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Abstract

We study the one loop correction to the closed bosonic string propagator, including the
possibile presence of D-branes, by discretizing the light cone worldsheet on an M ×N
rectangular lattice, with M ∝ P+ and N + 1 ∝ ix+. The integrals over the moduli
then become sums which we evaluate numerically. The main purpose of this study is
to assess the reliability of the worldsheet lattice as a regulator of the divergences in
string perturbation theory. There are two natural geometrical counterterms for the
lightcone worldsheet, one proportional to the area of the worldsheet and the other pro-
portional to the length of worldsheet boundaries, tracing the ends of open strings. We
show that the divergences in the closed string self-energy can be cancelled by the area
counterterm and a renormalization of the Regge slope parameter. The residual finite
part is compatible with Lorentz invariance, provided a novel regularization, natural to
the lightcone worldsheet lattice and described in this article, is employed.
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1 Introduction

String theory has long been known to be a generalization of gauge theory due to the presence
of a massless spin one state in the open string spectrum. Since all of the massive states of
the theory have masses proportional to

√
2πT0 = 1/

√
α′, the string theory goes over to the

gauge theory in the infinite tension limit α′ → 0. This, together with the fact that closed
strings have a massless spin two state, has inspired the discovery of many deep connections
between string theory on the one hand and gauge theory coupled to gravity on the other.
The AdS/CFT correspondence [1] which asserts the equivalence of N = 4 supersymmetric
gauge theory to type IIB superstring theory on an AdS5×S5 space time manifold is one
of the most spectacular of these. Although motivated by the physical properties of open
string theory with α′ > 0, the final conclusion is reached by taking α′ → 0. The finiteness
(conformal invariance) of the N = 4 theory plays a key role in justifying the α′ → 0 limit.

The corresponding hypothesis for an asymptotically free gauge theory like the gluonic
sector of QCD is more obscure. However, there is little doubt that string theory can offer
important insights into some aspects of QCD. In this article we launch a critical analysis
of the possibility that ’t Hooft’s N → ∞ limit [2] of QCD might be usefully analyzed
by replacing it with the sum of open string planar diagrams, keeping α′ > 0. There are
several reasons to hope this helps. First, the organization of multiloop string diagrams is
dramatically simpler than the corresponding gauge theory diagrams: there is only one planar
open string diagram at each loop order, whereas the number of planar gauge theory diagrams
grows exponentially with order. Secondly, the 0 loop open string planar diagrams describe
the evolution of a “bare” worldsheet which becomes “dressed” with the inclusion of planar
loops. This provides a very natural setting for the description of a confining flux tube which
may survive the limit α′ → 0. Finally there is the long held expectation that the ultraviolet
behavior of gauge theory diagrams will be mitigated by the “stringiness” associated with
finite α′, making the latter better defined.

We focus on this last point in this article. It is not so much the ultraviolet divergences
themselves that concern us here–after all those can be absorbed in coupling renormalization
in gauge theories. Rather, it is the extreme care that must be taken in gauge theory to
preserve gauge and Lorentz invariance in the finite part that remains after renormalization.
Order by order in perturbation theory, this can be accomplished by employing a suitable
regularization, the most popular of which is dimensional regularization. But as soon as one
aims to extract the consequences of summing all the planar diagrams, especially if one must
rely on numerical methods, the soundness of dimensional regularization becomes somewhat
questionable. For example the powerful conclusions derived from lattice gauge theory would
be much less convincing if they relied on an unphysical regularization such as “analytic
continuation” of the dimension of spacetime. It is desirable to have a digitization scheme
which can be relied on to give the correct physical results without such an artifice. Thirty
five years ago Giles and one of us [3] (GT) proposed a digitization of the sum of planar
open string diagrams based on lightcone quantization [4, 5] in its path history formulation
[6]. In the present article we set out to assess the reliability of this specific lattice model for
perturbative calculations.
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Let us briefly review the GT proposal, in order to set the stage for the rest of the
paper. In lightcone quantization of the bosonic string [5], one takes x+ = (x0 + x1)/

√
2 as

the quantum evolution parameter and labels points on a string by a parameter σ defined
so that P+ = (P 0 + P 1)/

√
2 is uniformly distributed on the string. In effect these two

choices eliminate x+ and x− as dynamical variables, leaving only the D − 2 transverse
coordinates x(σ) as quantum operators. Mandelstam worked out the path history form of
this quantization [6] using imaginary time τ ≡ ix+. Then the propagator for a free string is
simply the path integral over the x(σ, τ) where 0 ≤ σ ≤ P+ and 0 ≤ τ ≤ T parameterize
a rectangular region of dimensions P+ × T . The path integrand is simply e−S, with S the
lightcone Euclidean action

S =
1

2

∫ T

0

dτ

∫ P+

0

dσ(ẋ2 + T 2
0x

′2). (1)

In this language a general open string planar diagram is calculated by integrating this same
integrand over a worldsheet with several slits of variable length and location as depicted in
Fig 1.

T

p+

Figure 1: Typical open string planar diagram on the lightcone worldsheet.
This one is a seven loop 5 string function

The GT proposal is simply to digitize Mandelstam’s interacting string diagrams by defin-
ing a rectangular M × N grid with T = (N + 1)a and P+ = MaT0. Then the integration
variables x(σ, τ) → x

j
i and the lattice action is simply

S → T0

2

∑

ij

[

(x j+1
i − x j

i )
2 + (x j

i+1 − x j
i )

2
]

(2)
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A quick look at the lattice corresponding to a multiloop open string diagram Fig. 2, shows
that a slit is nothing but a row of missing spatial bonds (links), and summing over all
planar diagrams is simply summing over all patterns of missing spatial bonds. One can

Figure 2: Multiloop lattice worldsheet: each loop is a row of missing links.

easily incorporate the sum over missing bond patterns into the lattice sum over histories by
introducing an Ising-like variable S j

i = 0, 1 on each spatial link. Then the worldsheet action
describing the sum of all open string planar diagrams is simply

SPlanar =
T0

2

∑

ij

[

(x j+1
i − x j

i )
2 + S j

i (x j
i+1 − x j

i )
2
]

−
∑

ij

[

S j
i (1− S j+1

i ) + S j+1
i (1− S j

i )
]

ln g (3)

The purpose of the ln g term is to insert a factor of g at the beginning and end of each row
of missing bonds. Then, in addition to integrating each x j

i from −∞ to +∞, one sums each
S j
i over the values 0 and 1 to obtain the sum over all planar diagrams.
If no further adjustments were necessary, we could study this system numerically, e.g.

through Monte Carlo simulation. By analyzing the large N behavior of the path integral, one
could read off spectral information by identifying exponential behaviors e−aEλ(M)N , where
Eλ(M) are the eigenvalues of P−. On general grounds we should expect the largeM behavior

Eλ(M) ∼ αM + β +
γλ
M

+ · · · (4)

The αM term is a bulk worldsheet effect and the β term is associated with boundaries. The
coefficients α, β depend on the details of the lattice model and violate the requirement that

3



2P−P+−p
2 = m2

λ is a Lorentz invariant. Fortunately there are two geometrical counterterms
naturally associated with the worldsheet path integral: one proportional to the area of the
worldsheet and another proportional to the length of worldsheet boundaries. Thus the
Lorentz violating terms noted above can always be cancelled. As noted in [3] the area term
is dynamically inconsequential for the sum of diagrams because the slits representing loops
have zero area, so that the area term is identical for all diagrams contributing to the same
process. The boundary term depends on the number and lengths of the slits. It can be
thought of as an energy cost assigned to the disappearance of a bond. In the Ising spin
description of the sum over loops it is represented by a term (D − 2)B

∑

ij(1 − S j
i ) added

to S. The boundary term is absent for closed strings, but is required for a Lorentz invariant
free open string spectrum. This is because the Gaussian lattice worldsheet path integral
implies an open string zero point energy

aP−(M) = (D − 2)
M−1
∑

m=1

sinh−1 sin
mπ

2M
∼ (D − 2)

[

2G

π
M +B − 1

2
sinh−1 1− π

24M

]

(5)

as M → ∞, where G is Catalan’s constant. Cancelling the second term requires B → B0 =
(1/2) sinh−1(1) for g = 0. Since the β term in the energy will in general depend on g, we can’t
know the value of B at finite g a priori, so in practice it must be left as a free counterterm
parameter to be determined by requiring that the final answer be consistent with Lorentz
invariance.

More generally, we can regard B as a free parameter of the lattice model, which we don’t
necessarily have to insist is Lorentz covariant. Taking B large enough lifts the P− of any
multi-open string intermediate state above all the g = 0 closed string energy eigenstates that
survive the continuum limit4. Then the severe infrared divergences in loop diagrams caused
by the open string tachyons are removed, making the multi-loop expansion well defined,
albeit with a loss of Lorentz covariance. For numerical studies we should therefore calculate
for general B large enough to remove instabilities; and only at the end of the calculation
would we scan for a value of B which restores Lorentz covariance, if possible.

But there is no a priori guarantee that these two counterterms can remove all Lorentz
violating artifacts from this lattice worldsheet construction. For instance, the authors of
[7] developed a lightcone worldsheet formalism which mapped the planar diagrams of gauge
theories in lightcone gauge to a worldsheet system with exactly the features of the open string
planar diagrams just described. String coordinates were employed, but their dynamics were
topological in the sense that all but a single zero mode decoupled in the path history sum.
In this way the worldsheet diagrams were designed to yield precisely the “bare” Feynman
diagrams of the gauge theory. Digitization of this worldsheet in the manner of GT amounted
to a scheme for cutting off the UV and IR divergences of these Feynman diagrams. To test
the reliability of this cutoff, the authors of [8] calculated the one loop diagrams contributing
to the scattering of glue by glue regulated by the GT worldsheet lattice. They found that the
artificial divergences associated with lightcone quantization could indeed be absorbed in the

4In effect with B this large one imposes confinement on the free theory! The crucial issue is then whether
or not confinement survives as B is reduced to a value that restores Lorentz invariance.
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bulk or boundary worldsheet counterterms. Further the divergences associated with charge
renormalization (asymptotic freedom) had the correct coefficients. Unfortunately, this was
not the end of the story. There remained gauge violating terms that could only be cancelled
by: (1) a divergent gluon self mass, (2) a finite wave function renormalization, (3) a finite
adjustment to the three gluon function, and (4) a finite constant adjustment to the 4 gluon
function. Indeed these are precisely the adjustments generally required when a physical
cutoff is employed in loop calculations [9]. All of these adjustments, being polynomials in
the external momenta, are consistent with locality. The bottom line is that the lightcone
worldsheet lattice as a regulator of gauge theory diagrams is no better than other physical
cutoffs. Unfortunately this means that we should expect the necessary counterterms to
proliferate with the inclusion of multiloop diagrams.

In this paper we begin to explore whether the GT lattice does a reliable (or at least better)
job regulating open string planar diagrams than it does with field theory planar diagrams.
Does keeping α′ > 0 control the proliferation of counterterms? Is it possible that the bulk
and boundary counterterms will be sufficient by themselves? We start with the simplest
self energy diagram: the one loop correction to the closed string propagators. This process
involves only a single intermediate open string state and hence has the singularity structure
of a tree diagram. Since the corrections to the open string propagator involve complications
associated with the multi-string intermediate sates and worldsheet boundaries, we choose to
defer the open string analysis to a subsequent paper, and we restrict our attention here to
the corrections to the closed string propagator.

Because of the tree structure of the closed string self-energy diagrams, the sum over
K, the number of time steps that the intermediate open string exists, converges for both
the closed string tachyon and graviton, even with B = B0. Nonetheless the calculations of
Sections 3 and 5 (with B = B0) will establish Lorentz violations in both the tachyon and
graviton. Fortunately, these Lorentz violations disappear if the calculations are done holding
B > B0, taking B → B0 only at the end of the calculation. In any case, this is the only
way to make sense of multi-loop diagrams, so we don’t think its necessity at one loop is a
drawback.

The article is organized as follows. In Section 2 we obtain explicit formulas for the one
loop energy shifts of the closed string ground state (tachyon) and the closed string graviton
state. Each term in the K summand involves determinants of M × M overlap matrices.
These formulas are evaluated and analyzed with the help of Mathematica in Section 35.
In Section 4 we extend the formulas to include open strings ending on Dp-branes, and
similarly perform their numerical evaluation in Section 5. In this case, instead of an energy
shift, the one loop correction gives the amplitude for a closed string scattering off the Dp-
brane. Additional discussion is given in the concluding Section 6. Several appendices collect
a number of technical results, including normal mode expansions, determinant formulas,
and overlap matrices, that are useful for the discussion in the main text. We also include
additional evidence for the robustness of our numerical results.

5For the interested reader, we provide the evaluation code and a sample of our analysis in a Mathematica

file accompanying the source format of this article on the arXiv.
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2 Closed String Self-Energy

Before calculating the self-energy diagram on the lattice, we briefly recall the known expres-
sion for the continuum self-energy. In the language of conformal field theory we need the
amplitude with two closed string vertex operators, say at say 1 and ∞ on the complex plane
from which a disk of radius q < 1 has been excised. Consulting for example [10], we find the
result for the closed string tachyon self-energy:

−∆P− =
C

2P+

∫ 1

0

dq

q3
(1− q2)2 (6)

which is obviously seriously divergent at q = 0: there are quadratic and logarithmic diver-
gences in the q integration. To get further insight into the fate of these divergences, we do
the path integral in lightcone parameterization, using the conformal transformation methods
of [11, 12]. The (still seriously divergent) result in D spacetime dimensions is

−∆P− = C ′P+

∫ ∞

0

dT

[

2π

P+ sinh(πTT0/P+)

](D−2)/8

(7)

where T is the length of the slit on the lightcone Mandelstam diagram, which is the total
ix+ over which the intermediate open string propagates. The factor of P+ is just the result
of integrating the σ independent integrand over vertical location of the slit 0 < σ < P+.
When D = 26 this expression reduces to (6) which can be seen with the change of integration
variable

q =
1− e−πTT0/P+

1 + e−πTT0/P+ . (8)

We can get a rough idea of what we should get from the lattice calculation by simply
discretizing T = aK and P+ = aMT0. Then the discretization of (7) reads:

−a∆P− =
(

C ′T
−1/4
0 (aT0)

(26−D)/8
)

M
∞
∑

K=1

[

2π

M sinh(πK/M)

](D−2)/8

(9)

Of course discretizing the result of a continuum calculation is not the same as doing the
discretized calculation from the beginning, but it at least can serve to guide the eye. For
example one feature we immediately see from (9) is that the quadratic divergence seen in
(6) is expected to be reflected in the lattice calculation as a linear term in M in P−, which
can be absorbed in the bulk counterterm described in the introduction. We turn next to the
actual lattice calculation of the self-energy.

We start with the expression for the summand of the one loop correction to the closed
string propagator, depicted in Fig. 3. It is a product of factors, one for each of the D − 2
transverse coordinates xj

i . In the following we will display only 1 of the factors, calling its

6



J K L

M

1

Figure 3: Lattice worldsheet for the closed string self-energy. The dotted lines
are identified. There are K − 1 missing links.

coordinate xj
i :

〈N + 1, {xf}|0, {xi}〉closed(K, J) =

∫

dxK
i dx

L
i 〈L, {xf}|0, {xL}〉closed〈K, {xL}|0, {xK}〉open

〈J, {xK}|0, {xi}〉closede−T0[(xL
M−xL

1 )
2+(xK

M−xK
1 )2]/4 (10)

= Dclosed(J)Dopen(K)Dclosed(L)

∫

dxK
i dx

L
i e

iW−(K−1)B0−T0[(xL
M−xL

1 )
2+(xK

M−xK
1 )2]/4

where J +K + L = N + 1, and B0 = (1/2) sinh−1 1 is the counter term which removes the
boundary contribution to the free open string P−. Regarding the intermediate open string as
a closed string with a row of missing links, we see that K− 1 is the number of missing links,
which we have taken to be the ones linking site 1 to site M . The open and closed string free
propagators are defined in Appendix C. The factors D, which are the corresponding propa-
gators for vanishing values for the initial and final coordinates, are related to determinants
of the worldsheet discretized Laplacian, and are defined in Appendix B.

Energy eigenvalues are determined by identifying exponential time (τ = ix+) dependence
in the closed string propagator e−P−τ → e−a(N+1)P−

. In perturbation theory P− = P−
0 +∆P−

and

e−a(N+1)P−

= e−a(N+1)P−

0
[

1− a(N + 1)∆P− + · · ·
]

(11)

so we identify −a∆P− as the coefficient of N + 1 in the one loop correction to the closed
string propagator. The factor N + 1 is associated with one of the sums over the creation
and destruction times of the intermediate open string. In practice the factor is removed by
using time translation invariance to fix, say, the creation time, and summing only over the
destruction time.
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If we desire to use this formalism to calculate the corrections to excited energy levels, it
is necessary to deal with the fact that then the summand over K grows exponentially with
K. A convenient approach is to add a term −Kǫ to the exponent, which can be thought of
as adding ǫ to B0. Since all of the physically meaningful excited states have an excitation
energy of order 1/M , as long as ǫ > 0 is independent of M this is enough to tame the
exponential divergence. Actually, since B0 is a necessary counterterm which is expected to
receive corrections in perturbation theory, we cannot know a priori what its value should be.
All we know is B = (1/2) sinh−1 1 +O(g2). Thus in the context of nonperturbative studies
of the worldsheet path integral, it should be taken as a parameter to be tuned at the end of
the calculation to ensure Lorentz covariance.

For some states, such as the ground state and graviton state, the absence of lower energy
open string states that couple means that the K sum converges without the need for ǫ.
However, as we shall see later, because the convergence is then only like e−K/M , ultraviolet
divergences become entangled with infrared divergences, which then leads to violations of
Lorentz invariance since M ∝ P+. Introducing an ǫ > 0 prevents these artifacts from
entering. Thus, we should keep ǫ > 0 even in those fortuitous cases where it isn’t strictly
necessary for convergence.

2.1 Correction to the Closed String Ground Energy

Since there is only one ground state, it is uniquely singled out by taking J, L → ∞, in which
case it suffices to simplify matters by setting xi = xf = 0. Then iW is simplified to

iW = −T0

2

[

qK2
0

(

1

J
+

1

K

)

+ qL20

(

1

K
+

1

L

)

− 2qL0 q
K
0

1

K

+
∑

m

(qK2
cm + qK2

sm ) sinhλc
m cothJλc

m +
∑

m

(qL2cm + qL2sm) sinhλ
c
m cothLλc

m

+
∑

m

(qL2om + qK2
om ) sinhλo

m cothKλo
m − 2

∑

m

qLomq
K
om

sinh λo
m

sinhKλo
m

]

(12)

In this equation λo
m = 2 sinh−1 sin(mπ/2M) and λc

m = 2 sinh−1 sin(mπ/M) are the discrete
time versions of the normal mode frequencies for the open and closed strings,respectively.
Correspondingly, the q’s are the normal mode coordinates of the open or closed string, defined
in Appendix A. Note that when it makes no essential difference, we shall restrict M to be
odd to keep the description of the closed string modes as simple as possible.

We change integration variables to the closed string normal mode coordinates q0, qcm, qsm
for both K and L. The Jacobian for this variable change is unity, and we can express the
qom in terms of the closed string modes as follows:

qom =

{ qcm/2 m even

2
M

∑(M−1)/2
m′=1 qsm′Umm′ m odd

(13)
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where the overlap matrix Umm′ is defined in Appendix D. We also need

xM − x1 = −2

√

2

M

(M−1)/2
∑

m′=1

qsm′ sin
m′π

M
(14)

Then

iW − T0

4

[

(xL
M − xL

1 )
2 + (xK

M − xK
1 )

2
]

=

−T0

2

[

qK2
0

(

1

J
+

1

K

)

+ qL20

(

1

K
+

1

L

)

− 2qL0 q
K
0

1

K

+
∑

m

qK2
cm sinhλc

m(cothJλ
c
m + cothKλc

m) +
∑

m

qL2cm sinh λc
m(cothLλ

c
m + cothKλc

m)

−2
∑

m

qLcmq
K
cm

sinhλc
m

sinhKλc
m

+
∑

m

qK2
sm sinhλc

m coth Jλc
m +

∑

m

qL2sm sinh λc
m cothLλc

m

+
∑

m odd

(qL2om + qK2
om) sinhλo

m cothKλo
m − 2

∑

m odd

qLomq
K
om

sinh λo
m

sinhKλo
m

+
4

M

∑

m′,m′′

(qKsm′qKsm′′ + qLsm′qLsm′′) sin
m′π

M
sin

m′′π

M

]

(15)

Because of the equality qo2m = qcm, the integration over q0 and the qcm precisely implements
closure on these modes. This means that the result of those integrations is just the contri-
bution of those modes to Dclosed(N + 1). Consulting Appendix B for the various D’s, the
outcome of the integration over q0 and the qcm can be written

〈N + 1, {xf}|0, {xi}〉closed

= Dclosed
cos (N + 1)Dclosed

sin (J)Dopen
odd (K)Dclosed

sin (L)

∫

dqKsmdq
L
sme

iW ′−(K−1)B0

= Dclosed(N + 1)
Dclosed

sin (J)Dopen
odd (K)Dclosed

sin (L)

Dclosed
sin (N + 1)

∫

dqKsmdq
L
sme

iW ′−(K−1)B0 (16)

iW ′ = −T0

2

[

∑

m

(qK2
sm ) sinhλc

m coth Jλc
m +

∑

m

(qL2sm) sinhλ
c
m cothLλc

m

+
∑

m′,m′′

(qKsm′qKsm′′ + qLsm′qLsm′′)
( 4

M2

∑

m odd

Umm′Umm′′ sinh λo
m cothKλo

m

+
4

M
sin

m′π

M
sin

m′′π

M

)

− 8

M2

∑

m′,m′′

qKsm′qLsm′′

∑

m odd

Umm′Umm′′

sinhλo
m

sinhKλo
m

]

(17)

and we remind the reader that there are D− 2 such factors. To isolate the shift in a specific
energy level, we need to identify the exponential behavior in J, L as they approach infinity.
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For the ground state energy shift, it is sufficient to directly take J, L → ∞ with K fixed.
Then the coth J, cothL → 1 and

Dclosed
sin (N + 1) → e−(N+1)

∑(M−1)/2
m=1 λc

m/2

(

T0

2π

)(M−1)/4 (M−1)/2
∏

m=1

√

2 sinhλc
m (18)

Dclosed
sin (J)Dclosed

sin (L)

Dclosed
sin (N + 1)

→ eK
∑(M−1)/2

m=1 λc
m/2

(

T0

2π

)(M−1)/4 (M−1)/2
∏

m=1

√

2 sinhλc
m (19)

Change integration variables to q̄m = qsm
√

(T0/π) sinhλc
m. And we have

〈N + 1, {xf}|0, {xi}〉closed

→ Dclosed(N + 1)
Dopen

odd (K)eK
∑(M−1)/2

m=1 λc
m/2

∏

m

√

(T0/π) sinhλc
m

∫

dq̄Kmdq̄Lme
iW ′′−(K−1)B0

→ Dclosed(N + 1)
eK

∑M−1
m=1 (λ

c
m−λo

m)/2

∏M−1
m=1,odd

√
1− e−2Kλo

m

M−1
∏

m=1

√

sinhλo
m

sinhλc
m

∫

dq̄Kmdq̄Lme
iW ′′−(K−1)B0 (20)

where iW ′′ is defined below. It can be shown that

M−1
∏

m=1

sinh λo
m = 2−(M−1)

√

M
sinh 2M sinh−1 1

sinh 2 sinh−1 1

= 2−(M−1)

√

M
sinhM sinh−1 1 coshM sinh−1 1√

2
(21)

M−1
∏

m=1

sinh λc
m = 2−(M−1)M sinhM sinh−1 1 (22)

so, restoring all D− 2 factors in the amplitude and summing only over K, the time interval
spanned by the open string propagator, we infer

−a∆P−
G,closed = M

∑

K

[〈N + 1, (0)}|0, {0}〉closed
Dclosed(N + 1)

]D−2

= M

∞
∑

K=1

[

eK
∑M−1

m=1 (λ
c
m−λo

m)/2−(K−1)B0

∏M−1
m=1,odd

√
1− e−2Kλo

m

(

cothM sinh−1 1

M
√
2

)1/4 ∫

dq̄Kmdq̄Lme
iW ′′

]D−2

(23)

iW ′′ = −π

2

[

∑

m

(q̄K2
m + q̄L2m ) +

∑

m′,m′′

q̄Km′ q̄Km′′ + q̄Lm′ q̄Lm′′

√

sinh λc
m′ sinh λc

m′′

( 4

M2

∑

m odd

Umm′Umm′′ sinhλo
m cothKλo

m +
4

M
sin

m′π

M
sin

m′′π

M

)

10



− 8

M2

∑

m′,m′′

q̄Ksm′ q̄Lsm′′

√

sinh λc
m′ sinh λc

m′′

∑

m odd

Umm′Umm′′

sinh λo
m

sinhKλo
m

]

≡ −π

[

∑

m′,m′′

(q̄Km′ q̄Km′′ + q̄Lm′ q̄Lm′′)Am′m′′ + 2
∑

m′,m′′

q̄Km′ q̄Lm′′Bm′m′′

]

(24)

With the definitions on the last line
∫

dq̄Kmdq̄Lme
iW ′′

= det−1/2

(

A B
B A

)

= det−1/2(A +B) det−1/2(A− B). (25)

The last equality follows because the eigenvectors of

(

A B
B A

)

can be taken to be of the

form

(

v±
±v±

)

where v± is an eigenvector of A±B. Finally we summarize the result

−a∆P−
G,closed =

M
∞
∑

K=1

[

(

cothM sinh−1 1

M
√
2

)1/4
eK

∑M−1
m=1 (λ

c
m−λo

m)/2−(K−1)B0

∏M−1
m=1,odd

√
1− e−2Kλo

m

det−1/2

(

A B
B A

)

]D−2

(26)

Am′m′′ =
δm′m′′

2
+

2

M

sin(m′π/M) sin(m′′π/M)
√

sinhλc
m′ sinhλc

m′′

+
2

M2

∑

m odd

Umm′Umm′′ sinh λo
m cothKλo

m
√

sinhλc
m′ sinh λc

m′′

(27)

Bm′m′′ = − 2

M2

∑

m odd

Umm′Umm′′ sinh λo
m

√

sinhλc
m′ sinhλc

m′′ sinhKλo
m

(28)

(A± B)m′m′′ =
δm′m′′

2
+

2

M

sin(m′π/M) sin(m′′π/M)
√

sinhλc
m′ sinhλc

m′′

+
2

M2

∑

m odd

Umm′Umm′′ sinh λo
m

√

sinh λc
m′ sinh λc

m′′

[

tanh
Kλo

m

2

]±1

(29)

2.2 Correction to the Graviton Energy

For the shift in excited energy levels, we need to identify the non-leading exponential behav-
iors in the free closed string propagator. Since we also want to pick out a specific spin, it is
iimportant to work with the complete amplitude, including all D − 2 factors:

〈N + 1, {qf}|0, {qi}〉closedtotal =
[

Dclosed(N + 1)
]D−2

eiW
closed
total (30)

iW closed
total = −T0

2

[

(q0,N+1 − q0,0)
2

N + 1
+

M−1
∑

m=1

sinh λc
m

(

(q2
m,N+1 + q

2
m,0) coth(N + 1)λc

m

− 2qm,N+1 · qm,0

sinh(N + 1)λc
m

)]

(31)

11



where q denotes a D − 2 dimensional vector. Here we identify the m < M/2 modes with
cosine modes and the m > M/2 modes with sine modes. The graviton state on the lattice
has energy 2λc

1 above the ground state energy, and involves only the 1 modes. Also since it
is a symmetric traceless O(D − 2) tensor, its contribution to the closed string propagator
resides in the second order term in the expansion of

exp

[

T0(q
c
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0) sinhλ
c
1

sinh(N + 1)λc
1

]

∼

1 + 2T0(q
c
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0) sinhλ
c
1e

−(N+1)λc
1 (32)

+2T 2
0 (q

c
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0)
2 sinh2 λc

1e
−2(N+1)λc

1

as N + 1 → ∞. The first term (the 1) propagates an O(D − 2) scalar, the second term
propagates an O(D− 2) vector, and the third term propagates a combination of a traceless
symmetric tensor, and antisymmetric tensor and a scalar. Since all closed string states must
be cyclically invariant, the second (vector) term is projected out of the spectrum. But, in
any case, for the shift in the graviton energy, we may simply drop the first two terms, and
keep only the symmetric traceless, cyclically invariant part of the third term.

To identify the contribution of the cyclically symmetric states to the third term we
consider the new coordinates

q
±
1 ≡ q

c
1 ± iqs

1 (33)

which acquire the factor e±2πi/M under a cyclic transformation of one step. To make a
cyclically invariant combination, we must have equal numbers of + and − factors:

q
c
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0 =
1

2
(q+

1,N+1 · q−
1,0 + q

−
1,N+1 · q+

1,0) (34)

(qc
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0)
2 =

1

4
[(q+

1,N+1 · q−
1,0)

2 + (q−
1,N+1 · q+

1,0)
2]

+
1

2
q
+
1,N+1 · q−

1,0 q
−
1,N+1 · q+

1,0

→ 1

2
q
+
1,N+1 · q−

1,0 q
−
1,N+1 · q+

1,0 =
1

2
q+k
1,N+1q

−l
1,N+1 q−k

1,0q
+l
1,0

where the last line shows the only contribution that survives the cyclic symmetry require-
ments. To see the SO(D − 2) content write

q−k
1,0q

+l
1,0 = qck1,0q

cl
1,0 + qsk1,0q

sl
1,0 + i(qck1,0q

sl
1,0 − qsk1,0q

sk
1,0) (35)

The third (imaginary) term gives the contribution of the anti-symmetric tensor, whereas
the first two (real) terms give a symmetric tensor, which can further be decomposed into a
traceless symmetric tensor and a scalar:

qck1,0q
cl
1,0 + qsk1,0q

sl
1,0 =

[

qck1,0q
cl
1,0 + qsk1,0q

sl
1,0 −

δkl
D − 2

(qc2
1,0 + q

s2
1,0)

]

+
δkl

D − 2
(qc2

1,0 + q
s2
1,0) (36)
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The quantity in square brackets on the right represents the contribution of the graviton in
all spin configurations. To identify the graviton energy shift it is sufficient to simply pick
one polarization with k 6= l so that the trace subtraction drops out.

[

exp

{

T0(q
c
1,N+1 · qc

1,0 + q
s
1,N+1 · qs

1,0) sinhλ
c
1

sinh(N + 1)λc
1

}]

cyc inv

∼

1 + T 2
0 q

+k
1,N+1q

−l
1,N+1 q−k

1,0q
+l
1,0 sinh

2 λc
1e

−2(N+1)λc
1 + · · · (37)

= 1 + T 2
0 (q

ck
1,N+1q

cl
1,N+1 + qsk1,N+1q

sl
1,N+1)(q

ck
1,0q

cl
1,0 + qsk1,0q

sl
1,0) sinh

2 λc
1e

−2(N+1)λc
1 (38)

+(qck1,N+1q
sl
1,N+1 − qsk1,N+1q

cl
1,N+1)(q

ck
1,0q

sl
1,0 − qsk1,0q

cl
1,0) sinh

2 λc
1e

−2(N+1)λc
1 + · · · (39)

The first 1 term can be dropped in the calculation of the graviton and also the anti-symmetric
tensor energy shifts, since it contributes only for scalar states (the tachyonic ground state
and the massless dilaton. Then we can take J, L → ∞ in

〈N + 1, {xf}|0, {xi}〉Graviton
total (K, J)

∼ T 4
0 sinh

4 λc
1

[

Dclosed(J)Dopen(K)Dclosed(L)
]D−2

e−2(L+J)λc
1

∫

dqKmdqLi [q
ck
f,1q

cl
f,1 + qskf,1q

sl
f,1][q

ck
L,1q

cl
L,1 + qskL,1q

sl
L,1][q

ck′

K,1q
cl′

K,1 + qsk
′

K,1q
sl′

K,1][q
ck′

i,1 q
cl′

i,1 + qsk
′

i,1 q
sl′

i,1]

eiWtotal−(K−1)(D−2)B0−T0[(xL
M−x

L
1 )

2+(xK
M−x

K
1 )2]/4 (40)

The sum over K of this expression should be compared to the free closed string propagator
for the graviton

[D(N + 1)]D−2 T 2
0 sinh

2 λc
1e

−2(N+1)λc
1 [qckf,1q

cl
f,1 + qskf,1q

sl
f,1][q

ck
i,1q

cl
i,1 + qski,1q

sl
i,1] (41)

to read off the graviton energy shift:

MT 2
0 sinh2 λc

1

∞
∑

K=1

[Dclosed(J)Dopen(K)Dclosed(L)

D(N + 1)

]D−2

e2Kλc
1−(K−1)(D−2)B0

∫

dqKmdqLi [q
ck
L,1q

cl
L,1 + qskL,1q

sl
L,1][q

ck′

K,1q
cl′

K,1 + qsk
′

K,1q
sl′

K,1]e
iWtotal−T0[(xL

M−x
L
1 )

2+(xK
M−x

K
1 )2]/4

= −a

2
(δkk′δll′ + δkl′δlk′)∆P−

Graviton + Cδklδk′l′ (42)

where the C term contributes to the dilaton energy shift. (If C = 0 the graviton and dilaton
remain degenerate.) Here iW is the same expression (15) that we used in the evaluation of
the ground state energy shift. A simple way to isolate the graviton shift is to simply choose
index values for which the C term decouples. For example, take k = k′ = 1 and l = l′ = 2:

−a∆P−
Graviton = 2MT 2

0 sinh
2 λc

1

∞
∑

K=1

[Dclosed(J)Dopen(K)Dclosed(L)

D(N + 1)

]D−2

e2Kλc
1−(K−1)(D−2)B0

∫

dqKmdqLm[q
c1
L,1q

c2
L,1 + qs1L,1q

s2
L,1][q

c1
K,1q

c2
K,1 + qs1K,1q

s2
K,1]e

iWtotal−T0[(xL
M−x

L
1 )

2+(xK
M−x

K
1 )2]/4
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= 2MT 2
0 sinh

2 λc
1

∞
∑

K=1

[Dclosed(J)Dopen(K)Dclosed(L)

D(N + 1)

]D−2

e2Kλc
1−(K−1)(D−2)B0

∫

dqKmdqLm[q
c1
L,1q

c1
K,1q

c2
L,1q

c2
K,1 + qs1L,1q

s1
K,1q

s2
L,1q

s2
K,1]e

iWtotal−T0[(xL
M−x

L
1 )

2+(xK
M−x

K
1 )2]/4

≡ 2MT 2
0 sinh

2 λc
1

∞
∑

K=1

[Dclosed(J)Dopen(K)Dclosed(L)

D(N + 1)

]D−2

e2Kλc
1−(K−1)B0

(〈qc1L,1qc1K,1〉2 + 〈qs1L,1qs1K,1〉2)
∫

dqKmdqLme
iWtotal−T0[(xL

M−x
L
1 )

2+(xK
M−x

K
1 )2]/4 (43)

where in the second and third forms we take advantage of the fact that the integration is
over independent Gaussians, so the language of correlations reflected in the 〈· · ·〉 notation is
appropriate. The correlator of cosine modes is just that of the free closed string and is easily
shown to be

〈qc1L,1qc1K,1〉 =
sinhLλc

1 sinh Jλc
1

T0 sinhλc
1 sinh(K + J + L)λc

1

→ 1

2T0 sinhλc
1

e−Kλc
1 (44)

in the limit J, L → ∞.
The correlator of sine modes is of course more complicated because they involve the

nontrivial overlap of the closed and open string modes.

〈qs1L,1qs1K,1〉 =
π

T0 sinh λ
c
1

〈q̄s1L,1q̄s1K,1〉 (45)

〈q̄s1L,1q̄s1K,1〉 =

∫

dq̄K,mdq̄L,mq̄
s
L,1q̄

s
K,1e

iW ′′

∫

dq̄K,mdq̄L,meiW
′′

(46)

Recall that iW ′′ = −πq̄T
(

A B
B A

)

q̄ so adding a source term JT q̄, we complete the square

to evaluate

〈eJT q̄〉 = exp

{

1

4π
JT

(

A B
B A

)−1

J

}

(47)

With the definition
(

A B
B A

)−1

=

(

A′ B′

B′ A′

)

(48)

A′ = (A−BA−1B)−1 =
1

2

(

(A +B)−1 + (A− B)−1
)

B′ = (B −AB−1A)−1 =
1

2

(

(A +B)−1 − (A− B)−1
)

, (49)

we then have

〈qs1L,1qs1K,1〉 =
1

2T0 sinh λ
c
1

B′
1,1 (50)
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Figure 4: Log-linear plot for the summand of the rescaled ground state energy shift
(51), with each curve exhibiting its dependence on K for a fixed value of M . We
have rescaled the horizontal axis to K/M in order to demonstrate that for a large
enough value of the latter, log δP−

K develops the same slope. The plot also justifies
our choice Kmax = 2M for the cutoff in the K sum.

3 Numerical Analysis

3.1 Closed String Ground State

Here we will perform a numerical study of the 1-loop shift in the ground state energy for the
closed string in D = 26 dimensions, with the help of Mathematica. In particular, we will
rescale the energy shift (26) by an overall factor of M (notice also ∆P−

G,closed and δP−
K differ

by a minus sign),

−
a∆P−

G,closed

M
≡

∞
∑

K=1

δP−
K =

=
∞
∑

K=1

[

(

coth(M sinh−1 1)

M
√
2

)1/4
eK

∑M−1
m=1 (λ

c
m−λo

m)/2−(K−1)B0

∏M−1
m=1,odd

√
1− e−2Kλo

m

det−1/2

(

A B
B A

)

]24

,(51)

where A and B are given by (27),(28), as it will turn out that this yields a finite quantity for
M → ∞, which is just what is expected from the bulk term in ∆P−. It is instructive to start
by investigating the dependence of the summand δP−

K on M and K, as a means to also set a
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Figure 5: Summand for the rescaled ground state energy shift as a function of M
for K = 2, 3, 4, 5 ≪ M , including fits of the form (52).

reasonable cutoff Kmax ≥ K in the sum. For fixed M , δP−
K decreases rapidly for increasing

K, and for K ≫ M it becomes proportional to e−9.428K/M times an M-dependent factor.
This fact is evident in figure 4, which also indicates that Kmax = 2M is a sufficiently large
cutoff, given that the largest term in the sum is δP−

1 = 1 for any M , and δPKmax ≤ 10−12

for M ≥ 195, precisely indicating the accuracy of our cutoff.
For fixed K ≪ M , we also find a good fit to

δP−
K = cK1 +

cK2
M2

+O(
1

M3
) (52)

where roughly cK1 ∼ K−3 and cK2 ∼ K−1. The particular examples K = 2, 3, 4, 5 are
presented in figure 5. Since this behavior changes as K becomes comparable to M , it
suggests that the sum over K should give rise to a logM/M2 term due to

M
∑

K=1

cK2 ∼ H(M) ∼ logM for M ≫ 1 , (53)

whereH(M) is theM-th harmonic number. Similarly the sum of cK1 yields harmonic numbers
of order 3, whose large M expansion suggests the absence of an 1/M term.
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We should also note that in both regimes we examined, the general structure of the
dependence on M and K is correctly captured by the discretized version of the continuum
amplitude (9). Denoting the summand of the latter (up to a proportionality factor) with a
prime in order to avoid confusion, we have for D = 26

δP−′
K =

(

π

M sinh(πK/M)

)3

=







(

2π
M

)3
e−3πK/M +O(e−5πK/M) K ≫ M

1
K3 − π2

2KM2 +O( 1
M4 ) K ≪ M

(54)

For K ≫ M there is also approximate agreement in the value of the exponent, although
for the K ≪ M expansions more detailed comparison of the coefficients of δP−′

K and δP−
K

reveals that they are not simply proportional to each other.
Armed with this intuition, we proceed to the numerical calculation of (51), summed up to

Kmax = 2M , and for values of M ranging from 5 to 995 in steps of 10. We fit the generated
data for different subintervals between M ∈ [195, 995] to ensure that M is sufficiently large
and to test the stability of our fits, and also calculate the value of R2 as an estimate of their
goodness. We find that indeed the fit

−
a∆P−

G,closed

M
= c1 + c2

1

M2
+ c3

logM

M2
(55)

with
c1 = 1.158863267± 3 · 10−9 , c2 = 2.799± 0.011 , c3 = −2.800± 0.002 (56)

matches excellently with the data, with the values of the coefficients varying only mildly
when fitting different subintervals in M (the error estimates are precisely taking this interval
dependence into account).

Our main finding of this section, (55), is plotted against the numerical data in figure
6. We’ve also included the fit with c3 = 0 to show its insufficiency in accurately describing
the data. As far as the fit with c2 = 0 is concerned, it leads to values of c3 which may
differ up to 7% depending on the interval of the fit, and generally one should also expect a
constant multiplying M inside the logarithm. As additional evidence that theM-dependence
is indeed correctly captured by (55), we also mention that when fitting the entire interval
M ∈ [195, 995], the value of R2 differs from 1 by a mere 3 · 10−11, whereas for the c2 = 0
and c3 = 0 cases the differences are 6 · 10−5 and 0.002 respectively. Finally, our expectations
for the absence of an 1/M term is confirmed by the fact that its inclusion yields unnaturally
small values for its coefficient, and does not substantially improve the fit.

As described in the introduction, the bulk counterterm can be chosen to cancel the
contribution to P− proportional to M , and what is left gives the physically significant con-
tribution. Lorentz invariance requires that this residuum behave at large M as 1/M , since
∆m2 = 2MaT0(∆P− − Bulk Term). Our results (55),(56) contradict this requirement be-
cause of the lnM dependence. Taken literally, the result implies a logarithmically divergent
self mass: lnM = lnP+/aT0 = ln(1/a) + ln(P+/T0), which is to be expected from the dq/q
behavior in the covariant expression for the self-energy. As is well known this divergence can
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Figure 6: Rescaled ground state energy shift as a function of M . We present fits
with and without a logM term, in order to demonstrate the necessity of the latter
for agreement with the data.

be absorbed in a renormalization of the Regge slope parameter α′ = 1/2πT0. But the lnP+

signifies a noncovariant finite part.
The origin of this lnM factor can be traced to the sum over K of the 1/K dependence

we saw in the summand when K << M . The lightcone lattice has cutoff the logarithmic
UV divergence (small K), but the large K behavior is cut off at K = O(M), because the
level spacing is of order 1/M , so

∑

K(1/K) = O(lnM). As mentioned in the introduction,
the presence of the B0 counterterm offers a way to interpret the lattice calculation that
avoids the difficulty. By adding a small positive constant B0 → B0 + ǫ the cutoff on the
K sum becomes 1/ǫ instead of M , and the residuum will behave as (1/M) ln(1/ǫ) which is
still divergent as ǫ → 0, but remains compatible with Lorentz invariance. Then the ln(1/ǫ)
can be absorbed in a redefinition of T0 before taking M → ∞. As we shall see in the next
subsection, this same interpretation leads to a zero self-energy for the graviton state.

3.2 Graviton

We proceed to investigate how the lightcone lattice handles nontachyonic states by looking at
the 1-loop mass shift of the spin-2 excitation of the closed string, representing the graviton.
Similarly to the ground state, with the help of (44),(50), we may rewrite (43) in the J, L → ∞
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G in the rescaled graviton energy shift (57) as a function of
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Figure 8: Coefficient CK
G in the rescaled graviton energy shift (57) as a function M

for fixed K = 2, 3 ≪ M .
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Figure 9: CK
G δP−

K as a function M for fixed K = 2, 3 ≪ M . Comparing with figure
5, we notice that the constant terms are equal, and the 1/M2 coefficients roughly
opposite.
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limit as

−a∆P−
Graviton

M
=

1

2

∞
∑

K=1

[1 + (eKλc
1B′

1,1)
2]δP−

K ≡ 1

2

∞
∑

K=1

(1 + CK
G )δP−

K , (57)

where δP−
K is the summand of the rescaled ground state shift, defined in (51).

As δP−
K has been determined in the previous section, the only additional numerical com-

putation that has to be done is for the coefficient CK
G . A preliminary analysis shows that

for fixed M and varying K this is a rapidly increasing function which for K ≫ M becomes
proportional to roughly e6.28K/M , as can be seen in figure 7. However given the behavior of
δP−

K in the same regime, their product is guaranteed to converge, albeit more slowly. As far
as the regime K ≪ M is concerned, we observe that C1

G = 1 for any M , and more generally
CK

G = 1+ c/M2+O(1/M3). The first two nontrivial examples K = 2, 3 are plotted in figure
8. The fact that the constant term is independent of K and equal to one guarantees that
the leading divergence for the ground state and the graviton is the same, as it should for all
states.
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Figure 10:
∑

K CK
G δP−

K as a function of M . Again fits with and without a logM
term are presented, so as to demonstrate its necessity for matching with the data.

Before evaluating the entire sum (57), it is again useful to examine CK
G δP−

K for fixed K.
As can be seen in figure 9, for individual K ≪ M the latter has an expansion in M of the
form (52), where cK1 are roughly equal and cK2 are roughly opposite between the ground state
and the graviton. Then the sum in K is depicted in figure 10 similarly described by a fit
of the form (55), where again the coefficients c1 and c3 are found to be equal and opposite
respectively within our margins of error, however c2 = −1.93± 0.04. This is a first hint that
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Figure 11: Entire summand of rescaled graviton energy shift (57) as a function M
for fixed K = 2, 3 ≪ M .

although additional cancellations occur for the graviton, which may remove the divergent
logM terms, the lattice regularization, in the absence of the ǫ prescription, still leaves an
unphysical finite mass shift for the graviton. Moving now to the entire summand (57), from
figure 11 we infer it behaves as

1

2
(1 + CK

G )δP−
K = c̃K1 +

c̃K2
M4

+O(
1

M5
) (58)

with c̃K1 ≃ cK1 ∼ K−3 and c̃K2 ∼ K, which is consistent with

M
∑

K=1

c̃K2 ∼ M2/2 for M ≫ 1 , (59)

introducing an additional contribution that changes the c2 coefficient for the graviton, com-
pared to the ground state. Finally, we find that the fit for the entire rescaled energy shift
(see Fig. 12)

−a∆P−
Graviton

M
= c̃1 + c̃2

1

M2
, (60)

with
c̃1 = 1.158863276± 1.5 · 10−8 c̃2 = 0.454± 0.004 , (61)

is in very good agreement with the numerical data6 and our previous quantitative and qual-
itative observations.

Our results indicate the absence of the lnM Lorentz violating effect we found for the
tachyon7, but still the K sum with a cutoff of O(M), leads to the undesirable conclusion
that the graviton would gain a (necessarily finite) nonzero mass at one loop order. This is a

6In particular when fitting on the rangeM ∈ [195, 995], R2 differs from 1 by 10−5. Including an additional
logM/M2 term yields an unnaturally small coefficient and does not improve R2 significantly.

7A lnM divergence in the graviton self mass could not be absorbed in the Regge slope parameter because
at zeroth order the graviton is massless.
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Figure 12: Rescaled graviton energy shift as a function of M .

(more subtle) violation of Lorentz invariance. However, with the ǫ prescription introduced to
interpret the tachyon mass shift, this difficulty is avoided. Putting B0 → B0 + ǫ cuts off the
K sum at ∼ 1/ǫ, so the large M expansion at fixed ǫ encounters no 1/M2 contribution and
hence no shift in the graviton mass. It is important to appreciate that this interpretation
requires taking the continuum limit before taking ǫ → 0.

4 D-branes

We extend the discussion to the case when several of the transverse open string coordinates
satisfy Dirichlet conditions. In current popular terminology this is known as closed string
theory in the presence of D-branes [13]. To avoid confusion we will call such coordinates
y
j
i . We shall follow [14] in adapting the lightcone lattice to Dirichlet boundary conditions.

Starting from the closed string potential energy for one such coordinate

Vclosed =
T0

2

M
∑

i=1

(yi+1 − yi)
2 (62)

we pass to the potential energy for a Dirichlet open string with say yl = 0 by the following
substitution

(yl+1 − yl)
2 + (yl − yl−1)

2 → y2l+1 + y2l−1 + 2κy2l . (63)
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In other words we keep all M degrees of freedom on the lattice. Instead of trying to set
yl = 0, we decouple it from the other coordinates and give it a potential T0κy

2
l that makes

it produce an energy of O(1) in lattice units. This means that excitations of yl will have
infinite energy in the continuum limit, which therefore locks this degree of freedom in its
ground state. The normal modes for the Dirichlet open string coordinates qDm are defined in
Appendix A. In this case it is convenient to alter the corresponding normal mode expansion
for the closed string, which for M odd are

yk =
1√
M

q0 +

√

2

M

(M−1)/2
∑

m=1

[

qcm cos
2mπk

M
+ qsm sin

2mπk

M

]

. (64)

The modification for M even can be found in Appendix A.
We can express the open string normal modes in terms of the closed string ones

qDm =















qsm/2 for m even

2

M

(M−1)/2
∑

m′=0

qcm′UD
mm′ for m odd

(65)

where we have defined qc0 ≡ q0/
√
2, and UD

mm′ is given in Appendix D.
In constructing the one loop diagram, we would like the j = 0, N + 1 sites of the open

string propagator be assigned half the closed string potential energy. We have

V c − V D =
T0

2

(

(yM − yM−1)
2 + (y1 − yM)2 − y21 − y2M−1 − 2κy2M

)

= −T0yM(y1 + yM−1 + (κ− 1)yM) ≡ −2U(y). (66)

Thus the loop integrand is given by the product of the three propagators times the factor
eU(y) at each vertex. In terms of the closed string normal modes

yM =
1√
M

q0 +

√

2

M

(M−1)/2
∑

m′=1

qcm′ ≡
√

2

M

(M−1)/2
∑

m′=0

qcm′ (67)

y1 + yM−1 =
2√
M

q0 + 2

√

2

M

(M−1)/2
∑

m′=1

qcm′ cos
2m′π

M

≡ 2

√

2

M

(M−1)/2
∑

m′=0

qcm′ cos
2m′π

M
(68)

U(y) =
T0

M

(M−1)/2
∑

m′,m′′=0

qcm′qcm′′

[

κ− 1 + cos
2m′π

M
+ cos

2m′′π

M

]

(69)

where we defined qc0 ≡ q0/
√
2. Then the one loop correction to the closed string propagator

is
∑

K

∫

dyKi dyLi e
−(K−1)BD

0 +U(yK)+U(yL)〈L, {yf}|0, {yL}〉closed〈K, {yL}|0, {yK}〉D
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〈J, {yK}|0, {yi}〉closed

=
∑

K

Dclosed(J)DD(K)Dclosed(L)

∫

dyKi dyLi e
iW−(K−1)BD

0 +U(yK)+U(yL)

where as before we display only one factor for the Dirichlet coordinate y. Note that we
expect BD

0 6= B0 because of the different boundary conditions.

4.1 Closed String Tachyon Scattering of D-brane

For the case where yi = yf = 0 we have, for each Dirichlet coordinate y, a term

iW + U(yK) + U(yL) = −T0

2

[

qK2
0

1

J
+ qL20

1

L

+
∑

m

(qK2
cm + qK2

sm ) sinh λc
m cothJλc

m +
∑

m

(qL2cm + qL2sm) sinhλ
c
m cothLλc

m

+
∑

m

(qL2Dm + qK2
Dm) sinhλ

D
m cothKλD

m − 2
∑

m

qLDmq
K
Dm

sinhλD
m

sinhKλD
m

− 2

M

(M−1)/2
∑

m′,m′′=0

(

qKcm′qKcm′′ + qLcm′qLcm′′

)

(

κ− 1 + cos
2m′π

M
+ cos

2m′′π

M

)]

The next step is to change integration variables to the closed string normal modes, q0 =
qc0

√
2, qcm, qsm. The Jacobian for the change of variables yk → q0, qcm, qsm is unity, and

further changing q0 → qc0 gives a factor
√
2. The equality qD2m = qsm means that integrating

over the closed string sine modes simply implements closure on these modes. Thus we can
write

〈N + 1, {xf}|0, {xi}〉closed1loop

= Dclosed
sin (N + 1)Dclosed

cos (J)DD
odd(K)Dclosed

cos (L)

∫

2dqKcmdq
L
cme

iWD′−(K−1)BD
0

= Dclosed(N + 1)
Dclosed

cos (J)DD
odd(K)Dclosed

cos (L)

Dclosed
cos (N + 1)

∫

2dqKcmdq
L
cme

iWD′−(K−1)BD
0 (70)

where

iWD′ = −T0

2

[

qK2
0

1

J
+ qL20

1

L
+
∑

m

qK2
cm sinhλc

m coth Jλc
m +

∑

m

qL2cm sinh λc
m cothLλc

m

+
M
∑

m=1,odd

(qL2Dm + qK2
Dm) sinhλ

D
m cothKλD

m − 2
M
∑

m=1,odd

qLDmq
K
Dm

sinhλD
m

sinhKλD
m

− 2

M

(M−1)/2
∑

m′,m′′=0

(

qKcm′qKcm′′ + qLcm′qLcm′′

)

(

κ− 1 + cos
2m′π

M
+ cos

2m′′π

M

)]

(71)
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Taking J, L large, the factors in front of the integral reduce to

Dclosed
cos (J)DD

odd(K)Dclosed
cos (L)

Dclosed
cos (N + 1)

→
√

N + 1

JL

eK(
∑(M−1)/2

m=1 λc
m−

∑
m,odd λD

m)/2

∏

m,odd

√
1− e−2KλD

m

√
2

√

∏

m,odd sinh λ
D
m

∏(M−1)/2
m=1 sinh λc

m





T0

2π

(M−1)/2
∏

m=1

T0

π
sinhλc

m



 (72)

Meanwhile

iWD′ → −T0

2

[ (M−1)/2
∑

m′=1

(qK2
cm + qL2cm) sinhλ

c
m

+

(M−1)/2
∑

m′,m′′=0

(

qKcm′qKcm′′ + qLcm′qLcm′′

)

[

4

M2

M
∑

m=1,odd

UD
mm′UD

mm′′ sinh λD
m cothKλD

m

− 2

M

(

κ− 1 + cos
2m′π

M
+ cos

2m′′π

M

)]

− 8

M2

(M−1)/2
∑

m′,m′′=0

qKcm′qLcm′′

M
∑

m=1,odd

UD
mm′UD

mm′′

sinh λD
m

sinhKλD
m

]

(73)

Just as in the Neumann case it is convenient to absorb the factors in square brackets into a
rescaling of the integration variables q̄m = qcm

√

(T0/π) sinhλc
m for m = 1, · · · (M − 1)/2 and

q̄0 = q0
√

T0/2π = qc0
√

T0/π.

〈N + 1, {xf}|0, {xi}〉closed1loop

Dclosed(N + 1)
∼

√

2(N + 1)

JL

eK(
∑(M−1)/2

m=1 λc
m−

∑
m,odd λD

m)/2−(K−1)BD
0

∏

m,odd

√
1− e−2KλD

m

√

∏

m,odd sinh λ
D
m

∏(M−1)/2
m=1 sinh λc

m

∫

dq̄Kmdq̄Lme
iWD′

(74)

BD
0 = B0 −

λD
M

2

=
1

2
sinh−1 1− sinh−1

√

κ

2
=

1

2
ln

1 +
√
2

1 + κ+
√

κ(κ+ 2)
(75)

Comparing the prefactors in this formula with the corresponding factors for the Neumann
case we see that the extra factors are

√

2(N + 1)

JL

e−KλD
M/2
√

sinh λD
M

√

1− e−2KλD
M

≡
√

N + 1

JL

√

ηK−1
1− η2

1− η2K
(76)

where for brevity we have defined η ≡ 1 + κ −
√

κ(2 + κ) → 2 −
√
3 ≈ 0.268 for κ = 1.

The
√

(N + 1)/JL factor just reflects the fact that the intermediate open string has its ends
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fixed in space. In the Neumann case this factor would instead be 1. The factor ηK−1 can be
absorbed in the boundary counterterm, converting its zero coupling value back to B0. The
expansion in powers of η represents excitations of order O(1) in lattice units, which will be
suppressed in the continuum physics.

Finally we turn to the matrix determinant that results from the execution of the Gaussian
integration. For this we need to spell out WD′ which remains after integrating out the closed
string sine modes. Expressed in terms of the new variables q̄m′ , we write

iW ′′
D ≡ −π

[

∑

m′,m′′

(q̄Km′ q̄Km′′ + q̄Lm′ q̄Lm′′)AD
m′m′′ + 2

∑

m′,m′′

q̄Km′ q̄Lm′′BD
m′m′′

]

(77)

AD
00 =

2

M2

M
∑

m=1,odd

UD
m0U

D
m0 sinhλ

D
m cothKλD

m − 1 + κ

M
(78)

AD
0m′ = AD

m′0 =
2

M2

M
∑

m=1,odd

UD
mm′UD

m0

sinhλD
m cothKλD

m
√

sinhλc
m′

− κ+ cos 2m′π/M

M
√

sinhλc
m′

(79)

AD
m′m′′ =

δm′m′′

2
+

2

M2

M
∑

m=1,odd

UD
mm′UD

mm′′

sinh λD
m cothKλD

m
√

sinh λc
m′

√

sinh λc
m′′

−κ− 1 + cos(2m′π/M) + cos(2m′′π/M)

M
√

sinh λc
m′

√

sinh λc
m′′

(80)

BD
00 = − 2

M2

M
∑

m=1,odd

UD
m0U

D
m0

sinhλD
m

sinhKλD
m

(81)

BD
0m′ = BD

m′0 = − 2

M2

M
∑

m=1,odd

UD
mm′UD

m0

sinh λD
m

sinhKλD
m

√

sinh λc
m′

(82)

BD
m′m′′ = − 2

M2

M
∑

m=1,odd

UD
mm′UD

mm′′

sinh λD
m

sinhKλD
m

√

sinhλc
m′

√

sinhλc
m′′

(83)

For a Dp-brane there are D − p − 1 → 25 − p coordinates satisfying Dirichlet boundary
conditions. Putting everything together we have for the zero energy amplitude for a closed
string tachyon scattering off a Dp-brane:

−aMG,closed = M
∞
∑

K=2

[

(

cothM sinh−1 1

M
√
2

)1/4
eK

∑M−1
m=1 (λ

c
m−λo

m)/2−(K−1)B0

∏M−1
m=1,odd

√
1− e−2Kλo

m

]24

[

det−1/2

(

A B
B A

)]p−1
[

√

2π

MT0

√

1− η2

1− η2K
det−1/2

(

AD BD

BD AD

)

]25−p

(84)

η = 1 + κ−
√

κ(κ− 1) (85)

where the scattering amplitude is obtained from the one loop correction to the two closed
string function by stripping off the factor

√

MT0(N + 1)/2πJL for each Dirichlet dimension,

26



as explained at the end of Appendix C. The K = 1 term is not included in the scattering
amplitude since it contributes to the I term of the S-matrix.

4.2 Graviton Scattering off D-brane

Let us take the graviton polarizations to lie within the Dp-brane. Then in parallel to the
derivation of (43) we must simply insert the factors

2T 2
0 sinh

2 λc
1(〈qc1L,1qc1K,1〉2 + 〈qs1L,1qs1K,1〉2)e2Kλc

1 =
1

2
(1 + (B′

11e
Kλc

1)2) (86)

into the K summand for the closed string tachyon scattering amplitude.

5 Numerics of D-branes

In the case of a closed string tachyon scattering off a Dp-brane, it is convenient to define the
quantity

rK =

√

det(A +B) det(A− B)

M det(AD +BD) det(AD −BD)
, (87)

such that the corresponding zero energy amplitude (85) may be rewritten as

−aMG,closed

M
=

∞
∑

K=2

δP−
K

(

√

1− η2

1− η2K
rK

)25−p

, (88)

where δP− is the summand of the tachyon energy shift (51). For simplicity we have set
T0 = 2π and also κ = 1, as we have checked that varying its value does not substantially
change our results.

Hence the ratio rK essentially encodes the difference between Neumann and Dirichlet
boundary conditions, and we find that for K ≫ M it falls off exponentially to a value of
O(1) which depends very mildly on M , as can be seen in figure 13. For fixed K ≪ M we
find that the fit

rK = aK1 +
aK2
M2

+O(
1

M3
) (89)

matches very well with the data (see figure 14 for indicative values of K), and by further
examining the fitted coefficients for different values of K, we infer that they roughly vary as

aK1 ≈ 0.724 +
0.115

K − 1
, (90)

aK2 ≈ −0.204 + 0.369K , (91)

see also figure 15. By factoring out the constant term in aK1 , which dominates rK , we
can infer that the leading dependence of the entire amplitude (88) on p will be equal to
(0.724

√

1− η2)25−p or equivalently 0.69725−p.

27



0.0 0.5 1.0 1.5 2.0

0.7245

0.7250

0.7255

0.7260

0.7265

0.7270

0.7275

K�M

r K

995

795

595

395

195

M

0.0 0.5 1.0 1.5 2.0
10-11

10-9

10-7

10-5

0.001

0.1

K�M

r K
-

r K
+

1

995

795

595

395

195

M

Figure 13: Linear plot and Log-linear plot of rK and its first difference respectively,
where each curve corresponds to fixed M and varying K. On the left we see that
for K ≫ M rK approaches a value which only depends on M , and on the right in
particular that the difference of rK from this value is proportional to e−6.28K/M for
any M in this regime.
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Figure 14: rK as a function of M for K = 2, 15, including fits of the form (89).
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Figure 15: Values of the fitted coefficients aK1 , aK2 in (89) for K = 1, . . . , 30 plotted
against their estimates (90)-(91).
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Figure 16: Rescaled zero energy amplitude for a closed string tachyon scattering
off a Dp-brane for p = 3, 10, 15, 20 as a function of M .

In fact, it is evident that the only 1/(KM2) term in the summand (88) can arise when
the aforementioned p-dependent factor multiplies the O(1/M2) term in δP− (52), and given
(53), our analysis constitutes a definite prediction for the relation of the logM/M2 term of
the entire sum in the absence or presence of D-branes. Furthermore, the structure of rK is
such that no 1/K2 or K2n−2/M2n terms appear in the summand (88)8, and consequently no
1/M terms appear in the sum, so that its expansion to next-to-next-to-leading order in M is
expected to be of the the same form as in (55). Having gained this insight from the analysis
of rK and the summand, we proceed to evaluate and fit the entire zero energy amplitude
(88), and find that its leading large M behavior is indeed captured by an expansion of the
form

−aMG,closed

M
= c1 + c2

1

M2
+ c3

logM

M2
. (92)

In figure 16 we compare the fit with the numerics and for sample values of p, and give
for these cases the values of the p-dependent coefficients. It’s worth taking a closer look
at the dependence of c3 on p in order to see the effect of the presence of D-branes on the
undesirable logarithmic divergence, and also verify the prediction for its value based on the
aforementioned rK analysis. Plotting log(−c3) as a function of p ∈ [1, 25] (see figure 17) we

81/K2 would require that aK
1

has at least a linear term in K, whereas the K l/M2n terms that appear
always have l ≤ n− 3 for any n.
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Figure 17: Log-linear plot of the logM/M2 coefficient c3 in the large M expansion
of the tachyon-Dp-brane scattering amplitude (92), as a function of p.

identify a clear linear dependence, which we can fit in order to obtain

c3 = −2.800 · (0.697)25−p . (93)

This is precisely the coefficient of the corresponding term in the closed string tachyon energy
shift (56) times the factor we identified below (91). The dependence of c3 on p shows that the
presence of D-branes only softens the divergence in the sense of reducing its coefficient, but
cannot remove it completely. Furthermore, these results serve as additional evidence that
the existence of the divergence is solely due to the summation of the term in the summand
of the closed string tachyon self-energy, which behaves as 1/K for small K.

Finally, let us conclude by briefly examining what changes when instead of a tachyon
we have a graviton whose polarizations lie within the D-brane. We first recall that in the
absence of D-branes, the summand for the graviton rescaled energy shift (58) has no 1/M2

term, meaning that the graviton remains massless at short distances. On the contrary here
we notice that the presence of such a term in rK (89) will carry through to the graviton
summand, which can in turn be interpreted as mass generation due to the explicit breaking
of Lorentz invariance by the Dirichlet boundary conditions. Although in this particular case
the mass is tachyonic, generally having a mechanism for mass generation may be viewed a
desirable feature, as we are ultimately interested in using open string theory to probe QCD
phenomena. Thus the massless spin-1 states of the former will have to acquire a mass if they
are to be put in correspondence with massive gluonic states.
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summand of the tachyon-Dp-brane scattering amplitude (95), as a function of
p. Each line represents the K-th term in the sum, K = 2, . . . , 10, and the
value of the corresponding slope is also provided in the legend.

In more detail, if our previous fits (58)-(89) have captured the M-dependence of each
factor correctly, we should have

−aMGraviton

M
=

∞
∑

K=2

[
1

2
(1 + CK

G )δP−
K ]

(

√

1− η2

1− η2K
rK

)25−p

(94)

=
∞
∑

K=2

(

c̃K1 +
c̃K2
M4

+O(
1

M5
)
)

(

aK1 +
aK2
M2

+O(
1

M3
)

)25−p

=
∞
∑

K=2

[

c̃K1 (a
K
1 )

25−p + (25− p)c̃K1 (a
K
1 )

24−paK2
1

M2
+O(

1

M3
)
]

. (95)

In particular the ratio of the second to first term should be a linear function of p with slope
aK1 /a

K
2 which always becomes zero for p = 25, as we will now explicitly confirm. We fit the

summand in (94) for p = 1 . . . , 25 and K = 2, . . . , 10 to inverse powers of M up to O(1/M4),
take the ratio of the coefficients of the first two terms and perform linear regression in terms
of p for each value of K. As can be seen in figure 18, the dependence of the ratio of the
coefficients on p is clearly linear with the right intercept, and comparing the slope to aK1 /a

K
2

we find that in all cases it differs less than 0.1%.
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6 Discussion and Conclusion

In this article we have made a modest beginning to a critical study of the effectiveness of
the worldsheet lattice, introduced in [3], for implementing a regulated bosonic string loop
expansion. We have limited our analysis to the one-loop corrections to the closed string two
point function in the presence of D-branes, but we plan to analyze the open string self-energy
in a second paper.

A convenient way to summarize our results is to recapitulate the lightcone lattice in-
terpretation of the divergences in the well-known covariant expression for the closed string
tachyon self-energy (6):

−∆P− =
C

2P+

∫ 1

0

[

dq

q3
− 2

dq

q
+ qdq

]

(96)

The first term dq/q3 gives a quadratic divergence, which in the covariant description is
associated with the closed string tachyon disappearing into the vacuum. On the lightcone
worldsheet lattice, we have seen that this divergence is interpreted as a contribution to
P− ∼ −αM , which can be cancelled by the bulk counterterm proportional to the area
M(N + 1) of the worldsheet lattice. The only states that survive the continuum limit are
those with the smallest value of α. Since only energy differences are physically significant,
this shows that the quadratic divergence is physically inconsequential.

The second term dq/q gives a logarithmic divergence, associated with the disappear-
ance of a closed string dilaton into the vacuum. This divergence can be absorbed into
a renormalization of the Regge slope parameter α′. Our analysis using the worldsheet
lattice has shown that this divergence shows up as a contribution to P− behaving as
(aM)−1 lnM = (T0/P

+) ln(P+/aT0). The noncovariance of the finite residuum was caused
by a cutoff on the K = T/a sum proportional to M . If the cutoff were M independent the
noncovariance would disappear. We then noted that such a cutoff is naturally introduced
by adding a small positive number to the boundary counterterm B0 → B0 + ǫ. Then the
lnM is replaced by ln(1/ǫ) which can then be covariantly absorbed in a renormalization of
α′, before the continuum limit M → ∞.

This same ǫ prescription also prevents the graviton from gaining a mass in the absence
of D-branes. Interestingly, in the presence of a D-brane the low energy amplitude for a
graviton scattering off the D-brane, which can be thought of as a “self-energy” for a graviton
propagating parallel to the D-brane, suggests a nonzero graviton “mass” in spite of the ǫ
prescription. This is a consistent outcome since Lorentz invariance is broken by the Dirichlet
boundary conditions. This is important in applying these ideas to large N QCD, since the
closed string is supposed to model glueballs, all of which should be massive.

At a more fundamental level, we can recognize ǫ as a natural and bona fide physical
parameter of the lightcone worldsheet system: it is simply a measure of the boundary energy
B ≡ B0 + ǫ associated with the disappearance of a link. It is also the minimum energy
assigned to a free string bit. The free open string has a Lorentz invariant spectrum for only
one value B = B0 (or ǫ = 0), but it makes sense to study the physics of the system as a
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function of B (or ǫ). For sufficiently large B,

B >
2G

π
, ǫ >

2G

π
− 1

2
sinh−1(1) ≈ 0.1424350145, (97)

M free string bits will have an energy greater than the ground state energy of a closed string
of size M . In fact, for B this big, any system of open strings with total bit number M has
energy larger than P−

closed,G. Thus for B > 2G/π, the free closed string is stable against decay
into any number of open strings, and our scheme to sum planar diagrams should make good
physical sense.

Dialing the value of B gives us a new tool to analyze the fate of open string tachyons
in the bosonic string on the lightcone worldsheet lattice. One can attempt to simulate the
sum over all patterns of missing links, as explained in the introduction, in the closed string
propagator for a range of B values, and then study how the physics changes as B is gradually
decreased. If the dynamics is favorable, the system should find the true vacuum with all
traces of tachyons removed. Of course it is possible that the dynamics does not stabilize the
theory lending weight to the prevailing opinion that the presence of tachyons of the bosonic
string theory is an incurable disease which can only be cured by replacing the bosonic string
with the superstring.

By introducing a D3-brane and suitable orbifold projections, it is possible to arrange the
gauge boson sector of the open string to enjoy the same dynamics as gauge field theory in
4 space-time dimensions. Of course the open and closed string tachyons are still present,
but they could simply be a symptom that perturbation theory is being attempted about the
“wrong” vacuum. If so, analyzing the worldsheet lattice system as a function of B could
provide a way to find the “right” vacuum. It will be an interesting exercise to apply these
techniques to the problem of quark confinement.

Acknowledgments: This research was supported in part by the Department of Energy under
Grant No. DE-FG02-97ER-41029.

A Normal Modes

A string with P+ = MaT0 is described at a fixed time byM coordinates xi or yi, i = 1, · · ·M .
In this article we require several normal mode decompositions depending on the boundary
conditions.

Neumann Open String

xi =
1√
M

q0 +

√

2

M

M−1
∑

m=1

qom cos
mπ(i− 1/2)

M
(98)

q0 =

√

1

M

M
∑

i=1

xi, qom =

√

2

M

∑

i

xi cos
mπ(i− 1/2)

M
(99)
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Closed String (Neumann)

M odd :

xi =
1√
M

q0 +

√

2

M

(M−1)/2
∑

m=1

[

qcm cos
2mπ(i− 1/2)

M
+ qsm sin

2mπ(i− 1/2)

M

]

(100)

M even :

xi =
1√
M

(q0 + qsM/2(−)i)

+

√

2

M

M/2−1
∑

m=1

[

qcm cos
2mπ(i− 1/2)

M
+ qsm sin

2mπ(i− 1/2)

M

]

(101)

qcm =

√

2

M

∑

i

xi cos
2mπ(i− 1/2)

M
, qsm =

√

2

M

∑

i

xi sin
2mπ(i− 1/2)

M
(102)

qsM/2 =

√

1

M

M
∑

i=1

(−)ixi, for M even, q0 =

√

1

M

M
∑

i=1

xi (103)

Dirichlet Open String

yk =

√

2

M

M−1
∑

m=1

qDm sin
mπk

M
for k = 1, · · · ,M − 1, yM = qDM (104)

qDm =

√

2

M

M−1
∑

k=1

yk sin
mπk

M
, 0 < m < M, qDM = yM (105)

Closed String (Dirichlet)

M odd :

yi =
1√
M

q0 +

√

2

M

(M−1)/2
∑

m=1

[

qcm cos
2mπi

M
+ qsm sin

2mπi

M

]

(106)

M even :

yi =
1√
M

(q0 + qcM/2(−)i) +

√

2

M

M/2−1
∑

m=1

[

qcm cos
2mπi

M
+ qsm sin

2mπi

M

]

(107)

qcm =

√

2

M

∑

i

yi cos
2mπi

M
, qsm =

√

2

M

∑

i

yi sin
2mπi

M
(108)

q0 =

√

1

M

M
∑

i=1

yi, qcM/2 =

√

1

M

M
∑

i=1

(−)iyi, (for M even) (109)
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B Determinants

Define the normal mode frequencies of a one dimensional harmonic chain

αn ≡ 4 sin2 nπ

2(N + 1)
, n = 1, 2, . . . , N (110)

βn ≡ 4 sin2 mπ

2M
, m = 0, 1, . . . ,M − 1 (111)

γk ≡ 4 sin2 (k + 1/2)π

2K + 1
, k = 0, 1, . . . , K − 1 (112)

δn ≡ 4 sin2 mπ

M
, m = 0, 1, . . . ,M − 1 (113)

where α, β, γ, δ are the modes of a Dirichlet-Dirichlet, Neumann-Neumann, Dirichlet-Neumann,
closed chain respectively. Then we are interested in the following determinants: (see, for ex-
ample [15]:

DDDDD =

N
∏

n=1

M−1
∏

m=1

(αn + βm)
−1/2, DDNDN =

N
∏

n=1

M−1
∏

m=0

(αn + βm)
−1/2

DDDDN =
M−1
∏

m=1

K−1
∏

k=0

(βm + γk)
−1/2, DDNNN =

M−1
∏

m=0

K−1
∏

k=0

(βm + γk)
−1/2 (114)

DDD ring =

N
∏

n=1

M−1
∏

m=0

(αn + δm)
−1/2, DND ring =

N−1
∏

n=0

M−1
∏

m=0

(γn + δm)
−1/2

where the subscripts denote Dirichlet (D) or Neumann (N) boundary conditions on each of
the four edges of the rectangle. The cylinder determinant with Neumann boundary condi-
tions must be defined to exclude the overall zero mode:

DNN ring ≡
√
MN

∏

(n,m)6=(0,0)

(βn + δm)
−1/2 =

√
MN

M−1
∏

m=1

δ−1/2
m DDD ring

=

√

N

M
DDD ring (115)

The following product identities can be easily derived:

N
∏

n=1

(αn − z) =
sin(N + 1)κ

sin κ
,

K−1
∏

k=0

(γk − z) =
cos[(2K + 1)κ/2]

cos[κ/2]
(116)

M−1
∏

m=1

(δm − z) =
sin2(Mκ/2)

sin2(κ/2)
,

M−1
∏

m=1

(βm − z) =
sinMκ

sin κ
(117)

where z and κ are related by z = 4 sin2[κ/2]. Applying these identities at z = 0, κ = 0 shows
immediately that DDNDN = DDDDD/

√
N + 1 and DDNNN = DDDDN.
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For convenience we collect here the expressions for the open and closed string propagators
at vanishing initial and final coordinates [3]. These quantities are the determinants just
discussed in their various guises. For example Dopen is simply related to DDNDN, with one of
the products performed using the identities (117).

Dopen(N + 1) =
1√

N + 1

(

T0

2π

)M/2 M−1
∏

m=1

[

sinh(N + 1)λo
m

sinhλo
m

]−1/2

≡ Dopen
evenDopen

odd (118)

Dopen
odd (N + 1) =

(

T0

2π

)(M−1)/4 M−1
∏

m=1,odd

[

sinh(N + 1)λo
m

sinhλo
m

]−1/2

(119)

Dclosed(N + 1) =
1√

N + 1

(

T0

2π

)M/2 M−1
∏

m=1

[

sinh(N + 1)λc
m

sinhλc
m

]−1/2

≡ Dclosed
cos Dclosed

sin (120)

Dclosed
sin (N + 1) =

(

T0

2π

)(M−1)/4 (M−1)/2
∏

m=1

[

sinh(N + 1)λc
m

sinh λc
m

]−1/2

(121)

where, for simplicity, we have written these formulas assuming M is odd. If M were even,
appropriate adjustments to the limits of the products must be made.

C Propagators

C.1 Neumann Open String Propagator

〈N + 1, {xf}|0, {xi}〉open = Dopen(N + 1)eiWopen (122)

iWopen = −T0

2

[(q0,f − q0,i)
2

N + 1

+
M−1
∑

m=1

sinhλo
m

(

(q2m,i + q2m,f ) coth(N + 1)λo
m − 2

qm,iqm,f

sinh(N + 1)λo
m

)

]

(123)

λo
m = 2 sinh−1

(

sin
mπ

2M

)

(124)

Where the qm’s are the normal mode coordinates for the x’s. The right side is the result of
doing the integrations over all the xj

i with i = 1, · · · ,M and j = 1, · · ·N . The propagator
spans N + 1 time steps and this result corresponds to assigning half the potential energy
T0

∑M−1
i=1 (xj

i+1 − xj
i )

2/2 to time j = 0 and half to j = N + 1.

C.2 Dirichlet Open String Propagator

The Dirichlet open string propagator over a time of K = N + 1 steps is evaluated to be

〈N + 1, {qf}|0, {qi}〉D = DD(N + 1)eiW
D

(125)
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where

iWD = −T0

2

[

M
∑

m=1

(

(qf2Dm + qi2Dm) sinhλ
D
m cothKλD

m − 2qfDmq
i
Dm

sinhλD
m

sinhKλD
m

)

]

(126)

DD(N + 1) =

(

T0

2π

)M/2 M
∏

m=1

[

sinh(N + 1)λD
m

sinhλD
m

]−1/2

(127)

λD
M = 2 sinh−1

√

κ

2
, λD

m = λo
m = 2 sinh−1 sin

mπ

2M
, m = 1, · · ·M − 1(128)

We recall that the above expressions give the the result of integrating over all the variables
yji , for j = 1, · · · , N , with half the potential energy assigned to j = 0, N + 1, which is
consistent with the closure requirement.

C.3 Closed String Propagator

〈N + 1, {xf}|0, {xi}〉closed = Dclosed(N + 1)eiWclosed (129)

iWclosed = −T0

2

[(q0,f − q0,i)
2

N + 1
M−1
∑

m=1

sinh λc
m

(

(q2m,i + q2m,f) coth(N + 1)λc
m − 2

qm,iqm,f

sinh(N + 1)λc
m

)

]

(130)

λc
m = 2 sinh−1

(

sin
mπ

M

)

(131)

Where the qm’s are the normal mode coordinates for the x’s. When we divide the closed
string normal modes into sine and cosine modes, we arbitrarily call the m > M/2 modes
sine modes and the m < M/2 modes cosine modes. When M is even, the M/2 mode is not
doubled. The right side is the result of doing the integrations over all the xj

i with i = 1, · · · ,M
and j = 1, · · ·N . The propagator spans N + 1 time steps and this result corresponds to
assigning half the potential energy T0

∑M
i=1(x

j
i+1−xj

i )
2/2 to time j = 0 and half to j = N+1.

In sums like these it is understood that xj
M+1 ≡ xj

1. Whenever we concatenate at a time j
propagators with different numbers of missing links, we will understand that we add terms
T0(∆x)2/4 in the exponent so that the potential assigned to time j is that of the system
with the least number of missing links. For example, the concatenation of an open string
propagator with a closed string propagator entails the addition of T0(x

j
M − xj

1)
2/4 to the

exponent.
Finally, we resolve the zero mode dependence of the propagators in momentum space

∫

dp

2π
e−p2T/2P+

ei(x
CM
f −xCM

i )p =

√

P+

2πT
e−P+(xCM

f −xCM
i )2/2T

=

√

MT0

2π(N + 1)
e−MT0(xCM

f −xCM
i )2/2(N+1)
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∫

dp

2π
e−p2T/2P+

ei(x
CM
f −xCM

i )p =

√

MT0

2π(N + 1)
e−T0(q0,f−q0,i)

2/2(N+1) , (132)

where xCM ≡ ∑k xk/M = q0/
√
M is the center of mass coordinate. From this we see that

in extracting eigenstate amplitudes from propagators defined with Dirichlet conditions on
initial and final states, we must not include the factors

√

MT0/2π(N + 1) .

D Overlap Formulas

Neumann Open-Closed

qom =

{ qcm/2 m even

2
M

∑(M−1)/2
m′=1 qsm′Umm′ m odd

(133)

Umm′ =
sin(m′π/M) cos(mπ/2M)

sin2(m′π/M)− sin2(mπ/2M)
(134)

Dirichlet Open-Closed

qDM =
1√
M

q0 +

√

2

M

(M−1)/2
∑

m′=1

qcm′ ≡
√

2

M

(M−1)/2
∑

m′=0

qcm′ (135)

qDm = qsm/2, for m even (136)

qDm =

√
2

M
q0

M−1
∑

k=1

sin
mπk

M
+

2

M

(M−1)/2
∑

m′=1

qcm′

M−1
∑

k=1

sin
mπk

M
cos

2m′πk

M

≡ 2

M

(M−1)/2
∑

m′=0

qcm′

M−1
∑

k=1

sin
mπk

M
cos

2m′πk

M
(137)

where, for convenience, we have defined qc0 ≡ q0/
√
2. The sum over k is easily done

M−1
∑

k=1

sin
mπk

M
cos

2m′πk

M
=

δm odd

2

sin(mπ/M)

sin2(mπ/2M)− sin2(m′π/M)
≡ δm oddU

D
mm′ (138)

for oddm < M . We can unify the treatment of them = M mode by defining UD
Mm′ =

√

M/2
for m′ = 0, 1, · · · , (M − 1)/2:

qDm =















qsm/2 for m even

2

M

(M−1)/2
∑

m′=0

qcm′UD
mm′ for m odd

(139)
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Open-2 Open

q
(1)
0 =

√

M1

M
q0 +

√

2

MM1

M−1
∑

m′=1

qm′U
(1)
m′0, q(1)m =

2√
MM1

M−1
∑

m′=1

qm′U
(1)
m′m (140)

q
(2)
0 =

√

M2

M
q0 +

√

2

MM2

M−1
∑

m′=1

qm′U
(2)
m′0, q(2)m =

2√
MM2

M−1
∑

m′=1

qm′U
(2)
m′m (141)

U
(1)
m′m =

M1
∑

i=1

cos
m′π

M

(

i− 1

2

)

cos
mπ

M1

(

i− 1

2

)

=
(−)m

2

sin(m′πM1/M) sin(m′π/2M) cos(mπ/2M1)

sin2(m′π/2M)− sin2(mπ/2M1)
(142)

U
(2)
m′m =

M
∑

i=1+M1

cos
m′π

M

(

i− 1

2

)

cos
mπ

M2

(

i−M1 −
1

2

)

= −1

2

sin(m′πM1/M) sin(m′π/2M) cos(mπ/2M2)

sin2(m′π/2M)− sin2(mπ/2M2)
(143)

and we note the identity q
(1)
0

√
M1+q

(2)
0

√
M2 = q0

√
M , as expected from the fact that q0/

√
M

is the center of momentum of the open string.
We can also express the q’s in terms of the q(1), q(2)’s:

q0 = q
(1)
0

√

M1

M
+ q

(2)
0

√

M2

M
(144)

qm′ =

√

2

MM1

(

q
(1)
0 U

(1)
m′0 +

√
2

M1−1
∑

m=1

q(1)m U
(1)
m′m

)

+

√

2

MM2

(

q
(2)
0 U

(2)
m′0 +

√
2

M2−1
∑

m=1

q(2)m U
(2)
m′m

)

(145)

E Robustness of numerical results

In this appendix, we perform additional tests which verify the correctness of our numerical
results, within the stated accuracy. In particular, we recalculate δP−

K with more significant
digits9 for indicative values of M and K, and examine the improvement in its accuracy.

We will use the difference in δP−
K between the calculations with different number of

significant digits, ∆(δP−
K ), as a measure of our numeric error. We first notice that ∆(δP−

K )
decreases almost exponentially when K increases for fixed M , as can be seen in the example
of figure 19.

The decrease is so rapid that we can clearly consider the error of the K = 1 term as
the error of the entire sum, giving the rescaled ground state energy shift ∆P−

G,closed in (51).

9In particular, we now keep 20 significant digits compared to the 16 we had initially.
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Figure 19: Log-linear plot of the change in accuracy ∆(δP−
K ) as a function of K for

M = 205.
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Figure 20: Plot of the leading change in accuracy ∆(δP−
1 ) as a function of M .
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Fortunately, in this case we know the exact value δP−
1 = 1 for any M , allowing us to also

obtain the exact deviation of our numerical results from it, which we present in figure 20.
We first notice that the deviations are centered around zero, implying that no systematic
error that offsets the value of δP−

1 is present. Furthermore, it is evident that the deviation
increases with M , and for the range M ∈ [195, 995] we have based our fits on, in lies between
10−11 − 10−10.

Let us now compare this with the error in the fit for ∆P−
G,closed (55) as a result of the

uncertainty in the coefficients (56),

∆c1 ∼ 10−9 , ∆
( c2
M2

)

∼ 10−8 , ∆
(c3 logM

M2

)

∼ 10−8 for M ∼ 103 , (146)

where we estimated the smallest possible contribution of the last two terms by replacing M
with roughly the largest value we used in our numerical analysis. Clearly these uncertainties
are at least one order of magnitude larger than the errors due to our choice for the number
of significant digits, so the effect of the latter on the determined values for the coefficients
ci will be negligible. This successfully completes the investigation of the robustness of our
numerical results.
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