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Abstract

We compute the 4d superconformal index for N = 1, 2 gauge theories on S1 × L(p, 1),
where L(p, 1) is a lens space. We find that the 4d N = 1, 2 index on S1 × L(p, 1) reduces
to a 3d N = 2, 4 index on S1 × S2 in the large p limit, and to a 3d partition function on a
squashed L(p, 1) when the size of the temporal S1 shrinks to zero. As an application of our
index, we study 4d N = 2 superconformal field theories arising from the 6d N = (2, 0) A1

theory on a punctured Riemann surface Σ, and conjecture the existence of a 2d Topological
Quantum Field Theory on Σ whose correlation function coincides with the 4d N = 2 index
on S1 × L(p, 1).



1 Introduction

One of the beauties of supersymmetric gauge theories is that they are often amenable to exact

analysis. Recent studies have uncovered powerful techniques (mostly based on localization)

to extract exact results for 3d and 4d supersymmetric gauge theories, including the 4d N ≥ 1

superconformal index on S1 × S3 [1, 2], the 4d N ≥ 2 partition function on S4 [3], the 3d

N ≥ 2 partition function on S3 [4, 5, 6, 7, 8], and the 3d N ≥ 2 index on S1×S2 [9, 10, 11].

Given the richness of the subject, a natural question is whether there are precise relations

among different quantities. One such relation has been noticed by [12, 13, 14] (see also [15]),

which shows that a 4d index on S1 × S3 reduces to a 3d partition function on S3 when the

radius of the temporal S1 goes to zero. We will present yet another connection between 4d

and 3d quantities.

In this paper we study the superconformal index of 4d N = 1, 2 superconformal field

theories (SCFTs) on S1×L(p, 1), and obtain explicit expressions for them.1 This is the first

result of our paper, see section 2 and in particular the expressions in (9)–(17) and (25)–(29)

for the result and the appendix for the derivation. Here L(p, q), where p, q are coprime

integers, is the lens space defined as the orbifold of S3 : {(z1, z2) ∈ C2
∣∣ |z1|2 + |z2|2 = 1}

under the identification

(z1, z2) ∼
(
e2πiq/pz1, e

−2πi/pz2

)
, (1)

where SU(2)1 acts on (z1, z2) as a doublet (see section 2 for our notation). Without loss of

generality one can assume 0 < p and 0 < q ≤ p− 1. As for fermions, we choose the orbifold

action such that the supercharges Q̄Iα̇ are preserved, while QIα are broken. Note that this

action has no fixed points, and the manifold L(p, q) is still smooth. In this paper we consider

the case q = 1: L(p, 1) is the orbifold S3/Zp, where Zp acts on the S1 fiber of the Hopf

fibration. Equivalently, the Zp action is embedded into U(1)1 ⊂ SU(2)1.

Our S1 × L(p, 1) index in itself will serve as a useful tool to quantitatively study the

strongly coupled IR fixed points. For example our index could be used for checks of 4d

N = 1 Seiberg dualities. Mathematically, such a duality is expressed as an identity involving

an integral of a generalization of the elliptic Gamma function.2

The second result is about the compactification of the 4d theories. When 4d N = 1, 2

SCFTs are compactified on S1, they flow in the IR to 3d N = 2, 4 SCFTs. In our setup we

1The index of N = 4 super-Yang-Mills on S1 × S3/Zp was studied in [16, 17].
2For the generalization of the elliptic Gamma function see the infinite product form in (47) or (49), while

for its hyperbolic version see (52).
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Figure 1: A schematic summary of the relations obtained in section 2, 3 and 4.

have two circles: one circle (denoted by S1
T ) is the temporal S1, and another (denoted by

S1
H) is the S1 of the Hopf fibration. Depending on the choice of S1, we can study two limits

of our index.

In the limit S1
H → 0, i.e. p → ∞, the lens space L(p, 1) reduces to the two sphere and

we show that the 4d index reduces to the 3d index on S1
T × S2 (section 3):

I4d[S1
T × L(p, 1)]

p→∞−−−→ I3d[S1
T × S2] . (2)

In this limit the holonomies of the gauge field along S1
H in the 4d theory are mapped to the

monopole charges in the 3d theory. On the other hand in the limit S1
T → 0 the temporal

circle shrinks to zero and the 4d index reduces to the 3d partition function on L(p, 1) (section

4):

I4d[S1
T × L(p, 1)] → Z3d[L(p, 1)] when S1

T → 0 . (3)

The third result is about an application of our index (section 5). When the 4d theory

arises from the 6d (2, 0) theory on a punctured Riemann surface Σ, we conjecture the ex-

istence of a 2d topological quantum field theory (TQFT) on Σ whose correlation function

coincides with the 4d index on S1 × L(p, 1), generalizing a similar claim of [18, 19]. We

summarize the relations between the 4d index and the 3d quantities we will obtain in this

paper in figure 1.
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2 4d Index on S1 × L(p, 1)

In this section we will present our expression for the 4d N = 1, 2 superconformal indices3 on

S1 × L(p, 1). The derivation of these results is given in appendix A.

Consider a 4d N = 1 (N = 2) superconformal field theory on S1×S3. Its superconformal

algebra is given by SU(2, 2|1) (SU(2, 2|2)). We let the R-symmetry index and the super-

charges be I = 1 (I = 1, 2) and QIα, Q̄Iα̇, SIα, S̄Iα̇, respectively. Here α = ± (α̇ = ±) is the

index for the SU(2)1 (SU(2)2) spin of the SO(4) ' SU(2)1 × SU(2)2 rotational symmetry

of the three sphere.

The orbifold theory has a set of degenerate vacua, labeled by a non-trivial holonomy V

along the S1
H direction, since π1(L(p, 1)) = Zp. The holonomy V satisfies V p = 1 and can

be mapped to an element of the maximal torus through conjugation by an element of the

gauge group

V = (ω0
1N0 , · · · , ωp−1

1Np−1) , (4)

where ω = e2πi/p and the integers NI satisfy the relation
∑p−1

I=0NI = N with N the rank of

the gauge group. Another useful parametrization is given by m1, . . . ,mN , which is defined

as

(mi) = (0, · · · , 0︸ ︷︷ ︸
N0

, · · · , p− 1, · · · , p− 1︸ ︷︷ ︸
Np−1

) , NI =
(
#mi = I

)
. (5)

where i = 1, . . . , N and I = 0, · · · , p− 1. In this notation the i-th holonomy is given by ωmi .

The holonomy breaks the gauge group into a product of p subgroups

G →
p−1∏
I=0

GI , (6)

where the rank of GI is given by NI . For example, in case of a U(N) gauge group we have

U(N) →
∏p−1

I=0 U(NI).

2.1 N = 2 Index

Let us begin with the N = 2 index. We will comment on the N = 1 index later.

We define the index with respect to the supercharge Q ≡ Q̄2+ that survives the orbifold

3Despite the name, we can define this index for 4d N = 1, 2 theories which are non-conformal in the UV.
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projection. This is given by [1, 2]

I = Tr (−1)Fe−β̃ Ξ t2(E+j2) y2j1 v−(r+R) zF , (7)

where F is the fermion number, the trace is taken over the states of the theory on S3, and the

quantum numbers of the R-symmetries U(1)R ⊂ SU(2)R and U(1)r are denoted by (R, r).

The Ξ is the commutator of Q with its conjugate:

Ξ ≡ 2{Q,Q†} = E − 2j2 − 2R + r , (8)

and the index is independent of β̃. Therefore, only the states obeying Ξ = 0 contribute

to the index. The expression zF is a shorthand for
∏

j z
Fj
j , where Fj are charges with

respect to flavor symmetries (commuting with Q,Q†) and zj are their chemical potentials.

The operators E + j2, j1, R + r and Fi appearing in (7) are the maximal set of operators

commuting with Q and Q†.
In the path integral formulation, our 4d index for an N = 2 theory on S1 × L(p, 1) can

be written as

Ip(t, y, v, z) =
∑
m

I0
p,m(t, y, v, z)

∫ [
da
]

exp

[
∞∑
n=1

1

n
Îp,m(tn, yn, vn, zn; eina)

]
. (9)

Here, the index consists of a sum of indices labeled by the set of holonomies m ≡ {mi}, with

0 ≤ m1 ≤ · · · ≤ mN ≤ p− 1. The measure
[
da
]

is given by

[
da
]

=
1∏

I |WI |

N∏
i=1

dai
2π

∏
α∈G

α(m)=0

2 sin
α(a)

2
, (10)

where WI is the Weyl group of GI and the last product is over the roots of the unbroken

gauge group. This is the Haar measure of the unbroken gauge group
∏

I GI .

The function Îp,m is the single-letter contribution to the index, and is obtained by sum-

ming over all the fields Φ contributing to the index:

Îp,m(t, y, v, z; eia) =
∑

Φ

ÎΦ
p,m(t, y, v, z; eia) . (11)
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For a vector multiplet we find (see appendix A)

ÎN=2 vector
p,m (t, y, v, z; eia) =

∑
ρ∈Adj

[ (
t2v − t4v−1 + t6 − 1

)
Fp(t, y; [[ρ(m)]]) + δ[[ρ(m)]],0

]
eiρ(a) ,

(12)

and for a half-hypermultiplet in a representation R and with flavor charges F

ÎN=2 half-hyper
p,m (t, y, v, z; eia) =

∑
ρ∈R

(
t2v−1/2zF − t4v1/2z−F

)
Fp(t, y; [[ρ(m)]]) eiρ(a) , (13)

where the summations are over the weights of the adjoint representation and of the repre-

sentation R of G respectively.4 Here the function Fp(t, y;L) is defined by

Fp(t, y;L) =
1

1− t6

(
t3LyL

1− t3pyp
+
t3(p−L)y−(p−L)

1− t3py−p

)
, (14)

and we use the notation

[[x]] = { an integer y such that 0 ≤ y < p and y ≡ x (mod p)} . (15)

Finally I0
p,m(t, y, v, z) in front of the integral is the contribution from zero-point oscilla-

tions of the fields, which depends on the matter content of the theory. We have

I0
p,m(t, y, v, z) = exp

[
β
∑
α∈G

1 + µ

2p

(
p[[α(m)]]− [[α(m)]]2

)
− β

∑
Φ: half-hyper

∑
ρ∈RΦ

1 + µ− 2FΦν

4p

(
p[[ρ(m)]]− [[ρ(m)]]2

)]
, (16)

where we introduced the notation

t = e−
β
2 , y = e−βΩ1 , v = e−βµ zj = e−βνj . (17)

Note that this vanishes when the holonomy is trivial: m = 0, so that in the first term we

only considered the sum over the roots of G. Moreover, since [[−x]] = p − [[x]], we have

p[[x]]− [[x]]2 = p[[−x]]− [[−x]]2.

For concreteness, let us specialize to a U(N) gauge theory with vector multiplets and

tri-fundamental hypermultiplets. This is the theory we will discuss in section 5. We also set

4For an adjoint representation, this sum is over the roots of G as well as vanishing weights.
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the flavor chemical potential to zero, z = 1. Then the measure
[
da
]

becomes

[
da
]

=
1∏
I NI !

N∏
i=1

dai
2π

∏
i,j

mi=mj

2 sin
ai − aj

2
, (18)

which coincides with the product of Haar measures
∏

I

[
dUI
]

with NI ×NI unitary matrices

UI , whose eigenvalues are denoted by eiai . We have

ÎN=2 vector
p,m (t, y, v; eia) =

N∑
i,j=1

fp
(
[[mi −mj]]

)
ei(ai−aj) =

p−1∑
I,J=0

fp
(
[[I − J ]]

)
Tr(UI) Tr(U †J)

(19)

for a vector multiplet, and

ÎN=2 tri-fund
p,m (t, y, v; eia) =

N∑
i,j,k=1

gp
(
[[mi +mj +mk]]

)
ei(ai+aj+ak)

=

p−1∑
I,J,K=0

gp
(
[[I + J +K]]

)
Tr(UI) Tr(UJ) Tr(UK)

(20)

for a half-hypermultiplet in the tri-fundamental representation. Here we defined

fp(L) = (t2v − t4v−1 + t6 − 1)Fp(t, y;L) + δL,0

gp(L) = (t2v−
1
2 − t4v

1
2 )Fp(t, y;L) .

(21)

2.2 N = 1 Index

Let us repeat the discussion for the 4d N = 1 index given by

I(t, y, z) = Tr(−1)F t2(E+j2) y2j1 zF , (22)

where the trace is taken over all the fields satisfying

{Q,Q†} = E − 2j2 −
3

2
r̃ = 0 , (23)

and r̃ is the R-symmetry of the N = 1 superalgebra. When we regard the N = 2 SCFT as

the N = 1 SCFT, the R-symmetries R, r of the N = 2 SUSY recombine into the N = 1

R-symmetry r̃ and a flavor symmetry A commuting with Q. By comparing the definitions
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of the indices (compare (7)-(8) with (22)-(23), see also [20]) we obtain

r̃ =
4R− 2r

3
, A = −R− r . (24)

The same derivation as in appendix A works for the N = 1 theory, but there are some

important differences. First, we do not have a chemical potential v for the R-symmetry.

Second, there is a zero-point contribution eiB
0
p,m(a) to the measure of the theory. We have

B0
p,m(a) = −

∑
Φ: chiral

∑
ρ∈RΦ

ρ(a)

2p

(
p[[ρ(m)]]− [[ρ(m)]]2

)
. (25)

This correction is absent for a vector-like theory, including the N = 2 theories previously

discussed. The index is given by

Ip(t, y, z) =
∑
m

I0
p,m(t, y, z)

∫ [
da
]
eiB

0
p,m(a) exp

[
∞∑
n=1

1

n
Îp,m(tn, yn, zn; eina)

]
. (26)

The single-letter index Î for an N = 1 vector multiplet is

ÎN=1 vector
p,m =

∑
ρ∈Adj

(
(t6 − 1)Fp(t, y; [[ρ(m)]]) + δ[[ρ(m)]],0

)
eiρ(a) , (27)

where we used the same function (14). This is essentially the half of (12) corresponding to

an N = 1 vector multiplet. For an N = 1 chiral multiplet with flavor charges F we have

ÎN=1 chiral
p,m =

∑
ρ∈R

(
t3QzF eiρ(a) − t6−3Qz−F e−iρ(a)

)
Fp
(
t, y; [[ρ(m)]]

)
. (28)

In this expression we have included an anomalous R-charge Q (cf. [21]). In many N = 1

examples, the theory in the UV is not conformal but flows to a conformal fixed point in

the IR. In these situations, the IR R-symmetry is a mixture of the UV R-symmetry r̃ and

flavor symmetries, and we need to discuss non-trivial anomalous dimensions. This effect can

be incorporated by shifting the flavor chemical potential zF by t3(Q−2/3) = t2(3Q/2−1), where

3Q/2 is the anomalous dimension and the factor 2 comes from the definition of the index,

see (22).
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The total zero-point contribution I0
p,me

iB0
p,m(a) from vector and chiral multiplets is

I0
p,me

iB0
p,m(a) = exp

[
3β

4p

∑
α∈G

(
p[[α(m)]]− [[α(m)]]2

)
−
∑

Φ: chiral

∑
ρ∈RΦ

β
(
3− 3Q− 2FΦν

)
+ 2iρ(a)

4p

(
p[[ρ(m)]]− [[ρ(m)]]2

)]
, (29)

where the contribution of vanishing weights of the adjoint representation drops out and

α ∈ G now represents the sum over roots of the gauge group.

2.3 Refined Index

We can construct a refined 4d orbifold index which depends on holonomies for the flavor

symmetries, besides the chemical potentials. To construct it, both in N = 1 and N = 2

cases, we first define the flavor chemical potentials in an alternative equivalent way (therefore

setting z = 1 in the previous expressions): we introduce external vector fields for all flavor

symmetries. Let G̃ = G×H be the extended symmetry group, of which G is gauged and H

is external. We do not integrate over the external vector fields in (9) and (26), nor introduce

a single-letter contribution for them as opposed to (12) and (27). However in the half-hyper

(13) and the chiral multiplets (28) single-letter index, as well in the zero-point energies (16)

and (29), we sum over weights of the representation R under the full symmetry group G̃.

We can introduce holonomies eiaα of the external vector fields along the temporal direction

S1
T : up to conjugation, they are parametrized by parameters {aα} in the maximal torus of

H. After complexification of the cotangent bundle of the maximal torus, we can identify

eiaα = zα with the flavor chemical potentials.

For p > 1 we can also introduce flavor holonomies e2πimα/p, mutually commuting with

the temporal holonomies, along S1
H inside L(p, 1). The integer parameters {mα}, with 0 ≤

mα < p, provide a refined version of the index:

Ip(t, y, v; aα,mα) . (30)

Note that the flavor holonomies break the flavor group as H →
∏

I HI , and enter both in the

single-letter indices and in the zero-point energy. On the other hand as we do not integrate

over temporal flavor holonomies, we do not sum over flavor holonomies.

The refined index is useful if we want to compute the index of a theory obtained by
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gauging together two theories T1 and T2 along a common flavor symmetry factor H ′ (see

section 5)

Ip(t, y, v; a,m, c, s) =
∑
r

I0, vector H′

p,r

∫ [
db
]

exp

[∑
n

1

n
Îvector H′

p,r (tn, yn, vn; einb)

]
IT1p (t, y, v; a,m, b, r) IT2p (t, y, v; b, r, c, s) . (31)

Here a, b, c are flavor chemical potentials, m, r, s are flavor holonomies, (b, r) refer to the

common flavor symmetry H ′, and the inserted functions are the zero-point energy and single-

letter contribution of the gauge fields along H ′.

In the following sections we discuss the reduction of the 4d orbifold index to the 3d

partition function and the 3d index. Correspondingly, there are refinements of the 3d index

and 3d partition functions. The former is the generalized superconformal index of [22].

3 Relation to the 3d Index on S1 × S2

In this section we show explicitly that the p → ∞ limit of the 4d N = 1 index on S1 ×
L(p, 1) = S1 × S3/Zp gives the 3d N = 2 index on S1 × S2. A parallel analysis shows that

in the same limit the 4d N = 2 index on S1 × L(p, 1) reduces to the 3d N = 4 index on

S1×S2. This result can be regarded as yet another derivation of the 3d index, including the

non-trivial monopole charges. This approach does not require more intricate information

such as the choice of clever localization terms and supersymmetry transformation on curved

backgrounds. Notice that the present method can be applied to 3d theories coming from

dimensional reduction from the 4d parents, and cannot be used for theories with Chern-

Simons terms.

Let us take the limit p → ∞. The circle S1
H shrinks to zero size in this limit and thus

the chemical potential y along the direction goes to 1. The expression in the parenthesis

appearing in both (27) and (28) gets finite contributions in the limit from either [[ρ(m)]] ∼ 0

or [[ρ(m)]] ∼ p:

ÎN=1 vector
p,m →

∑
α∈G

(
− t3|α(m)| + δα(m),0

)
eiα(a) ,

ÎN=1 chiral
p,m →

∑
ρ∈R

t3QzF eiρ(a) − t6−3Qz−F e−iρ(a)

1− t6
t3|ρ(m)| .

(32)
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Note that the roots with α(m) = 0 do not contribute to the vector single-letter index. In

this limit, the total zero-point contribution I0
p,me

iB0
p,m(a) becomes

exp

[
3β

4

∑
α∈G

|α(m)| −
∑

Φ chiral

∑
ρ∈RΦ

β
(
3− 3Q− 2FΦν

)
+ 2iρ(a)

4
|ρ(m)|

]
= t3ε0zq0eib0(a) , (33)

with

ε0 = −1

2

∑
α∈G

|α(m)| − 1

2

∑
Φ

∑
ρ∈RΦ

(Q− 1) |ρ(m)| ,

q0,i = −1

2

∑
Φ

Fi(Φ)
∑
ρ∈RΦ

|ρ(m)| ,

b0(a) = −1

2

∑
Φ

∑
ρ∈RΦ

ρ(a) |ρ(m)| .

(34)

In summary, the p→∞ limit of the 4d index gives rise to

I =
∑
m

t3ε0zq0
∫

[da] eib0(a) exp

{
∞∑
n=1

1

n
Îp,m(·n)

}
, (35)

where Î is given by the sum of (32). This result coincides with the formula for the 3d index

given in [11],5 6 provided that we identify x = t3. Here x appears in the definition of the 3d

index

I = Tr
[
(−1)Fx(E+j)zF

]
, (39)

5With respect to the expression in [11], we have S
(0)
CS = 0 because our 3d theories arise from the dimensional

reduction of 4d theories and do not have a Chern-Simons term in the Lagrangian.
6 We could make use of the identity

∏
α∈G,α(m)=0

2i sin
α(a)

2
= exp

( ∞∑
n=1

1

n
g(eina)

)
with g(eia) = −

∑
α∈G,α(m)=0

eiα(a) , (36)

to rewrite the Haar measure [da] in terms of the flat measure [̃da]:

[̃da] =
1∏
I nI !

N∏
i=1

dai
2π

, (37)

reabsorbing the extra factor into the vector multiplet single-letter index. In this case we have

Îvector, flat
p,m = −

∑
α∈G

x|α(m)| eiα(a) , (38)

which is the expression found in [11].
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and the trace is taken over operators satisfying

{Q,Q†} = E − j − r̃ = 0 . (40)

Comparing (22), (23) and (39), (40), we see that t2(E+j2) = t6j2+3r̃ should be identified with

xE+j = x2j+r̃. This explains the parameter identification x = t3.

4 Relation to the 3d Partition Function on L(p, 1)

In this section we consider the 4d N = 1, 2 index on S1
T ×L(p, 1) and show that in the limit

S1
T → 0 it reproduces the 3d partition function of the dimensionally reduced 3d N = 2, 4

theory on L(p, 1).7 This is to be expected since when the circle shrinks the non-trivial modes

along the circle become infinitely massive and decouple from the spectrum, leaving only the

constant modes along S1
T . Indeed, the Lagrangian of the 4d and 3d theories are the same up

to terms irrelevant for the localization [14], and at the level of the one-loop determinant the

S1
T → 0 limit is realized as (see (61))

∏
E

∞∏
n=−∞

(
2πin

β
+ E

)
→
∏
E

E , (41)

where we regularized the divergent constant
∏

n6=0

(
2πin
β

)
. The right hand side is precisely

the one-loop determinant of the 3d theory.

4.1 3d Partition Function on L(p, 1)

Let us first present the 3d partition function on the lens space for general 3d N = 2 theories,

in the absence of Chern-Simons terms. This in itself is a useful result regardless of the

reduction from the 4d index. The answer can be obtained by generalizing the localization

procedure of [4, 7, 8]. The reduction from the 4d index provides another derivation of this

result.

The partition function takes the following form:

Z3d[L(p, 1)] =
∑
m

∫ [
da
]

3d
Zvector

1-loop [a,m]Zchiral
1-loop[a,m] , (42)

7The same problem for p = 1 was analyzed in [12, 13, 14]. See also [23, 24] for the 3d partition function
for a pure gauge theory without matters on lens spaces and more generally on Seifert manifolds. Our 3d
partition function on a lens space includes the coupling with matter.
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where
[
da
]

3d
is a Vandermonde measure of the residual gauge symmetry

[
da
]

3d
=

1∏
I NI !

N∏
i=1

dai
∏
α∈G

α(m)=0

α(a) , (43)

and Zvector
1-loop and Zchiral

1-loop are the one-loop determinants of the gauge and matter sectors. For a

vector multiplet:

Zvector
1-loop [a,m] =

∏
α>0

sinh
[
π
p

(
α(a) + iα(m)

)]
sinh

[
π
p

(
α(a)− iα(m)

)]
(
α(a)

)2δα(m),0
, (44)

whose denominator cancels the Vandermonde measure (43).

For a chiral multiplet with an anomalous R-charge Q, the one-loop determinant becomes

Zchiral
1-loop[a,m] =

∏
ρ∈R

∞∏
l=0

(
l + 2−Q+ iρ(a)

l +Q− iρ(a)

)Nρ(l)

, (45)

where Nρ(l) is defined to be the number of half-integers m1 ∈ {− l
2
,− l

2
+ 1, . . . , l

2
− 1, l

2
}

satisfying

2m1 = ρ(m) (mod p) . (46)

The one-loop determinant (45) becomes trivial for the N = 2 chiral multiplet (which has

Q = 1) inside the N = 4 vector multiplet.

4.2 From the 4d Index to the 3d Partition Function

Consider the reduction from the 4d N = 1 index to the 3d N = 2 partition function.

Let us start with the chiral multiplet. The orbifold index given in (74) can be written,

with the use of (68) and (63), as

IN=1 chiral
p,m =

∏
ρ∈R

∏′

n1,n2≥0

1− t3(n1+n2)+6−3Qyn1−n2z−F e−iγρ(a)

1− t3(n1+n2)+3Qyn1−n2zF eiγρ(a)
, (47)

where we rescaled a by a factor γ for later purpose, and prime means that the product is over

the non-negative integers n1, n2 satisfying the orbifold condition n1− n2 = ρ(m) (mod p) in

(71).8 The formula above provides a generalization of the elliptic Gamma function. Let us

8This is the infinite product in (62), and includes the zero-point contribution.
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define an integer l and a half-integer m1 as

l = n1 + n2 , m1 = (n1 − n2)/2 , (48)

then the orbifold condition (71) agrees with that of the 3d partition function (46) and we

can rewrite

IN=1 chiral
p,m =

∏
ρ∈R

∏′

l≥0
m1∈{− l

2
,− l

2
+1,..., l

2
}

1− t3l+6−3Qy2m1z−F e−iγρ(a)

1− t3l+3Qy2m1zF eiγρ(a)
. (49)

Now we set t = e−γ/3, y = z = 1 and take γ → 0 limit [13].9 The index then reduces exactly

to the 3d partition function of the chiral multiplet (45).

In the same way we can write the 4d index of the vector multiplet (73) as

IN=1 vector
p,m =

∏
α∈G

[
1

(1− eiγα(a))δα(m),0

∏′

l,m1

1− t3ly2m1e−iγα(a)

1− t3l+6y2m1eiγα(a)

]
. (50)

As before, setting y = 1 and taking the γ → 0 limit we obtain (up to overall constants

independent of the holonomies):

∏
α∈G

[
1

(α(a))δα(m),0

∞∏
l=0

(
l + iα(a)

l + 2 + iα(a)

)Nα(l)
]

=
∏
α∈G

[
1

(α(a))δα(m),0

∞∏
l=0

(
l + iα(a)

)Nα(l)−Nα(l−2)

]

=
∏
α∈G

[
1(

α(a)
)δα(m),0

∏
l≥0

−l−α(m)∈ pZ

(
l + iα(a)

) ∏
l≥0

l−α(m)∈ pZ

(
l + iα(a)

)]

=
∏
α>0

sinh
[
π
p

(
α(a) + iα(m)

)]
sinh

[
π
p

(
α(a)− iα(m)

)]
(
α(a)

)2δα(m),0
,

(51)

where we defined Nα(l) = 0 when l < 0. This result coincides with the 3d partition function

of the vector multiplet (44). The measure term in the 4d index (18) becomes that of the 3d

partition function (43) after rescaling a by a factor of γ, and this verifies our claim of the

relation between the 4d index and the 3d partition function on the lens spaces.

Finally, let us take a more general limit t = e−γ/3, y = e−γη, z = e−γν with γ → 0 while

9The γ here is different from β in (17) by a factor 3/2, and is the same as the β in [13].
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keeping η, ν finite. The one-loop determinants then become:

Zvector,η
1-loop [a,m] =

∏
α∈G

∏′

l,m1

l + 2m1η + iα(a)

l + 2 + 2m1η − iα(a)

=
∏
α∈G

∏′

n1,n2≥0

n1(1 + η) + n2(1− η) + iα(a)

n1(1 + η) + n2(1− η) + 2− iα(a)
,

Zchiral,η
1-loop [a,m] =

∏
ρ∈R

∏′

l,m1

l + 2−Q− νF + 2m1η + iρ(a)

l +Q+ νF + 2m1η − iρ(a)

=
∏
ρ∈R

∏′

n1,n2≥0

n1(1 + η) + n2(1− η) + 2−Q− νF + iρ(a)

n1(1 + η) + n2(1− η) +Q+ νF − iρ(a)
,

(52)

where we used (48). Notice that these provide generalizations of the hyperbolic hypergeomet-

ric Gamma function. Moreover we see that ν 6= 0 has the effect of changing the anomalous

R-charge Q. The remaining question is the effect of the parameter η: when ν = 0, η 6= 0,

the answer coincides with the 3d partition function on a squashed lens space (generalizing

the result of [25]) with the squashing parameter b =
√

1+η
1−η .

5 Relation to 2d TQFT

Let us apply our formalism to the class of 4d N = 2 SCFTs discovered by Gaiotto [26] (see

also [27, 28, 29]: these are obtained by compactifying the 6d (2, 0) AN−1 theory on punctured

Riemann surfaces Σ. In this paper we specialize to the case N = 2.

To obtain a Lagrangian description, we fix a pants decomposition of the surface. This is

specified by a graph, whose set of internal edges (trivalent vertices) we denote by G (V). An

internal edge l ∈ G corresponds to an SU(2) gauge group, and a trivalent vertex (l,m, n) ∈ V
corresponds to a tri-fundamental hypermultiplet. Since the total gauge group is SU(2)|G|,

the holonomy is determined by a set of integers mI
l .

The 4d orbifold index of this theory can be computed to be (recall (19) and (20))

Ip =
∑
mIl

I0
p,m

∫ ∏
l∈G

∏
I

[dU I
l ]

exp

(
∞∑
n=1

1

n

[∑
l∈G

fp(·n) TrAdj(U
n
l ) +

∑
(l,m,n)∈V

gp(·n) Trtri-fund(Un
l , U

n
m, U

n
n )

])
, (53)
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where fp and gp are defined in (21). Let us define

Cαi,αj ,αk ≡ exp

(∑
n

1

n
gp(·n) Trtri-fund(nαl, nαm, nαn)

)
,

ηαk,αl ≡ exp

( ∞∑
n=1

fp(·n) TrAdj(nαi)

)
∆(α)−1 ,

(54)

where ∆(α) is the square root of the measure given in (10). As in [18], this trivially satisfies

the axioms of TQFT, except for the associativity. We have checked the associativity by

series expansion. The associativity hold not for a fixed holonomy, but after summing over

the holonomies. We conjecture that the associativity holds in general; this can be regarded as

a non-trivial test of the S-duality of 4d N = 2 SCFTs. It is desirable to give an analytic proof

of the associativity. If this is the case, we have a 2d TQFT whose correlation function on the

Riemann surface coincides with the orbifold index for the 4d N = 2 theory characterized by

the same Riemann surface. When the lens space is a three sphere, the 2d theory is proposed

to be the q-deformed Yang-Mills theory [19]. To identify the 2d counterpart of the orbifold

index, it would be important to understand its relation to the AGT correspondence [30]

between 4d N = 2 partition functions on ALE spaces and 2d Para-Liouville/Toda theories

[31, 32, 33, 34, 35] (see also [36, 37, 38]). In a similar way, one could consider the 6d

N = (2, 0) A1 theory compactified on a Riemann surface with N = 1 twist, giving rise to 4d

N = 1 theories [39]. We expect their superconformal index and orbifold index to describe

some 2d topological theory on the Riemann surface.

In the limit p→∞ the 4d theory reduces to a 3d theory (which by mirror symmetry is

dual to a conventional quiver theory [40]), the 4d index reduces to the 3d index (section 3)

and it is expected that the 2d TQFT lifts to a 3d TQFT, perhaps along the lines of [41]. See

figure 2 for the schematic relations. Similarly, in the limit S1
T → 0 (γ → 0 in the notation

of section 4), we expect to recover a Chern-Simons theory with a non-compact gauge group

[42, 43, 44, 45, 46, 47]. It would be interesting to study these points further.
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Figure 2: The dimensional reduction from the 4d N = 2 index to the 3d N = 4 index, as
discussed in this paper, should correspond to a dimensional oxidation from the 2d TQFT to
a one higher dimensional theory.
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A Derivation of the 4d Index on S1 × L(p, 1)

In this appendix we derive our orbifold index in the path-integral formulation (cf. [48]). Let

us deal with the case of the 4d N = 2 SCFT first, and comment on the N = 1 case later.

The index (7) is written as

I = Tr(−1)Fe−β(E+j2+2Ω1j1−µ(r+R)+νF ) , (55)

where we used the notation (17), and H will denote the set of all fields contributing to the
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index. The expression (55) is equivalent to the path-integral over all the fields Φ in H

I =

∫
H
DΦ e−S[Φ] , (56)

where we impose a periodic boundary condition along S1 for fermions, and the chemical

potentials modify the covariant derivative with respect to the Euclidean time, acting on the

field Φ in a representation RΦ, to be

D0 = ∂0 − iρ(a)− j2 − 2Ω1j1 + µ(r +R)− νF , (57)

where ρ ∈ RΦ stands for the weight of the representation. Since the index does not depend

on gauge couplings, one can perform a path-integral exactly in the free field limit. The

one-loop contribution from a field Φ is

ZΦ =
∏
ρ∈RΦ

Det(−1)F+1 (−D2
0 + ∆Φ

)
, (58)

where ∆Φ is an operator whose eigenvalues are denoted by E2
Φ. For example, we have

∆Φ = −∆S3 + 1 for a scalar, where the term 1 comes from the conformal coupling of the

scalar field.

Let us expand the determinant in terms of the eigenvalues of ∂0:

Det(−D2
0 + E2

Φ) =
∞∏

n=−∞

(
2πin

β
+ EΦ,+

)(
−2πin

β
+ EΦ,−

)
, (59)

where

EΦ,± = EΦ ± (−iρ(a)− j2 − 2Ω1j1 + µ(r +R)− νF ) . (60)

Consequently:

ZΦ = ZΦ,+ZΦ,− , ZΦ,± =
∏
EΦ

∞∏
n=−∞

(
2πin

β
+ EΦ,+

)
. (61)

Since EΦ,+ and EΦ,− share the same energy but opposite charges, we recognize the two terms

as the contributions from a particle and its anti-particle. We therefore have

I =
∑
m

∫ [
da
] ∏
H

ZΦ,±
(−1)F+1

, (62)
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where the measure
[
da
]

comes from the gauge fixing (see [17], section 2.2), and we summed

over the holonomies m = {mi}. The product is over all states contributing to the index.

We can rewrite (62) with the help of the formula

∞∏
n=−∞

(2πin+ x) = 2 sinh
x

2
= e

x
2 (1− e−x) = e

x
2 exp

[
−
∞∑
m=1

1

m
e−mx

]
, (63)

which results in (neglecting overall constants)

I =
∑
m

∫ [
da
]
e−β

∑
H(−1)F

EΦ,±
2 exp

[
∞∑
n=1

1

n
Î(tn, yn, vn, zn; einβa)

]
, (64)

where we defined the single-letter index Î by

Î(t, y, v, z; eiβa) =
∑
H

(−1)Fe−βEΦ,± . (65)

The exponential factor e−β
∑
H(−1)F

EΦ,±
2 is the zero-point (Casimir) contribution to the energy

and chemical potentials. The Casimir part is easily obtained by differentiating the single-

letter index with respect to β:

∑
H

(−1)FE = −Finite
β→0

[
∂Î
∂β

]
, (66)

where we remove the divergent part in the β → 0 limit [10, 11]. We also neglect the

holonomy-independent part of the zero-point contribution, since this is merely an overall

shift of the index and does not affect the sum over the holonomies.

The remaining task is to explicitly evaluate the one-loop determinant, or equivalently Î.

This can be carried out by using the expressions for ∆Φ and EΦ. Alternatively, we can count

the operators contributing to the index, see Table 1.

For a half-hyper multiplet (q, ψ) with a weight ρ, the non-trivial contributions come from

∂n1
++∂

n2
−+q and ∂n1

++∂
n2
−+ψ̄+, where n1, n2 are non-negative integers. We therefore have

ÎN=2 half-hyper =
∑
ρ∈R

(
t2v−

1
2 zF eiρ(a) − t4v

1
2 z−F e−iρ(a)

)
F̃p(t, y; ρ(m)) , (67)
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operators E j1 j2 R r contribution to Î
φ 1 0 0 0 −1 t2v
λ1
±

3
2
±1

2
0 1

2
−1

2
−t3y, −t3y−1

λ̄2+
3
2

0 1
2

1
2

1
2

−t4v−1

F̃++ 2 0 1 0 0 t6

∂−+λ
1
+ + ∂++λ

1
− = 0 5

2
0 1

2
1
2
−1

2
t6

q 1 0 0 1
2

0 t2v−1/2zF

ψ̄+
3
2

0 1
2

0 −1
2

−t4v1/2z−F

∂±+ 1 ±1
2

1
2

0 0 t3y, t3y−1

Table 1: The operators contributing to the single-letter 4d N = 2 index Î. In Euclidean sig-
nature, the vector multiplet is given by (φ, φ̄, λIα, λ̄Iα̇, Fαβ, F̃α̇β̇) while the half-hypermultiplet

by (q, q̄, ψα, ψ̄α̇). We also included a constraint from the equation of motion for λ1.

where we defined

F̃p(t, y; ρ(m)) =
∑′

n1,n2≥0

(
t3(n1+n2)yn1−n2

)
, (68)

and the prime in the sum means that we sum over non-negative integers n1, n2 satisfying

the orbifold projection condition (71), to be given shortly.10 Since the dependence of F̃p on

ρ(m) is through (71), it clearly only depends on ρ(m) (mod p). Since R is a pseudoreal

representation, we have
∑

ρ∈R =
∑
−ρ∈R and we can write

ÎN=2 half-hyper =
∑
ρ∈R

(
t2v−

1
2 zF − t4v

1
2 z−F

)
F̃p(t, y; ρ(m)) eiρ(a) . (69)

The computation for a vector multiplet is similar, except that the fields λ1
± in the Table 1

require a special attention since they have non-zero 2j1 charge and come with the constraint

of the equation of motion. The answer is given by11

ÎN=2 vector =
∑
ρ∈Adj

[
(t2v − t4v−1 + t6 − 1) F̃p(t, y; ρ(m)) + δ[[ρ(m)]],0

]
eiρ(a) , (70)

10To compute Îorbifold we can first compute Î for the unorbifolded theory and then impose the orbifold
projection afterwards. This is because the supercharge Q used in the definition of the index commutes with
the orbifold action.

11Before taking the orbifold, we have a function

t2v − t4v − t3(y + y−1) + 2t6

(1− t3y)(1− t3y−1)
=

t2v − t4v + t6 − 1

(1− t3y)(1− t3y−1)
+ 1 .

The expression inside the square bracket in (70) is the orbifold of this expression.
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where we used
∑

ρ∈Adj =
∑
−ρ∈Adj and the function [[x]] is defined in (15).

The projection condition is given by

n1 − n2 = ρ(m) (mod p) . (71)

To see this, recall that the effect of the holonomy can be locally removed by a gauge trans-

formation; however, this modifies the global boundary condition, and we have a twisted

boundary condition. The integers n1 and n2 are the spins under the phase rotation of z1

and z2 in (1), and (71) ensures the single-valuedness of the wavefunction.12 Note that the

conditions are the same for bosons and fermions.

We can use (71) to evaluate the sum in (68). Let us write n1 − n2 = L + kp, with

L = [[ρ(m)]] so that 0 ≤ L < p, and k ∈ Z. We divide the sum into k ≥ 0 and k < 0, i.e. (a)

k ∈ Z≥0 and (b) k̃ ≡ −k − 1 ∈ Z≥0. Summing over n2, k in (a) and n1, k̃ in (b) we obtain

F̃p(t, y; ρ(m)) = Fp(t, y; [[ρ(m)]]) (72)

where Fp is the function given in (14).

It is straightforward to repeat the analysis for N = 1 theories. For an N = 1 vector

multiplet

ÎN=1 vector =
∑
ρ∈Adj

[
(t6 − 1) F̃p(t, y; ρ(m)) + δ[[ρ(m)]],0

]
eiρ(a) , (73)

and for a chiral multiplet with flavor charge F and anomalous R-charge Q,

ÎN=1 chiral =
∑
ρ∈R

(t3QzF eiρ(a) − t6−3Qz−F e−iρ(a)) F̃p(t, y; ρ(m)) . (74)
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