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Abstract

We present a system of a self-dual Yang-Mills field and a self-dual vector-spinor field with

nilpotent fermionic symmetry (but not supersymmetry) in 2 + 2 dimensions, that generates su-

persymmetric integrable systems in lower dimensions. Our field content is (Aµ
I , ψµ

I , χIJ), where

I is the adjoint index of arbitrary gauge group. The χIJ is a Stueckelberg field for consistency.

The system has local nilpotent fermionic symmetry with the algebra {Nα
I , Nβ

J} = 0. This system

generates supersymmetric Kadomtsev-Petviashvili equations in D = 2 + 1, and supersymmetric

Korteweg-de Vries equations in D = 1 + 1 after appropriate dimensional reductions. We also

show that a similar self-dual system in seven dimensions generates self-dual system in four dimen-

sions. Based on our results we conjecture that lower-dimensional supersymmetric integral models

can be generated by non-supersymmetric self-dual systems in higher dimensions only with nilpotent

fermionic symmetries.
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1. Introduction

The mathematical conjecture that self-dual Yang-Mills theory in D = 2 + 2 space-time dimensions is

likely to be the master theory for all integrable models in lower dimensions [1] has received much attention

in physics community. One of the reasons is that Ooguri and Vafa [2] showed that the consistent backgrounds

for N = 2 string theory should be self-dual gravity field for closed N = 2 strings, self-dual Yang-Mills field

for open strings, and self-dual Yang-Mills plus gravity in the case of N = 2 heterotic strings in D ≤ 4. Also,

topological strings are known to unify non-critical (super)strings, integrable models, and matrix models [3].

These developments elucidate the importance of self-dual supersymmetric Yang-Mills models in D =

2 + 2 [4][5]. The common notion is that the most fundamental N = 1 self-dual supersymmetric Yang-

Mills multiplet should contain the spins (1, 1/2). However, the supermultiplet (1, 1/2) for self-dual

supersymmetric Yang-Mills may be not unique, because of an alternative spin content (3/2, 1) with a

vector-spinor ψµ.
3) However, an interacting (3/2, 1) multiplet seems to imply local supersymmetry, because

the index µ on ψµ requires the transformation δQψµ = ∂µǫ+ · · · for consistent gauge interactions. Then

the closure of two supersymmetries leads to the space-time dependent parameter ξµ = (ǫ1γ
µǫ2) for local

translational symmetry necessitating a graviton, and thereby supergravity [6]. So there seems to be no

consistent way of introducing a vector-spinor as a super-partner field for self-dual Yang-Mills field without

supergravity.

One way to avoid this problem is as follows. We do not have to maintain ‘supersymmetry’ in D =

2 + 2. For example, as in [7] only nilpotent fermionic symmetry may be realized in D = 2 + 2, whereas

supersymmetries in D ≤ 3 may emerge as hidden symmetries. In the present paper, we present such a

system with the same field content (Aµ
I , ψµ

I , χIJ) as in [7]. Local nilpotent fermionic symmetry is needed

in [7] for consistency of the total system. We present a self-dual Yang-Mills field and a self-dual vector-

spinor with nilpotent fermionic symmetry, generating supersymmetric integrable systems in D ≤ 3 after

dimensional reductions. We also propose similar theories in D ≥ 5, based on the ‘generalized’ self-duality.

We stress in this paper the existence of ‘hidden’ supersymmetries that is not manifest in the original

4D. We use the terminology ‘hidden’, because supersymmetries in dimensions in D = 2 + 1 or D =

1 + 1 arising after dimensional reductions are not manifest in the original 4D. This situation is in a sense

very similar to the hidden E7(+7)/SU(8) symmetry in N = 8 supergravity in 4D [8]. Even though the

3) In supergravity [6], ψµ is called ‘gravitino’ as the super-partner of the graviton gµν . In this paper, we use the phrase
‘vecor-spinor’, avoiding the word ‘gravitino’ which is the super-partner of the graviton.
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final E7(+7)/SU(8) symmetry in 4D is supposed to be a part of the original N = 1 supergravity system

in 11D, such symmetry is not manifest, at least in a Lorentz-covariant manner in the original 11D.

This paper is organized as follows. In the next section, we give the foundation of our system based on

[7]. In section 3, we give the special case of D = 2+2, and give the explicit forms of self-duality conditions.

We also prepare for dimensional reductions into lower dimensions. In section 4, we perform the dimensional

reduction into D = 2 + 1, and show that N = 1 supersymmetric supersymmetric Kadomtsev-Petviashvili

equations are generated. Similarly, in section 5, we perform a dimensional reduction into D = 1 + 1, and

show that N = 1 supersymmetric Korteweg-de Vries equations are generated. In section 6, we give a similar

system in 7D with generalized self-duality. This system can be regarded as a more fundamental system than

4D system, because the former generates the latter by a simple dimensional reduction.

2. Foundation of System

We start with our algebra in the system [7]:4)

{
Nα

I , Nβ
J
}

= 0 ,
[[
T I , Nα

J
]]
= +f IJKNα

K ,
[[
T I , T J

]]
= +f IJKTK , (2.1)

where I, J, ··· = 1, 2, ···, dimG are the adjoint index for a Yang-Mills gauge group G. The Nα
I are the

nilpotent fermionic generators, while T I are the usual anti-hermitian generators for the group G. We

use α, β, ··· = 1, 2, 3, 4 as the spinorial index for a Majorana spinors in D = 2 + 2 [4][5]5) As in [7], the

corresponding field strengths are [7]

Fµν
I ≡ + ∂µAν

I − ∂νAµ
I + f IJKAµ

JAν
K , (2.2a)

Rµν
I ≡ +Dµψν

I −Dνψµ
I + χIJFµν

J , (2.2b)

Dµχ
IJ ≡ + ∂µχ

IJ + 2f ⌊⌈I|KLAµ
KχL|J⌋⌉ + f IJKψµ

K ≡ +Dµχ
IJ + f IJKψµ

K , (2.2c)

where Dµ is the gauge-covariant derivative. The peculiar Chern-Simons terms in (2.2b) and (2.2c) are

needed for the invariance of these field strengths [7]. The ψµ
I and χIJ are 2-component Majorana-Weyl

spinors in D = 2 + 2 composed of one-component spinors:

ψµ
I ≡

(
λµ

I

λµ
I∗

)
, χIJ ≡

(
ωIJ

ωIJ∗

)
, (2.3)

4) We use the symbol Nα
I for the nilpotent fermionic generator, lest readers should confuse it with the generator Qα of

supersymmetry.
5) Actually, the formulae in (2.2) through (2.7) except for (2.3) are valid in arbitrary space-time dimensions, not limited to

D = 2 + 2, as has been also mentioned in [7].
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where ∗ implies a complex conjugate [4][5]. The Bianchi identities for (2.2) are D⌊⌈µFνρ⌋⌉
I ≡ 0 and [7]

D⌊⌈µRνρ⌋⌉
I ≡ +F⌊⌈µν

JDρ⌋⌉χ
IJ , D⌊⌈µDν⌋⌉χ

IJ ≡ + 1
2
f IJKRµν

K − 3
2
f ⌊⌈IJ|KFµν

LχK|L⌋⌉ . (2.4)

Our nilpotent fermionic transformation δN is

δNψµ
I = +Dµζ

I , δNAµ
I = 0 , δNχ

IJ = −f IJKζK . (2.5a)

δNFµν
I = 0 , δNRµν

I = 0 , δN (Dµχ
IJ) = 0 , (2.5b)

where ζαI is the parameter for the nilpotent fermionic symmetry Nα. Our fields are also transforming

appropriately under the gauge transformation δT :

δT (Aµ
I , ψµ

I , χIJ ) = (+DµΛ
I , −f IJKΛJψµ

K , −2f ⌊⌈I|KΛKχL|J⌋⌉) , (2.6a)

δT (Fµν
I , Rµν

I , Dµχ
IJ ) = (−f IJKΛJFµν

K , −f IJKΛJRµν
K , −2f ⌊⌈I|KLΛKDµχ

L|J⌋⌉) , (2.6b)

showing the consistency of the system. For example, we can not skip the last terms in (2.2b) and (2.2c),

because they will lead to non-invariance of the field strengths in (2.6) [7].

The closure of gauge algebra is also confirmed as

⌊⌈δN (ζ1), δN (ζ2)⌋⌉ = 0 , (2.7a)

⌊⌈δN (ζ), δT (Λ)⌋⌉ = δN (ζ3) , ζI3 ≡ −f IJKΛJζK , (2.7b)

⌊⌈δT (Λ1), δT (Λ2)⌋⌉ = δT (Λ3) , Λ3
I ≡ +f IJKΛJ1Λ

K
2 . (2.7c)

Note that the properties of our system (Aµ
I , ψµ

I , χIJ) established so far except for (2.3) are valid also

in arbitrary space-time dimensions D, as has been also explicitly stated in [7]. We can also generalize the

space-time signatures to arbitrary ones.

3. Space-Time Dimensions D = 2 + 2 and Hidden Supersymmetry

We now limit our space-time dimensions to be D = 2 + 2. We impose self-duality conditions on the

F and R -field strengths as6)

Fµν
I ∗
= + 1

2
ǫµν

ρσFρσ
I , (3.1a)

Rµν
I ∗
= + 1

2
ǫµν

ρσRρσ
I . (3.1b)

6) We use the symbol
∗

= for an equality that holds upon self-duality conditions or certain ansätze for dimensional reductions.
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Needless to say, these self-dualities are also consistent with our nilpotent fermionic symmetry (2.5), because

each field strength is invariant under δN .

For generating supersymmeric integrable systems in later sections, we use the special metric [9][10],

ds2 = 2dz dx+ 2dy dt . (3.2)

In terms of these coordinates, our self-duality (3.1) is

Fxt
I ∗
= 0 , Fyz

I ∗
=0 , Fzx

I ∗
= + Fty

I , (3.3a)

Rxt
I ∗
= 0 , Ryz

I ∗
=0 , Rzx

I ∗
= +Rty

I . (3.3b)

We use also the symbols for fields

At ≡ H , Ax ≡ Q , Ay ≡ P , Az ≡ B , (3.4a)

λt ≡ τ , λx ≡ ξ , λy ≡ η , λz ≡ ζ . (3.4b)

The spinor field λ is upper one-component spinor in (2.3). Each field carries generators T I implicitly, e.g.

At ≡ At
IT I . Our self-duality (3.1) is equivalent to

∂xH − ∂tQ+ ⌊⌈Q, H⌋⌉
∗
= 0 , (3.5a)

∂yB − ∂zP + ⌊⌈P, B⌋⌉
∗
= 0 , (3.5b)

∂zQ− ∂xB − ∂tP + ∂yH + ⌊⌈B, Q⌋⌉ − ⌊⌈H, P ⌋⌉
∗
= 0 , (3.5c)

∂xτ − ∂tξ + ⌊⌈Q, τ⌋⌉ − ⌊⌈H, ξ⌋⌉
∗
= 0 , (3.5d)

∂yζ − ∂zη + ⌊⌈P, ζ⌋⌉ − ⌊⌈B, η⌋⌉
∗
= 0 , (3.5e)

∂zξ − ∂xζ − ∂tη + ∂yτ + ⌊⌈B, ξ⌋⌉ − ⌊⌈Q, ζ⌋⌉ − ⌊⌈H, η⌋⌉+ ⌊⌈P, τ⌋⌉
∗
= 0 . (3.5f)

We can show that the system (3.5) has hidden supersymmetry. This hidden supersymmetry should

not be confused with our original nilpotent fermionic symmetry Nα. We use the word ‘hidden’, because

the supersymmetry we are going to discuss is not manifest realized in Lorentz-covariant way in the original

D = 2+2. Such hidden supersymmetry is realized after breaking the original Lorentz symmetry in D = 2+2,

for the purpose of dimensional reductions.

The explicit form of hidden supersymmetry is dictated by

δαH = (α τ) , δαQ = (α ξ) , δαP = (α η) , δαB = (α ζ) ,
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δατ = α∂xH , δαξ = α∂xQ , δαη = α ∂xP , δαζ = α∂xB , (3.6)

where α is one-component spinor. The closure of supersymmetry is

⌊⌈δα1
, δα2

⌋⌉ = 2(α1α2) ∂x . (3.7)

It is straightforward to confirm that the equations in (3.5) are consistent under supersymmetry (3.6). It is

clear that hidden the supersymmetry (3.6) breaks the original Lorentz symmetry in D = 2 + 2. Therefore,

the meaning of ‘hidden’ supersymmetry is also evident, because to realize such supersymmetry, the original

Lorentz symmetry in D = 2 + 2, such as limiting the parameter of supersymmetry to be one-component

spinor, and the direction of translation to be only ∂x.

Eq. (3.5) has another kind of hidden supersymmetry, iff all the fields are Abelian:

δβH = (β ∂xτ) , δβQ = (β ∂xξ) , δβP = (β ∂xη) , δβB = (β ∂xζ) ,

δβτ = βH , δβξ = βQ , δβη = βP , δβζ = βB , (3.8)

with the one-component spinor β. The closure of supersymmetry is

⌊⌈δβ1
, δβ2

⌋⌉ = 2(β1β2) ∂x . (3.9)

Out of two supersymmetries (3.6) and (3.8), which one is realized depends on field representations, as

will be shown shortly.

4. Dimensional Reductions into D=2+1 and Supersymmetric Kadomtsev-

Petviashvili Equations

As an explicit application, we perform a dimensional reduction into D = 2 + 1 with the coordinates

(t, x, y), and show that N = 1 supersymmetric Kadomtsev-Petviashvili equations [11]

3
4
∂2yu+ ∂x

[
∂tu+ 1

4
∂3xu+ 3u ∂xu− 3

2
φ∂2xφ

]
.

=0 , (4.1a)

3
4
∂2yφ+ ∂x

[
∂tφ+ 1

4
∂3xφ+ 3

2
∂x(uφ)

]
.

=0 . (4.1b)

are generated. Here u is a real scalar, and φ is a one-component fermion. Eq. (4.1) is re-expressed as7)

3
4
∂2yΨ

.

= − ∂x

[
∂tΨ+ 1

4
∂3xΨ+ 3

2
∂x(ΨDΨ)

]
, (4.2)

7) We use the symbol
.

= for a field equation, for an equality valid by the use of field equation(s), or for an ansatz for
dimensional reduction as in section 6.
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in terms of a fermionic N = 1 superfield Ψ(t, x, y, θ) [11]:

Ψ(t, x, y, θ) ≡ φ(t, x, y) + θ u(t, x, y) , D ≡ ∂θ + θ∂x , D2 = ∂x . (4.3)

This dimensional reduction into D = 2 + 1 is performed by the ansätze

∂z
∗
=0 , B

∗
=0 , ζ

∗
=0 , (4.4)

and

H ≡ + 3
4
∂t ∂yu , Q ≡ + 3

4
∂x ∂yu , P ≡ −∂x

[
∂tu+ 1

4
∂3xu+ 3u ∂xu− 3

2
φ∂2xφ

]
,

τ ≡ + 3
4
∂t∂yφ , ξ ≡ + 3

4
∂x∂yφ , η ≡ −∂x

[
∂tφ+ 1

4
∂3xφ+ 3

2
∂x(uφ)

]
. (4.5)

Each field is Abelian without any generator. All equations in (3.5) are satisfied by (4.5) with (4.4), except

(3.5c) and (3.5f), which in turn generate (4.1) with an overall time-derivative ∂t. The integral constant

integrating ∂t is excluded by the boundary condition lim|x|→∞ u(t, x, y) = lim|x|→∞ φ(t, x, y) = 0.

Our hidden supersymmetry is the dimensionally-reduced version of supersymmetry (3.8) under (4.4):

δβH = (β ∂xτ) , δβQ = (β ∂xξ) , δβP = (β ∂xη) , (4.6a)

δβτ = βH , δβξ = βQ , δβη = βP , (4.6b)

when u and φ are transforming as δβφ = βDΨ
∣∣∣ = βu, δβu = βD(DΨ)

∣∣∣ = (β∂xφ).

5. Dimensional Reduction into D=1+1 and Supersymmetric Korteweg-

de Vries Equations

We next perform a dimensional reduction into D = 1 + 1, and show supersymmetry. We require

∂y
∗
= ∂z

∗
= 0, and choose Q ≡ Ax and H ≡ At to be zero [9][10]. The corresponding components of

ψµ
I are also put to zero:

∂y
∗
= ∂z

∗
= 0 , Q

∗
= 0 , H

∗
= 0 , ξ ≡ ψx

∗
= 0 , τ ≡ ψt

∗
= 0 . (5.1)

The self-duality conditions (3.5) under (5.1) are equivalent to the four equations

⌊⌈P, B⌋⌉
∗
= 0 ,

.
P

∗
= −B′ ,

.
η

∗
= − ζ′ , ⌊⌈P, ζ⌋⌉

∗
= ⌊⌈B, η⌋⌉ , (5.2)

where a dot (or prime) stands for ∂t (or ∂x). These conditions agree with those arising from N = 1 self-

dual supersymmetric Yang-Mills in D = 2 + 2 [12] (Cf. Eqs. (2.9), (2.10), (2.14) and (2.15) in [12].) This
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is already evidence that (5.2) has hidden supersymmetry in D = 1 + 1. In fact, the system (3.5) has

supersymmetry under the dimensional reduction (5.1):

δP = + (βη) , δB = +(βζ) , δη = +β̃ P ′ + α̃
.
P , δζ = +α̃

.
B + β̃ B′ . (5.3)

The closure of supersymmetry is ⌊⌈δ1, δ2⌋⌉ =
(
β2β̃ 1 ∂x + β2α̃ 1 ∂t

)
− (1 ↔ 2). Note that supersymmetry was

not realized in the original space-time D = 2+2, and therefore supersymmetry (5.3) is unexpectedly larger

symmetry compared with the original D = 2 + 2. In other words, we had only N = 0 supersymmetry in

D = 2 + 2, but after the dimensional reduction, we obtained N = 1 supersymmetry as the enlargement of

symmetries. This is a new phenomenon occurring in our peculiar system originally in D = 2+ 2 only with

nilpotent fermionic symmetry but not supersymmetry. According to common wisdom, supersymmetries

are supposed to be broken or at most preserved in dimensional reduction, while our system showed that

supersymmetries N > 0 arise out of non-supersymmetry N = 0 in higher dimensional parental theory.

Notice also that the fermionic fields in (5.3) originate from the vector-spinor in the parental theory in

D = 2 + 2.

As an explicit example, we consider the N = 1 supersymmetric Korteweg-de Vries equations in D =

1 + 1 [13]:8)

.
u
.

= − u′′′ + 6uu′ − 3φφ′′ = −(u′′ − 3u2 + 3φφ′)′ ≡ −f ′(x, t) , (5.4a)

.
φ
.

= − φ′′′ + 3u′ φ+ 3uφ′ = −(φ′′ − 3uφ)′ ≡ −g′(x, t) , (5.4b)

where u is a real scalar, and φ is a one-component spinor. This is equivalent to [13]

.
Ψ
.

= −Ψ′′′ + 3(ΨDΨ)′ = −(+Ψ′′ − 3ΨDΨ)′ , (5.5a)

Ψ(x, t, θ) ≡ φ(x, t) + θ u(x, t) , D ≡ ∂θ + θ∂x , D2 = ∂x . (5.5b)

Eq. (3.5) generates supersymmetric Korteweg-de Vries equations (5.5), under the Abelian-case ansatz

η ≡ Ψ
∣∣ = φ , P ≡ DΨ

∣∣ = u , (5.6a)

ζ ≡ (+Ψ′′ − 3ΨDΨ)
∣∣∣ , B ≡ [D(+Ψ′′ − 3ΨDΨ) ]

∣∣∣ . (5.6b)

The supersymmetry transformation δβ in (3.8) is now restricted under the dimensional reduction condition

(5.1) as

δβφ = βDΨ
∣∣∣ = βu , δβu = βD(DΨ)

∣∣∣ = (β∂xφ) , (5.7a)

8) These equations are called supersymmetric Korteweg-de Vries-3 equation in [13].
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δβP = (β ∂xη) , δβB = (β ∂xζ) , δβη = βP , δβζ = βB . (5.7b)

6. Example of Similar System in 7D

As we have promised, we next give an explicit analog in 7D. In 7D, there are generalized self-duality

conditions, based on the so-called octonionic structure constant [14] and reduced G2 holonomy [15][16]. In

Euclidian 7D, the reduced holonomy is G2 as the subgroup of the maximal holonomy SO(7) [17]. The

explicit form of self-duality condition in 7D on a Yang-Mills field is

Fµν
I ∗
= + 1

2
φµν

ρσFρσ
I , (6.1)

where φµν
ρσ is a constant dual to the totally antisymmetric octonionic structure constant ψµνρ associated

with G2 [14][17]:

φ4567 = φ2374 = φ1357 = φ1276 = φ2356 = φ1245 = φ1346 = +1 , (6.2a)

φµνρσ ≡ +(1/3!)ǫµνρστλωψψτωψ , (6.2b)

ψ123 = ψ516 = ψ624 = ψ435 = ψ471 = ψ673 = ψ572 = +1 . (6.2c)

All other components, such as φ2357 are zero. So even though the conventional totally anti-symmetric

ǫ -tensor ǫµνρσ is absent in 7D due to the 4 indices fewer than 7, we still can define self-duality based on

the reduced holonomy G2 [15][16], using φµνρσ .

Our objective now is to show that our system in 4D emerges out of a self-dual system in 7D, by a simple

dimensional reduction. We consider the case of Euclidean 4D, because of the subtlety with the octonionic

structure constant ψµνρ in the non-compact space-time D = 4+3 yielding D = 2+2 after a dimensional

reduction.9) Algebraically, the self-duality in 4D emerges out of the self-duality in 7D, because the holonomy

SO(4) ≈ SU(2)× SU(2) in 4D is a subgroup of the reduced holonomy G2 in 7D [19].

For the purpose of a simple dimensional reduction 7D → 4D, we start with the self-duality conditions

in 7D

F̂µ̂ν̂
I ∗
= + 1

2
φ̂µ̂ν̂

ρ̂σ̂F̂ρ̂σ̂
I , R̂µ̂ν̂

I ∗
= + 1

2
φ̂µ̂ν̂

ρ̂σ̂ R̂ρ̂σ̂
I . (6.3)

Needless to say, these self-dualities in 7D are also consistent with nilpotent fermionic symmetry, as has been

mentioned after (2.7). From now on, we use the ‘hat’ symbols for the fields and indices in 7D, in order to

9) We are grateful to L. Borsten and M. Duff [18] for discussing this point.

9



distinguiush them from 4D fields and indices. To be more specific, we use the symbols (x̂µ̂) = (xµ, yα) for

the coordinates xµ in 4D, and yα in the extra three dimensions. The coordinate indices are now

(µ̂) = (4, 5, 6, 7; 1, 2, 3) = (µ ; α).10)

The crucial requirements for our simple dimensional reduction are

∂αÂµ̂
I ∗
=0 , ∂αψ̂µ̂

I ∗
=0 , Âα

I ∗
=0 , ψ̂α

I ∗
=0 , (6.4a)

F̂µα
I ∗
=0 , F̂αβ

I ∗
=0 , R̂µα

I ∗
=0 , R̂αβ

I ∗
=0 , (6.4b)

Âµ
I ∗
=Aµ

I , ψ̂µ
I ∗
=ψµ

I , F̂µν
I ∗
=Fµν

I , R̂µν
I ∗
=Rµν

I , (6.4c)

so that we are left up only with

Fµν
I ∗
= + 1

2
ǫµν

ρσFρσ
I , Rµν̂

I ∗
= + 1

2
ǫµν

ρσRρσ
I , (6.5)

where ǫµν
ρσ = φµν

ρσ is nothing but the epsilon tensor for 4D, because φ4567 = ǫ4567 = +1. In other words,

we see that the self-duality conditions in (6.5) in 4D emerges out of self-duality conditions in (6.3) in 7D.

The only task left over is to confirm that our ansätze in (6.4) are actually consistent with the original

self-duality conditions (6.3). This is rather easily done, as follows. First, for (µ̂, ν̂) = (µ, α) in (6.3), the

l.h.s. of F and R -equations are zero, while their r.h.s. also vanishes, because of the fact that φ̂µνρα = 0 in

(6.2). Second, for (µ̂, ν̂) = (α, β) in (6.3), there are only six independent equations

0
?
= Ŷ12

I = +φ12
76Ŷ76

I + φ12
45Ŷ45

I = Y76
I + Y45

I , (6.6a)

0
?
= Ŷ23

I = +φ23
74Ŷ74

I + φ23
56Ŷ56

I = Y74
I + Y56

I , (6.6b)

0
?
= Ŷ31

I = +φ31
57Ŷ75

I + φ31
64Ŷ64

I = Y75
I + Y64

I , (6.6c)

where Y is either F or R, in order to save space. The important fact is that these six equations are

actually satisfied thanks to the six self-duality conditions (6.5) in 4D:

Y76
I ∗

= + ǫ76
45Y45

I = −Y45 , (6.7a)

Y74
I ∗

= + ǫ74
56Y56

I = −Y56 , (6.7a)

Y75
I ∗

= + ǫ75
64Y64

I = −Y64 . (6.7a)

Notice that not only the self-duality of the Yang-Mills field strength Fµν
I but also the self-duality of the

vector-spinor field strength Rµν
I in 4D emerges out of the generalized self-duality in 7D. Note that these

10) The reason why we do not choose the simpler option, for example, µ = 1, 2, 3, 4 and α = 4, 5, 6 is due to the lack
of the component φ1234 = +1 in (6.2a), while φ4567 is non-zero for the four consecutive coordinates.
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field strengths have non-trivial interactions due to the non-Abelian structure constants involved in these

field strengths. We have to stress that such a system especially with a vector spinor has not been presented

before, to our knowledge.

In principle, we can repeat similar confirmation for the dimensional reduction from the generalized self-

duality 8D [15][16] into the self-duality in 4D, but we skip it in this paper.

7. Concluding Remarks

In this paper, we have given the system (Aµ
I , ψµ

I , χIJ) with nilpotent fermionic symmetry in D =

2 + 2 with consistent interactions as in [7]. Our self-duality (3.1) is re-casted into (3.5), with hidden

supersymmetry valid for supersymmetric integrable models in D ≤ 3. Explicit examples are supersymmetric

Kadomtsev-Petviashvili equations in D = 2 + 1 [11] and supersymmetric Korteweg-de Vries equations in

D = 1 + 1 [13].

The emerging of hidden symmetries in lower dimensions is not new. For example, N = 1 supergravity

in 11D yields the hidden symmetry E7(+7)/SU(8) after a dimensional reduction into 4D [8]. However,

in the case of supersymmetry, it is usually reduced or preserved in dimensional reductions. Our system is

a counter-example against such common observations, because the number of supercharges is increased in

dimensional reductions.

We can generalize our result beyond D = 2 + 2 for the following reasons. First, our algebra (2.1) is

valid in arbitrary space-time dimensions D. Second, our field strengths are defined by (2.2) in arbitrary D.

Third, our transformations δN in (2.5) and δT in (2.6) are valid in arbitrary D. Fourth, our self-duality

(2.8) is genaralized to higher-dimensions without upper limit for D:

Fµν
I ∗
= + 1

2
φµν

ρσFρσ
I , Rµν

I ∗
= + 1

2
φµν

ρσRρσ
I , (7.1)

with an appropriate constant φµν
ρσ, such as the octonionic structure constant [20] in 7D for the reduced

holonomy G2 ⊂ SO(7), and in 8D for the reduced holonomy SO(7) ⊂ SO(8) [21][22][23]. Needless to say,

(7.1) has the nilpotent symmetry Nα, as the formulation in section 2 (originally from [7]) is valid in any

space-time dimensions. If we can establish (7.1) and show that our self-duality (3.1) in 4D is obtained by a

dimensional reduction, such a theory in certain D is ‘more fundamental’ than our theory in 4D.

As a matter of fact, supersymmetric self-dual Yang-Mills theories in dimensions D = 4, D =

5, 6, 7 (mod 4), D = 8 (mod 4), D = 9, 10, 11 (mod 4) have been discussed in [24]. As a matter of

11



fact, the existence of the constant φµν
ρσ in general space-time dimension D is discussed based on stability

group H ⊂ SO(D) [24].

There are five important aspects in our results. First, a vector-spinor ψµ
I with nilpotent fermionic

symmetry in 4D [7] is found to be important, because of its new application to self-dual Yang-Mills fields.

Second, it is not necessary to use the multiplet (1, 1/2) for self-dual supersymmetric Yang-Mills for our

purpose. Third, our system of (Aµ
I , ψµ

I , χIJ) is valid also in higher dimensions, supported by the explicit

example in 7D. Fourth, we have shown that this self-dual system in 7D generates our original self-dual system

in 4D by a simple dimensional reduction. Fifth, we have given the explicit examples of lower dimensional

supersymmetric integrable systems in 3D and 2D emerging out of non-supersymmetric system in D = 2+2.

To our knowledge, these examples have not been explicitly given in the past.

Especially, the last point is the most important aspect in this paper. According to common wisdom

about dimensional reductions, any lower-dimensional supersymmetry is attributed to higher-dimensional

supersymmetry. In particular, as mentioned above, the size of lower-dimensional supersymmetries is usually

smaller than the corresponding supersymmetry in higher dimensions, because supersymmetries are supposed

to be broken (or at most preserved) in dimensional reductions. A typical example is 0 ≤ N ≤ 8 in 4D

arising out of N = 1 supergravity in 11D, because N = 1 in 11D corresponds to N = 8 in 4D. Our

system in this paper serves as a counter-example against such common understanding, because N = 0 in

D = 2 + 2 yielded N ≥ 1 in D = 2 + 1 or D = 1 + 1. Based on our results, it is natural to conjecture

that similar systems exist in higher dimensions, even beyond 11D, because nilpotent fermionic symmetries

has no upper limit for space-time dimensions.

We are grateful to L. Borsten, M. Duff and M. Günaydin for discussions. This work is supported in part

by Department of Energy grant # DE-FG02-10ER41693.
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