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We consider 1 + 1 dimensional SU(N) gauge theory coupled to a multiplet of massive Dirac
fermions transforming in the adjoint representation of the gauge group. The only global symmetry
of this theory is a U(1) associated with the conserved Dirac fermion number, and we study the
theory at variable, non-zero densities. The high density limit is characterized by a deconfined Fermi
surface state with Fermi wavevector equal to that of free gauge-charged fermions. Its low energy
fluctuations are described by a coset conformal field theory with central charge c = (N2−1)/3 and an
emergent N = (2, 2) supersymmetry: the U(1) fermion number symmetry becomes an R-symmetry.
We determine the exact scaling dimensions of the operators associated with Friedel oscillations and
pairing correlations. For N > 2, we find that the symmetries allow relevant perturbations to this
state. We discuss aspects of the N → ∞ limit, and its possible dual description in AdS3 involving
string theory or higher-spin gauge theory. We also discuss the low density limit of the theory by
computing the low lying bound state spectrum of the large N gauge theory numerically at zero
density, using discretized light cone quantization.

I. INTRODUCTION

An important aim of many applications of the AdS/CFT correspondence to condensed matter physics is the
description of quantum matter at variable, non-zero densities. Here ‘density’ refers to the conserved charge, Q, of
a global U(1) symmetry of the underlying quantum field theory in d spatial dimensions. Our interest here will be
restricted to zero temperature states which do not break translational symmetry or the global U(1) symmetry. Thus,
we will not consider ‘solids,’ ‘charge density waves’ or ‘superfluids.’ In the traditional phases of condensed matter
physics, the only remaining possibilities for non-zero density states are the Landau Fermi liquid in dimension d ≥ 2,
and the Luttinger liquid in dimension d = 1. Both these states are characterized by a Fermi momentum, kF , whose
value obeys the Luttinger relation: the volume enclosed by the (d − 1)-dimensional surface in momentum space at
kF is proportional to the density, Q/Ld, with the same proportionality constant as that for free fermions (L is the
spatial size which we will take to infinity).

Any other realization of quantum matter whose density can be varied continuously by an applied chemical potential
can generically be referred to as a ‘strange metal.’ A very promising candidate of a strange metal is a model of fermions
at non-zero density coupled to an Abelian or non-Abelian gauge field. The non-Fermi liquid effects are strongest in
d = 2, and this model has been the focus of much study in the condensed matter literature [1–13]. The theory
scales to strong coupling, and a perturbative expansion in the gauge coupling constant cannot be used to analyze the
leading infrared behavior. The flavor large Nf expansion also leads to difficulty: an expansion in the inverse number
of fermion flavors cannot be reduced to counting fermion loops because of infrared divergences [9, 10].

Another possible approach is to take the gauge-charged fermions in the adjoint representation of the gauge group,
and to then take the ‘t Hooft large N limit for the SU(N) gauge group. In this case, infrared divergences do not spoil
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the naive counting in powers of N , and so even the non-zero density case has a 1/N expansion controlled by the genus
of the surface defined by a Feynman graph, as in all matrix models [14]. However, one is then left with the generally
intractable task of summing all graphs with a given genus. For certain supersymmetric gauge theories, such matrix
field theories can, in principle, be solved in the large N limit by the AdS/CFT correspondence [15–17]. Studies of
such finite density models by the AdS/CFT correspondence [18–35] have so far only provided a rather incomplete
picture of the non-zero density quantum state. The boundary theory has density, Q/Ld, which scales as N2, and
essentially all of this density is associated in the bulk with degrees of freedom which are beyond the infrared horizon,
with an unknown fate. Under appropriate parameter regimes, gauge-invariant probe fermions (‘mesinos’) can acquire
a Fermi surface; however such a Fermi surface is only associated with a density of order unity, and is incidental to the
physics of the non-Fermi liquid state [36–41]. These probe Fermi surfaces are analogous to conduction electron Fermi
surfaces in the ‘fractionalized Fermi liquid’ state of Kondo lattice [42, 43], and do not yield much information on the
underlying non-Fermi liquid state. In certain uncontrolled computations, all of the boundary density Q/Ld can be
associated with visible Fermi surfaces in the bulk [44–49], but then the resulting state is a Fermi liquid, although an
interesting non-Fermi liquid state seems to have been obtained in recent work [49].

In an attempt to shed light on the difficult question of the fate of the ‘hidden’ matter of density proportional to
N2, this paper will examine the problem of adjoint Dirac fermions, at non-zero density, coupled to a SU(N) gauge
field in 1 + 1 dimensions, i.e. for d = 1. We will show that a number of exact results can be obtained for general N ,
which we hope will help elucidate the structure of the large N limit of such matrix field theories.

We consider the theory with Lagrangian

L = Tr
[
Ψ̄
(
iγµDµ −m− µγ0

)
Ψ
]
− 1

2g2
YM

TrFµνF
µν (1.1)

with a SU(N) gauge field Aµ, gauge field strength Fµν , gauge coupling gYM , and adjoint 2-component complex Dirac
fermions Ψ with mass m. The chemical potential µ couples to a global U(1) charge which is distinct from all the
SU(N) gauge charges. Note that this U(1) is the only global symmetry of this Lagrangian. An analogous d = 1
model was examined earlier for adjoint Majorana fermions [50–54]: in that case there is no global U(1) that can be
coupled to a chemical potential; it was found that the ground state had an energy gap to all excitations, even at
m = 0. As we will see here, just introducing a global U(1) by making the fermions complex is sufficient to transform
the physics, and a gapless compressible state is obtained provided µ is large enough, or when µ = m = 0.

This theory is characterized by three energy scales, m, gYM
√
N , and µ. We will consider first the “high density”

limit µ � m, gYM
√
N , where we can begin the analysis with a Fermi sea of free gauge-charged fermions. Next, we

will consider the opposite “low density” limit, where m � gYM
√
N while µ is comparable with m. Here we have

to begin with an analysis of the spectrum of the SU(N) singlet excitations of the zero density vacuum: this will be
carried out via the discrete light-cone quantization (DLCQ) [55, 56].

We begin with a description of our results for the high density theory. The theory of free fermions has a Fermi
wavevector related to the variable U(1) density Q/L by

Q

L
= (N2 − 1)

kF
π

. (1.2)

The N2 − 1 prefactor is a characteristic signature identifying this Fermi surface as that of gauge-charged fermions;
this Fermi surface is ‘hidden’ [39] because the single fermion Green’s function is not gauge-invariant. The Luttinger
relation implies that this value of kF will not be renormalized [57]. We can analyze the infrared singular effects of
the gauge interactions by writing down a continuum theory obtained by linearizing the fermions about the Fermi
wavevector. Then, following a procedure standard in the condensed matter physics literature, we can express the
Dirac fermion in terms of its right-moving and left-moving components at the Fermi surface

Ψ(x, t) ∼ 1√
2EF

(
u(−kF )ψR(x, t)eikF x + u(kF )ψL(x, t)e−ikF x

)
; (1.3)

where u(±kF ) are the standard Dirac basis spinors at the Fermi wavevectors; see (2.2) and Appendix C for a more
detailed explanation, and see figure 1 for an illustration of this field redefinition. We will assume that ψL,R, and the

gauge-fields, are slowly varying on the spatial scale k−1
F , and so all spatial integrals of fields multiplied by non-zero

integral powers of e±ikF x vanish. (In condensed matter models, such theories are obtained in the continuum limit
of a lattice Hamiltonian, and in this context we are assuming that density is incommensurate, and so there is no
‘umklapp’ scattering.) An immediate consequence is that the resulting low energy theory has an emergent global
U(1) conservation law: the total number of left-moving and right-moving fermions are separately conserved. We will
denote these two U(1) charges as QL and QR respectively, with Q = QL + QR. This U(1) × U(1) global symmetry
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FIG. 1: Energy dispersion of the Dirac fermions as a function of momentum. The full line is the zero of energy. The shaded
region represents the occupied states. The filled circles are at ±kF .

will be crucial to our analysis. All operators appearing in the effective low-energy Lagrangian must have both QL = 0
and QR = 0.

As we will describe in section II, the high-density, low energy theory so obtained is a two dimensional conformal
field theory (CFT), associated with the coset

SU(N)N ⊗ SU(N)N
SU(N)2N

(1.4)

of central charge

c =
N2 − 1

3
. (1.5)

The two dimensions of the CFT are the euclidean continuation of the original 1+1 dimensions. With the requirement
that the coset CFT have a global U(1) × U(1) symmetry, it actually has the N = (2, 2) supersymmetry [59]. For
N = 2, 3 the central charges are c = 1, 8/3, and then the theories coincide with the N = 2 superconformal minimal
models [58] with c = 3k/(k + 2) for k = 1, 16 (in the k = 16 case we actually find a certain consistent truncation of
the minimal model); the N ≥ 4 theories were only briefly considered earlier [59]. For all N , the R-charge symmetry of
these N = (2, 2) superconformal field theories (SCFTs) is U(1)×U(1), and this provides the needed global symmetry;
the SCFT has no other global flavor symmetries. Note that this supersymmetry is an emergent symmetry at low
energies and high densities; it is not a symmetry of the underlying Lagrangian. It is also remarkable that the diagonal
R-charge is conjugate to the chemical potential, µ, as has been assumed by fiat in many earlier higher dimensional
studies of non-zero density quantum matter.

These two dimensional SCFTs are our ‘strange metals.’ They are T = 0 phases with variable density in models
with only a global U(1) symmetry, but with a central charge which can become much greater than unity. The density
fluctuations associated with the U(1) symmetry cannot be represented by a gapless scalar field which is decoupled
from all other sectors, as is the case for Luttinger liquids [60] (exceptions for the N = 2, c = 1 case will be discussed
in detail below). We note that the ‘Bose metal’ phases found in multi-leg ladder models in Refs. [61] also have c > 1
and only a global U(1) symmetry, although they are not expected to be described by our SCFTs.

Armed with this construction of the SCFTs, we will compute exact scaling dimensions of gauge-invariant operators.
An important observable which is sensitive to the presence of the underlying Fermi surface of the deconfined fermions is
the Friedel oscillation in response to a localized perturbation coupling to the density. Upon perturbing the Lagrangian
(1.1) via Limp = L+ λ δ(x)ρ(x, t), where the density operator

ρ ≡ Tr(Ψ̄γ0Ψ) = Tr

(
ψ†LψL + ψ†RψR +

m

µ
e−2ikF xψ†LψR +

m

µ
e2ikF xψ†RψL

)
, (1.6)

the Friedel oscillation response is

〈ρ(x)〉imp ∝ λ
cos(2kF |x|+ δ)

|x|2∆F
+ . . . , (1.7)
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where δ is a possible phase offset, ∆F is the scaling dimension of the operator Tr(ψ†LψR), which we will call the Friedel
operator in the CFT. Equivalently, we can relate the Friedel oscillation to an oscillatory term in the density-density
correlator in the original system without an impurity:

〈ρ(x)ρ(x′)〉 ∝ cos(2kF |x− x′|+ δ)

|x− x′|2∆F
+ . . . . (1.8)

Our exact result for ∆F , obtained by finding the smallest scaling dimension of operators with QL = 1 and QR = −1,
is

∆F = 1/3 for all N ≥ 2. (1.9)

Observation of the oscillatory terms in (1.7) and (1.8) constitutes a measurement of the kF in (1.2), and is a direct
signature of the gauge-charged Fermi surfaces in these strange metals. Unfortunately, we do not determine the N
dependence of the missing proportionality constants in (1.7) and (1.8); the vanishing of this proportionality constant
in the N → ∞ limit is the presumed reason for the absence of such Friedel oscillations in existing studies via the
AdS/CFT correspondence [62].

A second important observable is the fermion pair operator Tr(ψLψR). Condensation of this operator leads to a
superfluid ground state. The spatial decay of its two-point correlations is determined by its scaling dimension ∆P .
Our result for ∆P was obtained by finding the smallest scaling dimension of operators with QL = QR = −1:

∆P = 1/3 for all N ≥ 3. (1.10)

For N = 2 there is no fermion pair operator Tr(ψLψR) in the CFT, and so in the original gauge theory we expect
the two-point functions of Q = 2 and Q = −2 operators to decay exponentially fast. Instead, the lowest CFT
operator with QL = QR appears for N = 2 at QL = QR = −3 and has scaling dimension 3 (see section II A). In
Appendix A we review the Luttinger liquid of fermions with short-range interactions (e.g. the Thirring model at
non-zero density), and find that it obeys ∆F = 1/∆P ; this identity is clearly not obeyed by the present adjoint matter
theory. Appendix A also computes the values of ∆F,P in models of fundamental Dirac fermions coupled to a SU(N)
gauge field.

Finally, to assess the stability of the theory in (1.4) as a description of the low energy limit of (1.1), we have to
determine the scaling dimensions of all perturbations allowed by symmetry: these are all operators with QL = QR = 0.
Here we again find a distinction between N = 2 and N ≥ 3. For N ≥ 3 the smallest scaling dimension of such an
operator is

dim
[
Tr(ψ†LψLψ

†
RψR)

]
=

2(N − 2)

3N
, (1.11)

which is smaller than 2, and so always relevant. So the N ≥ 3 SCFT2 is unstable to such a perturbation. We are not
able to assess the N dependence of the coefficient of such a perturbation, or the ultimate fate of the ground state. A
natural conjecture is that this is an instability to a paired superfluid. In contrast, for N = 2 there are no relevant
perturbations, and only a marginal perturbation.

The low density limit will be considered in section III. Here we determine the spectrum of SU(N) singlet excitations
above the zero density vacuum with the aim of using this as input to describe the finite µ state as a dilute gas of such
states. We determine the mass M of the lightest state for a series of values of Q; we will obtain a dilute gas of such
states for µ > M/Q. So we need to determine the value of Q for which M/Q is a minimum. Our numerical analysis,
carried out in the limit N =∞, suggests that M/Q may accumulate to a dense set of decreasing values as Q becomes
larger (see figure 3). This suggests that M/Q becomes degenerate at some value in the limit of large Q (however, more
extensive numerical work is needed to decide if the degeneracy is actually present). This degeneracy would indicate
that even in the low density limit it is not appropriate to use a description of a dilute gas of gauge-neutral particles,
and suggests the possibility that the gauge-charged-Fermi-sea description of the high density limit applies even at low
densities.

II. HIGH DENSITY

In this section we will analyze the regime µ � m, gYM
√
N . We will derive the SCFT2 in (1.4), and then analyze

its properties in the subsequent subsections.
We begin by writing the Hamiltonian for the free Dirac fermion in (1.1) in terms of particle, p, and hole, h, creation

and annihilation operators introduced via (C6):

H0 =

∫
dk

2π
Tr
[
(
√
k2 +m2 − µ)p†(k)p(k)− (

√
k2 +m2 + µ)h†(k)h(k)

]
(2.1)



5

where k is spatial momentum. This defines kF by µ =
√
k2
F +m2. Now we introduce the left and right movers by

ψR(k) = p(kF + k) , ψL(k) = p(−kF + k), (2.2)

and then linearize about kF by approximating

H0 =

∫
dk

2π
v kTr

[
ψ†R(k)ψR(k)− ψ†L(k)ψL(k)

]
(2.3)

where the velocity v = kF /
√
k2
F +m2. We will henceforth set v = 1. Carrying out the same mapping to low energy

degrees of freedom in the presence of the gauge field, we obtain the effective Lagrangian

Leff = Tr
[
ψ†R(∂τ − ∂x)ψR + ψ†L(∂τ + ∂x)ψL + (Aτ −Ax)[ψ†L, ψL] + (Aτ +Ax)[ψ†R, ψR]

]
− 1

2g2
YM

TrF 2 . (2.4)

Note that this theory is of the same form as (1.1), but after setting µ = m = 0. The CFT structure of this theory
becomes clearer upon writing the complex Dirac fields in terms of a pair of Majorana fields ψaL,R, and a = 1, 2:

ψL,R =
1√
2

(
ψ1
L,R + iψ2

L,R

)
(2.5)

and then the Lagrangian becomes

Leff =
1

2
Tr [ψaR(∂τ − ∂x)ψaR + ψaL(∂τ + ∂x)ψaL + (Aτ −Ax)ψaLψ

a
L + (Aτ +Ax)ψaRψ

a
R]

− 1

2g2
YM

TrF 2 . (2.6)

As is well-known, each adjoint Majorana fermion is equivalent to a SU(N) WZW model at level N [63–67], each with
central charge (N2 − 1)/2. We assume the gauge theory is in the strong coupling limit (gYM → ∞), and then the
integral over the gauge field reduces to a constraint: the vanishing of the currents JL = ψaLψ

a
L and JR = ψaRψ

a
R. It is

easily verified that these currents obey a SU(N) Kac-Moody algebra at level 2N [68], and central charge 2(N2−1)/3.
The standard coset construction [64] then leads to the CFT in (1.4).

The fact that the low energy CFT2 of the gauged adjoint Dirac fermion system has N = (2, 2) supersymmetry
was demonstrated explicitly in (12) of [59]. This fact can also be seen to follow easily from an extension of earlier
arguments. It is useful to write the CFT in (1.4) in the compact notation (N,N ; 2N) as a special case of the general
diagonal coset model (k, `; k+ `) of SU(N), which is SU(N)k ⊗ SU(N)`/SU(N)k+`. Section 3 of [64] considered the
coset model (N, `;N + `) and established that it had N = (1, 1) supersymmetry. We can obtain the second pair of
supercharges by applying the same argument to the coset (k,N ; k+N), and so conclude that the coset (N,N ; 2N) has
N = (2, 2) supersymmetry. This argument also shows that the R-charge symmetry rotates between the two SU(N)N
components i.e. between the two a components of the Majorana fermions. From (2.5) we then see that the R-charge
symmetry is the global U(1) which is conjugate to the chemical potential.

In the following subsections we will describe the structure of these theories, including their modular-invariant
partition functions and operator scaling dimensions.

A. N = 2

Let us first discuss the simplest non-trivial CFT, corresponding to the SU(2) gauge theory coupled to an adjoint
Dirac fermion. This c = 1 CFT may be described by the coset

SU(2)2 ⊗ SU(2)2

SU(2)4
. (2.7)

The primary fields of this coset theory are therefore labeled by three SU(2) spins j1, j2, j where j = |j1−j2|, . . . , j1+j2.
Their conformal weights are

h(j1, j2; j) =
j1(j1 + 1)

4
+
j2(j2 + 1)

4
− j(j + 1)

6
+ n . (2.8)
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The N = 2 superconformal symmetry fixes which values of (j1, j2, j) appear in the spectrum. Here n is a non-negative
integer determined in terms of (j1, j2, j). It will be zero for the cases of interest below.

An important quantity characterizing a CFT2 is its modular invariant partition function on a torus:

Z(τ, τ̄) =
∑
j

e2πiτ(hj−c/24)e−2πiτ̄(h̃j−c/24) , (2.9)

where the sum runs over the entire spectrum, and (hj , h̃j) are the holomorphic and anti-holomorphic conformal
weights of the state j. Once the modular invariant is known, it is not hard to read off the spectrum of the theory.
While there is a variety of possible modular invariants at c = 1, the N = 2 superconformal invariance turns out to fix
Z(τ, τ̄) completely, up to an additive constant.

The c = 1 CFT turns out to be the simplest member of the series of N = 2 superconformal minimal models [58, 59]
with central charges c = 3k/(k + 2): it is its k = 1 member. The dimensions of the N = 2 superconformal primary
fields, and their U(1) charges are in general given by [58, 59]

h(p, s, r) =
p2 − 1− (s− r)2

4(k + 2)
+
|r|
8
, q =

s− r
2(k + 2)

+
r

4
, (2.10)

where 1 ≤ p ≤ k+1, |s| ≤ p−1, and p−s must be odd. In the NS sector r = 0, while in the R sector r = ±1. The NS
sector operators with p = s+ 1 have h = q; these are the special operators that form the chiral ring [69]. We should
note that each primary field of the extended N = 2 algebra gives rise to various Virasoro primary fields obtained by
acting with the supercharges and U(1)R current oscillators.

The k = 1 theory has the following NS-sector N = 2 primaries: the identity operator, and the operators with h = 1
6

and U(1)R charge q = ± 1
6 . In the R sector the primary fields are (h = 1

24 , q = ± 1
12 ) and (h = 3

8 , q = ± 1
4 ). The former

are the R ground states with h = c/24.
Now, let us recall the c = 1 CFT of a compact massless scalar field φ of radius r, i.e. φ is identified with φ+ 2πr.

The torus partition function of such a theory has the simple explicit form

Zscalar(τ, τ̄) = |η(τ)|−2
∞∑

n=−∞

∞∑
w=−∞

eπiτk
2
Le−πiτ̄k

2
R . (2.11)

The spectrum of left and right momenta is

kL =
n

r
− wr/2 , kR =

n

r
+ wr/2 , (2.12)

where n and w are the integer momentum and winding numbers, respectively. The left and right dimensions of the
Virasoro primary fields,

exp(ikLφL + ikRφR) , (2.13)

are h = k2
L/2, h̃ = k2

R/2. In addition, for a generic radius r, this CFT has certain primary fields with kL = kR = 0

which occur for h = h̃ = n2 where n is an integer. The simplest of such discrete primary fields is the exactly marginal
operator ∂φ∂̄φ which changes the radius r.

It is well-known that the compact scalar theory at radius r = 2
√

3 (in units where the self-dual radius is
√

2) has
N = 2 supersymmetry. This theory is the bosonization of the above N = 2 minimal model which provides the correct
modular invariant. Let us consider some of the simplest operators in the bosonized theory and translate them into the
original adjoint fermion language. The marginal operator that changes the radius, ∂φ∂̄φ, corresponds to JL(z)JR(z̄),
where

JL ∝ Tr(ψ†LψL) , JR ∝ Tr(ψ†RψR) (2.14)

are the U(1)× U(1) currents. We identify the U(1)× U(1) charges in the k = 1 N = 2 minimal model as qL = kL
2
√

3

and qR = − kR
2
√

3
. It follows that the relation between n and w in the compact boson model and the integer charges

QL and QR of the fermions in the gauge theory is

n = QL −QR , w = −(QL +QR)/6 , (2.15)

where QL = 6qL and QR = 6qR.
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For n = ±1, w = 0 we get h = h̃ = 1
24 . This corresponds to h( 1

2 ,
1
2 ; 1) in (2.8). These two spin zero operators are

products of the R-sector N = 2 superconformal primaries with h = 1
24 .

For n = ±2, w = 0 we get hn=±2 = h̃n=±2 = 1
6 corresponding to h(1, 0; 1) or h(0, 1; 1). These two spin zero

operators are products of the NS-sector N = 2 superconformal primaries with dimension 1
6 . In the gauge theory these

operators are Tr(ψ†LψR) with charges QL = 1, QR = −1, and Tr(ψLψ
†
R) with charges QL = −1, QR = 1. Their sum is

simply the fermion mass term. The total dimension of these operators is ∆F = h+ h̃ = 1
3 ; this is the scaling exponent

for decay of the Friedel oscillations.
For (n,w) = ±(3, 0) we find h = h̃ = 3

8 . The holomorphic part of this operator is the (h = 3
8 , q = ± 1

4 ) N = 2

superconformal primary from the R sector (in the coset theory, it is h( 1
2 ,

1
2 ; 0) = 3

8 ).

We could also consider n = ±4, w = 0 operators with hn=±4 = h̃±4 = 2
3 . These operators are not superconformal

primary fields, but they are Virasoro primary. We note that h±4 = h±2 + 1
2 . This suggests that the n = ±4 operators

are obtained from n = ±2 by acting with a holomorphic and an anti-holomorphic supercharge.
For n = 0, w = ±1 we get h = h̃ = 3

2 . According to (2.15), these are the operators with QL = QR = ±3 responsible

for superconducting correlations. Since ei
√

3φL is the supercurrent, we identify the n = 0, w = ±1 operators with
double-trace operators which are products of two super-currents, each having dimension 3/2. Their net dimension is

3. We do not find, therefore, separate fermion pair operators Tr(ψLψR) and Tr(ψ†Lψ
†
R). This is a special feature of

the N = 2 case; we will see that such distinct operators appear for N ≥ 3.

B. N = 3

In appendix B we outline a general approach to obtaining the modular invariant partition sum for the (N,N ; 2N)
cosets and, thereby, the operator content of the theory. We first show how for N = 2 this approach reproduces the
result given in (2.11) and then proceed to the case N = 3.

The proper starting point for the N = 2 gauged fermion model is the SO(6)1 invariant partition sum, broken down
to SO(3)1 × SO(3)1,

ZSO(6)1 = |χSO(6)1
1 |2 + |χSO(6)1

v |2 + 2|χSO(6)1
sp |2

= |χSO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v |2 + 4|χSO(3)1

1 χSO(3)1
v |2 + 2|χSO(3)1

sp χSO(3)1
sp |2 . (2.16)

We consider the branching rules of the relevant combinations of SO(3)1 characters. The N = (2, 2) superconformal
symmetry of the coset CFT2 guarantees that chiral branching functions will organize into characters of N = 2 SCFT,
defined as

chR,NS
h = Tr[e2πiτ(L0−c/24)] (2.17)

(the complete characters of the N = 2 superconformal symmetry would keep track the U(1) charges as well - for
simplicity we suppress those in our notations). Considering the explicit leading terms in the various characters, we
established the following relations

χ
SO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v + 2χ

SO(3)1
1 χSO(3)1

v

= chNS
0 (χ

SU(2)4
(0) + χ

SU(2)4
(4) ) + 2 chNS

1/6 χ
SU(2)4
(2)

χ
SO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v − 2χ

SO(3)1
1 χSO(3)1

v

= c̃h
NS

0 (χ
SU(2)4
(0) + χ

SU(2)4
(4) ) + 2 c̃h

NS

1/6 χ
SU(2)4
(2)

χSO(3)1
sp χSO(3)1

sp

= chR
1/24 (χ

SU(2)4
(0) + χ

SU(2)4
(4) ) + chR

3/8 χ
SU(2)4
(2) . (2.18)

Note that the characters c̃h
NS

are obtained by inserting a (−1)F , with F the fermion parity operator. In the R-sector

the characters c̃h
R

are constants known as the Witten index of the sector.
For SU(2)4 there exists an exceptional invariant (labeled as D4 in the literature [70]), which groups the characters

according to the automorphism (B7)

ZSU(2)4 = |χSU(2)4
(0) + χ

SU(2)4
(4) |2 + 2|χSU(4)4

(2) |2 . (2.19)
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This invariant sets a modular invariant metric on the SU(2)4 characters. Using the metric we can project out the
level-4 characters in the various product terms in the SO(6)1 partition sum. The final result is the following modular
invariant coset partition sum

Zcoset(2,2;4) =
1

2
[|chNS

0 |2 + 2|chNS
1/6|2 + (chNS → c̃h

NS
)]

+
1

2
[|chR

3/8|2 + 2|chR
1/24|2] . (2.20)

Comparing with the expression (2.11), evaluated at the N = 2 radius r = 2
√

3, one checks that the two expressions
agree up to a constant which we can write as the sum of the R-sector Witten indices and which is by itself modular
invariant

Zcoset(2,2;4) = Zscalar −
1

2

[
2|c̃h

R

1/24|2
]

= Zscalar − 1 . (2.21)

We are now ready to take on the case N = 3. The central charge c = 8/3 corresponds to the k = 16 entry in the
minimal series of unitary N = (2, 2) SCFT2. One thus expects that the partition sum can be expressed as a finite

sum of terms of the form chN=2
h,q ch

N=2

h′,q′ . Modular invariant partition sums of this type have been completely classified
[71] - our challenge is thus to identify the correct entry from the (rather extensive) list.

The N = 3 strange metal starts from 16 fermions with partition sum

ZSO(16)1 = |χSO(16)1
1 |2 + |χSO(16)1

v |2 + 2|χSO(16)1
sp |2

= |χSO(8)1
1 χ

SO(8)1
1 + χSO(8)1

v χSO(8)1
v |2 + 4|χSO(8)1

1 χSO(8)1
v |2 + 8|χSO(8)1

sp χSO(8)1
sp |2 . (2.22)

A curiosity specific to N = 3 is that the vector representation of SO(8) is isomorphic to the spinors - in the coset
theory this leads to degeneracies between NS and R sector dimensions.

As before we now study the branching into characters of SU(3)6 times branching functions which we expect to be
characters of a W -algebra extension of N = (2, 2) superconformal symmetry.1 Working through explicit details, one
observes that in the r.h.s. of the branching rules, the SU(3)6 characters consistently show up in the combinations

χ
SU(3)6
(00) + χ

SU(3)6
(60) + χ

SU(3)6
(06) , χ

SU(3)6
(11) + χ

SU(3)6
(41) + χ

SU(3)6
(14) ,

χ
SU(3)6
(33) + χ

SU(3)6
(30) + χ

SU(3)6
(03) , χ

SU(3)6
(22) . (2.23)

A modular invariant projector for these terms is provided by the D6 invariant of SU(3)6 [75]

ZSU(3)6 = |χ(00) + χ(60) + χ(06)|2 + |χ(11) + χ(41) + χ(14)|2 + |χ(33) + χ(30) + χ(03)|2 + 3|χ(22)|2 . (2.24)

Completing this analysis, we have identified (up to a constant) the partition sum for the (3, 3; 6) strange metal with
the exceptional invariant of N = (2, 2) superconformal symmetry at c = 8/3 which in the classification [71] is labeled

as M̃4,2 with parameters v = 3, z = 1, x = 1. This invariant involves a subset of all NS and R characters at k = 16;
furthermore, those that survive are grouped into groups of 6 (4 groups in each sector) and per sector one group of 3.
So in total, 54 fields survive. In the NS sector the extended characters are (N = 2 characters labeled as chl=p−1,s

with r = 0 for NS and r = −1 for R)

chNS,ext
0 = chNS

0,0 + chNS
16,0 + chNS

16,6 + chNS
16,−6 + chNS

16,12 + chNS16,−12

chNS,ext
1/9 = chNS

2,0 + chNS
14,0 + chNS

14,6 + chNS
14,−6 + chNS

14,12 + chNS
14,−12

chNS,ext
1/3 = chNS

4,0 + chNS
12,0 + chNS

12,6 + chNS
12,−6 + chNS

12,12 + chNS
12,−12

chNS,ext
1/6 = chNS

6,0 + chNS
10,0 + chNS

6,6 + chNS
6,−6 + chNS

10,6 + chNS
10,−6

chNS,ext
11/18 = chNS

8,0 + chNS
8,6 + chNS

8,−6 (2.25)

1 See [72] for a general review of W -symmetry and [73, 74] for W -extensions of N = 1 superconformal symmetry in general cosets involving
a SU(N)N factor.
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and in the R sector

chR,ext
1 = chR

16,−16 + chR
16,14 + chR

16,−10 + chR
16,8 + chR

16,−4 + chR
16,2

chR,ext
1/9 = chR

14,14 + chR
14,−10 + chR

14,8 + chR
14,−4 + chR

14,2 + chR
2,2

chR,ext
1/3 = chR

12,−10 + chR
12,8 + chR

12,−4 + chR
12,2 + chR

4,−4 + chR
4,2

chR,ext
2/3 = chR

10,−10 + chR
10,8 + chR

10,−4 + chR
10,2 + chR

6,−4 + chR
6,2

chR,ext
1/9′ = chR

8,−4 + chR
8,2 + chR

8,8 . (2.26)

The extended vacuum character has the following content (returning to the notation chh,q for the N = 2 characters)

chNS,ext
0 = (2.27)

chNS
h=0,q=0 + chNS

h=2,q=1/3 + chNSh=2,q=−1/3 + chNS
h=7/2,q=1/6 + chNS

h=7/2,q=−1/6 + chNS
h=4,q=0 .

These fields span a W -algebra extension of N = 2 superconformal symmetry, with extra currents of dimension 2, 2,
7/2, 7/2, 4. The W -currents at h = 2 are given by

WL = Tr(ψ†Lψ
3
L) , W †L = Tr(ψLψ

†3
L ) . (2.28)

These currents exist for all N ≥ 3. For N = 2 the triple products ψ3
L and ψ†3L are SU(2) singlets and the trace

vanishes. For N ≥ 3 explicit expressions for WL and W †L in terms of component fields (ψL)A and (ψ†L)A, with
A = 1, 2, . . . N2 − 1 an adjoint index, involve the 3-index d-symbols dABC .

The M̃4,2 invariant reads

ZM̃
4,2

=
1

2

 ∑
h=0,1/9,1/6,1/3

|chNS,ext
h |2 + 2|chNS,ext

11/18 |
2 + (chNS → c̃h

NS
)

+
∑

h=1/9,1/3,2/3,1

|chR,ext
h |2 + 2|chR,ext

1/9′ |
2

 . (2.29)

and the claim is

Zcoset(3,3;6) = ZM̃
4,2

− 1/3 . (2.30)

The U(1)R charges of the fields surviving in the partition sum are easily extracted from the field labels in the partition
sum. In both the NS and the R sectors, the U(1)R charges are multiples of ±1/6.

Comparing with N = 2, we observe, at N = 3, the presence of fermion pair operators Tr(ψLψR) and Tr(ψ†Lψ
†
R)

which were absent from the operator spectrum for N = 2. From (2.25) we read off that these operators are in the same

extended symmetry multiplet as the mass (Friedel) operators Tr(ψ†LψR) and Tr(ψLψ
†
R). Both these sets of operators

have scaling dimension 1/3 - the degeneracy is due to the fact that the zero mode of the charged spin two currents in
(2.28) relates the two sets of operators.

We also observe the presence of a number of charge neutral relevant operators. The most relevant operator is the
(l = 2, s = 0) field in the NS sector, with scaling dimension ∆ = 2/9, as in (1.11).

C. General N

We have also obtained several explicit results for N = 4 and higher, confirming the general structure outlined above
and in appendix B. We defer the details of the description of the general N case to a forthcoming publication. Here
we briefly indicate some of the findings, paying special attention to the extrapolation to large N .
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current (qL, qR) (h, h̃)

JL ∝ Tr(ψLψ
†
L) (0, 0) (1, 0) N ≥ 2

GL ∝ Tr(ψ3
L) (− 1

2
, 0) ( 3

2
, 0) N ≥ 2

G†L ∝ Tr(ψ†3L ) ( 1
2
, 0) ( 3

2
, 0) N ≥ 2

TL ∝ Tr(ψL∂ψ
†
L + ψ†L∂ψL) (0, 0) (2, 0) N ≥ 2

WL ∝ Tr(ψ†Lψ
3
L) (− 1

3
, 0) (2, 0) N ≥ 3

W †L ∝ Tr(ψLψ
†3
L ) ( 1

3
, 0) (2, 0) N ≥ 3

. . .

TABLE I: This table lists some of the (left) chiral fields (currents) in the (N,N ; 2N) coset model. The currents JL, GL, G
†
L, TL

constitute an N = 2 superconformal algebra. The dimension-2 currents WL, W †L are the first of an extensive set of extra
primary symmetry generators that exist for N ≥ 3.

operator type (qL, qR) (h, h̃) channel

Tr(ψ†LψR) ( 1
6
,− 1

6
) ( 1

6
, 1
6
) (10 . . . 01) N ≥ 2

Tr(ψLψ
†
R) (− 1

6
, 1
6
) ( 1

6
, 1
6
) (10 . . . 01) N ≥ 2

Tr(ψLψR) (− 1
6
,− 1

6
) ( 1

6
, 1
6
) (10 . . . 01) N ≥ 3

Tr(ψ†Lψ
†
R) ( 1

6
, 1
6
) ( 1

6
, 1
6
) (10 . . . 01) N ≥ 3

Tr(ψLψLψRψR) (− 1
3
,− 1

3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψLψLψ
†
RψR) (− 1

3
, 0) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψLψLψ
†
Rψ
†
R) (− 1

3
, 1
3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψRψR) (0,− 1
3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψ
†
Rψ
†
R) (0, 1

3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
LψRψR) ( 1

3
,− 1

3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
Lψ
†
RψR) ( 1

3
, 0) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
Lψ
†
Rψ
†
R) ( 1

3
, 1
3
) ( 1

3
, 1
3
) (20 . . . 10) N ≥ 3

same 9 terms ( 1
3
, 1
3
) (010 . . . 02) N ≥ 3

same 9 terms ( 2
3
, 2
3
) (10 . . . 01) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) (N−2

3N
, N−2

3N
) (20 . . . 02) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) (N+2

3N
, N+2

3N
) (010 . . . 010) N ≥ 4

Tr(ψ†Lψ
2
LψRψ

† 2
R ) (− 1

6
, 1
6
) (N−2

2N
, N−2

2N
) (30 . . . 011) N ≥ 4

. . .

Tr(ψ†LψLψ
†
RψR)2 (0, 0) ( 2(N−2)

3N
, 2(N−2)

3N
) (210 . . . 012) N ≥ 4

Tr(ψ†LψLψ
†
RψR)2 (0, 0) ( 2(N−3)

3N
, 2(N−3)

3N
) (40 . . . 020) N ≥ 4

. . .

Tr(ψ†LψLψ
†
RψR)n (0, 0) (nN−1−n

3N
, nN−1−n

3N
) (2n0 . . . 02n) N ≥ n+ 2

. . .

TABLE II: Operators in the (N,N ; 2N) coset model. The operators listed (all in the NS sector) are primaries with respect to
the N = (2, 2) superconformal algebra. The channel indicated is the SU(N) representation of the gauged diagonal SU(N)2N
subalgebra. We give the complete list of 2- and 4-fermion primaries and in addition list some of the higher operators.
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• In tables I and II we list the general form of the leading currents and primary field operators in the (N,N ; 2N)
coset. These operators are all in the NS sector. We see that their scaling dimensions are either N -independent
or are such that h (h̃) converge in the large N limit to nL(R)/6 if the operator involves nL(R) left (right) moving
fermions. In particular, we see that both fermion pair operators and the Friedel operators are present in the
spectrum and have a scaling dimension ∆F = ∆P = 1/3 independent of N . Their degeneracy is due to the
presence of the charged spin two currents (2.28) which are part of the extended W -symmetry for any N ≥ 3.

• One can also quickly verify that the scaling dimensions in the R sector satisfy

hR ≥ c

24
=
N2 − 1

72
(2.31)

so that for large N all R-sector operators are irrelevant.

• The algebraic structure of the general-N coset appears to be highly involved. The cosets of the form

SU(N)k ⊗ SU(N)1

SU(N)k+1
(2.32)

are known to have an extended WN symmetry with one chiral current for each spin s = 2, . . . N [72, 76]. For a
general diagonal coset (which includes our coset as a special case)

SU(N)k ⊗ SU(N)`
SU(N)k+`

(2.33)

we can construct higher spin-s currents from polynomial (of degree s) combinations of the individual numerator
SU(N) currents which commute with the diagonal SU(N). See (7.42) and (7.43) of [72] for an explicit expression
for the spin-3 current. These general cosets are expected to have many additional currents as well. In the case
of N = 3 we found two charged spin two fields, see (2.28), in addition to the stress tensor. Since these are
primaries of the N = 2 supersymmetry, this then implies the existence of charged spin 5

2 and spin-3 currents as

well. Similarly, we see from (2.27) that there are charged spin 7
2 currents and their N = 2 descendants.

For general N we expect to be able to build many chiral operators from ψL, ψ†L and holomorphic derivatives.
In the large N limit we do not expect any trace relations for such operators of spin s� N . Then by the usual
counting arguments for words built from matrix valued fields one expects to roughly see a Hagedorn growth in
the number of these currents (as a function of the dimension, which is the same as the spin). Thus we might
expect an algebra much larger than the conventional WN symmetry algebra. It would be interesting to work
out the consequences of this larger symmetry algebra.

There are a number of issues that would be important to explore further for this class of coset models.
A key algebraic structure of N = 2 SCFT2 is the chiral ring: the collection of NS sector primaries with q = ±h,

which form a closed algebra under fusion [69]. In the N = 3 case, we read off from the NS sector primaries in (2.25)
that the only chiral primaries are those with p − 1 = s = 6, 12 in (2.10). The chiral ring in this minimal model
case is generated by one generator x obeying the relation xk+2 = x18 = 0. The chiral primaries present in the coset
correspond to the elements x6 and x12 which form a consistent subring of the original chiral ring. The large N
structure of the chiral ring can, we believe, be exploited to study the large N physical characteristics of the gauged
fermion model.

Finally, it would be very interesting to uncover the AdS dual to this interesting class of CFTs (in the large N
limit). The simpler coset models in (2.32) have been identified [77, 78] with a class of higher spin Vasiliev theories
on AdS3 [79]. These have a single bulk gauge field of every spin s ≥ 2. Roughly speaking there is a single Regge
trajectory in the bulk and no Hagedorn growth of states. This is related to the fact, mentioned above, that there
is a single conserved current in these coset CFTs for a given spin. The W -symmetry in the coset considered here is
very different having many more fields. In general, we expect there to be a Hagedorn density of states in this theory

corresponding to single trace words built from ψL, ψ
†
L, ψR, ψ

†
R together with derivatives (modulo the projection by

the diagonal SU(N) currents). Thus the bulk dual is presumably a string theory on AdS3. This fits with the fact
that these cosets have a central charge proportional to N2 as opposed to the cosets in (2.32) which have c ∝ N and
behave like vector models with fewer gauge invariant states [80][77].

Though the coset theory is a strongly interacting CFT as evidenced by the anomalous dimensions of different
operators, it is interesting that the dimensions of the operators in the table II are like those of a free theory in the
large N limit. They are integer multiples of 1

3 . In that sense the spectrum is similar to that of free Yang-Mills theory
or that of the D1-D5 CFT [81, 82] at a symmetric orbifold point. Note that these are the points where we expect
a dual tensionless string theory with an unbroken higher spin symmetry. This is consistent with the fact that these
cosets have a large chiral W -algebra as discussed above.
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III. LOW DENSITY

In this section, we will study the behavior of the SU(N) gauge theory coupled to two adjoint multiplets of Majorana
fermions for small U(1) chemical potential µ. We will work in the regime where m, the mass of the adjoint, is much

smaller than the scale set by the ’t Hooft coupling gYM
√
N . We are interested in the low energy dynamics of the

system as µ is increased from zero to values comparable to the scale set by m. Some features of this low energy theory
can be inferred from the spectrum of gauge invariant hadronic states at µ = 0. Let us describe how this works for
our model.

Generally, it is extremely difficult to compute the spectrum of hadronic bound states in gauge field theories such as
QCD. In 1 + 1 dimensions, however, the light cone quantization can make this problem tractable. Compactification
of the light-like coordinate on a circle: x− ∼ x− + L, a formal regularization procedure known as the discrete light
cone quantization (DLCQ) [55, 56], typically reduces the problem to matrix diagonalization. The problem is further
simplified in the planar (large N) limit where the SU(N) singlet states are non-interacting. The physical bound
state spectrum can be inferred by taking the decompactification limit for the light-cone coordinate x−. This can be
computationally expensive for certain models, but is nonetheless a well controlled approximation scheme. Often, this
continuum limit is presented by taking the limit K →∞, where the integer ‘harmonic resolution parameter’ K enters
the definition light cone momentum:

P+ =
πK

L
(3.1)

After diagonalization of the light cone hamiltonian, P−, the spectrum of bound state masses M is read off from

M2 = 2P+P− . (3.2)

In this paper we will be primarily concerned with the spectrum of bound state masses in the regime where m2 is
kept fixed while the ‘t Hooft coupling g2

YMN is sent to infinity. We find a rich spectrum of bound states whose masses
divided by m approach constants in this limit. These bound states originate from the large N coset CFT discussed in

section II, perturbed by the operator m(Tr(ψLψ
†
R) + h.c.) of dimension 1/3. This mass operator breaks the QL−QR

symmetry of the CFT, but the overall U(1) charge symmetry, Q = QL+QR, remains unbroken. Therefore, the bound
states break up into sectors labeled by the integer charge Q.

The DLCQ of a closely related system consisting of a single adjoint multiplet of Majorana fermions has been
analyzed in the past [50, 52, 54]. However, in the same limit of sending the ’t Hooft coupling to infinity while keeping

m2 fixed, all bound states acquire masses of order ∼ gYM
√
N . The fact that there are no light bound states with

masses of order m is due to the triviality of the CFT arising from the SU(N) gauge theory coupled to an adjoint
Majorana fermion: in that case, instead of (1.5) one finds c = 0 [52].

We will summarize the details of the DLCQ computation in Appendix C. In this section, we will focus on presenting
the results of the computation.

First, let us describe the basic physics of the model. In 1+1 dimensions, gauge fields are non-dynamical but serve as
agents binding the colored matter fields. The hadronic bound states will then be superpositions of traces of products
of the adjoint creation operators (C22). The problem can be separated into boson and fermion sectors depending on
whether the number of the creation operators in the trace is odd or even.2

When there are two adjoint Majorana fermions, there is a U(1) = SO(2) global flavor symmetry which provides an
additional quantum number to label the states in the spectrum. One way to make this manifest is to combine the two
adjoint Majorana fermions into an adjoint Dirac fermion, and count the difference between the number of fermions
and anti-fermions for each state.

Suppose for µ = 0 we succeed in computing the masses M and charges Q of all the bound states. Suppose also
that all states have M > 0 and as a result the theory is gapped in the far IR. What happens when µ is increased?

We expect that some of the particles will condense when

ζ = M − µQ (3.3)

2 The CFT arising in the m = 0 limit exhibits the N = 2 supersymmetry relating the bosonic and the fermionic operators. Since the light
cone quantization is unreliable in the presence of massless states, we will keep m non-vanishing. Then the supersymmetry is broken;
so, the boson and fermion bound state spectra are not identical. However, the bound states with m � M � gY M

√
N may exhibit

approximate supersymmetry. Such highly excited states are difficult to access numerically, but it would be very interesting to look for
the emergent supersymmetry in this region of bound state masses.
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FIG. 2: The spectrum of fermionic bound states for K = 5, 7, 9, 11, 13, 15, 17, 19. The states with the same K are shown using
the same color. Increasing K for fixed Q is illustrated by a gradual shift to the right in each of the columns.

becomes negative.
If we were working in dimensions greater than 1 + 1, then depending on whether the first state for which ζ

becomes negative is a boson or a fermion, the system would exhibit the universal behavior of either the Bose-Einstein
condensation or formation of a degenerate Fermi gas. In 1 + 1 dimensions, the distinction is somewhat blurred by
the fact that bosons and fermions are related by bosonization. If the spectrum is sufficiently generic so that there is
precisely one state for which ζ is going to zero at the minimal critical µ, then one expects the system to behave as a
Luttinger liquid.

Additional subtleties can arise from the fact that there might be a degeneracy causing more than one state to hit
ζ = 0 at the same time. Logically, there are three distinct possibilities.

I The value of ζ goes to zero for exactly one state.

II The value of ζ goes to zero for several, but a finite number of states.

III The value of ζ goes to zero for an infinite set of degenerate states.

The DLCQ computation of the bound state spectrum can help distinguish among these three possibilities.
The details regarding the implementation of the DLCQ procedure are summarized in the appendix. Here we will

merely present the result, where we display the full spectrum in figure 2.
The points illustrated in figure 2 are to be interpreted as follows.

1. These points correspond to the spectrum of fermions for which the harmonic resolution parameter K takes odd
integer values. One expects to recover the exact spectrum in the limit K →∞.

2. The ‘t Hooft coupling g2
YMN is taken, for the sake of definitiveness, to be 2π · 103 times the bare mass-squared

of the fermions, m2. As long as this number is very large, the spectrum in the range illustrated, presented in
units where m2 = 1, is insensitive to its precise value. The idea is to extract the behavior of this system in the
limit of large g2

YMN .

3. M is the mass of the hadronic bound state. Here we are displaying M/Q. The state with lowest M/Q is the
one whose ζ will hit zero first as µ is increased.

4. For each K, Q in the range from Q = 1 to Q = K are possible. However, the Q = 1 states are heavier than the
range of M illustrated in figure 2 and as a result are not displayed in this figure. The state in the Q = K sector
is decoupled from the rest of the dynamics. In general, taking the large K limit with Q fixed will give rise to a
reliable extrapolation of the spectrum of that fixed Q sector. The spectrum with Q of the order of K, however,
is sensitive to the DLCQ artifacts and does not effectively approximate the spectrum in the continuum limit.
Here we have computed and presented the states for Q in the range 3 ≤ Q ≤ K − 2 with the exception of some
small Q states for large values of K for which the computations became numerically intractable.
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FIG. 3: The spectrum M/Q of lightest states as a function of 1/K for Q = 3, 5, 7, 9, 11. The lines are linear fits to the available
data. The points for Q = 3 have the largest M/Q. For each successive Q, the M/Q is decreasing. The intercept of the linear
fit at 1/K = 0 is the extrapolated value of the M/Q for the lightest state for fixed value of Q.

5. For each value of K, states with different charges Q are displayed in separate columns. States with the same
K, however, can be identified by the fact that they are plotted using the same color. For each Q, increase in K
is indicated by gradual shift in the column of points to the right.

In order to identify the states with smallest M/Q, one must, for each Q, track the lowest mass state and extrapolate
to large values of K. The spectrum illustrated in figure 2 suggests that, for each Q, the masses are gradually increasing
in a similar manner as K is increased. It also suggests that these increasing masses are converging to the large K
limit.

In order to analyze the asymptotic behavior of the masses of the low-lying states, it is useful to plot their masses as
a function of 1/K. Since we are interested in how these states are affected by the chemical potential, we will actually
plot M/Q as a function of 1/K for different values of K. This is illustrated in figure 3 for Q = 3, 5, 7, 9, 11.

We have also superposed a line indicating the linear extrapolation available from the set of data available. These
lines cross 1/K = 0 at finite values. This can be viewed as a crude method to extract the extrapolated value for the
large K limit.

What we see in figure 3 is the tendency for the large K limit of the M/Q of the lightest states to become dense with
increasing Q. Since Q can get arbitrarily large, this suggests that in the large K limit, states with arbitrarily large
Q are converging to the same value of M/Q. In other words, we seem to be finding out that our model is exhibiting
scenario III enumerated earlier in this section. It should be kept in mind, however, that one must send K →∞ first,
and then look for a trend as Q is increased. The order of these two limits cannot be exchanged.

It is not easy to determine the critical value µcrit of M/Q. To settle this question, a higher precision computation
is required. Unfortunately, for the reason given above, one must explore very large values of K in order to explore
large values of Q. This is computationally very expensive.

The fact that there may be infinitely many states with degenerate µcrit = M/Q suggests that, when µ approaches
µcrit, the system may undergo a transition from a gapped phase into a phase with a non-trivial interacting conformal
field theory with c > 1 in the IR.

The DLCQ results presented in this section focused mainly on fermionic bound states. We have also carried out
the analogous computation for bosonic bound states and found a similar behavior of M/Q. We will not present
the detailed results of our analysis for the bosonic spectrum here. Some technical issues which arise for the DLCQ
computation in the bosonic sector will be described briefly in Appendix C.

Let us, in closing, mention that since all of these results were presented for the case where N was taken to infinity
first, it is certainly possible for the seemingly dense spectrum of M/Q to be discretized by a fine structure of order
N−α for some α > 0. Such a structure can change the basic feature of our model from scenario III to II or I. This
may also be related to the fate, following the relevant flow, e.g. (1.11), of the coset CFT discussed in the earlier
sections.
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IV. CONCLUSIONS

In this paper, we described a novel metallic state of matter in one spatial dimension, with a continuously variable
density.

The well-studied one-dimensional metallic state is the Luttinger liquid, and in many respects this state can be
considered to be the natural limiting case of the Fermi liquid state of higher dimensions. Indeed, the Luttinger
liquid reduces to a free fermion model at a specific value of the Luttinger parameter, and other parameter values
are continuously connected to this one. It has central charge c = 1, and this is directly linked to the massless scalar
representing fluctuations of the globally conserved U(1) charge density. We note that some Luttinger liquids have
additional gapless modes associated with other global symmetries (and so a larger central charge), such as the models
described in Appendix A.

Our state was obtained by considering a non-zero density of Dirac fermions carrying adjoint color charges of a
SU(N) gauge field. We found a ‘strange metal’ state described by two-dimensional superconformal field theories with
central charges c = (N2 − 1)/3. For large N the central charge becomes large, while the global symmetry remains
only the U(1) associated with fermion number conservation. The strange metal has a Fermi surface with a Fermi
wavevector, given by (1.2), which is equal to that of non-interacting color-charged particles; the Fermi wavevector
changes continuously as the density is varied. This Fermi surface is ‘hidden’ [39], because the single fermion Green’s
function is not a gauge-invariant observable. Nevertheless, the Fermi surface and the value of the Fermi wavevector
are detectable in the Friedel oscillations of (1.7). We propose that this variable density state, with its large phase
space of low energy excitations linked to its large central charge and Fermi surface of color-charged fermions, can
serve as a paradigm for non-Fermi liquid states in two and higher spatial dimensions.

The structure of our d = 1 strange metal is quite analogous to the ‘hidden’ Fermi surface states obtained recently
for general d in Refs. [37–39, 41] via the AdS/CFT correspondence. In Refs. [38, 39] it was postulated that the Fermi
surfaces of gauge-charged particles could be detected by the hyperscaling violation of the thermal entropy density, and
by a logarithmic violation of the ‘boundary law’ of entanglement entropy. The coefficient of the entanglement entropy
logarithm was used to deduce a value for the Fermi wavevector which depended upon ultraviolet details only through
the value of the density Q/Ld, in just the manner expected from the Luttinger relation [39]. In our d = 1 strange metal
here, analogous properties of the entropy and entanglement entropy are trivially satisfied, because the hyperscaling
violation exponent θ = d − 1 = 0 (in the notation of Ref. [39]), and every CFT2 has a logarithmic violation of the
boundary law of entanglement entropy [83, 84]. However, here we were able to detect the Fermi surface, and determine
the Fermi wavevector, from the Friedel oscillations in the density correlations. Obtaining the Friedel oscillations in
the AdS/CFT description of strange metals in general d is clearly one of the important challenges for future work.
In this direction, it would be useful to understand the large N dependence of the proportionality constant in (1.7):
this should shed light on how Friedel oscillations of gauge-charged particles appear in holographic theories. We also
note the interesting recent computation of [41] which detected Friedel oscillations in an anisotropic quantum liquid of
strings in 5 + 1 dimensions.

In section III we studied the bound state spectrum of the large N gauge theory in the limit g2
YMN � m2 using

the numerical DLCQ approximation. This approach sheds light on the properties of the SU(N) gauge theory at low
density. A very interesting phenomenon that we have uncovered is the emergent N = 2 supersymmetry of the gauge
theory in the limit m → 0. A useful direction for future work would be to obtain some numerical DLCQ evidence
for the emergent supersymmetry by studying the masses of highly excited bound states with gYM

√
N � M � m.

Hopefully, this spectrum will exhibit approximate supersymmetry.
Another intriguing direction for future work, which was discussed at the end of section II.C, is the possibility of a

dual description of the large N CFT in terms of a theory with higher-spin gauge symmetry in AdS3. The existence
of such a dual description is suggested by the large W -symmetry, and by the fact all the operator dimensions appear
to approach constants in the large N limit that are quantized in units of 1/3. A useful 3 + 1 dimensional analogue of
the N = 2 supersymmetric large N CFT we are considering may be the N = 4 supersymmetric SU(N) gauge theory,
which is dual to the AdS5×S5 background of type IIB string theory [15–17]. Both theories have anomaly coefficients
of order N2. When the N = 4 gauge theory has a large ‘t Hooft coupling g2

YMN , the dual AdS5 × S5 background
becomes weakly curved. In this limit the dimensions of all operators not protected by supersymmetry become very
large. On the other hand, at vanishing ‘t Hooft coupling all the operators have integer dimensions, and their number
exhibits the exponential Hagedorn growth. In this limit the curvature of the dual string background becomes very
large; this is often referred to as the “tensionless string limit.” It has been suggested [85] that a useful dual description
of the free N = 4 SYM theory may involve higher-spin gauge theory in AdS5 [86] coupled to an infinite number of
additional fields.

Similarly, if an AdS3 string dual of our N = 2 supersymmetric coset CFT is found, we expect it to be strongly
curved. It is therefore interesting to ask if the coset CFT has an exactly marginal operator which could correspond to
increasing the radius of the dual background. In fact, the CFT has an exactly marginal double-trace operator which is
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a product of the left and right U(1) currents, JL(z)JR(z̄). This operator breaks the N = 2 supersymmetry as well as
some of the the extended W -symmetries. For the N = 2 coset CFT (2.7), this marginal operator changes the radius
of the compact scalar in the bosonized formulation. In the limit of large radius, a large gap develops between the
dimensions of typical momentum and winding operators. It would be interesting to study the effect of the marginal
deformation on the operator dimensions for N > 2, and to see if deforming the CFT along this marginal direction
could also create a large gap in the spectrum of operator dimensions. The presence of such a gap would suggest [87]
a weakly curved AdS3 dual of the large N CFT.
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Appendix A: Fundamental matter

This appendix briefly describes the high density physics of the theory in (1.1), but for the case where Ψ transforms
as a fundamental of the SU(N) gauge group. For completeness, we include the case where Ψ has a flavor index
which takes Nf values, and then the model has a U(Nf ) global symmetry. It is convenient to decompose the global
symmetries into a U(1) symmetry associated with the ‘charge’ density, and a SU(Nf ) flavor symmetry (the latter is
absent for Nf = 1). We proceed just as in section II. The high density limit is characterized by a Fermi wavevector
of gauge-charged fermions given by

Q

L
= NNf

kF
π

; (A1)

note that the r.h.s. has a prefactor of N , rather than the (N2 − 1) in (1.2). The fluctuations near this wavevector
map onto the m = µ = 0 theory, which was considered in [88, 89]. Now we bosonize the NNf complex Dirac fermions
differently. Rather than considering them as 2NNf Majorana fermions, we note that they can be used generate WZW
currents of SU(N)Nf , SU(Nf )N , and U(1), and these fully span the Hilbert space [88–90]. The SU(N)Nf currents
are projected out by the gauge field, and so the low energy theory is made up of two decoupled sectors: a c = 1
free gapless scalar associated with the U(1), and a SU(Nf )N WZW model associated with the SU(Nf ) global flavor
symmetry with c = N(N2

f − 1)/(N + Nf ). This decoupling of the U(1) density mode is the key simplifying feature
of the fundamental matter case, and was absent for the adjoint matter case considered in the body of the paper.
Consequently, the U(1) sector here is similar to an ordinary Luttinger liquid, while the spectator SU(Nf )N WZW
model is directly linked to the additional global flavor symmetries of the model.

In the notation of [91], we can write the Hamiltonian of the U(1) sector as

H =
1

2π

∫
dx

[
1

K
(∂xφ)

2
+K (∂xθ)

2

]
(A2)

where K is the Luttinger parameter, θ and φ are scalar fields obeying the commutation relations

[∂xφ(x), θ(x′)] = [∂xθ(x), φ(x′)] = iπδ(x− x′), (A3)

and the U(1) charge is

Q =
1

π

∫
dx ∂xφ. (A4)
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The variable K is related to the exactly marginal perturbation to the U(1) theory, the analog of the ‘radius’ of the
scalar in the string theory notation. The fermion fields are related to these scalar fields via [92]

ψR,L = e−i(θ±φ)/
√
NNf ϕcR,L ϕ

f
R,L (A5)

where ϕcR,L is the primary field the SU(N)Nf WZW model transforming as a fundamental of SU(N), ϕfR,L is the

primary field the SU(Nf )N WZW model transforming as a fundamental of SU(Nf ). The exponential factor has been
chosen so that the free fermion theory without the SU(N) gauge field is properly bosonized at K = 1 with both

WZW models conformal so that dim[ϕcR,L] = (N2 − 1)/(2N(N +Nf )) and dim[ϕfR,L] = (N2
f − 1)/(2Nf (N +Nf )).

To determine the Friedel exponent, we need the smallest scaling dimension operator with QL = 1 and QR = −1.

Applying (A5) to the operator Tr(ψ†LψR), we can set the trace over the SU(N)Nf WZW fields to constants [89, 90],
and the scaling dimensions of the remaining sectors yield

∆F = dim[e2iφ/
√
NNf ] + 2 dim[ϕfL] =

K

NNf
+

(N2
f − 1)

Nf (N +Nf )
, (A6)

where K is now allowed to be not equal to unity because, in general, there will be an exactly marginal interaction in
the c = 1 sector. We note that the ∆F → 0 corresponds to a crystalline state with broken translational symmetry;
such continuous symmetry breaking is not possible in 1+1 dimensions, but a crystal was discussed as a mean field
theory of baryons valid in the formal large N limit [93].

In the fundamental matter model, the pairing operator ψLψR can be reduced to a gauge singlet only for N = 2.
Extending our Friedel operator argument to a gauge singlet pairing operator implies that we need the simplest operator
with QL = QR = −1, and this yields

∆P = dim[e2iθ/
√
NNf ] + 2 dim[ϕfL] =

1

NNfK
+

(N2
f − 1)

Nf (N +Nf )
, N = 2. (A7)

Finally, we note that the case N = 1 and Nf = 1 corresponds to the finite density phase of the massive Thirring
model, which realizes the simplest Luttinger liquid.

Appendix B: Modular invariants for coset CFT2

Modular invariant partition functions for coset CFT2 can be constructed once invariants for both the numerator
and denominator CFT2’s have been specified [94, 95]. Rather than describing the general construction, we focus on
the specific example of the (N,N ; 2N) cosets for gauged adjoint fermions.

The numerator CFT2 has two copies of the SU(N)N theory, each describing (N2 − 1) adjoint fermions. There are
several options for a modular invariant, including a simple product of the diagonal modular invariant of each of the
SU(N)N factors. However, we should here select the invariant that describes the situation where boundary conditions
on the combined fermions are such that a global U(1) symmetry arises. The appropriate modular invariant turns out
to be the diagonal modular invariant of an SO(2N2 − 2)1 symmetry, written as

ZSO(2N2−2)1 = |χSO(2N2−2)1
1 |2 + |χSO(2N2−2)1

v |2 + 2|χSO(2N2−2)1
sp |2 (B1)

with ‘1’, ‘v,’ and ‘sp’ denoting the identity, vector and spinor representations of SO(2N2−2)1. This result arises from
the well known result, known as non-Abelian bosonization [96], that the CFT2 based on SO(M)1, at central charge
c = M/2, describes M real fermions.

The partition sum can be re-expressed in terms of characters of two copies of SO(N2 − 1)1, one for each of the
groups of N2 − 1 fermions

ZSO(2N2−2)1 = |χSO(N2−1)1
1 χ̃

SO(N2−1)1
1 + χSO(N2−1)1

v χ̃SO(N2−1)1
v |2

+|χSO(N2−11)
v χ̃

SO(N2−1)1
1 + χ

SO(N2−1)1
1 χ̃SO(N2−1)1

v |2 + 2λ|χSO(N2−1)1
sp χ̃SO(N2−1)1

sp |2 , (B2)

with λ = 4(1) for N odd(even).The SO(N2 − 1)1 characters can each be branched into characters of SU(N)N . For
the NS sector characters (labels ‘1’ and ‘v’) the results are

χ
SO(N2−1)1
1 = χ

SU(N)N
(00...00) + χ

SU(N)N
(20...10) + χ

SU(N)N
(01...02) + . . .

χSO(N2−1)1
v = χ

SU(N)N
(10...01) + χ

SU(N)N
(110...011) + . . . (B3)
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We use Dynkin labels (l1l2 . . . lN−1) to tag the SU(N) representions: (00 . . . 00) is the identity, (10 . . . 01) the adjoint,
etc. (a useful reference for the group theory is [97]). We remark that the SU(N) representations featuring in the NS
sector satisfy the N -ality condition

l1 + 2l2 + . . . (N − 1)lN−1 ≡ 0 mod N . (B4)

To obtain a partition sum for the coset CFT2 the following steps are taken. First one writes branching rules for the
SO(2N2 − 2)1 characters into products of branching functions times characters of the affine algebra SU(N)2N that
features in the denominator of the coset. Schematically

χ
SO(2N2−2)1
A =

∑
a

baA × χSU(N)2N
a . (B5)

The labels a take values in the integral dominant weights of SU(N)2N , which are written as Dynkin labels (l1l2 . . . lN−1)
satisfying

∑
i li ≤ 2N . We find that, for general N , the terms on the r.h.s. of (B5) are grouped into combinations of

the form

χSU(N)2N
a + χ

SU(N)2N
λ(a) + χ

SU(N)2N
λ2(a) + . . . (B6)

where λ is the automorphism

λ : (l1l2 . . . lN−1)→ ([2N −
∑
i

li]l1l2 . . . lN−2) . (B7)

Again, the SU(N) representations featuring in the NS sector satisfy the N -ality condition (B4).
Writing the modular invariants for the denominator (d) and numerator (n) as

Zd =
∑
AB

Nd
ABχ

SO(2N2−2)1
A χ

SO(2N2−2)1
B ,

Zn =
∑
ab

Nn
abχ

SU(N)2N
a χ

SU(N)2N
b (B8)

the coset invariant is obtained as

Zcoset =
∑
ABab

Nd
ABN

n
abb

a
Ab

b

B . (B9)

For the (N,N ; 2N) cosets, the natural choice for the denominator modular invariant is the SU(N)2N invariant that
displays the same grouping of characters, according to the automophism (B7), that we observed in the branching
rules (B5). Such an invariant exists for general N [98]; we display explicit examples for N = 2, 3 in the main text of
this paper.

The N = (2, 2) superconformal symmetry of the (N,N ; 2N) coset guarantees that the branching functions baA are
characters of (an extension) of the N = 2 superconformal algebra. For N ≥ 3 we find (see again the main text) that
the vacuum character of this extended symmetry takes the form

chN=2,ext
q=0,h=0 = chNS

q=0,h=0 + chNS
q=1/3,h=2 + chNS

q=−1/3,h=2 + . . . (B10)

The (N,N ; 2N) coset modular invariant can be viewed as a diagonal modular invariant for this W -extension of N = 2
superconformal symmetry.

Appendix C: DLCQ Quantization of the gauged adjoint Dirac fermions in 1+1 dimensions

In this appendix, we will summarize the computation of the discretized light cone quantization spectrum of the
1 + 1 dimensional SU(N) gauge theory coupled to adjoint Dirac fermions in the large N limit.

The first step is to write down the Lagrangian which follows the general pattern of [50, 52, 54] except that the
fermions are now complex. Here we follow II.B of [50]. We start with (1) of [54] but treat

Ψ = 21/4

(
ψ
χ

)
(C1)
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as Dirac fermions.
The light cone coordinates are defined by

x± =
1√
2

(x0 ± x1) (C2)

so that

A± =
1√
2

(A0 ±A1) . (C3)

We will use for the Dirac matrices

γ0 = iσ2 =

(
0 −i
i 0

)
, γ1 = iσ1 =

(
0 i
i 0

)
. (C4)

The Lagrangian is normalized to take the form

Tr
{

Ψ̄(i∂/−m)Ψ]
}

= Tr
{

2iψ†∂+ψ + 2iχ†∂−χ− i
√

2m(ψ†χ+ χ†ψ)
}
. (C5)

To compare this Lagrangian with the Hamiltonian (2.1), simply note that the fermion field Ψ can be expressed in the
standard mode expansion

Ψ(t, x) =

∫
dk1

2π

1√
2k0

(
u(k)p(k)e−ikµx

µ

+ v(k)h(k)eikµx
µ

)
(C6)

where u(k) and v(k) is the standard 2 component spinor basis satisfying

(k/−m)u(k) = (k/+m)v(k) = 0, ū(k)u(k) = −v̄(k)v(k) = 2m . (C7)

Then, in terms of p(k) and h(k) we recover (2.1) for the Hamiltonian.
Returning to (C5), we gauge the free fermion theory by introducing covariant derivatives

DΨ = ∂µΨ + i[Aµ,Ψ] . (C8)

It is customary in light cone quantization to use the gauge

A− = 0 (C9)

so that the gauge kinetic term takes the form

− 1

2g2
YM

TrF 2 =
1

g2
YM

Tr(∂−A+)2 (C10)

and the Lagrangian reads

L = Tr

{
2iψ†∂+ψ + 2iχ†∂−χ−

√
2im(ψ†χ+ χ†ψ) +A+J

+ +
1

g2
YM

(∂−A+)2

}
(C11)

with

J+ = 2(ψψ† + ψ†ψ) . (C12)

If we take x+ as the time direction, χ and A+ are non-dynamical and can be integrated out, giving rise to the
light-cone momentum and Hamiltonian

P+ =

∫
dx− Tr

{
2iψ†∂−ψ

}
, (C13)

P− =

∫
dx− Tr

{
−im2ψ†

1

∂−
ψ − 1

4
g2
YMJ

+ 1

∂2
−
J+

}
. (C14)
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Imposing canonical quantization on the fermions gives rise to relation

{ψ†ij(x
−), ψkl(x̃

−)} =
1

2
δ(x− − x̃−)

(
δilδjk −

1

N
δijδkl

)
(C15)

with

{ψij(x−), ψkl(x̃
−)} = {ψ†ij(x

−), ψ†kl(x̃
−)} = 0 . (C16)

The Dirac fermions are expanded in modes

ψ(x−) =
1√
2L

∑
n∈odd>0

{
Aij(n)e−iπnx

−/L +B†ji(n)eiπnx
−/L

}
(C17)

where we have compactified the x− direction and imposed the anti-periodic boundary condition on the ψ(x−) field;
this typically leads to a better DLCQ computation than choosing the periodic boundary condition and removing the
zero mode by hand. The choice of boundary condition should not matter in the decompactification limit K →∞.

The anti-commutation relation for the modes are is

{Aij(m), Akl(n)} = δ(m+ n)

(
δilδjk −

1

N
δijδkl

)
, (C18)

{Bij(m), Bkl(n)} = δ(m+ n)

(
δilδjk −

1

N
δijδkl

)
(C19)

where n takes odd integer values, and

Aij(−n) = A†ji(n), Bij(−n) = B†ji(n) . (C20)

We can now set up the light cone vacuum

Aij(n)|0〉 = Bij(n)|0〉 = 0, (n > 0) . (C21)

The states are then generated by acting by a string of “letters” A(−n) and B(−n) in a single trace state, i.e.

|ψ〉 = #Tr(B(−n1)A(−n2)...B(−nk))|0〉 (C22)

where # is a symmetry factor to ensure that the norm of each state is one.
Our next step is to write the light cone momentum and Hamiltonian operators in terms of the fermion oscillators.

It is clear that the light cone momentum operator (C13) can be written in the form

P+ =
∑
n≥1

{πn
L
A†ij(n)Aji(n) +

πn

L
B†ij(n)Bji(n)

}
=
πK

L
, (C23)

when acting on a state with fixed K.
Instead of writing the light cone Hamiltonian P− in terms of fermion oscillators, let us consider the Lorentz invariant

mass operator

2P+P− = V + T (C24)

where V corresponds to terms associated with the term proportional to m2 and T corresponds to the term proportional
to (J+)2 in (C14). Then, it is easy to show that

V = Km2
∑
n≥1

{(
1

n

)
A†ij(n)Aji(n) +

(
1

n

)
B†ij(n)Bji(n)

}
. (C25)

Note that the dependence on L drops out, but there is still a dependence on K.
Computation of T involves a somewhat tedious exercise of normal ordering the (J+)2 written in terms of fermion

oscillator operators. One can organize T in accordance to the number of oscillators destroyed and created.

T = T1→1 + T1→3 + T2→2 + T3→1 . (C26)
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In this form, one finds after some algebra, that

T1→1 =
2g2
YMNK

π

∑
n

n−2∑
m=1

{(
1

n−m

)2

A†ji(n)Aji(n) +

(
1

n−m

)2

B†ji(n)Bji(n)

}
(C27)

T1→3 =

(
g2
YMNK

2π

)∑
δ(n1 + n2 + n3 −m1)×{

2

(n1 −m1)2
B†ik(n3)A†kl(n2)A†lj(n1)Aij(m1)(

2

(n1 −m1)2
− 2

(n3 −m1)2

)
A†ik(n3)B†kl(n2)A†lj(n1)Aij(m1)

− 2

(n3 −m1)2
A†kl(n3)A†lj(n2)B†ji(n1)Aki(m1)

2

(n1 −m1)2
A†lj(n3)B†ji(n2)B†ik(n1)Blk(m1)(

2

(n1 −m1)2
− 2

(n3 −m1)2

)
B†ji(n3)A†ik(n2)B†kl(n1)Bjl(m1)

− 2

(n3 −m1)2
B†ji(n3)B†ik(n2)A†kl(n1)Bjl(m1)

}
(C28)

T2→2 =

(
g2
YMNK

2π

)∑
δ(n1 + n2 −m1 −m2)×{

2

(n1 −m1)2
A†kl(n2)A†lj(n1)Aki(m2)Aij(m1)(

2

(n1 −m1)2
− 2

(m1 +m2)2

)
A†ik(n2)B†kl(n1)Aij(m2)Bjl(m1)

− 2

(m1 +m2)2
B†ik(n2)A†kl(n1)Aij(m2)Bjl(m1)

− 2

(m1 +m2)2
A†lj(n2)B†ji(n1)Blk(m2)Aki(m1)(

2

(n1 −m1)2
− 2

(m1 +m2)2

)
B†kl(n2)A†lj(n1)Bki(m2)Aij(m1)

2

(n1 −m1)2
B†ji(n2)B†ik(n1)Bjl(m2)Blk(m1)

}
(C29)

T3→1 =

(
g2
YMNK

2π

)∑
δ(n1 −m1 −m2 −m3)×{

− 2

(n1 −m1)2
A†lj(n1)Blk(m3)Aki(m2)Aij(m1)

+

(
2

(m2 +m1)2
− 2

(n1 −m1)2

)
A†lj(n1)Alk(m3)Bki(m2)Aij(m1)

+
2

(m1 +m2)2
A†kl(n1)Aki(m3)Aij(m2)Bjl(m1)

− 2

(n1 −m1)2
B†ik(n1)Aij(m3)Bjl(m2)Blk(m1)

+

(
2

(m1 +m2)2
− 2

(n1 −m1)2

)
B†kl(n1)Bki(m3)Aij(m2)Bjl(m1)

+
2

(m1 +m2)2
B†ji(n1)Bjl(m3)Blk(m2)Aki(m1)

}
. (C30)

At this point, a computer program must be written to generate the set of states and the elements of the mass
operator M2 = 2P+P−.
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K = 5 K = 7 K = 9 K = 11 K = 13 K = 15 K = 17 K = 19 K =∞ M/Q
Q = 1 4.60 5.08 5.42 · · · · · · · · · · · · · · · 6.42 6.42
Q = 3 3.42 3.67 3.85 4.00 4.10 · · · · · · · · · 4.49 1.50
Q = 5 - 5.51 5.87 6.14 6.36 6.54 · · · · · · 7.40 1.47
Q = 7 - - 7.55 7.97 8.30 8.58 8.82 · · · 10.19 1.46
Q = 9 - - - 9.57 10.03 10.041 10.73 · · · 12.83 1.43
Q = 11 - - - - 11.59 12.08 12.49 12.85 15.54 1.41

TABLE III: Mass M of the lightest fermionic bound state in the fixed Q sector for various K. The “−” indicates entries which
are not defined. The “· · · ” indicate entries which are well defined but have not been computed due to limits in computational
resources. These are the data presented in figure 3. Note that M as a function of Q is minimized at Q = 3. However, M/Q as
a function of Q appears to slowly be decreasing monotonically.

K = 4 K = 6 K = 8 K = 10 K =∞ M/Q
Q = 0 2.31 2.47 2.58 2.67 2.88 ∞

TABLE IV: Mass M of the bosonic bound state in the Q = 0 sector for K = 4, 6, 8, 10.

As an example, for K = 5 and Q = 1, we find

T =
g2
YMNK

2π


13
8

1
8 − 1

2
1
2 − 1

4
1
8

13
8

1
2 − 1

2 −
1
4

− 1
2

1
2 1 1 0

1
2 − 1

2 1 3 0
− 1

4 −
1
4 0 0 3

2

 (C31)

whose eigenvalues in units of g2
YMN/2π are

{0, 6.25, 10, 10, 17.5} . (C32)

Strictly speaking, eigenvalues of just the T without the contribution from V are unreliable since they correspond
to taking massless fermions as the matter fields. Nonetheless, it is encouraging to find an exactly massless state in
the spectrum which would survive the limit of strong gauge coupling. The massless states for these m2 = 0 cases
continue to be present as the values of K are increased.

The actual computation reported in section III is the computation of the spectrum of

M2

m2
=

1

m2
(V + T ) (C33)

where, for definitiveness, we set the dimensionless parameter

x =
2πm2

g2
YMN

= 10−3 . (C34)

The result of carrying out the calculation for K = 5, 7, 9, 11, 13, 15, 17, 19, is summarized in table III. There, we
tabulate the calculated value of the hadronic bound state mass M for fixed Q as K is increased. The K = ∞ is a
result of linear extrapolation illustrated in figure 3. We observe that the lightest bound state appears to be in the
Q = 3 sector, at least among the fermionic states. However, the quantity M/Q which determines µcrit appears to be
slowly decreasing as Q is increased.

Similar computations can be carried out for the bosonic bound states when the values of K are taken to be even.
We did not perform the computation at the same level of precision for the bosonic bound states as we did for the
fermions. The plot analogous to figure 2 is in figure 4 below. From figure 4, it is quite apparent that the pattern of
states with smallest M/Q is becoming degenerate at around µcrit = M/Q ≈ 1 as Q is increased.

There is one additional feature which is notable regarding the bosonic spectrum: the state with smallest M is in
the Q = 0 sector. For K = 4, 6, 8, 10, we find the masses presented in table IV.

A closer examination of the wavefunction indicates that the lightest state is mostly a mixture of the “two bit” states
of the form ∑

p

cpTrA†(p)B†(K − p)|0〉 . (C35)
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FIG. 4: Spectrum of bosonic bound states for K = 4, 6, 8, 10. This figure is the analogue of figure 2 for the fermionic bound
states.

This is analogous to what was found for the adjoint Majorana model [52]. These are interesting features of our model
from the point of view of its dynamics at vanishing chemical potential. As should be clear from the right most column
in table IV, however, the Q = 0 states do not have any impact on the physics at finite chemical potential µ.
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