize the discussion to

the U(3)B × Sp(1)L × U(1)L × U(1)IR intersecting D-brane configuration that realizes the

SM by open strings [41]. In Sec. III we study the associated phenomenological aspects of

non-anomalous U(1) gauge bosons related to experimental searches for new physics at the

LHC. In Sec. IV we explore cosmological predictions of intersecting D-brane models in light

of recent data, which seem to favor the existence of roughly one additional neutrino species

(in addition to the 3 contained in the SM), challenging the earliest observationally verified

landmarks: big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB).

5



The gist of Sec. IV extends the previous study of TeV-scale string compactifications [42]

to D-brane models where some of the U(1) masses are at a high string scale. In Sec. V

we examine the consequences of possible supersymmetric extensions. Our conclusions are

collected in Sec. VI.

II. STANDARD MODEL FROM INTERSECTING D-BRANES

D-brane string compactifications provide a collection of building block rules that can be

used to build up the SM or something very close to it [43–57]. In this section, we will briefly

review the basics of constructing such D-brane models. More comprehensive treatments can

be found in [58–61].

A. Construction Rules and Generalities of D-brane Models

The details of the D-brane construct depend a lot on whether we use oriented string or

unoriented string models. The basic unit of gauge invariance for oriented string models is

a U(1) field, so that a stack of N identical D-branes eventually generates a U(N) theory

with the associated U(N) gauge group. In the presence of many D-brane types, the gauge

group becomes a product form
∏
U(NP ), where NP reflects the number of D-branes in each

stack. As an illustration, consider Type IIA string theory compactified on a six dimensional

manifold M . A specific configuration will be given by K stacks of intersecting D6-branes

filling 4-dimensional Minkowski spacetime M4 and wrapping internal homology 3-cycles of

M . Each stack consists of NP coincident D6 branes whose world-volume is M4×ΠP , where

ΠP is the corresponding homology class of each 3-cycle, with P = 1, . . . , K. The closed

string degrees of freedom reside in the entire ten dimensional space, which in addition to

the gravitational fields, contain the geometric scalar moduli fields of the internal space.

The open string degrees of freedom give rise to the gauge theory on the D6-brane world-

volumes, with gauge group
∏
U(NP ). In addition, there are open string modes which

split into states with both ends on the same stack of branes as well as those connecting

different stacks of branes. The latter are particularly interesting: there is a chiral fermion

living at each four-dimensional intersection of two branes P and Q, transforming in the

bifundamental representation of U(NP )×U(NQ) [62]. The intersection number of these two
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branes, IPQ ≡ [ΠP ] · [ΠQ], is a topologically invariant integer whose modulus gives us the

multiplicity of such massless fermionic content and its sign depends on the chirality of such

fermions. A particularly simple subfamily of the configurations described above consist of

taking M as a factorizable six-torus: T 6 = T 2 × T 2 × T 2. We can then further simplify the

configurations assuming that the 3-cycles can be factorized as three 1-cycles, each of them

wrapping on a different T 2. In this case the homology 3-cycle ΠP can be expressed as

[ΠP ] = [(n1
P , m

1
P ), (n

2
P , m

2
P ), (n

3
P , m

3
P )] , (1)

where (niP , m
i
P ), are the wrapping numbers of each D6P -brane, on the ith torus, with niP and

(mi
P ) being the number of times the brane is wrapping around the ith torus. The intersection

number takes a simple form

IPQ =
3∏

i=1

(niPm
i
Q −mi

Pn
i
Q) . (2)

In orientifold brane configurations, which are necessary for tadpole cancellation [63, 64],

and thus consistency of the theory, open strings become in general non-oriented. For unori-

ented strings the above rules still apply, but we are allowed many more choices because the

branes come in two different types. There are the branes whose images under the orientifold

are different from themselves and their image branes, and also branes who are their own

images under the orientifold procedure. Stacks of the first type combine with their mirrors

and give rise to U(N) gauge groups, while stacks of the second type give rise to only SO(N)

or Sp(N) gauge groups.

Generally speaking, intersecting D-brane models involve at least three kinds of generic

mass scales. First, of course, there is the fundamental string scale,

Ms =
1√
α′
, (3)

where α′ is the slope parameter of the well known Regge trajectories of vibrating strings

j = j0 + α′M2 , (4)

with j and M =
√
nMs the spin and mass of the resonant state, respectively (n = 1, . . . ).

Second, compactification from ten to four dimensions on an internal six–dimensional space

of volume V6 defines a mass scale:

M6 =
1

V
1/6
6

. (5)
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Third, wrapping a stack P of D(p+3)-branes around the internal p-cycle defines an internal

world-volume V
(P )
p = (2π)p v

(P )
p of this D-branes stack and an associated (Kaluza-Klein)

mass:

M (P )
p =

1
(

v
(P )
p

)1/p
. (6)

These three types of fundamental dimensional parameters of D-brane models are linked

to four-dimensional physical observables. First, the Planck mass given by

M2
Pl = 8 e−2φ10 M8

s

V6
(2π)6

(7)

determines the strength of gravitational interactions. Here, the dilaton field φ10 is related

to the string coupling constant through gs = eφ10 . Thus, for a string scale Ms ≈ O(1 TeV),

the volume of the internal space M6 needs to be as large as V6M
6
s = O(1032). Second, the

four-dimensional gauge couplings of the strong and weak interactions are given in terms of

the respective volumes V P
p , where P runs over the corresponding gauge group factors, as

g−2
P = (2π)−1 Mp

s e
−φ10 v(P )

p . (8)

Again for a string scale Ms ≈ O(1 TeV) and using the known values of the strong (g23/4π ≈
0.1) and the weak (g22/4π ≈ g23/12π) gauge coupling constants at the string scale (g22/4π =

αEM/ sin
2 θW , sin2 θW ≈ 0.23, αEM ≈ 1/128) we can compute the volumes of the internal

cycles, assuming weak string coupling. To be specific, we choose gs = 0.2, and then we

obtain

Mp
s v

(3)
p ≈ 1 , Mp

s v
(2)
p ≈ 3 . (9)

For TeV ≪Ms .MPl, V6 and V
(P )
p ’s are O(1) in string units. In general, there are different

volumes V
(P )
p ’s for different stacks, and therefore the abelian gauge couplings associated to

U(1) symmetries of different D-brane stacks are not equal.

This approach to string model building leads to a variety of low energy theories including

the SM as well as its supersymmetric extensions. Throughout most of this paper we consider

theories which are non-supersymmetric all the way up to the UV cutoff of the effective theory;

of course the deep UV theory of quantum gravity may well be supersymmetric. Even though

SUSY introduces special advantages over completely non-SUSY theories, our approach is

distiguished by its simplicity to describe very appealing phenomenological possibilities that
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best display the dynamics involving the extra U(1) symmetries. The study of some aspects

of the supersymmetric version of these models will be postponed until Sec. V.

The minimal embedding of the SM particle spectrum requires at least three brane

stacks [65] leading to three distinct models of the type U(3)× U(2)× U(1) that were clas-

sified in [65, 66]. Only one of them (model C of [66]) has baryon number as symmetry

that guarantees proton stability (in perturbation theory), and can be used in the framework

of TeV-scale strings. Moreover, since the charge associated to the U(1) of U(2) does not

participate in the hypercharge combination, U(2) can be replaced by the symplectic Sp(1)

representation of Weinberg-Salam SU(2)L, leading to a model with one extra U(1) (the

baryon number) besides hypercharge [67].

The SM embedding in four D-brane stacks leads to many more models that have been

classified in [68, 69]. In order to make a phenomenologically interesting choice, herein we

focus on models where U(2) can be reduced to Sp(1). Besides the fact that this reduces the

number of extra U(1)’s, one avoids the presence of a problematic Peccei-Quinn symmetry,

associated in general with the U(1) of U(2) under which Higgs doublets are charged [65].

To develop our program in the simplest way, we will work within the construct of a minimal

model, U(3)B ×Sp(1)L×U(1)L×U(1)IR , which has the attractive property of elevating the

two major global symmetries of the SM (baryon number B and lepton number L) to local

gauge symmetries [41]. We turn now to discuss the compelling properties of this model.

B. Standard Model++

In this paper we are interested in the minimal 4-stack gauge-extended sector U(3)B ×
Sp(1)L×U(1)L×U(1)IR [41]. A schematic representation of the D-brane structure is shown

in Fig. 1 and the brane content is given in Table I. Note that for the Sp(1) stack P , the

mirror brane P ∗ lies on top of P . So even though NP = 1, it can be thought of as a stack

of two D6 branes, which give an Sp(1) ∼= SU(2) group under the orientifold projection.

Concretely, in the bosonic sector the open strings terminating on the stack of “color” branes

contain, in addition to the SU(3) octet of gluons

Ga
µν =

(
∂µG

a
ν − ∂νG

a
µ + g3f

abcGb
µG

c
ν

)
, ifabcT a =

[
T b, T c

]
, T a ∈ SU(3) ,
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TABLE I: D-brane content of U(3)B ×Sp(1)L×U(1)L ×U(1)IR ; the mirror branes O∗, P ∗, Q∗, R∗

are not shown.

Label Stack Number of Branes Gauge Group

1 ≡ R Right NR = 1 U(1)IR

2 ≡ P Left NP = 1 Sp(1)L ∼= SU(2)L

3 ≡ Q Baryonic NQ = 3 U(3)B = SU(3)C × U(1)B

4 ≡ O Leptonic NO = 1 U(1)L

an extra U(1) boson Cµ. On the Sp(1) stack the open strings correspond to the weak gauge

bosons

W a
µν =

(
∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν

)
, iǫabcτa =

[
τ b, τ c

]
, τa ≡ σa/2 ∈ SU(2) .

The U(1)IR D-brane is a terminus for the Bµ gauge boson, and there is a third additional

U(1) field Xµ terminating on the U(1)L brane. The resulting U(1) content gauges B [with

U(1)B ⊂ U(3)B], L, and a third additional abelian charge IR which acts as the third isospin

component of an SU(2)R. The usual electroweak hypercharge is a linear combination of

these three U(1) charges:

QY = c1QIR + c3QB + c4QL , (10)

with c1 = 1/2, c3 = 1/6, c4 = −1/2, B = QB/3 and L = QL. Alternatively, inverting the

above relations, one finds:

QB = 3B ; QL = L ; QIR = 2QY − (B − L) . (11)

The chiral particle spectrum from these intersecting branes consists of six sets (labeled by

an index i = 1, . . . , 6) of Weyl fermion-antifermion pairs, whose quantum numbers are given

in Table II. Note that the combination B − L is anomaly free, while both B and L are

anomalous.

As mentioned already, the QB (gauged baryon number) is anomalous. This anomaly is

canceled by the 4D version [70–74] of the Green-Schwarz mechanism [33]. Non anomalous

U(1)’s can acquire masses due to effective six-dimensional anomalies associated for instance
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FIG. 1: Pictorial representation of the U(3)B × Sp(1)L × U(1)L × U(1)IR D-brane model.

TABLE II: Chiral fermion spectrum of the U(3)B × Sp(1)L × U(1)L × U(1)IR D-brane model.

Label Fields Sector IPQ Representation QB QL QIR QY

1 UR (Q,R∗) 3 (3, 1) 1 0 1 2
3

2 DR (Q,R) 3 (3, 1) 1 0 −1 −1
3

3 LL (O,P ) 3 (1, 2) 0 1 0 −1
2

4 ER (O,R) 3 (1, 1) 0 1 −1 −1

5 QL (Q,P ) 3 (3, 2) 1 0 0 1
6

6 NR (O,R∗) 3 (1, 1) 0 1 1 0

to sectors preserving N = 2 supersymmetry [75, 76].3 These two-dimensional ‘bulk’ masses

3 In fact, also the hypercharge gauge boson of U(1)Y can acquire a mass through this mechanism. In order

to keep it massless, certain topological constraints on the compact space have to be met.
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become therefore larger than the localized masses associated to four-dimensional anomalies,

in the large volume limit of the two extra dimensions. Specifically for D(p + 3)-branes

with p-longitudinal compact dimensions the masses of the anomalous and, respectively, the

non-anomalous U(1) gauge bosons have the following generic scale behavior:

anomalous U(1)a : MZ′ = g′aMs , (12)

non− anomalous U(1)a : MZ′′ = g′aM
3
s V2 .

Here g′a is the gauge coupling constant associated to the group U(1)a, given by g′a ∝ gs/

√

V
(a)
p

where gs is the string coupling and V
(a)
p is the internal D-brane world-volume along the p

compact extra dimensions, up to an order one proportionality constant. Moreover, V2 is

the internal two-dimensional volume associated to the effective six-dimensional anomalies

giving mass to the non-anomalous U(1)a.
4 E.g. for the case of D5-branes, whose common

intersection locus is just 4-dimensional Minkowski-space, V
(a)
p = V2 denotes the volume of

the longitudinal, two-dimensional space along the two internal D5-brane directions. Since

internal volumes are bigger than one in string units to have effective field theory description,

the masses of non-anomalous U(1)-gauge bosons are generically larger than the masses of

the anomalous gauge bosons.5

The non-anomalous U(1)a can also remain massless all the way down to the TeV-scale

energy region and grow a mass through a Higgs mechanism. The absence of a Stückelberg

mass term for the associated gauge bosons means that this U(1) gauge symmetry is anomaly

free also in six dimensions. In this case a certain topological condition has to hold, which

cannot be read off from the local D-brane quiver, but can only be answered knowing the 6D

compact orientifold. Specifically, just like for the SM gauge symmetry U(1)Y , the absence

of the Stückelberg mass term for U(1)a = ca3 U(1)B + ca4 U(1)L + ca1 U(1)IR can be phrased

by the following condition on the homology cycles Π and their orientifold images Π′ of the

4 It should be noted that in spite of the proportionality of the U(1)a masses to the string scale, these

are not string excitations but zero modes. The proportionality to the string scale appears because the

mass is generated from anomalies, via an analog of the Green-Schwarz anomaly cancellations: either 4

dimensional anomalies, in which case the Green-Schwarz term is equivalent to a Stückelberg mechanism,

or from effective 6 dimensional anomalies, in which case the mass term is extended in two more (internal)

dimensions.
5 In [77] a different (possibly T-dual) scenario with D7-branes was investigated. In this case the masses of

the anomalous and non-anomalous U(1)’s appear to exhibit a dependence on the entire six-dimensional

volume, such that the non-anomalous masses become lighter than the anomalous ones.
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three U(1) gauge groups:

3ca3(Π3 − Π′
3) + ca4(ΠL −Π′

L) + ca1(ΠIR −Π′
IR
) = 0 . (13)

In what follows we entertain this possibility, having two massless gauge bosons U(1)Y

(associated to the SM hypercharge) and U(1)Y ′′ (associated to a linear combination of

anomaly-free IR and B−L) and one heavy gauge boson U(1)Y ′ (associated to an anomalous

combination of the three U(1)’s). The classical gauge invariant Lagrangian, obeying the

U(3)B × Sp(1)L × U(1)L × U(1)IR gauge symmetry, can be decomposed as:

LSM++ = LYM +
∑

generations

(Lf + LY) + Ls + LX , (14)

where the terms on the right hand side identify the gauge (or Yang-Mills) part, the fermion

part, the Yukawa part, the scalar part, and extra terms from the underlying string theory,

respectively.

Electroweak symmetry breaking is achieved through the standard Higgs doublet H . The

spontaneous symmetry breaking of the extra non-anomalous U(1) is attained through an

SU(2) singlet scalar field H ′′, which acquires a vacuum expectation value (VEV) at the TeV

scale. The U(1) quantum numbers of the Higgs sector are given in Table III.

The Yang-Mills Lagrangian reads:

LYM = −1

4

(

Ga
µνG

µν
a +W a

µνW
µν
a + F (1)

µν F
µν
(1) + F (3)

µν F
µν
(3) + F (4)

µν F
µν
(4)

)

, (15)

with the non-Abelian field strengths the same as in the SM, and the Abelian F
(1)
µν = ∂µBν −

∂νBµ, F
(3)
µν = ∂µCν − ∂νCµ, and F

(4)
µν = ∂µXν − ∂νXµ.

The fermion Lagrangian is given by

Lf = iQLγµDµQL + iURγµDµUR + iDRγµDµDR + iLLγµDµ LL + iERγµDµER

+ iNRγµDµNR , (16)

where

Dµ = ∂µ − ig3T
aGa

µ − ig′3QBCµ − ig2τ
aW a

µ − ig′1QIRBµ − ig′4QLXµ (17)

are the covariant derivatives with the gauge fields specified in the D-brane basis.

The fields Cµ, Xµ, Bµ are related to Yµ, Yµ
′ and Yµ

′′ by the rotation matrix,

R =








CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ

−Sθ SφCθ CφCθ







, (18)
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TABLE III: Higgs spectrum of the U(3)B × Sp(1)L × U(1)L × U(1)IR D-brane model.

Fields Sector IPQ Representation QB QL QIR QY

H (P,R) 1 (1, 2) 0 0 1 1
2

H ′′ (O,R) 1 (1, 1) 0 −1 −1 0

with Euler angles θ, ψ, and φ [78]. Hence, the covariant derivative for the U(1) fields in

Eq. (17) can be rewritten in terms of Yµ, Y
′
µ, and Y

′′
µ as follows

Dµ = ∂µ − iYµ (−Sθg′1QIR + CθSψg
′
4QL + CθCψg

′
3QB)

− iY ′
µ [CθSφg

′
1QIR + (CφCψ + SθSφSψ) g

′
4QL + (CψSθSφ − CφSψ)g

′
3QB] (19)

− iY ′′
µ [CθCφg

′
1QIR + (−CψSφ + CφSθSψ) g

′
4QL + (CφCψSθ + SφSψ) g

′
3QB] .

Now, by demanding that Yµ has the hypercharge QY given in Eq. (10) we fix the first column

of the rotation matrix R 






Cµ

Xµ

Bµ








=








Yµ c3gY /g
′
3 . . .

Yµ c4gY /g
′
4 . . .

Yµ c1gY /g
′
1 . . .







, (20)

and we determine the value of the two associated Euler angles

θ = −arcsin[c1gY /g
′
1] (21)

and

ψ = arcsin[c4gY /(g
′
4Cθ)] . (22)

The couplings g′1 and g
′
4 are related through the orthogonality condition, P (gY , g

′
1, g

′
3, g

′
4) = 0,

yielding
(
c4
g′4

)2

=
1

g2Y
−
(
c3
g′3

)2

−
(
c1
g′1

)2

, (23)

with g′3 fixed by the relation g3(Ms) =
√
6 g′3(Ms) [36]. Next, by demanding that Y ′′ couples

to a linear combination of anomaly-free IR and B − L we determine the third Euler angle

tanφ = −Sθ
3 g′3 Cψ + g′4 Sψ
3 g′3 Sψ − g′4 Cψ

. (24)
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In the (Y, Y ′, Y ′′) basis, Y and Y ′′ are coupled to anomaly-free currents while the anomaly

of the current associated to Y ′ is cancelled by the generalized Green-Schwarz mechanism.

As a result, Y ′ acquires a mass of order of the string mass Ms, c.f. Eq. (12). Higgs VEVs

will generate additional mass terms for Y ′, introducing also some small mixing with other

gauge gauge bosons, of order (TeV/Ms)
2. From now on, we neglect such small effects and

take Y ′ ≃ Z ′.

The Yukawa interactions are given by

LY = −Yd
(
QLH

)
DR−Yu

(
QLiσ

2H∗
)
UR− Ye

(
LLH

)
ER−YN

(
LLiσ

2H∗
)
NR+h.c., (25)

where the Yukawa couplings Yi are matrices in flavor space. Note that unlike in the super-

symmetric case, a single Higgs vacuum expectation value will generate masses for up and

down quarks.6

Note that with the charge assignments of Tables II and III there are no dimension 4

operators involving H ′′ that contribute to the Yukawa Lagrangian. This is very important

since H ′′ carries the quantum numbers of right-handed neutrino and its VEV breaks lepton

number. However, this breaking can affect only higher-dimensional operators which are

suppressed by the high string scale, and thus there is no phenomenological problem with

experimental constraints for Ms higher than ∼ 1014 GeV.

The scalar Lagrangian is

Ls = (DµH)†DµH + (DµH ′′)
†DµH

′′ − V (H,H ′′) , (26)

with the potential

V (H,H ′′) = µ2 |H|2 + µ′2 |H ′′|2 + λ1 |H|4 + λ2 |H ′′|4 + λ3 |H|2 |H ′′|2 . (27)

The Higgs VEVs obtained after minimizing this potential will be denoted as

〈H 〉 =




0

v



 and 〈H ′′〉 = v′′ . (28)

The kinetic terms of the Higgs fields in (26) give masses to the various gauge bosons.

6 iσ2H
∗ transforms in the fundamental representation of SU(2).
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At this point, we identify the photon Aµ and weak force mediators W+
µ ,W

−
µ , Zµ perform-

ing the usual Weinberg rotation









Aµ

Zµ

W+
µ

W−
µ










=










CθW SθW 0 0

−SθW CθW 0 0

0 0 1/
√
2 i/

√
2

0 0 1/
√
2 −i/

√
2



















Yµ

W 3
µ

W 1
µ

W 2
µ










; (29)

this gives

Dµ = ∂µ −
i

2
g2 σ

−W+
µ − i

2
g2 σ

+W−
µ − ig2 cos θW

(
σ3/2−QY tan2 θW

)
Zµ − ig2 sin θW

×
(
σ3/2 +QY

)
Aµ − igY ′QY ′Z ′

µ − igY ′′QY ′′Y ′′
µ , (30)

with σ± = (σ1 ± iσ2) /2 , gY /g2 = tan θW . From (19) and (30) we define

QYH = H/2 ,

gY ′QY ′H = (g′1CθSφ)H ,

gY ′′QY ′′H = (g′1CθCφ)H ,

QYH
′′ = 0 ,

gY ′QY ′H ′′ = −[g′1CθSφ + g′4(CφCψ + SθSφSψ)]H
′′ ,

gY ′′QY ′′H ′′ = −(g′1CθCφ + g′4[CφSθSψ − CψSφ)]H
′′ . (31)

The Higgs kinetic terms of Eq.(26) together with the Green-Schwarz mass term, 1
2
M ′2Z ′

µZ
′µ,

lead to

B = [D†
µ (0 v)]



Dµ




0

v







+ (Dµv
′′)†(Dµv′′) +

1

2
M ′2Z ′

µZ
′µ . (32)

Expanded this gives

B =
1

4
(g2 v)

2W+
µ W

−µ +
1

4
(g2v)

2C−2
θW
ZµZ

µ
+ g′1Cθ

(
SφZ

′
µ + CφY

′′
µ

)
g2 v

2C−1
θW
Z
µ

+ v′′
2 {
g′1Cθ(Sφ Z

′
µ + Cφ Y

′′
µ ) + g′4

[
(CφCψ + SθSφSψ)Z

′
µ + SψSθCφ Y

′′
µ

]}2

+ (g′1v Cθ)
2
(
SφZ

′
µ + CφY

′′
µ

)
(SφZ

′µ + CφY
′′µ) +

1

2
M ′2Z ′

µZ
′µ

≃ 1

4
(g2 v)

2W+
µ W

−µ +
1

4
(g2v)

2C−2
θW
ZµZ

µ
+ g′1CθCφY

′′
µ g2 v

2C−1
θW
Z
µ

+ v′′
2 (
g′1CθCφ Y

′′
µ + g′4SψSθCφ Y

′′
µ

)2
+ (g′1v CθCφ)

2Y ′′
µ Y

′′µ + . . . (33)

where the omitted terms pertain only to the Z ′ couplings at the string scale. Recall that we

have taken M ′ ∼Ms and therefore Z ′ decouples from the low energy physics. By inspection
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of (33) we immediately recognize the W± masses and the usual tree level formula for the

mass of the Z particle in the electroweak theory, M
2

Z = (g22v
2 + g2Y v

2)/2, before mixing.

Now, we use the relation g′1Sθ = g′4CθSψ to conveniently rewrite (33) as

B ≃ 1

4
(g2v)

2W+
µ W

−µ +
1

4
(g2v)

2C−2
θW
ZµZ

µ
+ g′1vCθ Cφ g2vC

−1
θW
Y ′′
µ Z

µ
+

(
v′′g′1Cφ
Cθ

)2

×
(

1 +
( v

v′′
C2
θ

)2
)

Y ′′
µ Y

′′µ + ...

≃ 1

4
(g2v)

2W+
µ W

−µ +

(
v′′g′1Cφ
Cθ

)2 [

1 +
( v

v′′
C2
θ

)2
]





Y ′′
µ +

g′1 C
3
θ Cφ g2 v

2 C−1
θW

Z̄µ

2 (v′′g′1Cφ)
2
[

1 +
(
v
v′′
C2
θ

)2
]







2

+







1

4
(g2v)

2C−2
θW

− g′1 C
3
θ Cφ g2 v

2 C−1
θW

2 (v′′g′1Cφ)
2
[

1 +
(
v
v′′
C2
θ

)2
]






Z̄µ Z̄

µ + ... . (34)

Finally, if we make the expansion around v/v′′ ≪ 1, the ZµY
′′µ mass matrix is render

diagonal and we obtain the desired expression for the mass terms

B =
(g2v

2

)2

W+
µ W

−µ +

(
g2v

2CθW

)2

ZµZ
µ +

(
g′1Cφ v

′′

Cθ

)2

Z ′′
µZ

′′µ +O
(( v

v′′

)2
)

, (35)

where Z ′′ ≃ Y ′′ + small corrections.

In principle, in addition to the orthogonal field mixing induced by identifying anoma-

lous and non-anomalous U(1) sectors, there may be kinetic mixing between these sectors.

However, in models where there is only one U(1) per stack of D-branes, the relevant kinetic

mixing is between U(1)’s on different stacks, and hence involves loops with fermions at brane

intersection. Such loop terms are typically down by g′i
2/16π2 ∼ 0.01 [79].7 By inspection

of Table II the charges QB, QL, and QIR are mutually orthogonal in the fermion space,

i.e
∑

f Qi,fQj,f = 0 for i 6= j. This will maintain the othogonality relation P = 0 to one

loop without inducing kinetic mixing [36]. The charges assigned to H ′′ (see Table III) will

violate the orthogonality condition. However, the H ′′ only contributes at the 0.9% level to

the running of g′1 from the string scale to the TeV scale, and about 0.3% to the running of

g′4. These are of the same order as the two loop contributions from the fermion sector, so we

may consistently ignore the nonorthogonality introduced by H ′′ in the context of one loop

considerations.

7 The major effect of the kinetic mixing is in communicating SUSY breaking from a hidden U(1) sector to the

visible sector, generally in modification of soft scalar masses. For a comprehensive review of experimental

limits on the mixing, see [80].
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III. LHC PHENOMENOLOGY

In this section we discuss the discovery potential of the Z ′′ resonance at the LHC. Before

proceeding, we summarize the lessons learned thus far. The initially free parameters of the

model consist of three couplings g′1, g
′
3, g

′
4. These are augmented by three Euler angles to

allow for a field rotation to coupling diagonal in hypercharge. This diagonalization fixes two

of the angles and the orthogonal nature of the rotation introduces one constraint on the

couplings P (gY , g
′
1, g

′
3, g

′
4) = 0. The baryon number coupling g′3 is fixed to be

√

1/6 of the

non-abelian SU(3) coupling at the scale of U(N) unification, and is therefore determined at

all energies through RG running. In what follows, we take Ms = 1014 GeV as a reference

point for running down the g′3 coupling to the TeV region that is ignoring mass threshold

effects of stringy states. This yields g′3(Ms) = 0.231. We have checked that the running of

the g′3 coupling does not change significantly within the LHC range, for different values of the

string scale. This leaves one free angle and two couplings with one constraint. Equation (24)

fixes the third Euler angle. To comply with these assignments and ensure perturbativity of

g′4 between the TeV scale and the string scale we find from (23) that g′1 > 0.4845. We also

take g′1 . 1 in order to ensure perturbativity at the string scale.

We first consider the case with g′1(Ms) ≃ 1. This leads to ψ(Ms) = −1.245, θ(Ms) =

−0.217, φ(Ms) = −0.0006, and g′4(Ms) = 0.232. Substituting our fiducial values in (19) we

find the non-anomalous U(1) vector bosons couple to currents

JY = 2.1× 10−1 QIR + 2.1× 10−1 (B − L)

JY ′′ = 9.8× 10−1 QIR − 4.7× 10−2 (B − L) , (36)

at the string scale. Next, we run the couplings down to the TeV region. A very important

point is that the couplings that are running are those of the U(1) fields; hence the β functions

receive contributions from fermions and scalars, but not from gauge bosons. The one loop

correction to the various couplings are

1

αY (Q)
=

1

αY (Ms)
− bY

2π
ln(Q/Ms) , (37)

1

αi(Q)
=

1

αi(Ms)
− bi

2π
ln(Q/Ms) , (38)

where

bi =
2

3

∑

f

Q2
i,f +

1

3

∑

s

Q2
i,s, (39)
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with f and s indicating contribution from fermion and scalar loops, respectively. Setting

Q = 4 TeV, from (38) we obtain: g′1 = 0.406, g′3 = 0.196, g′4 = 0.218, θ = −0.466,

ψ = −1.215, and φ = −0.0003. This leads to

JY = 1.8× 10−1 QIR + 1.8× 10−1 (B − L)

JZ′′ = 3.6× 10−1 QIR − 9.2× 10−2 (B − L) , (40)

where we have assumed that H ′′ has developed its VEV. Since Tr [QIR B] = Tr [QIRL] = 0,

the Z ′′ decay width is given by

ΓZ′′ = ΓZ′′→QIR
+ ΓZ′′→B−L

∝ (1.4× 10−1)2Tr[Q2
IR
] + (9.2× 10−2)2Tr

[
(B − L)2

]

= 1.0× 100 + 4.5× 10−2 . (41)

Thus, the corresponding branching fractions are BR Z ′′ → QIR = 0.959 and BR Z ′′ →
B−L = 0.041. Though not relevant for LHC phenomenology, a straightforward calculation

shows that Z ′ is very nearly diagonal in B, with BR Z ′ → B = 0.946 and BR Z ′ → L =

0.054. Of course, since the quiver construction has each particle straddling two adjacent

branes, there can be considerable variation in decay channels particle by particle. This is

evident in Table IV.8 The dominance of B for the Z ′ decay channel and IR for the Z ′′ decay

channel is valid after averaging over decay channels.9

Now, duplicating the procedure for g′1(Ms) = 0.4845 we obtain

BR Z ′ → B : BR Z ′ → L : BR Z ′′ → Q1R : BR Z ′′ → B − L

0.066 : 0.934 : 0.039 : 0.961 .
(42)

The chiral couplings of Z ′ and Z ′′ gauge bosons which are mostly L and B−L, respectively

are given in Table V. The variation of the branching fractions within the allowed range of

g′1(Ms) is shown in Fig. 2.

8 The physical couplings of the Z ′′ to fermions fields given in Table IV are consistent with the bounds

presented in [81] from a variety of experimental constraints.
9 An analogue is in the SM. The Z couples to a current JZ ∝ T3 − tan2 θW

Y

2
, where Q = T3 − Y

2
. In this

case,
∑

(Y
2
)2 = 17

6
and Tr[T 2

3 ] = 2; we have BR Z → T3 : BR Z → Y

2
= 2 : 17

6
tan4 θW = 2 : 0.25 = 8 : 1.

However, this certainly does not hold particle by particle; e.g., for the neutrino electron doublet: ΓZ→ν ∝
(1 + tan2 θW )2 ∼ 1.7, whereas ΓZ→e ∝ (1− tan2 θW )2 ∼ 0.5.
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FIG. 2: Branching fractions of Z ′ (left) and Z ′′ (right) as a function of g′1(Ms). The solid lines

denote the branching into B (left) and IR (right). The dashed lines denote the branching into L

(left) and B-L (right).

The LHC discovery potential for Z ′′ gauge boson as a mass peak above a small background

in the reactions pp → Z ′′ → jj and pp → Z ′′ → ℓ+ℓ−, with ℓ = e, µ, is well known. The

required luminosity to discover a Z ′′ basically depends only on its cross section, and therefore

on its mass and couplings. Experimental effects due to mass resolution are known to result

in an only minor reduction of the sensitivity.

Using a data set of pp collisions at
√
s = 8 TeV, with an integrated luminosity of 4.0 fb−1,

the CMS Collaboration has searched for narrow resonances in the dijet invariant mass spec-

trum [32]. Each event in the search is required to have its two highest-pT jets with (pseu-

dorapidity) |ηj | < 2.5. The acceptance A of selection requirements is reported to be ≈ 0.6.

The spectra are consistent with SM expectations and thus upper limits on the cross section

times branching fraction for Z ′′ into two jets have been set. Similar upper limits have been

obtained by the ATLAS Collaboration using 5.8 fb−1 of data collected at
√
s = 8 TeV [82].

These results, which are display in Fig. 3, extend previous exclusion limits from LHC7 [83–

87].

The ATLAS Collaboration has searched for narrow resonances in the invariant mass

spectrum of dimuon and dielectron final states in event samples at
√
s = 7 TeV corresponding

to an integrated luminosity of 4.9 fb−1 and 5.0 fb−1, respectively [88]. The spectra are

consistent with SM expectations and thus upper limits on the cross section times branching

fraction for Z ′′ into lepton pairs have been set. More recently, the CMS Collaboration

updated the LHC7 results using 4.1 fb−1 of data collected at
√
s = 8 TeV [89]. The combined
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upper limits from LHC7 and LHC8 are shown in Fig. 4. Previous dilepton searches by the

LHC experiments have been reported in [90, 91].

In order to compare with these results we now turn to compute these cross sections in

our model. The relevant part of (16), f f̄Z ′′ coupling, is of the form

L =
1

2

√

g2Y + g22
∑

f

(

ǫf i
L

f̄ iLγ
µf iL + ǫf i

R

f̄ iRγ
µf iR

)

Z ′′
µ

=
∑

f

(

(gY ′′QY ′′)f i
L

f̄ iLγ
µf iL + (gY ′′QY ′′)f i

R

f̄ iRγ
µf iR

)

Z ′′
µ , (43)

where f iL (R) are fermion fields and ǫf i
L
,f i

R

= vq ± aq, with vq and aq, the vector and axial

couplings respectively. To compare our predictions with LHC experimental searches in

dilepton and dijets it is sufficient to consider the production cross section in the narrow Z ′′

width approximation,

σ̂(qq̄ → Z ′′) = K
2π

3

GF M
2
Z√

2

[
v2q (φ, g

′
1) + a2q(φ, g

′
1)
]
δ
(
ŝ−M2

Z′′

)
, (44)

where GF is the Fermi coupling constant and the K-factor represents the enhancement from

higher order QCD processes estimated to be K ≃ 1.3 [92]. After folding σ̂ with the CTEQ6

parton distribution functions [93], we determine (at the parton level) the resonant production

cross section. In Figs. 3 and 4 we compare the predicted σ(pp → Z ′′) × BR(Z ′′ → jj) and

σ(pp → Z ′′) × BR(Z ′′ → ℓℓ) production rates with 95% CL upper limits recently reported

by the CMS and ATLAS collaborations. Selection cuts will probably reduce event rates by

factors of 20%. Keeping this in mind, we conclude that if Z ′′ is mostly IR, then the predicted

production rates for MZ′′ ≈ 4 TeV at
√
s = 8 TeV saturate the current dijet limits. On the

other hand, if Z ′′ is mostly B − L the lower limit on the gauge boson mass, MZ′′ & 3 TeV,

is determined primarily from dilepton searches.

For the discovery potential in the high mass region the dijet channel is statistically a

better discriminator than lepton pairs. Therefore, we investigate (at the parton level) the

LHC14 sensitivity for a Z ′′ resonance (which is mostly IR) in data binned according to the

dijet invariant mass M , after setting cuts on the different jet rapidities, |y1|, |y2| ≤ 1 and

transverse momenta p1,2T > 50 GeV. With the definitions Y ≡ 1
2
(y1+ y2) and y ≡ 1

2
(y1− y2),
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TABLE IV: Chiral couplings of Y , Z ′, and Z ′′ gauge bosons. All fields in a given set have a

common gY ′QY ′ , gY ′′QY ′′ couplings. We have taken Z ′ to be mostly B and and Z ′′ to be mostly

IR.

Fields gYQY gY ′QY ′ gY ′′QY ′′

UR 0.2434 0.1836 0.3321

DR −0.1214 0.1838 −0.3933

LL −0.1826 0.0759 0.0918

ER −0.3650 0.0760 −0.2709

QL 0.0610 0.1837 −0.0306

NR 0.0000 0.0758 0.4545

H 0.1824 0.0000 0.3627

H ′′ 0.0000 −0.0758 −0.4545

TABLE V: Chiral couplings of Y , Z ′, and Z ′′ gauge bosons. All fields in a given set have a common

gY ′QY ′ , gY ′′QY ′′ couplings. We have taken Z ′ to be mostly L and and Z ′′ to be mostly B − L.

Fields gYQY gY ′QY ′ gY ′′QY ′′

Ui 0.2435 0.1101 −0.0763

Di −0.1217 0.1101 −0.2242

Li −0.1825 0.7165 0.4509

Ei −0.3651 0.7165 0.3769

Qi 0.0609 0.1101 −0.1503

Ni 0.0000 0.7165 0.5248

H 0.1826 −0.0000 0.0739

H ′′ −0.0000 −0.7165 −0.5248

the cross section per interval of M for pp→ dijet is given by

dσ

dM
= Mτ

∑

ijkl

[∫ 0

−Ymax

dY fi(xa, M) fj(xb, M)

∫ ymax+Y

−(ymax+Y )

dy
dσ

dt̂

∣
∣
∣
∣
ij→kl

1

cosh2 y

+

∫ Ymax

0

dY fi(xa, M) fj(xb,M)

∫ ymax−Y

−(ymax−Y )

dy
dσ

dt̂

∣
∣
∣
∣
ij→kl

1

cosh2 y

]

, (45)

where f(x,M)’s are parton distribution functions (we use CTEQ6 [93]), τ = M2/s, xa =
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FIG. 3: Comparison of the (pre-cut) total cross section for the production of pp → Z ′′ → jj with

the 95% CL upper limits on the production of a gauge boson decaying into two jets as reported by

the CMS and ATLAS collaborations (corrected by acceptance). For isotropic decays (independently

of the resonance), the acceptance for the CMS detector has been reporetd to be A ≈ 0.6. The

ATLAS acceptance ranges from 11% to 54% varying from 1 TeV to 4.25 TeV, and is never lower

than 48% for masses above 2 TeV. The case in which Z ′′ is mostly diagonal in IR is shown in the

left panel and the case in which it is mostly B − L in the right panel.

√
τeY , xb =

√
τe−Y , and

|M(ij → kl)|2 = 16πŝ2
dσ

dt̂

∣
∣
∣
∣
ij→kl

; (46)

we specify partonic subprocesses with caret notation (ŝ, t̂, û). The Y integration range in

Eq. (45), Ymax = min{ln(1/√τ), ymax}, comes from requiring xa, xb < 1 together with the

rapidity cuts ymin < |y1|, |y2| < ymax. The kinematics of the scattering also provides the

relation M = 2pT cosh y, which when combined with pT = M/2 sin θ∗ = M/2
√
1− cos2 θ∗,

yields cosh y = (1 − cos2 θ∗)−1/2, where θ∗ is the center-of-mass scattering angle. Fi-

nally, the Mandelstam invariants occurring in the cross section are given by ŝ = M2,

t̂ = −1
2
M2 e−y/ cosh y, and û = −1

2
M2 e+y/ cosh y.
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FIG. 4: Comparison of the (pre-cut) total cross section for the production of pp → Z ′′ → ℓℓ with

the 95% CL upper limits on the production of a gauge boson decaying into two leptons, as reported

by the ATLAS and CMS collaborations. The case in which Z ′′ is mostly diagonal in IR is shown

in the left panel and the case in which it is mostly B − L in the right panel.

The average square amplitude (for incoming quark q and outgoing quark q′) is given by,

|M(qq̄
Z′′

→ q′q̄′)|2 =
1

4

[
g2Y ′′Q2

Y ′′(qL) + g2Y ′′Q2
Y ′′(qR)

] [
g2Y ′′Q2

Y ′′(qL
′) + g2Y ′′Q2

Y ′′(qR
′)
]

×
[

2(u2 + t2)

(s−M2
Z′′)2 + (ΓZ′′ MZ′′)2

]

, (47)

where gY ′′QY ′′(qL) and gY ′′QY ′′(qR) are the couplings of Z ′′ to quarks. (Note that we have

not summed over the flavors, but we did average and sum the colors).

The decay width of Z ′′ → f f̄ is given by

Γ(Z ′′ → f f̄) =
GFM

2
Z

6π
√
2
NcMZ′′

√
1− 4x

[
v2f(1 + 2x) + a2f(1− 4x)

] (

1 +
αs
π

)

, (48)

where αs = αs(MZ′′) is the strong coupling constant at the scale MZ′′ , x = m2
f/M

2
Z′′, vf

and af are the vector and axial couplings, and Nc = 3 or 1 if f is a quark or a lepton,

respectively [94]. For our fiducial values of g′1 and φ we obtain v2u+a
2
u = 0.396 and v2d+a

2
d =

0.554.

We calculate a signal-to-noise ratio, with the signal rate (S) estimated in the invariant

mass window [MZ′′−2Γ, MZ′′+2Γ]. To accommodate the minimal acceptance cuts on dijets

from the CMS and ATLAS proposals [95], an additional kinematic cut, |ymax| < 1.0, has
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been included in the calculation. The noise (N ) is defined as the square root of the number

of QCD background events (B) in the same dijet mass interval for the same integrated

luminosity. In Table. VI we show the behavior of the signal-to-noise ratio as a function of

the mass of Z ′′ at LHC14 for different integrated luminosities. We conclude that the LHC

provides a generous discovery potential for Z ′′ which is mostly IR. The discovery potential

of a Z ′′ which is mostly B − L is controlled by the sensitivity of LHC14 to dilepton final

states. For 300 fb−1, the projected sensitivity is MZ′′ . 5 TeV [96].

TABLE VI: Signal-to-noise ratio at LHC14 for different integrated luminosities.

10 fb−1 100 fb−1 1000 fb−1

MZ′′ (TeV) S B S/N S B S/N S B S/N

4 39 579 1.62 391 5789 5.14 3910 57895 16.25

5 7 176 0.50 67 1759 1.60 670 17590 5.05

6 1 66 0.14 11 664 0.44 113 6646 1.39

If the Z ′′ is observed at the LHC, we will obviously measure its mass, its total width and

cross section. In addition, the off- and on resonance peak forward-backward charge asymme-

tries AℓFB would provide additional information about Z ′′ couplings and interference effects

with the Z boson and the photon [97–99].10 Besides, the Z ′′ rapidity distribution is sensitive

to the uūZ ′′ and bb̄Z ′′ gauge couplings. Since the W± and Z boson rapidity distributions

will be measured in great detail at the LHC, rapidity spectra for the mass region of interest

can be calculated separately for uū, dd̄, and sea quark antiquark annihilation. A combined

fit to the relative parton distribution functions and the Z ′′ rapidity distribution would allow

us to obtain the fraction of Z ′′ bosons produced from uū and dd̄ initial states [100].

10 The leptonic forward-backward charge asymmetryAℓ

FB is defined from the lepton angular distribution with

respect to the quark direction in the centre-of-mass frame as dσ/d cos θ∗ ∝ 3
8
(1+cos2 θ∗)+Aℓ

FB cos θ∗. The

lepton angle θ∗ in the dilepton center-of-mass frame can be calculated using the measured four momenta

of the dilepton system; Aℓ

FB can then be determined with an unbinned maximum likelihood fit to the

cos θ∗ distribution.
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IV. NEUTRINO COSMOLOGY REDUX

In this section we reexamine some critical cosmological issues surrounding the presence

of the six additional neutrino degrees of freedom correlated to the presence of Z ′′ in our

dynamical D-brane model. These considerations, when viewed in the context of most re-

cent cosmological observations are found to constrain the mass of the Z ′′ to an interesting

narrow band, which will be directly probed by LHC14. To provide a starting point, we first

summarize the “best-fit” cosmological parameters to recent data.

A. Beyond ΛCDM

Our universe seems, according to the present-day evidence, to be spatially flat and to

posses a non-vanishing cosmological constant (Λ) plus cold dark matter (CDM), corre-

sponding respectively to roughly 70% and 25% of the total density, with the remaining

5% in baryons. The standard ΛCDM cosmology provides a rather good fit of existing data

from BBN (∼ 20 minutes), the CMB (∼ 380 kyr), and the galaxy formation epochs of the

universe (& 1 Gyr). However, there are also tantalizing hints for the presence of an extra

relativistic component, dubbed dark radiation.

Taking these hints at face value, the most straightforward variation of standard ΛCDM

is “extra” energy contributed by new relativistic particles “X .” When the X ’s don’t share

in the energy released by e+e− annihilation, it is convenient to account for the extra con-

tribution to the SM energy density, by normalizing it to that of an “equivalent” neutrino

species [101]

ρX ≡ ∆Nν ρν =
7

8
∆Nν ργ , (49)

where ρν is the energy density in neutrinos and ργ is the energy density in photons (which

by today have redshifted to become the CMB photons at a temperature of about 2.7 K).

For each additional “neutrino-like” particle (i.e. any two-component fermion), if TX = TνL,

then ∆Nν = 1; if X is a scalar (and TX = TνL), then ∆Nν = 4/7. However, it may

well be that the X ’s have decoupled even earlier in the evolution of the universe and have

failed to profit from the heating when various other particle-antiparticle pairs annihilated (or

unstable particles decayed). In this case, the contribution to ∆Nν from each such particle

will be < 1 and < 4/7, respectively. The contribution of the 2.984± 0.009 neutrino species
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(measured from the width for invisible νν̄ decays of the Z boson [102]) to N eff
ν = Nν +∆Nν

is Nν = 3.046; the small deviation from 3 is due to partial heating of neutrinos in the early

universe by e+e− annihilation, see e.g. [103].

The competition between gravitational potential and pressure gradients is responsible for

the peaks and troughs in the CMB temperature angular power spectrum, see e.g. [104]. The

redshift zeq of matter-radiation equality,

1 + zeq =
Ωmh

2

ΩRh2
=

Ωmh
2

Ωγh2

[

1 +
7

8

(
4

11

)4/3

N eff
ν

]−1

, (50)

affects the time (redshift) duration over which this competition occurs. Here, Ωmh
2 is the

total matter density (comprised, for nearly massless neutrinos, of baryons and CDM), h

(H0 ≡ 100h km/s/Mpc) is the normalized Hubble constant, and Ωγh
2 = 2.469× 10−5 is the

present-day photon energy density. The primary effect of extra relativistic degrees of freedom

on the CMB results essentially from changing the redshift of matter-radiation equality. If

the radiation content is increased, matter-radiation equality is delayed, and occurs closer (in

time and/or redshift) to the epoch of recombination. This implies the universe is younger

at recombination with a correspondingly smaller sound horizon s∗. Since the location of

the nth peak in the angular power spectrum scales roughly as nπD∗/s∗ (where D∗ is the

comoving angular diameter distance to recombination11), if ∆Nν > 0 the peaks shift to

smaller angular scales and with greater separation [104]. Therefore, the equality redshift is

one of the fundamental observables that one can extract from WMAP data, mainly from

the height of the third acoustic peak relative to the first peak.

The variation in N eff
ν reads [12]

δN eff
ν

N eff
ν

≃ 2.45
δ(Ωmh

2)

Ωmh2
− 2.45

δzeq
1 + zeq

. (51)

The latest distance measurements from the Baryon Acoustic Oscillations (BAO) in the dis-

tribution of galaxies [16] and precise measurements of the Hubble constant H0 [17] provide

an independent determination in the fractional error in Ωmh
2 and allow a precise determi-

nation of N eff
ν . The parameter constraints from the combination of WMAP 7-year data,

11 The angles on the sky are related to actual physical distance via the angular diameter distance d, defined

as the ratio of the physical length (transverse to the line of sight) and the angle it covers d ≡ λphys/ϑ.

Likewise, D ≡ λc/ϑ, where λc = (1 + z)λphys is the corresponding comoving length and z the redhsift;

D = (1 + z)d.
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BAO, and H0 lead to N eff
ν = 4.34+0.86

−0.88 [12]. Similarly, a combination of BAO and H0 with

data from the Atacama Cosmology Telescope (ACT) yields N eff
ν = 4.6 ± 0.8 [105], whereas

data collected with the South Pole Telescope (SPT) combined with BAO and H0 arrive at

N eff
ν = 3.86 ± 0.42 [106]. Although none of these measurements individually deviates from

the standard value by more than about two standard deviations, they collectively rule out

Nν = 3.046 at the approximately 99% CL, and instead prefer roughly one extra effective

neutrinos species [107].12

The expansion rate of the universe at early times increases with the number of relativistic

particle species in thermal equilibrium, and this in turn sets timescales for BBN [109–

111]. One can then use the BBN yields of light nuclei to constrain the number of light

species quantitatively. The nucleosynthesis chain begins with the formation of deuterium in

the process p(n, γ)D. However, photo-dissociation by the high number density of photons

delays production of deuterium (and other complex nuclei) until well after T drops below

the binding energy of deuterium, ∆D = 2.23 MeV. The number of photons per baryon above

the deuterium photo-dissociation threshold, η−1e−∆D/T , falls below unity at T ≃ 0.1 MeV,

where η ≡ nB/nγ ∼ 5×10−10 is the baryon to photon number density. Nuclei can then begin

to form without being immediately photo-dissociated again. Only 2-body reactions such as

D(p, γ)3He, 3He(D, p)4He, are important because the density is rather low at this time.

Nearly all the surviving neutrons when nucleosynthesis begins end up bound in the most

stable light element 4He. Heavier nuclei do not form in any significant quantity both because

of the absence of stable nuclei with mass number 5 or 8 (which impedes nucleosynthesis via

n4He, p4He, or 4He4He reactions) and the large Coulomb barriers for reactions such as

T(4He, γ)7Li and 3He(4He, γ)7Be. Hence the primordial mass fraction of 4He, conventionally

referred to as Yp, can be estimated by the simple counting argument

Yp =
2(n/p)

1 + n/p
. (52)

For T & 1 MeV, weak interactions were in thermal equilibrium, thus fixing the ratio of

the neutron and proton number densities to be n/p = e−Q/T , where Q = 1.293 MeV

is the neutron-proton mass difference. As the temperature dropped, the neutron-proton

inter-conversion rate, Γn⇌p ∼ G2
FT

5, fell faster than the Hubble expansion rate, H ≈

12 A more recent study seems to indicate 3.0 < N eff
ν < 4.1 [108].
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√

N(T ) T 2/MPl (see e.g. [112]). Since N(T ) counts the number of relativistic particle

species determining the energy density in radiation, the neutron fraction n/p is directly

sensitive to ∆Nν . For standard ΛCDM, the freeze-out temperature of νL is

TFO ∼
[√

N(TFO)

MPl G2
F

]1/3

≃ 1 MeV , (53)

yielding n/p ≃ 1/6 and Yp ≃ 0.25.

The evidence for extra radiation from Yp data is, however, somewhat ambiguous. The

observationally-inferred primordial fractions of baryonic mass in 4He (Yp = 0.2472 ±
0.0012 [113], Yp = 0.2477 ± 0.0029 [114], and Yp = 0.250 ± 0.004 [115]) have been con-

stantly favoring N eff
ν . 3 [116]. Unexpectedly, two recent independent studies deter-

mined Yp = 0.2565 ± 0.001(stat) ± 0.005(syst) [117] and Yp = 0.2561 ± 0.0108 [118]. For

τn = 885.4 ± 0.9 s and τn = 878.5 ± 0.8 s, the updated effective number of light neutrino

species is reported as N eff
ν = 3.68+0.80

−0.70 (2σ) and N eff
ν = 3.80+0.80

−0.70 (2σ), respectively [117].13

As mentioned above, the primordial deuterium abundance depends not just on N eff
ν but

also on the cosmological baryon density, Ωbh
2. Prior to the precise inference of Ωbh

2 from

CMB measurements, the strongest constraint on N eff
ν came from using the deuterium-to-

hydrogen number ratio D/H to restrict Ωbh
2 and then exploiting the N eff

ν dependence of the

primordial helium mass fraction Yp. However, D/H has its own dependence onN eff
ν [123, 124];

a strong external constraint on Ωbh
2 allows BBN constraints on N eff

ν that are independent

of Yp. Since precise measurements of Yp are difficult, the constraint on N eff
ν from D/H is

found to be competitive with that from Yp. A recent analysis, which combines the CMB

results with BBN theory and the observed D/H, suggests N eff
ν = 3.90± 0.44 [125].14

In summary, though uncertainties remain large, the most recent cosmological observa-

tions show a consistent preference for additional relativistic degrees of freedom (r.d.o.f.)

during BBN and the CMB epochs. We take these hints as motivation for the subsequent

analysis, which consists of the following tasks: (1) to explain the dark radiation using the

13 For several years the Particle Data Group recommended τn = 885.7±0.8 s [119]. More recently, conflicting

lifetimes τn = 878.5± 0.7± 0.3 s [120] and τn = 880.7± 1.3± 1.2 s [121] have been reported. The Particle

Data Group now recommends a world average that includes the conflicting values, τn = 881.5±1.5 s [122],

with errors that have been inflated to reflect the discrepancy.
14 The BBN calculations in this analysis includes updates of nuclear rates in light of recent experimental

and theoretical information, with the most significant change occurring for the d(p, γ)3He cross section.
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non-supersymmetric U(3)B × Sp(1)L × U(1)L × U(1)IR D-brane model, in which the addi-

tional r.d.o.f. are the three flavors of light right-handed neutrinos which interact with the

SM fermions via the exchange of heavy vector fields Z ′ and Z ′′; (2) to suppress the six addi-

tional fermionic r.d.o.f. to levels in compliance with BBN and CMB. This is accomplished by

imposing the decoupling of νR’s from the plasma early enough so that they undergo incom-

plete reheating during the quark-hadron transition; and late enough so as to leave an excess

neutrino density suggested by the data. These requirements strongly constrain the masses

of the heavy vector fields. Together with the couplings given in Table IV, the model is fully

predictive, and can be confronted with dijet and dilepton data from LHC8 and, eventually,

LHC14.

B. Cosmology of Intersecting Branes

The ensuing discussion will be framed in the context of a Z ′′ which is mostly IR, and we

will comment on the case in which Z ′′ is mostly B − L after presenting our results.

We begin by first establishing, in a model independent manner, the range of decoupling

temperatures implied by the BBN and CMB analyses. For the subsequent study, the physics

of interest will be taking place at energies in the region of the quark-hadron transition, so

that we will restrict ourselves to the following fermionic fields, and their contribution to

r.d.o.f.: [3uR] + [3dR] + [3sR] + [3νL + eL + µL]+ [eR + µR] + [3uL + 3dL + 3sL] + [3νR]. This

amounts to 28 Weyl fields, translating to 56 fermionic r.d.o.f.

Next, in line with our stated plan, we use the data estimate to calculate the range of

decoupling temperature. The effective number of neutrino species contributing to r.d.o.f.

can be written as N eff
ν = 3[1 + (TνR/TνL)

4] ; therefore, taking into account the isentropic

heating of the rest of the plasma between νR decoupling temperature Tdec and the end of

the reheating phase,

∆Nν = 3

(
N(Tend)

N(Tdec)

)4/3

, (54)

where Tend is the temperature at the end of the reheating phase, andN(T ) = r(T )(NB+
7
8
NF)

is the effective number of r.d.o.f. at temperature T , with NB = 2 for each real vector field

and NF = 2 for each spin-1
2
Weyl field. The coefficient r(T ) is unity for the lepton and

photon contributions, and is the ratio s(T )/sSB for the quark-gluon plasma. Here s(T )(sSB)

is the actual (ideal Stefan-Bolzmann) entropy. Hence N(Tdec) = 47.5 r(Tdec) + 14.25. We
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take N(Tend) = 10.75 reflecting (e−L+e
+
R+e

−
R+e

+
LνeL+ ν̄eR+νµL+ ν̄µR+ντL+ ν̄τR+γL+γR).

We consistently omit νR in considering the thermodynamics part of the discussion, but will

include it when dealing with expansion. As stated in the introduction

∆Nν =







0.68+0.40
−0.35 (1σ) BBN + Yp

0.90+0.44
−0.44 (1σ) CMB + BBN + H/D

(55)

so the excess r.d.o.f. will lie within 1σ of the central value of each set of observations if

0.46 < ∆Nν < 1.08. From Eqs. (54) and (55), the allowable range for N is 23 < N(Tdec) <

44. This is achieved for 0.18 < r(Tdec) < 0.63. By comparing to Fig. 8 in Ref. [126], this can

be translated into a temperature range

175 MeV < Tdec < 250 MeV , (56)

with the lower temperature coinciding with the region of most rapid rise of the entropy. Thus,

the data implies that the νR decoupling takes place during the quark-hadron transition.

We now turn to use our model in conjunction with the decoupling condition to constrain

its parameters. To this end we calculate the interaction rate Γ(T ) for a right-handed neutrino

and determine Tdec from the plasma via the prescription

Γ(Tdec) = H(Tdec) . (57)

Let f iL be a single species of Weyl fermion, representing the two r.d.o.f. {f iL, f̄ iR}, where
the superscript indicates bins i = 3, 5. Similarly f iR ∈ {f iR, f̄ iL}, for i = 1, 2, 4, 6. Notice that

the subscripts L,R denote the actual helicities of the massless particles in question, not the

chirality of the fields. With this said, we may write the amplitude for f iL scattering

M
(
νR(p1)f

i
L(p2) → νR(p3)f

i
L(p4)

)
=

Gi√
2
[ū(p3)γ

µ(1+ γ5)u(p1)][ū(p4)γµ(1− γ5)u(p2)] . (58)

The other 3 amplitudes are obtained by the crossing substitutions in the second square

bracket; for scattering from

f̄ iR → v̄(p2) γµ (1− γ5) v(p4)

f iR → ū(p4) γµ (1 + γ5) u(p2) (59)

f̄ iL → v̄(p2) γµ (1 + γ5) v(p4) .

The cross sections for the four scattering processes (no average over helicities) are

σ
(
νRf

i
L → νRf

i
L

)
=

1

3
σ
(
νRf̄

i
R → νRf̄

i
R

)
=

2

3

G2
i s

π
(for bins i = 3, 5) (60)

31



and

σ
(
νRf̄

i
L → νRf̄

i
L

)
=

1

3
σ(νRf

i
R → νRf

i
R) =

2

3

G2
i s

π
(for bins i = 1, 2, 4, 6) . (61)

In addition to these scattering processes, the νR interacts with the plasma through the

annihilation processes: νRν̄L → f iLf̄
i
R, for bins i = 3, 5, and νRν̄L → f iRf̄

i
L, for bins i =

1, 2, 4, 6. These all yield cross sections 2G2
i s/(3π) due to forward and backward suppression.

Assuming all chemical potentials to be zero, the plasma will have an equal number density

n(T ) = 0.0913T 3, for each fermion r.d.o.f. Thus,

Γscat(T ) = n(T )

〈
6∑

i=1

σi(s) vM Ni

〉

, (62)

where vM = 1 − cos θ12 is the Moller velocity, s = 2k1k2(1 − cos θ12) is the square of the

center-of-mass energy, and Ni is the multiplicty of Weyl fields in each bin (e.g., for i =

3, N3 = 3 + 2 = 5). The scattering cross section is given by

σscat
i = σ(νRf

i
L → νRf

i
L) + σ(νRf̄

i
R → νRf̄

i
R) =

4

3

2G2
i s

π
for each i = 1, . . . , 6 ; (63)

similarly,

σann
i (s) = σ(νRν̄L → f iLf̄

i
R + f iRf̄

i
L) =

1

3

2G2
i s

π
for each i = 1, . . . 6 . (64)

Since s = 2k1k2(1 − cos θ12) and vM = 1 − cos θ12, we perform an approximate angular

average 〈(1− cos θ12)
2〉 = 4/3, followed by a thermal averaging 〈2k1k2〉 = 2(3.152 T 2) to give

Γscat(T ) =

(
4

3

)2
2

π
2 (3.15T )2 (0.0919T 3)

(
6∑

i=1

G2
iNi

)

︸ ︷︷ ︸

G2
eff

≃ 2.05G2
eff T

5 . (65)

From (63), (64), and (65),

Γann(T ) =
1

4
Γscat(T ) ≃ 0.50 G2

eff T
5 . (66)

Each of the Gi is given by the sum of the contributions from Z ′ and Z ′′ exchange,

4
Gi√
2
=
g′6 g

′
i

M2
Z′

+
g′′6 g

′′
i

M2
Z′′

. (67)

The Hubble expansion parameter during this time is

H(T ) = 1.66 〈N(T )〉1/2 T 2/MPl , (68)
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FIG. 5: The shaded areas show the region allowed from decoupling requirements to accommodate

CMB and BBN data. The hatched region indicates the masses excluded by the LHC8 dijet searches.

The lower and upper shaded areas pertain to chemical and thermal equilibrium, respectively. These

two estimates should serve to bracket the size of the actual effect.

where MPl is the Planck mass. Since the quark-gluon energy density in the plasma has a

similar T dependence to that of the entropy (see Fig. 7 in [126]), we take N(T ) = 47.5 r(T )+

19.5, so that H(T ) = 10.3 T 2/MPl. (The first factor provides an average for r(T ) over the

temperature region, and we have now included the six νR r.d.o.f.) Since Γ ∝ T 5 and H ∼ T 2,

it is clear that if at some temperature Tdec, H(Tdec) = Γi(Tdec), the ratio Γ/H will fall rapidly

on further cooling. Thus from (57) and (68) the equation determining Tdec depends on: (1)

whether we need to preserve the absence of a chemical potential, or (2) whether we need

simply to mantain physical equilibrium. The decoupling condition in these two cases is: (1)
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Γann(Tdec) = H(Tdec) and (2) Γscat(Tdec) + Γann(Tdec) = H(Tdec); or numerically: (1)

0.50 G2
eff T

5
dec = 10.3 T 2

dec/Mpl ⇒ T 3
dec = 20.6 (G2

effMPl)
−1 , (69)

and (2)

2.50 G2
eff T

5
dec = 10.3 T 2

dec/MPl ⇒ T 3
dec = 4.1 (G2

effMPl)
−1 . (70)

Tdec as determined from these equations must lie in the band (56).

Since all freedom of determining coupling constant and mixing angles has been exercised,

there remains only constraints on the possible values of MZ′ and MZ′′ . For high mass string

scales the contribution from MZ′ to Geff is neglible. We find that for certain ranges of MZ′′

the decoupling of the νR’s occurs during the course of the quark-hadron transition, just so

that they are only partially reheated compared to the νL’s — the desired outcome. Since our

aim is to match the data, which has lower and upper bounds on the neutrino “excess”, we

obtain corresponding upper and lower bounds on the Z ′′ gauge field mass. Roughly speaking,

if decoupling requires a freezout of the annihilation channel (loss of chemical equilibrium),

then 3.6 TeV < MZ′′ < 4.8 TeV. This range will be probed at LHC14. If thermal equilibrium

via scattering is sufficient, then 5.4 TeV < MZ′′ < 7.4 TeV.

Depending on the details of the string type model and Ms some of the couplings may

go up and some may go down, but the net result for Geff involving the product of all these

couplings is virtually unchanged. Moreover, we have verified that ifMs is pushed downwards

to the TeV-scale region bothMZ′ andMZ′′ contribute to Geff and are within the LHC reach.

A summary of LHC7 constraints andMZ′ −MZ′′ mass regions consistent with CMB + BBN

+ Yp + H/D data (within 1σ) is encapsulated in Fig. 5.

We comment briefly on the case in which Z ′′ is mostly B − L. By comparing Tables IV

and V it becomes evident that the Z ′′ coupling to neutrinos is stronger when the extra gauge

boson is almost diagonal in B − L. As a consequence, the allowed range of masses from

decoupling requirements to accommodate CMB and BBN data is shifted to higher values:

4.5 TeV < MZ′′ < 6.1 TeV if decoupling requires a freezout of the annihilation channel, and

6.3 TeV < MZ′′ < 8.2 TeV if thermal equilibrium via scattering is sufficient.

The first cosmology results from the Planck satellite anticipated in early 2013 would

allow determination of N eff
ν with a standard deviation of about 0.3, whereas the future

Large Synoptic Survey Telescope (LSST) could determine N eff
ν with a standard deviation of
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about 0.1 [127]. These observations when combined with future LHC results can directly

test the viability of our model.

V. SUPERSYMMETRIC EXTENSION

When the string scale is at high energies, supersymmetry is in principle welcome for the

hierarchy problem. Gauge bosons of the brane stacks belong then toN = 1 vector multiplets

together with the corresponding gauginos, while at brane intersections chiral fermions belong

to chiral multiplets denoted by their left-handed fermionic components Q,L, U c, Dc, Ec, N c,

where the superscript c stands for the charged conjugate in the familiar notation. Moreover,

in the (P,R) intersection, one should have the two usual Higgs doublets chiral multiplets

H1, H2 with the quantum numbers ofH∗ andH , respectively. Finally, the extra Higgs singlet

H ′′ becomes naturally the superpartner of the right-neutrino superfield N c. The Yukawa

interactions (25) are now replaced by the superpotential:

WY = YuQH2 U
c + YdQH1D

c + Ye LH1E
c + YN LH2N

c . (71)

On electroweak symmetry breaking, H2 develops a VEV, as a result of which N c couples

with νL to form a Dirac neutrino. Since superpotentials such as MN cN c or SN cN c are

precluded by the U(1)L and U(1)IR gauge invariances, there seems no equivalent of the seesaw

mechanism to generate the Weinberg term [128] which gives rise to Majorana neutrinos.15

Here M is a Majorana mass matrix in flavor space and S is a gauge singlet. In addition,

the existence of the VEV 〈N c〉 breaks the U(1)L lepton gauge symmetry which allows the

Z ′′ to grow a mass. It also generates the R-parity breaking term LH2, whose coefficient is

subject to a variety of phenomenological constraints [131].

A superfield H ′′ with IR = L = +1 opposite to N c presents difficulties. A VEV for this

version ofH ′′ serves equally well for the purpose of mass growth for Z ′′. However, its presence

introduces a non-zero anomaly in B−L and IR. The anomaly free status of IR and B−L can

be regained by introducing a fourth flavor N c. With this extension, the dimension 5 operator

(N cH ′′)2 is permitted. This gives rise to a Majorana mass contrbibution ∝ v′′2/Ms and to

a pseudo-Dirac neutrino mass matrix [134, 135]. Present limits on pseudo-Dirac splittings

15 However it is possible that D-brane instantons can generate Majorana masses for these perturbatively

forbidden operators [129, 130].

35



arise from the solar and atmospheric neutrino measurements. Splitting of less than about

10−12eV2 (for ν1 and ν2) have no effect on the solar neutrino flux, while a pseudo-Dirac

splitting of ν3 could be as large as 10−4 eV2 before affecting the atmospheric neutrinos [136].

An even stronger bound emerges if we require the extra relativistic degrees of freedom not

to exceed 1 as indicated by recent cosmological observations. To see this, we note that the

effective thermalization of the right handed neutrinos can occur through mixing. This will

occur if the oscillation length is less than horizon size during the CMB era. For a typical

neutrino mass of ∼ 0.1 eV, this requires that the Majorana mass is less than O(10−25 eV).

At present we have no understanding of the origin of such a hierarchy (i.e. 10−13 beyond

the ordinary suppression of the Yukawa), and as a consequence we discard the assignment

IR = L = +1 on phenomenological grounds.

Like other broad frameworks for model-building, supersymmetric D-brane models do not

lead uniquely to a single theory.16 However, the conjectured models are rather rigidly con-

strained, and lead to LHC predictions that are qualitatively different from the conventional

minimal supersymmetric SM extensions [133].

We turn now to discuss some specifics of the SUSY extension to our analysis. The first

and obvious change is the modification of the β functions for the running of the couplings.

However, these changes will be minor: the phenomenological requirements at the TeV scale

will effectively fix the U(1) couplings at that scale. Since unification is not a requirement

of D-brane models, the coupling constants at the string scale will differ somewhat due to

the change in the β functions, but string scale couplings do not alter our phenomenological

predictions. The only caveat is to ensure that, as a result of the enhanced β functions, none

of the couplings which comply with TeV data acquire non-pertubative components at the

string scale. We have verified that the variation of the g′1(Ms) parameter space is hardly

noticeable. This gives scarcely any change in the production cross section and/or branching

fractions, even in the extreme cases shown in Figs. 3 and 4, in which Z ′′ is mostly diagonal

in B − L or mostly diagonal in IR. Furthermore, the milli-weak interactions required to

explain the extra relativistic degrees of freedom during BBN and CMB epochs are largely

independent of these changes.

16 Some phenomenological aspects of the U(3)B × Sp(1)L × U(1)IR × U(1)L SUSY extension have been

discussed in [132].
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Much more serious considerations come to light in transcribing the low energy effective

theory into a broken SUSY background. The technical problem arises most prominently in

finding a broken SUSY framework that will accommodate the hierarchy between the mass of

the Z and the mass of Z ′′. Breaking of the extra U(1) via the Higgs mechanism modeled on

the radiative breaking of SU(2)×U(1) driven by a large top Yukawa coupling is not an option

in the present model. The introduction of an added D-term, a Fayet-Iliopoulos term, and an

extended set of soft breaking masses, requires a sizable enlargement of the parameter space

of the model. In order to incorporate this parameter space in a phenomenological study it

is imperative to have additional experimental constraints on the SUSY spectrum.

The approach we have taken here can be regarded as an effective theory with a new and

novel phenomenology, as well as interesting theoretical characteristics (e.g., conservation of

B to prevent proton decay and violation of L without Majorana masses). Of course such

an effective theory requires a high level of fine tuning, which could be resolved in a more

complete broken SUSY framework. However, we do not expect the phenomenology to differ

in any substantial degree with the one presented in this paper.

VI. CONCLUSIONS

The main purpose of this paper has been to cast D-brane ideology in as bottoms-up,

phenomenologically driven a way as possible. The energy scale associated with string physics

is assumed to be near the Planck mass. To develop our program in the simplest way, we

considered a minimal model with gauge-extended sector U(3)B × Sp(1)L×U(1)IR ×U(1)L.

The resulting U(1) content gauges the baryon number B, the lepton number L, and a

third additional abelian charge IR which acts as the third isospin component of an SU(2)R.

Rotation of the U(1) gauge fields to a basis exactly diagonal in hypercharge Y and very

nearly diagonal in (anomalous) B and (non-anomalous) IR fixes all mixing angles and gauge

couplings. The anomalous Z ′ gauge boson obtains a string scale Stückelberg mass via a 4D

version of the Green-Schwarz mechanism, TeV ≪MZ′ .Ms .MPl. To keep the realization

of the Higgs mechanism minimal, we add an extra SU(2) singlet complex scalar, which

acquires a VEV and gives a TeV-scale mass to the non-anomalous gauge boson Z ′′. It is

noteworthy that there are no dimension 4 operators involving H ′′ that contribute to the

Yukawa Lagrangian in our D-brane construct. This is very important since H ′′ carries the
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quantum numbers of right-handed neutrino and its VEV breaks lepton number. However,

this breaking can affect only higher-dimensional operators which are suppressed by the high

string scale, and thus there is no phenomenological problem with experimental constraints

for Ms higher than ∼ 1014 GeV. Since all freedom of determining coupling constant and

mixing angles has been exercised, there remains only constraints on the possible value of

MZ′′ . We have shown that MZ′′ ≈ 3 − 4 TeV saturates current limits from the CMS and

ATLAS collaborations. We have also shown that for MZ′′ . 5 TeV, LHC14 will reach

discovery sensitivity & 5σ.

Armed with our D-brane construct, we developed a dynamic explanation of recent hints

that the relativistic component of the energy during the CMB and BBN epochs is equivalent

to about 1 extra Weyl neutrino. Requiring that the B − L current be anomaly free implies

existence of 3 right-handed Weyl neutrinos. The task then reverts to explain why there

are not 3 additional r.d.o.f. We showed that for certain ranges of MZ′′ the decoupling of

the νR’s occurs during the course of the quark-hadron crossover transition, just so that

they are only partially reheated compared to the νL’s — the desired outcome. Roughly

speaking, if decoupling requires a freezout of the annihilation channel (loss of chemical

equilibrium), then for a Z ′′ which is mostly IR, 3.6 TeV < MZ′′ < 4.8 TeV, whereas for

a Z ′′ which is mostly B − L, 4.5 TeV < MZ′′ < 6.1 TeV. This range will be probed at

LHC14. If thermal equilibrium via scattering is sufficient, for a Z ′′ which is mostly IR,

5.4 TeV < MZ′′ < 7.4 TeV, and for a Z ′′ which is mostly B − L, 6.3 TeV < MZ′′ <

8.2 TeV. To carry out this program, we needed to make use of some high statistics lattice

simulations of a QCD plasma in the hot phase, especially the behavior of the entropy during

the confinement-deconfinement changeover. Interestingly, the behavior of the trace anomaly

(shown in Fig. 15 of [126]), which is very sensitive to the nature of the crossover region,

shows a sharp peak at 200 MeV and our range for Tdec straddles this region.

Throughout this paper we remained agnostic with respect to SUSY breaking and the

details of the low energy effective potential. However, we do subject the choice of quantun

numbers for H ′′ to the stringent holonomic constraints of the superpotential at the string

scale. This forbids the simultaneous presence of scalar fields and their complex conjugate.

As an illustration, if the quantum numbers of H ′′ are those of N c
R, then higher dimensional

operators such as NRN
c
RH

′′2, which can potentially generate a Majorana mass, are absent.

Because of holonomy this absence cannot be circunvented by including NRN
c
RH

′′∗2.
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In summary, we have studied the U(1) phenomenology of D-brane models endowed with

a high mass string scale. We have incorporated some elements of SUSY, discussing evo-

lution of the gauge couplings to the string scale and enforcing the holonomic constraints

on the superpotential. We have shown that LHC8 data set upper limits on the mass of

the Z ′′ gauge boson: MZ′′ . 3 − 4 TeV. We have also shown that Z ′′ milli-weak inter-

actions, which are within reach of LHC14, could play an important role in observational

cosmology. It is important to stress that the Z ′′ production cross section and its branching

fractions are universal and have been evaluated in a parameter-free manner. Therefore, the

U(1) phenomenology presented in this paper is completely independent of the details of

the compactification scheme, such as the configuration of branes, the geometry of the extra

dimensions, and whether the low energy theory is supersymmetric or not.
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