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Abstract

Systematizing our results on r duality obtained previously we focus on comparing r
duality with the generalized Seiberg duality in the r vacua of N = 2 and N = 1 super-
Yang–Mills theories with the U(N) gauge group and Nf matter flavors (Nf > N). The
number of condensed (s)quarks r is assumed to be in the interval 2

3
Nf < r ≤ N . To pass to

N = 1 we introduce an N = 2 -breaking deformation, a mass term µ for the adjoint matter,
eventually decoupling the adjoint matter in the limit of large µ. If one starts from a large
value of the parameter ξ ∼ µm, where the original theory is at weak coupling, and let ξ
decrease one hits a a crossover transition from weak to strong coupling (here m is a typical
value of the quark masses). Below this transition the original theory is described in terms of
a weakly coupled infrared-free r dual theory with the U(Nf − r) gauge group and Nf light
quark-like dyon flavors. Dyon condensation leads to confinement of monopoles, defying a
naive expectation of quark confinement. The quarks and gauge bosons of the original theory
are in an “instead-of-confinement” phase. The r and Seiberg dualities are demonstrated to
coincide in the r = N vacua. In the 2

3
Nf < r < N vacua two dualities do not match. In

this window Seiberg’s dual is at strong coupling while our r-dual model is at weak coupling.
Thus, we can speak of triality. Seiberg’s dual solution at weak coupling reappears again at
r < Nf −N < 1

3
Nf .



1 Introduction

The discovery of the Seiberg duality [1, 2, 3] was a major breakthrough in N = 1 Yang–Mills
theories at strong coupling, with far reaching consequences both in field theory and string
theory. In this paper we will explore interrelations between the Seiberg duality and a novel,
recently discovered r duality, in those situations where they overlap.

The original Seiberg duality in Yang–Mills theories with matter was most useful inside
the conformal window, in the conformal regime. Our prime interest is in theories with
confinement. The initial impetus for explorations of confinement in supersymmetric Yang–
Mills was given by the Seiberg-Witten solution [4, 5] revealing condensation of monopoles [6]
in the monopole vacua of N = 2 supersymmetric QCD. The mechanism of string formation
and confinement obtained in [4, 5] is essentially Abelian [7, 8, 9, 10].

The non-Abelian gauge group (say, SU(2)) is broken down to an Abelian subgroup at
a high scale by condensation of the adjoint scalars. An effective Abelian low-energy theory
ensues. The monopole condensation and formation of confining flux tubes (strings) occurs
in this effective Abelian theory.

Within Seiberg–Witten solution it remained unclear in which way a confining scenario
could work in N = 1 QCD, where there are no adjoint scalars and no dynamical Abelization.
Attempts to extrapolate the line of reasoning of [4, 5] to N = 1 QCD were hindered due
to the fact that the low-energy theory in the monopole vacua becomes strongly coupled and
untreatable by known methods.

In a bid to uncover a non-Abelian implementation of confinement we passed to the quark
vacua of N = 2 supersymmetric QCD with the U(N) gauge group and Nf flavors (Nf > N).
In this setting not only non-Abelian strings were constructed [11, 12, 13] but, as an additional
bonus, continuation to N = 1 SQCD became possible [14, 15, 16]. To this end we deformed
N = 2 SQCD by adding a mass term µ for the adjoint matter. On the way from small
to large µ an “instead-of-confinement” phase sets in. We found a crossover (in the Fayet–
Iliopoulos [17] parameter ξ ), a transition that takes us from weak to strong coupling in
N = 1 SQCD, and established a dual (weakly coupled) theory in the regime where the
original N = 1 SQCD is strongly coupled. Thus, we observed what can be called r duality
in N = 1 .

To be more exact, in our previous paper [16] in which all necessary technical work was
carried out, we explored the r vacua of the theory, with 1

2

3
Nf < r ≤ N . (1.1)

This explains the origin of the term, r duality. At the same time, the original Seiberg
duality (formulated in [1, 2] in the monopole r = 0 vacua) can be generalized to r vacua
[18] which survive in passing from N = 2 to our basic N = 1 model at large but finite

1Our definition of r refers to the domain of large quark masses, see Sec. 2. It will become clear in Sec. 7
that effectively r depends on the quark masses.
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µ.2 Further explorations of the generalized Seiberg duality were undertaken in [19]. In these
works classical vacua were identified – the vacua that correspond to Seiberg dual description.

Thus, our r duality in the r vacua can (and should) be compared with Seiberg’s duality.
Are they identical or complementary? How can they coexist?

These are the questions we address here building on the technical work carried out pre-
viously. We will prove that at r = N both dualities present one and the same description.
This is not always the case, however. In the window 2

3
Nf < r < N Seiberg’s dual is a

model at strong coupling and, thus, is of a limited use from the standpoint of description
of low-energy physics. At the same time, our r-dual model is at weak coupling (in fact,
infrared free), and thus fully describes low-energy physics. In this window we can speak of
detection of a triality, conceptually similar to that found in [20] in SO(N) model: two of the
dual models in a triplet are strongly coupled while the third one is weakly coupled.

We will argue that among the Seiberg dual solutions found in [19] the ones that are at
weak coupling refer to the following domain of r:

r < Ñ ,

Ñ ≡ Nf −N . (1.2)

To explain the interrelation between our r duality and Seiberg’s duality it is instructive
to look at Fig. 1. Our derivation [16] based on exact results [4, 5] for N = 2, with the
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Figure 1: Rank of the dual gauge groups in the triality triplet is plotted as a function of r. For
r duality this rank = ν (solid line, see Eq. (2.1)) while for the Seiberg duality the rank of the
dual gauge group is Ñ for all r, dashed-dotted line. The domains of the weakly coupled Seiberg’s
dual (the leftmost strip) and so far established r duality, i.e. “instead-of-confinement” phase (the
rightmost strip) do not overlap except the fact that the identical coincidence between Seiberg’s
dual and ours occurs at r = N .

subsequent (theoretically controlled) continuation to N = 1, refers to the rightmost strip.

2At µ = ∞ only the r = 0 monopole vacua remain, while others become run-away vacua.
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Our solution is fully controllable, and the dual model we get is at weak coupling, while
Seiberg’s duality in this domain is not at weak coupling (except its very boundary, r = N).
Weak coupling regime in the Seiberg’s dual theory refers to the leftmost strip. What lies
between these two strips?

Strictly speaking, today we do not know for certain. One can present certain speculations
reflected in the central area in Fig. 1, see also [16]. These speculations go beyond the scope
of the present paper. One can consider this question as a task for a future investigation.

Another problem for a future analysis is interpreting r duality in the framework of
strings/branes, in the spirit it had been done with the Seiberg duality.

The paper is organized as follows. Section 2 highlights the main points of our analysis. In
Sec. 3 we briefly describe the basic theory we work with, µ-deformed N = 2 SQCD. In Sec. 4
we review r duality and “instead-of-confinement” mechanism in the r vacua. In Sec. 5 we
review r duality at large µ in the N = 1 SQCD limit. In Sec. 6 we describe the generalized
Seiberg duality and compare it with our r duality in the r = N vacuum. Section 7 presents
an analysis of the results obtained in [19]. In this section we establish that the Seiberg dual
solutions found in [19] are at weak coupling only in the domain (1.2), i.e. at r < Ñ . In
Sec. 8 we confront our r duality with that of Seiberg in the r < N vacua. We argue that
Seiberg’s duality is not implemented at weak coupling at 2

3
Nf < r < N , while the r duality

is. Finally, in Appendix a more general µ deformation is considered.

2 Analysis outline and main statements

As was, mentioned, our starting point is N = 2 SQCD, with the U(N) gauge group, in
which we choose vacua in a judicious way. First we treat it at large values of an effective
Fayet–Iliopoulos (FI) parameter ξ, namely, ξ ∼ µm, where m is a generic quark mass. At
large m we arrange r quark flavors to condense. This is our definition of the parameter r.
In fact, the number of condensed quarks can depend on m, see Sec. 7 for details.

In the large-m vacuum with r condensed quarks the effective low energy-theory with the
gauge group U(r)×U(1)N−r is at weak coupling.

A global color-flavor locked symmetry survives in the limit of the equal quark masses.
At large ξ this theory supports non-Abelian flux tubes (strings) [11, 12, 13, 21] (see also
[22, 23, 24, 25] for reviews). It is the formation of these strings that ensures confinement of
monopoles. Monopoles manifest themselves as two-string junctions. The distinction between
the r < N vacua and that with r = N is that for r < N one U(1) factor of the U(N) gauge
group always remains unbroken [26]. Thus, in this case, long-range forces are always present.

Exploring these vacua we established an r-duality. Upon reducing the ξ parameter the
theory under consideration goes through a crossover transition [14, 15, 16] into a strongly
coupled regime which can be described in terms of a weakly coupled dual infrared-free N =
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2 SQCD. The gauge group of the dual theory is

U(ν)× U(1)N−ν , ν =

{

r, r ≤ Nf

2

Nf − r, r >
Nf

2
,

(2.1)

So far we limited ourselves to the case ν = Nf − r. For r = N vacuum our r dual gauge
group reduces to that of Seiberg’s duality, in which the first factor in the second line of (2.1)
is U(Nf −N). The coincidence does not extend to the case r < N [16]: instead of U(Nf −N)
we get U(Nf − r).

It is worth noting that the presence of the non-Abelian SU(ν)×U(1)Nf−ν gauge group at
the roots of the nonbaryonic branches in massless (ξ = 0) N = 2 SU(N) SQCD was first
observed in [27]. Moreover, in this paper the SU(Nf − N) dual gauge group was identified
at the root of the baryonic Higgs branch in the SU(N) theory. The relation between r and
ν given by (2.1) was noted in [28, 29], where it was interpreted as a correspondence between
the “classical and quantum r vacua.” We interpret it as a duality occurring upon reducing
ξ below the crossover transition line.

The dual theory supports non-Abelian strings due to condensation of light dyons in much
the same way as non-Abelian strings in the original theory which are due to condensation of
quarks. The strings of the dual theory confine monopoles too, rather than quarks [14, 16].
This is explained by the fact that the light dyons condensing in the dual theory carry weight-
like chromoelectric charges (in addition to chromomagnetic charges). In other words, they
carry the quark charges. The strings formed through condensation of these dyons can confine
only the states with the root-like magnetic charges, i.e. the monopoles [14].

Thus, our r duality is not electromagnetic. There is no confinement of the chromoelectric
charges in the dual theory; on the contrary, they are Higgs-screened.

At strong coupling, when the r dual description sets in, the gauge bosons and quarks
of the original theory are in what we call “instead-of-confinement” phase. Namely, the
quarks and gauge bosons of the original theory decay into monopole-antimonopole pairs on
the curves of marginal stability (CMS) [14, 30]. The (anti)monopoles forming the pair are
confined. In other words, the original quarks and gauge bosons evolve in the strong coupling
domain of small ξ into stringy mesons with two constituents being connected by two strings
as shown in Fig. 2. These mesons are expected to lie on the Regge trajectories.

Moreover, deep in the non-Abelian quantum regime the confined monopoles were demon-
strated [30] to belong to the fundamental representation of the global (color-flavor locked)
group. Therefore, the monopole-antimonopole mesons can be both, in the adjoint and sin-
glet representation of this group. This pattern seems to be similar to what we have in the
real world. The role of the “constituent quarks” inside the above mesons is played by the
monopoles.

At this stage we are still not far away from the N = 2 limit. Then we increased the
deformation parameter µ decoupling the adjoint fields thus sending the original theory to the
limit of N = 1 SQCD [15, 16]. In the passage from N = 2 toN = 1 we observed no dramatic
qualitative changes. At large µ the dual theory was demonstrated to be weakly coupled and
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Figure 2: Mesons built from the monopole-antimonopole pairs connected by two strings. Open
and closed circles denote the monopole and antimonopole, respectively.
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Figure 3: Example of the dipole meson formed as result of breaking of the second string by
pair creation of the monopole M2N (shown by boxes) interpolating between the second string
and the would-be N -th string, which is absent. Arrows denote unconfined flux. Circles denote
the monopoles MKK ′, K,K ′ = 1, ..., ν. Open and closed circles/boxes denote the monopoles and
antimonopoles, respectively.

infrared free, with the U(ν) gauge group and Nf light dyons DlA, (here l = 1, ..., ν is the color
index in the dual gauge group, while A = 1, ..., Nf is the flavor index). Non-Abelian strings
still confine monopoles. “Instead-of-confinement” mechanism works at large µ as follows. In
the r = N vacuum the quarks and gauge bosons of the original N = 1 SQCD continue to
be presented by stringy mesons built from the monopole-antimonopoles pairs connected by
two non-Abelian strings, see Fig. 2.

In the r < N vacua (but r > 2
3
Nf) there is a novel feature: one (say, N -th) ZN string is

absent in r < N vacua and the associated flux of the unbroken U(1)unbr gauge factor is not
squeezed into a flux tube. It is spread out in space via the Coulomb law.

As a result, non-Abelian strings become metastable in the r < N vacua: they can be
broken by a monopole-antimonopole pair creation. The monopoles in the produced pair are
junctions of one of the first r ZN -strings with the would-be N -th string (which is in fact
absent). An example of the meson resulting in this way is shown in Fig. 3. The endpoints emit
fluxes of the unbroken U(1) gauge field. This makes this meson a dipole-like configuration.

Note, that the non-Abelian fluxes of the SU(ν) gauge group are always squeezed in the
non-Abelian strings. Long-range forces are associated only with the unbroken U(1)unbr gauge
factor. The monopoles inside the dipole meson cannot annihilate if the overall flavor charge
of the meson is nontrivial, say, the meson is in the adjoint.

Armed with the knowledge of the confining dynamics in the dual pair of N = 1 theories,
we move on to compare our r duality with Seiberg’s duality. The simplest case is r = N . In
the r = N vacuum our dual gauge group U(ν = Nf − r) coincides with Seiberg’s dual group
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U(Ñ), where
Ñ = Nf −N. (2.2)

Moreover, in this case the generalized Seiberg dual superpotential has a classical vacuum.
We show that, upon integrating out heavy mesonic M-fields, this superpotential coincides
with our r-dual superpotential obtained in [15]. Seiberg’s “dual quarks” are found to reduce
to quark-like dyons DlA, up to a normalization. Both dualities perfectly match in the r = N
vacuum. This entails, in particular, that in the r = N vacuum Seiberg’s “dual quarks” are
quark-like dyons, rather than monopole-like states. Their condensation leads to confinement
of monopoles, while the quarks are in the “instead-of-confinement” phase [15].

For 2
3
Nf < r < N the generalized Seiberg superpotential has no supersymmetric classical

vacua provided that the quark masses are generic. However, there are so-called “quantum
vacua” which can be found by integrating out Seiberg’s “dual quarks” [2, 31] which, in turn,
leads to an effective superpotential in terms of mesonic M fields.

In doing so one obtains an extension of the Afleck–Dine–Seiberg (ADS) superpotential
[32] to Nf > N . The latter correctly reproduces the quark and gaugino condensates. We
explicitly check that it gives the same results for the chiral condensates as the exact analysis
of the chiral rings carried out in [26].

At the same time, in the 2
3
Nf < r < N vacua our r duality does not match Seiberg’s

duality. We demonstrate our dual theory to have the U(ν) gauge group instead of U(Ñ)
and a different superpotential for light matter. Our dual theory does have a supersymmetric
classical vacuum and, in a certain regime (with small ξ), stays at weak coupling. Our
interpretation of this is as follows. In the range 2

3
Nf < r < N generalized Seiberg dual

theory does not describe low-energy physics in its entirety in the r vacua. However, it does
describe the chiral sector in the sense of the Veneziano–Yankielowicz effective superpotential
[33] (which is not a genuine low-energy superpotential). The spectrum of excitations is not
reproduced correctly.

Low-energy physics in the r vacua is described (in the range 2
3
Nf < r < N) by r duality,

with the dual gauge group U(ν = Nf − r) replacing Seiberg’s U(Ñ = Nf −N).
We also show that for smaller r, namely for r < Ñ , Seiberg’s dual theory has super-

symmetric classical vacua and in fact describes low-energy physics. This range, however, is
beyond the scope of the present paper.

3 µ-Deformed N = 2 SQCD and its vacuum structure

at large ξ

The model we start from has the U(N)=SU(N)×U(1) gauge symmetry andNf massive quark
hypermultiplets. In the absence of the µ deformation the model is N = 2 supersymmetric.
We assume that Nf > N but Nf < 3

2
N . The latter inequality ensures infrared freedom of

the dual theory.
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In addition, we will introduce the mass term µ for the adjoint matter breaking N =
2 supersymmetry down to N = 1 .

The field content is as follows. The N = 2 vector multiplet consists of the U(1) gauge
field Aµ and the SU(N) gauge field Aa

µ, where a = 1, ..., N2 − 1, and their Weyl fermion
superpartners plus complex scalar fields a, and aa and their Weyl superpartners, respectively.
The Nf quark multiplets of the U(N) theory consist of the complex scalar fields qkA and
q̃Ak (squarks) and their fermion superpartners — all in the fundamental representation of
the SU(N) gauge group. Here k = 1, ..., N is the color index while A is the flavor index,
A = 1, ..., Nf . We will treat qkA and q̃Ak as rectangular matrices with N rows and Nf

columns.
Let us first discuss the undeformed N = 2 theory. The superpotential has the form

WN=2 =
√
2

Nf
∑

A=1

(

1

2
q̃AAqA + q̃AAa T aqA +mA q̃Aq

A

)

, (3.1)

where A and Aa are chiral superfields, the N = 2 superpartners of the gauge bosons of U(1)
and SU(N), respectively, while mA are the quark masses. Next, we add the mass term for
the adjoint fields which breaks N = 2 supersymmetry down to N = 1 ,

Wbr =

√

N

2

µ0

2
A2 +

µ

2
(Aa)2, (3.2)

where µ0 and µ is are mass parameters for the chiral superfields in N = 2 gauge supermul-
tiplets, U(1) and SU(N), respectively. In the bulk o the paper we will consider the single
trace perturbation which amounts to choosing µ0 in such a way that the parameter

γ = 1−
√

2

N

µ0

µ
(3.3)

vanishes. In this case the deformation superpotential (3.2) reduces to a single trace,

Wbr = µTrΦ2, (3.4)

where

Φ =
1

2
A+ T aAa. (3.5)

Non-single trace deformation is discussed in the Appendix.
The mass term (3.4) splits the N = 2 supermultiplets, breaking N = 2 supersymmetry

down to N = 1 . Our strategy is as follows. First we assume that deformation to be weak,

|µ| ≪ ΛN=2 , (3.6)

where ΛN=2 is the scale of the N = 2 theory, so the theory is close to the N = 2 limit. We
reduce the parameter ξ and describe r duality at small ξ [14, 16]. Finally, we make µ large
sending the theory to N = 1 SQCD, and discuss how this affects the dual theory [15, 16].
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3.1 The r = N vacuum

With generic values of the quark masses we have

Nr=N = CN
Nf

=
Nf !

N !(Nf −N)!
(3.7)

isolated vacua in which r = N quarks (out ofNf ) develop vacuum expectation values (VEVs).
Following [14] consider, say, the vacuum in which the first N flavors develop VEVs, to be
denoted as (1, 2 ..., N). In this vacuum the adjoint fields develop VEVs too, namely,

〈Φ〉 = − 1√
2





m1 . . . 0
. . . . . . . . .
0 . . . mN



 . (3.8)

For generic values of the quark masses, the SU(N) subgroup of the gauge group is broken
down to U(1)N−1. However, in the special limit

m1 = m2 = ... = mNf
, (3.9)

the adjoint field VEVs do not break the SU(N)×U(1) gauge group. In this limit the theory
acquires a global flavor SU(Nf ) symmetry.

With all quark masses equal (and to the leading order in µ) the mass term for the adjoint
matter (3.4) reduces to the Fayet–Iliopoulos F -term of the U(1) factor of the SU(N)×U(1)
gauge group, which does not break N = 2 supersymmetry [8, 10]. Higher orders in the
parameter µ break N = 2 supersymmetry by splitting all N = 2 multiplets. If the quark
masses are unequal the U(N) gauge group is broken down to U(1)N by the adjoint field
VEVs (3.8).

Using (3.4) and (3.8) it is not difficult to obtain the quark field VEVs from Eq. (3.1)
supplemented by D-term conditions. By virtue of a gauge rotation they can be written as
[34]

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξN 0 . . . 0



 ,

k = 1, ..., N , A = 1, ..., Nf , (3.10)

where we present the quark fields as matrices in color (k) and flavor (A) indices. The Fayet–
Iliopoulos F -term parameters for each U(1) gauge factor are given (in the quasiclassical
approximation) by the following expressions:

ξP ≈ 2 µmP , P = 1, ..., N. (3.11)

While the adjoint VEVs do not break the SU(N)×U(1) gauge group in the limit (3.9),
the quark condensate (3.10) does result in the spontaneous breaking of both gauge and flavor
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symmetries. A diagonal global SU(N) combining the gauge SU(N) and an SU(N) subgroup
of the flavor SU(Nf ) group survives, however.

Thus, the pattern of the color and flavor symmetry breaking is

U(N)gauge × SU(Nf )flavor → SU(N)C+F × SU(Ñ)F ×U(1) , (3.12)

where Ñ is given by (2.2). Here SU(N)C+F is a global unbroken color-flavor rotation, which
involves the first N flavors, while the SU(Ñ)F factor stands for the flavor rotation of the last
Ñ quarks. The presence of the global SU(N)C+F group is instrumental for formation of the
non-Abelian strings [11, 12, 13, 21, 34]. Tensions of N elementary strings are determined by
parasmeters ξP via [34]

TP = 2πξP . (3.13)

These strings confine monopoles, in fact elementary monopoles become junctions of two
distinct elementary strings [35, 13, 21].

Since the global (flavor) SU(Nf ) group is broken by the quark VEVs anyway, it will be
helpful for our purposes to consider the following mass splitting:

mP = mP ′ , mK = mK ′, mP −mK = ∆m (3.14)

where
P, P ′ = 1, ..., N and K,K ′ = N + 1, ..., Nf . (3.15)

This mass splitting respects the global group (3.12) in the (1, 2, ..., N) vacuum. Moreover,
this vacuum becomes isolated. No Higgs branch develops. We will often assume this limit
below.

Now let us briefly discuss the perturbative excitation spectrum. Since both U(1) and
SU(N) gauge groups are broken by the squark condensation, all gauge bosons become mas-
sive. To the leading order in µ, N = 2 supersymmetry is unbroken. In fact, with nonvanish-
ing ξP ’s (see Eq. (3.11)), both the quarks and adjoint scalars combine with the gauge bosons
to form long N = 2 supermultiplets [10], for a review see [24]. In the limit (3.14) ξP ≡ ξ ,
and all states come in representations of the unbroken global group (3.12), namely, in the
singlet and adjoint representations of SU(N)C+F ,

(1, 1), (N2 − 1, 1) , (3.16)

and in the bifundamental representations

(N̄, Ñ), (N, ¯̃N) . (3.17)

We mark representations in (3.16) and (3.17) with respect to two non-Abelian factors in
(3.12). The singlet and adjoint fields are (i) the gauge bosons, and (ii) the firstN flavors of the
squarks qkP (P = 1, ..., N), together with their fermion superpartners. The bifundamental
fields are the quarks qkK with K = N + 1, ..., Nf . These quarks transform in the two-index
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representations of the global group (3.12) due to the color-flavor locking. Singlet and adjoint
fields have masses of order g

√
ξ, while masses of bifundamental fields are ∆m.

The above quasiclassical analysis is valid if the theory is at weak coupling. This is the
case if the quark VEVs are sufficiently large so that the gauge coupling constant is frozen at
a large scale. From (3.10) we see that the quark condensates are of order of

√
µm (see also

[4, 5, 27, 18]). The weak coupling condition is

|√µm| ≫ ΛN=2 , (3.18)

where we assume all quark masses to be of the same order mA ∼ m. In particular, the
condition (3.18), combined with the condition (3.6) of smallness of µ, implies that the average
quark mass m is very large.

3.2 The r < N vacua

At large ξ the quark sector of the theory in the r vacua is at weak coupling and can be
analyzed semiclassically. The number of the r vacua with r < N is [18]

Nr<N =
N−1
∑

r=0

(N − r)Cr
Nf

=
N−1
∑

r=0

(N − r)
Nf !

r!(Nf − r)!
. (3.19)

It is equal to the number of choices one can pick up r quarks which develop VEVs (out of
Nf quarks) times the Witten index (number of vacua) in the classically unbroken SU(N − r)
pure gauge theory.

Below we will consider a particular vacuum in which the first r quarks develop VEVs.
We denote it as (1, ..., r). Quasiclassically, with large mass differences, the adjoint scalar
VEVs are

〈

diag

(

1

2
a+ T a aa

)〉

≈ − 1√
2
[m1, ..., mr, 0, ..., 0] , (3.20)

where the first r diagonal elements are proportional to the quark masses, while the last (N−r)
entries classically vanish. In quantum theory they become of order of ΛN=2. The classically
unbroken U(N−r) pure gauge sector gets broken through the Seiberg–Witten mechanism [4]
first down to U(1)N−r and then almost completely by condensation of (N−r−1) monopoles.
A single U(1) factor remains unbroken, because monopoles are charged only with respect
to the Cartan generators of the SU(N − r) group. The presence of the unbroken U(1)unbr

symmetry in all r < N vacua makes them different from the r = N vacuum where there are
no long-range forces. In the terminology of [26] these sets of vacua belong to two different
“branches.”

Following [16] we consider the r = (N−1) vacuum as an example. The low energy theory
in the r = N−1 vacuum at large ξ has non-Abelian gauge fields An

µ, n = 1, ..., (r2−1) as well

as Abelian ones Aµ and A
(N2−1)
µ . The last field is associated with the last Cartan generator

of SU(N). These fields have scalar superpartners an, a and a(N
2−1). Light matter consists of

10



the qkA quarks, k = 1, ..., r. Note, that all non-Abelian gauge fields from the SU(N)/SU(r)
sector are heavy and decouple in the large mass limit due to the structure of the adjoint
VEVs (see (3.20)). Also the qNA quarks are heavy and not included in the low-energy theory.

The vacuum structure in the r = N − 1 vacuum is as follows. The adjoint VEVs have
the form

〈diag (Φ)〉 ≈ − 1√
2
[m1, ..., mN−1, 0 ] , (3.21)

while the (s)quark VEVs are

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . .
√

ξN−1 0 . . . 0



 ,

k = 1, ..., (N − 1) , A = 1, ..., Nf . (3.22)

The first (N − 1) parameters ξ are given quasiclassically by (3.11) while

ξN = 0 . (3.23)

In the r = N vacuum the last entry in (3.11) is mN while now we have zero. The condition
(3.23) reflects the fact that the N -th quark is heavy and develops no VEV. This is also valid
in quantum theory [16].

Quarks interact with a particular linear combination of the U(1) gauge fields Aµ and
AN2−1

µ , namely,

Aµ +

√

2

N(N − 1)
AN2−1

µ . (3.24)

Quark condensation makes this combination massive. The orthogonal combination
√

2

N(N − 1)
Aµ − AN2−1

µ . (3.25)

remains massless and corresponds to the unbroken U(1)unbr gauge group.
In the equal mass limit the global flavor symmetry SU(Nf) in the r vacuum is broken

down to
SU(r)C+F × SU(ν = Nf − r)F × U(1) . (3.26)

Now SU(r)C+F is a global unbroken color-flavor rotation, which involves only the first r
flavors, while the SU(ν = Nf − r)F factor stands for the flavor rotation of the remainder of
the quark set.

Since the global (flavor) SU(Nf) group is broken by the quark VEVs anyway, it is useful
to consider the split quark masses, as in (3.14), with (3.15) replaced by

P, P ′ = 1, ..., r and K,K ′ = r + 1, ..., Nf . (3.27)

11



This mass splitting respects the global group (3.26) in the (1, 2, ..., r) vacuum. This vacuum
becomes isolated.

In much the same way as in the r = N vacuum in the r < N vacua all states in the limit
(3.27) come in representations of the unbroken global group (3.26), namely, in the singlet
and adjoint representations of SU(r)C+F ,

(1, 1), (r2 − 1, 1), (3.28)

and in the bifundamental representations

(r̄, ν), (r, ν̄) . (3.29)

The singlet and adjoint fields are the gauge bosons, and the first r flavors of the quarks qkP

(P = 1, ..., r). The bifundamental fields are the qkK quarks with K = r + 1, ..., Nf . The
singlet and adjoint fields have masses of order g

√
ξ, where ξ is the common value of the first

r ξ’s in the limit (3.14), (3.27). The masses of bifundamental fields are ∆m.
Quasiclassical analysis is valid if the theory is at weak coupling. The weak coupling

condition in the asymptotically free SU(r) sector reduces to

|
√

ξ| ∼ |√µm| ≫ ΛLE
N=2 , (3.30)

where ΛLE
N=2 is the scale of the low energy theory determined by

Λ
2N−Nf

N=2 = m2 (ΛLE
N=2)

2(N−1)−Nf . (3.31)

Quarks in r = N − 1 vacuum develop VEVs; therefore monopoles should be confined, in
much the same way as in the r = N vacuum. The distinction is that one U(1) factor of the
gauge group remains unbroken, therefore the associated magnetic flux is unconfined. In fact
one of ZN strings (say, the N -th string) is absent due to the condition (3.23).

Therefore r strings associated with windings of r quarks can terminate on the monopoles
MPN , P = 1, ..., r interpolating between one of these string and the spuriousN -th string. The
endpoint is a magnetic source of unbroken U(1)unbr gauge field. All other monopole fluxes, in
particular, all non-Abelian fluxes from the SU(r) subgroup are absorbed by confining strings,
see [16] for details.

4 r Duality

What happens if we relax the condition (3.18) or (3.30) and pass to the strong coupling
domain at

|
√

ξP | ≪ ΛN=2 , |mA −mB| ≪ ΛN=2 (4.1)

still keeping µ small?

12



As was shown in [14, 16], our theory in the r vacuum undergoes a crossover transition
on the way from large to small ξ. The domain (4.1) can be described in terms of weakly
coupled (infrared free) dual theory with with the gauge group

U(ν)×U(1)N−ν , (4.2)

and Nf light dyon flavors (r is assumed to be be in the range 1
2
Nf < r ≤ N).

The quark-like dyons DlA, (l = 1, ..., ν, A = 1, ..., Nf) are in the fundamental repre-
sentation of the SU(ν) gauge group and are charged under the Abelian factors indicated
in Eq. (4.2). In addition, there are (N − Ñ) or (r − ν) light quark-like dyons DJ , neutral
under the SU(ν) group, but charged under the U(1) factors in the r = N and r < N vacua,
respectively. In the r < N − 1 vacua there are also (N − r − 1) light monopoles charged
under the U(1) factors.3

The dyon condensates are

〈DlA〉 = 〈 ¯̃DlA〉 = 1√
2





0 . . . 0
√
ξ1 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . .

√
ξν



 ,

〈DJ〉 = 〈 ¯̃DJ〉 =
√

ξJ
2
, (4.3)

where J = (Ñ + 1), ..., N in the r = N vacuum and J = (ν + 1), ..., r in the r < N vacua.
The most important feature apparent in (4.3), as compared to the squark VEVs of the

original theory (3.10), is a “vacuum leap” [14],

(1, ..., r)√ξ≫ΛN=2
→ (r + 1, ..., Nf , (ν + 1), ..., r)√ξ≪ΛN=2

. (4.4)

In other words, if we pick up the vacuum with nonvanishing VEVs of the first r quark flavors
in the original theory at large ξ and then reduce ξ below ΛN=2, the system goes through a
crossover transition and ends up in the vacuum of the dual theory with the nonvanishing
VEVs of the last ν dyons (plus VEVs of the SU(ν) singlets).

The Fayet–Iliopoulos parameters ξP in (4.3) are determined by the quantum version of
the classical expressions (3.11) [34, 16]. Defining

uk =

〈

Tr

(

1

2
a+ T a aa

)k
〉

, k = 1, ..., N , (4.5)

we obtain [34]
ξP = −2

√
2µEP , (4.6)

3We collectively refer to all dyons carrying root-like electric charges as “monopoles.” This is to avoid
confusion with the dyons which appear in Eq. (4.3). The latter dyons carry weight-like electric charges and,
roughly speaking, behave as quarks, see [14, 16] for further details.
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where EP (P = 1, ..., N) are the diagonal elements of the N ×N matrix

E =
1

N

∂u2

∂a
+ T ã ∂u2

∂aã
, (4.7)

and T ã are the Cartan generators of the SU(N) gauge group (ã = 1, ..., (N − 1)). The EP

parameters are expressible via the roots of the Seiberg–Witten curve (see below).
The Seiberg–Witten curve in our theory takes the form [27]

y2 =
N
∏

P=1

(x− φP )
2 − 4

(

ΛN=2√
2

)2N−Nf
Nf
∏

A=1

(

x+
mA√
2

)

. (4.8)

Here φP are gauge invariant parameters on the Coulomb branch. Semiclassically,

diag

(

1

2
a+ T a aa

)

≈ [φ1, ..., φN ] . (4.9)

In the r = N vacuum the curve (4.8) has N double roots associated with condensation of N
quarks. It reduces to

y2 =

N
∏

P=1

(x− eP )
2, (4.10)

where quasiclassically (at large masses) eP ’s and φP ’s are given by the mass parameters,√
2eP ≈

√
2φP ≈ −mP , P = 1, ..., N . In the r < N quark vacuum (i.e. the (1, ..., r)

vacuum) we have

φP ≈ −mP√
2
, P = 1, ..., r , φP ∼ ΛN=2, P = r + 1, ..., N (4.11)

in the large mA limit, see (3.20).
To identify the r < N vacuum in terms of the curve (4.8) it is necessary to find such

values of φP which ensure that the curve has N − 1 double roots, and r parameters φP are
determined by the quark masses in the semiclassical limit, see (4.11). (N − 1) double roots
are associated with r condensed quarks and (N − r − 1) condensed monopoles – altogether
N − 1 condensed states. In contrast, in the r = N vacuum the maximal possible number
of condensed states (quarks) in the U(N) theory is N . As was already mentioned, this
difference is related to the the unbroken U(1)unbr gauge group in the r < N vacua [26].
In the classically unbroken (after quark condensation) U(N − r) gauge group, N − r − 1
monopoles condense at the quantum level breaking the non-Abelian SU(N − r) subgroup.
One U(1) factor remains unbroken because monopoles do not interact with it.

Thus in the r < N vacua the Seiberg–Witten curve factorizes [36],

y2 =
N−1
∏

P=1

(x− eP )
2 (x− e+N )(x− e−N). (4.12)
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The last two roots (and φN) are of order of ΛN=2. For the single-trace deformation super-
potential (3.4) corresponding to γ = 0 (see (3.3)) their sum vanishes [36],

e+N + e−N = 0 . (4.13)

This condition is equivalent to a physical condition

ξN = −2
√
2µEN = 0 , (4.14)

which ensures that the N -th quark is heavy and develops no VEV [16]. The root e+N deter-
mines the value of the gaugino condensate [26], see (6.19) in Sec. 6.3.

The parameters EP in the r = N vacuum are given by double roots of the Seiberg–Witten
curve [34], namely,

EP = eP , P = 1, ..., N . (4.15)

This implies, in turn, that the dyon condensates at small ξ in the r = N vacuum are

ξP = −2
√
2µ eP . (4.16)

As long as we keep ξP small (i.e. in the domain (4.1)) the coupling constants of the infrared-
free dual theory (frozen at the scale of the dyon VEVs) are small; the dual theory is at weak
coupling.

At small mA−mB ≡ ∆mAB, in the domain (4.1), the double roots of the Seiberg–Witten
curve are √

2eI = −mI+N ,
√
2eJ = ΛN=2 exp

(

2πi

N − Ñ
J

)

(4.17)

for N − Ñ > 1, where
I = 1, ..., Ñ and J = Ñ + 1, ..., N . (4.18)

In particular, the first Ñ roots are determined by the masses of the last Ñ quarks — a
reflection of the fact that the non-Abelian sector of the dual theory is not asymptotically
free and is at weak coupling in the domain (4.1).

In the r < N vacua the relation between the parameters EP which determine the dyon
condensates and the roots of the Seiberg–Witten curve changes. Namely, we have [16]

EP =
√

(eP − e+N )(eP − e−N ), P = 1, ..., (N − 1), EN = 0 . (4.19)

In terms of the roots of the Seiberg-Witten curve this implies for the dyon VEVs

ξP = −2
√
2µ
√

(eP − e+N)(eP − e−N), P = 1, ..., (N − 1), ξN = 0 . (4.20)

In much the same way as in the r = N vacuum, the first ν roots are determined by the
masses of the last ν quarks at small ∆mAB, i.e. in the domain (4.1),

√
2eI = −mI+r, I = 1, ..., ν . (4.21)

This is because the non-Abelian sector of the dual theory is infrared free and is at weak
coupling in the domain (4.1).
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4.1 “Instead-of-confinement” mechanism in the

r vacua

The “vacuum leap” (4.4) ensures that in the r-vacua we have “instead-of-confinement” mech-
anism for quarks and gauge bosons [14, 16] (assuming 1

2
Nf < r ≤ N). Consider the mass

choice (3.14), (3.27). Both, the gauge group and the global flavor SU(Nf ) group, are broken
in the vacuum. However, the color-flavor locked form of (4.3) shows that the unbroken global
group of the dual theory is

SU(r)F × SU(ν)C+F ×U(1) . (4.22)

The SU(ν)C+F factor in (4.22) is a global unbroken color-flavor rotation, which involves the
last ν flavors, while the SU(r)F factor stands for the flavor rotation of the first r dyons.

In the equal mass limit, or given the mass choice (3.14), (3.27), the global unbroken
symmetry (4.22) of the dual theory at small ξ coincides with the global group (3.26) (or
(3.12) for r = N) in the the original theory at large ξ. However, this global symmetry is
realized in two different ways in the dual pair at hand. The quarks and gauge bosons of the
original theory at large ξ come in the (1, 1), (r2− 1, 1), (r̄, ν), and (r, ν̄) representations (see
(3.28), (3.29) or (3.16), (3.17)), while the dyons and U(ν) gauge bosons form

(1, 1), (1, ν2 − 1) (4.23)

and
(r, ν̄), (r̄, ν) (4.24)

representations of (4.22). We see that the adjoint representations of the (C + F ) subgroup
are different in two theories.

This means that quarks and gauge bosons which form the adjoint (r2−1) representation
of SU(r) at large ξ and the dyons and dual gauge bosons which form the adjoint (ν2 − 1)
representation of SU(ν) at small ξ are different states. What happens with quarks and gauge
bosons at small ξ?

Screened quarks and gauge bosons which exist in the r vacuum in the large-ξ domain
decay into the monopole-antimonopole pairs on the CMS.4 This is in accordance with the
results obtained in N = 2 SU(2) gauge theories [4, 5, 37] on the Coulomb branch at vanishing
ξ; for the theory under consideration such a behavior was established in [30]. The general
rule is that the only states which exist at strong coupling inside CMS are those which can
become massless on the Coulomb branch [4, 5, 37]. For our theory these are light dyons
shown in Eq. (4.3), gauge bosons of the dual gauge group and monopoles.

As shown in [14, 16], at small nonvanishing ξ the monopoles and antimonopoles produced
in the decay process of the adjoint (r2 − 1, 1) states are confined. Therefore, the (screened)

4Strictly speaking, such pairs can be formed by monopole-antidyons and dyon-antidyons as well, the
dyons carrying root-like electric charges. As was already explained above, we collectively refer to all such
states as “monopoles” to avoid confusion with quark-like dyons which appear in Eq. (4.3). The latter dyons
carry weight-like electric charges, see [14, 16] for details.
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quarks or gauge bosons evolve into stringy mesons in the strong coupling domain of small ξ
– the monopole-antimonopole pairs connected by two strings, as shown in Fig. 2.

The distinction between the “instead-of-confinement” phase in the r < N vacua and that
in the r = N vacuum is that in the r < N vacua the strings can be broken byMPN -monopole-
antimonopole pairs, P = 1, ..., r. Here MPN denote the monopoles that are junctions of the
P -th and N -th strings (the latter is spurious, see [16] for details). As a result, the dipole
stringy states emitting unbroken U(1)unbr magnetic gauge fields are formed, see Fig. 3. Non-
Abelian SU(ν) fluxes are confined in these stringy dipoles.

5 r Duality at large µ

In this section we discuss continuation of r duality to the domain of large but finite µ, i.e.
N = 1 SQCD. We consider separately two cases: r = N [15] and r < N [16].

5.1 The r = N vacuum

From Eqs. (4.3), (4.6) and (4.17) we see that the VEVs of the non-Abelian dyons DlA are
determined by

√
µm and are much smaller than the VEVs of the Abelian dyons DJ at small

m. The latter are of order of
√
µΛN=2. This circumstance is most crucial for us. It allows

us to increase µ and decouple the adjoint fields without ruining the weak coupling condition
in the dual theory [15].

Now we assume that
|µ| ≫ |mA|, A = 1, ..., Nf . (5.1)

The Abelian dyon VEVs become large at large µ. This makes heavy the U(1) gauge fields of
the dual group (4.2). Decoupling these gauge factors together with adjoint matter and the
Abelian dyons themselves we get the low-energy theory with the gauge group

U(Ñ ) (5.2)

and non-Abelian dyons DlA (l = 1, ..., Ñ and A = 1, ...Nf). For the single-trace γ = 0
perturbation (see (3.4)) the superpotential for DlA has the form [15]

W = − 1

2µ
(D̃AD

B)(D̃BD
A) +mA (D̃AD

A) , (5.3)

where the color indices are contracted inside each parentheses.
Minimization of this superpotential leads to the dyon VEVs shown in the first line of

Eq. (4.3). Note, that ξ’s which determine the non-Abelian dyon VEVs are of order µm, see
(4.17).

Below the scale µ our theory becomes dual to N = 1 SQCD with the scale

Λ̃N−2Ñ
r=N =

ΛN−Ñ
N=2

µÑ
. (5.4)
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The only condition we impose to keep this infrared-free theory at the weak coupling is

|√µm| ≪ Λ̃r=N . (5.5)

This means that at large µ we must keep the quark masses sufficiently small, which is always
achievable.

We would like to stress that if all dyon VEVs were of order of
√
µΛN=2, it would not be

possible to decouple the adjoint matter keeping the dual theory at weak coupling. As soon
as we increase µ beyond the above scale, we will break the weak coupling condition in the
dual theory.

5.2 The r < N vacua

In order to keep our dual theory at weak coupling we need to constrain the parameters ξ (at
least ν of them) from above. At large µ this creates a problem. This problem was overcame
in [16] as follows. Equation (4.20) shows that if we assume the mass differences to be very
small and fine-tune the average value of ν double roots (determined by masses, which are
almost equal) to be close to one of the roots e±N , we guarantee ν parameters ξ to be small.
Say, we tune the quark masses to ensure

eP → e+N , ∆mKK ′ ≪ ΛN=2, P = 1, ..., ν, K,K ′ = (r + 1), ..., Nf . (5.6)

Note, that it is possible to make all ν double roots close to e+N because it is the quark masses
rather than ΛN=2 that determine the “non-Abelian” roots of the Seiberg–Witten curve and
VEVs of the non-Abelian dyons, see (4.21).

The above limit means moving towards the Argyres–Douglas (AD) regime [38]. Indeed,
on the Coulomb branch the masses of ν monopoles MPN (P = 1, ..., ν) are determined by the
differences (eP − e+N ) → 0; the corresponding β-cycles shrink. Thus, in addition to the light
dyons DlA and DJ which are always present in our r vacuum we get extra light monopoles
mutually non-local with dyons. If we were on the Coulomb branch (at ξP = 0) this would
definitely mean moving into strong coupling.

However, at small but nonvanishing ξ we are not on the Coulomb branch. In fact,
monopoles are confined. As shown in [16], this ensures the theory to stay at weak coupling.
Basically the reason is that ν monopoles MPN , P = 1, ..., ν in question form stringy dipole
states shown in Fig. 3. Although the MPN masses themselves tend to zero in the limit
(5.6) the mass of the stringy dipole state formed by these monopole and antimonopole is
determined by the string tension. It is of order of

√
ξP and, therefore, is much larger.

This ensures the smallness of the renormalized coupling constant, provided we keep ξ’s
small enough. The fact that the light matter VEVs tend to zero in the AD point was first
recognized in [39] in the Abelian case.

Now we can proceed in much the same way as in the r = N vacuum. We let µ grow
passing to the limit (5.6). The VEVs of the non-Abelian dyons DlA become much smaller
than the VEVs of the Abelian dyons DJ , see (4.3), (4.20) and (4.21). As a result, (N−ν−1)
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U(1) gauge fields of the dual gauge group (4.2), together with DJ dyons themselves, acquire
large masses (∼ √

µΛN=2) and decouple. At large µ,

|µ| ≫ |
√

ξ| (5.7)

adjoint matter decouples too.
In order to keep the dual theory at weak coupling we go to the AD limit (5.6) and require

|
√

ξP | ≪ Λ̃r, P = 1, ..., ν , (5.8)

where

Λ̃r−2ν
r =

Λr−ν
N=2

µν
. (5.9)

We also assume that quark mass differences are very small, even smaller than EP , namely,

∆mKK ′ ≪ EP =
√

(e2P − e2N), P = 1, ..., ν, K,K ′ = (r + 1), ..., Nf . (5.10)

At low energies our dual theory has the gauge group

U(ν)× U(1)unbr, (5.11)

while light matter is represented by the non-Abelian dyons DlA (l = 1, ..., ν and A =
1, ..., Nf). The superpotential is [16]

W =
Ê√
2 m̂ µ

(D̃AD
B)(D̃BD

A) +

[

(mA − m̂) +
(
√
2 Ê)2

m̂

]

(D̃AD
A)

+ c

[

1

2µ
(D̃AD

A)2 +
√
2ν Ê (D̃AD

A)

]

, (5.12)

where c is a constant, c ∼ 1. Here

m̂ =
1

ν

ν
∑

P=1

mr+P , Ê =
1

ν

ν
∑

P=1

EP =
1√
2

√

m̂2 − 4S

µ
, (5.13)

where S is the gaugino condensate, see (6.19). The non-Abelian dyon VEVs obtained from
this superpotential are given by the first line in (4.3). They are small, corresponding ξ’s are
of order of µÊ.

5.3 Summary

Systematizing the overall picture behind r duality (in N = 1 , i.e. at large µ, and under
the condition 2

3
Nf < r ≤ N) upon reducing ξ the original theory undergoes a crossover
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transition at strong coupling. In the region (5.8) at small quark masses in the r = N
vacuum (or close to the AD points (5.6) in the r < N vacua) the strongly coupled theory
is described by a dual weakly coupled infrared-free theory, U(Ñ) or U(ν)×U(1)unbr SQCD,
with Nf light dyon flavors. Condensation of light dyons DlA in the dual theory leads to
formation of non-Abelian strings and confinement of monopoles. Quarks and gauge bosons
of the original N = 1 SQCD are in the “instead-of-confinement” phase: they decay into
the monopole-antimonopole pairs on CMS and form stringy mesons. In the r < N vacua in
the AD-regime (5.6), the MPN monopoles (P = 1, ..., ν) become very light and, therefore,
strings are highly unstable. As a result, the stringy mesons shown in Fig. 2 decay into stringy
dipoles, see Fig 3. Stringy dipoles with nontrivial charges with respect to the SU(r) part of
the global group (for example, adjoint) are stable.

6 Generalized Seiberg’s duality

Now we would like to compare r duality we established with Seiberg’s duality [1, 2]. Origi-
nally Seiberg’s duality was formulated for N = 1 SQCD corresponding to the limit µ → ∞.
Therefore, in the original formulation Seiberg’s duality referred to the monopole vacua with
r = 0. Other vacua, with r 6= 0, have condensates of r quark flavors 〈q̃q〉A ∼ µmA and,
therefore, become runaway vacua in the limit µ → ∞.

At the same time, the r duality [16] can be continued to large but finite µ in the r vacua
(2
3
Nf < r ≤ N), see Sec. 5. In order to compare both dualities with each other we rely on a

generalization of Seiberg’s duality to the r vacua [18].5

At large µ one can integrate out adjoint matter in superpotentials (3.1), (3.4). For the
single-trace deformation with γ = 0 this gives the superpotential

− 1

2µ
(q̃Aq

B)(q̃Bq
A) +mA (q̃Aq

A), (6.1)

where color indices inside the brackets are contracted. This suggests that the Seiberg dual
theory for our µ-deformed U(N) N = 2 SQCD at large but finite µ has the gauge group (5.2)
and Nf flavors of Seiberg’s “dual quarks” hlA (l = 1, ..., Ñ and A = 1, ..., Nf) and (being
N = 1 supersymmetric) possesses superpotential

WS = −κ2

2µ
Tr (M2) + κmA MA

A + h̃Alh
lB MA

B , (6.2)

where MB
A is the Seiberg neutral mesonic M field defined as

(q̃Aq
B) = κMB

A . (6.3)

Here κ is a parameter of dimension of mass needed to formulate Seiberg’s duality [1, 2].

5It was suggested in [18] for SU(N) gauge theories. We use here a similar formulation for U(N) gauge
theories. For a later development see [19].
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From the definition (6.3) it is clear that in the r vacuum the number of eigenvalues of
the matrix q̃q = κM which scales as µm at large µm is r. Moreover,

r ≤ N , (6.4)

since classically the rank of the (q̃Bq
A) matrix cannot exceed N .

Now let us discuss the vacuum structure of the Seiberg dual theory (6.2). We do it
separately in the r = N and r < N vacua.

6.1 The r = N vacuum

Let us minimize superpotential (6.2) to find the classical vacua of the generalized Seiberg
dual theory. Assuming that 〈MB

A 〉 = δBA MA we obtain the equations

−κ2

µ
MA + κmA + h̃Alh

lA = 0,

MA hlA = h̃Al MA = 0, (6.5)

which should be valid for any A.
To solve these equations we note that the rank of the h̃Akh

kB matrix cannot exceed Ñ .
In particular, for r = N vacuum we have the maximal number of condensed h-fields equal
to Ñ . In this case we can choose the (1, ..., N) vacuum as follows

MA =
µ

κ
mA, (h̃h)A = 0, A = 1, ..., N ,

(h̃h)A = −κmA, MA = 0, A = (N + 1), ..., Nf , (6.6)

where (h̃h)A are diagonal elements of the matrix h̃Akh
kB. The number the of r = N vacua is

given in (3.7). It is equal to the number of possibilities of choosing N nonvanishing elements
MA out of Nf . This is also the number of the r = N vacua in the original theory at small
µ, i.e. close to the N = 2 limit.

Now we assume the fields MB
A to be heavy and integrate them out. This implies that κ

is large.6 Integrating out the M fields in (6.2) we get

WLE
S =

µ

2κ2
(h̃Ah

B)(h̃Bh
A) +

µ

κ
mA (h̃Ah

A) . (6.7)

The change of variables

DlA =

√

−µ

κ
hlA, l = 1, ..., Ñ , A = 1, ..., Nf (6.8)

brings this superpotential to the form

WLE
S =

1

2µ
(D̃AD

B)(D̃BD
A)−mA (D̃AD

A) . (6.9)

6We will see that the parameter κ does not enter the low-energy theory.
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We see that (up to a sign) this superpotential coincides with the superpotential of our r dual
theory (5.3). As was already mentioned, the dual gauge groups also coincide for Seiberg’s
and r dualities in the r = N vacuum. Note, that kinetic terms are not known in the Seiberg’s
dual theory, thus, normalization of the h fields is not fixed.

This leads us to the conclusion that in the r = N vacua both dual theories are identical.
In Appendix A we show that this coincidence remains valid for more generic (non-single-
trace) deformations of N = 2 SQCD. Of course, upon identification (6.8) the hlA VEVs
(6.6) coincide with the VEVs of the DlA dyons in (4.3) in the r = N vacuum, see (4.16) and
(4.17).

The identification (6.8) reveals the physical nature of Seiberg’s “dual quarks”. They are
not monopoles as naive duality suggests. Instead, they are quark-like dyons appearing in
the r-dual theory below crossover. Their condensation leads to confinement of monopoles
and “instead-of-confinement” phase for the quarks and gauge bosons of the original theory.

6.2 The r < N vacua

As we will show in Sec. 7 there are no classical supersymmetric vacua in the Seiberg dual
theory with superpotential (6.2) for r vacua in the range 2

3
Nf < r < N . However, one can

look for quantum vacua. Following [2, 31], we assume that the MB
A fields develop VEVs

making “dual quarks” heavy and then integrate hlA out. The gluino condensation in the
U(Ñ) gauge theory with no matter induces the superpotential

Weff
S = −κ2

2µ
Tr (M2) + κmAMA

A + Ñ Λ̃
2Ñ−N

Ñ

S (detM)
1

Ñ , (6.10)

where Λ̃S is the scale of Seiberg’s dual theory defined via [1, 2]

Λ̃N−2Ñ
S Λ2N−Ñ = (−1)Ñ κNf , (6.11)

while Λ is the scale of the original N = 1 theory. It is related to ΛN=2 as follows:

Λ2N−Ñ = µN ΛN−Ñ
N=2 (6.12)

Substituting the definition of the M fields (6.3) in (6.10) we arrive at

Weff
S = − 1

2µ
Tr (q̃q)2 +mA Tr (q̃q) + (N −Nf )

Λ
3N−Nf

N−Nf

(det q̃q)
1

N−Nf

. (6.13)

The last quantum term is nothing other than the continuation of the Afleck–Dine–Seiberg
(ADS) superpotential [32] to Nf > N . As was explained in the beginning of this section, the
first term is obtained by integrating out adjoint fields in the original theory. Note, that in
much the same way as in the r = N vacuum the dependence on the κ parameter disappeared.
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Assuming, as before, that the matrix (q̃Aq
B) is diagonal we present the vacuum equation

in the form
1

µ
(q̃q)A = mA − 1

Λ
2N−Ñ

Ñ

∏

B [(q̃q)B]
1

Ñ

(q̃q)A
. (6.14)

The superpotential (6.13) is exact and we can use it in any domain in the parameter space.
In particular, for large masses, mA ≫ ΛN=2, the solution of Eq. (6.14) for the (1, ..., r)
vacuum is

(q̃q)A ≈ µm, A = 1, ..., r

(q̃q)A ≈ µΛ
N−Ñ
N−r

N=2 m
Ñ−r
N−r e

2πk
N−r

i, A = (r + 1), ..., Nf ,

k = 1, ..., (N − r) , (6.15)

where we assume the equal mass limit for simplicity. We have r large classical VEVs and
(Nf − r) small “quantum” VEVs.

The linear dependence of (q̃q) on µ is exact and is fixed by U(1) symmetries [39] after
condensates are expressed in terms of ΛN=2. The presence of (N − r) solutions ensures that
the total number of the r < N vacua in our theory is

Nr<N =

N−1
∑

r=0

(N − r)Cr
Nf

=

N−1
∑

r=0

(N − r)
Nf !

r!(Nf − r)!
, (6.16)

where the upper limit for r is implemented by the condition (6.4). This number coincides
with the result (3.19) obtained in the N = 2 limit and, therefore, matches number of the
r < N vacua in our r-dual theory.7

6.3 Generalized Seiberg’s duality and exact chiral rings

In this section we would like to make sure that generalized Seiberg’s duality gives correct
values of the chiral condensates in the r < N vacua. To this end we compare quark conden-
sates determined by Eq. (6.13) with the exact results obtained in [26]. This section overlaps
with what is already known, and we include it here mostly for the sake of completeness. For
example, a somewhat similar analysis for SU(N) gauge theory can be found in [40].

All chiral condensates in our theory can be encoded in the following functions [26]

T (x) =

〈

Tr
1

x− Φ

〉

,

R(x) =
1

32π2

〈

Tr
WαW

α

x− Φ

〉

,

M(x)BA =

〈

q̃A
1

x− Φ
qB
〉

, (6.17)

7Our large-m counting (6.16) also agrees with the final result in [18], see also Sec. 7.
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where Wα is the gauge field strength superfield. For the quadratic single-trace deformation
(3.4) (“one-cut” model) the function R(x) has the form

R(x) =
1

2

(

W
′

br(x)−
√

W
′

br(x) + f(x)

)

= µ

(

x−
√

x2 − e2N

)

, (6.18)

where the undoubled root of the Seiberg–Witten curve eN = e+N (see (4.12)) is related to the
gaugino condensate,

e2N =
2S

µ
, S =

1

32π2
〈TrWαW

α〉 . (6.19)

The solutions for the chiral rings were obtained in [26] in the r < N vacua. In the r = N
vacuum the gaugino condensate vanishes, all roots of the Seiberg–Witten curve are doubled,
and there are no cuts in the x-plane. As we already mentioned, all r < N vacua belong to
a single “branch” with a single U(1) gauge factor unbroken, while in the r = N vacuum the
gauge group is fully Higgsed.

From the solution for the function MB
A (x) in [26] one can obtain the values of the quark

VEVs in terms of the gaugino condensate S. In the r vacuum (1, ..., r) (when the function
MB

A (x) has r poles on the first sheet) we have

(q̃q)A =
µ

2

(

mA +

√

m2
A − 4S

µ

)

, A = 1, ..., r

(q̃q)A =
µ

2

(

mA −
√

m2
A − 4S

µ

)

, A = (r + 1), ..., Nf , (6.20)

Now, to find the gaugino condensate S we use the glueball superpotential calculated in
[26] from a matrix model [41]. For our theory with the quadratic single-trace deformation
(3.4) it has the form [28]

Wglueball = S

[

N + log
µN ΛN−Ñ

N=2

∏

AmA

SN

]

−
Nf
∑

A=r+1

S

[

− log

(

1

2
+

1

2

√

1− 4S

µm2
A

)

+
µm2

A

4S

(
√

1− 4S

µm2
A

− 1

)

+
1

2

]

−
r
∑

A=1

S

[

− log

(

1

2
− 1

2

√

1− 4S

µm2
A

)

+
µm2

A

4S

(

−
√

1− 4S

µm2
A

− 1

)

+
1

2

]

. (6.21)
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Minimization of this superpotential gives the equation for S from which we obtain

SN = µN ΛN−Ñ
N=2

(

m

2
− 1

2

√

m2 − 4S

µ

)r (

m

2
+

1

2

√

m2 − 4S

µ

)Nf−r

, (6.22)

where we assume the equal-mass limit for simplicity.
Now let us derive equations for the quark VEVs using the Cachazo–Seiberg–Witten

expressions (6.20) and equation (6.22). To this end we first express the right-hand side of
(6.22) in terms of the quark VEVs using (6.20). Solving this equation for S we get

S =
(det q̃q)

1

Ñ

µ
N

Ñ Λ
N−Ñ

Ñ

N=2

. (6.23)

Substituting S from (6.23) in the right-hand side of (6.20) we derive the following equation
for the quark VEVs:

1

µ
(q̃q)A = m− 1

µ
N

Ñ Λ
N−Ñ

Ñ

N=2

(det q̃q)
1

Ñ

(q̃q)A
. (6.24)

These equations coincides with those in (6.14) (for equal quark masses). We see that the
Cachazo–Seiberg–Witten exact solution [26] produces the same equations for the quark con-
densates as the continuation of the ADS superpotential to Nf > N in Eq. (6.13). This
justifies the latter superpotential.

7 Classical and quantum r vacua in Seiberg’s dual the-

ory

As was mentioned in Sec. 1, generalized Seiberg’s duality suggested in [18] was later studied
in [19] in the N = 1 theories with the SU(N) gauge group. The numbers of classical and
quantum vacua corresponding to the superpotentials (6.2) and (6.13) were analyzed. In
particular, a certain number of classical vacua was detected.

In this section we show that that there are no classical vacua in the Seiberg’s dual theory
in the range 2

3
Nf < r < N we explore in this paper. For smaller values of r, namely for

r < Ñ , the generalized Seiberg superpotential (6.2) does have classical vacua.
First, we briefly review the analysis carried out in [19]. The solution for (6.5) was written

as (cf. (6.6))

(q̃q)A = κMA = µmA, (h̃h)A = 0, A = 1, ..., p ,

(h̃h)A = −κmA, MA = 0, A = (p+ 1), ..., Nf , (7.1)

where now p should obey the constraint p > N , since the rank of the matrix (h̃h) cannot
exceed Ñ , and we do not consider the r = N vacua in this section.
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This solution can describe low-energy physics if the infrared-free Seiberg dual theory is
at weak coupling. To ensure this we assume the quark masses to be small,

mA ≪ ΛN=2 . (7.2)

As we will see below, in the case at hand p does not coincide with r, the latter parameter
being defined at large masses. Therefore, the condition (6.4) does not apply for p. The
number of the above vacuum solutions is

N S
class =

Nf
∑

p=N+1

(p−N)Cp
Nf

, (7.3)

where (p−N) is the rank of the gauge group unbroken by the h-condensation, and we modify
the results of [19] to include the combinatorial factor Cr

Nf
, see [18].8 The number of these

classical vacua is less than the total number of the r < N vacua (6.16). The missing vacua
are in fact quantum vacua which are not seen in Seiberg’s superpotential (6.2) even at small
mA. They can be recovered from (6.13), however [18, 19].

The (q̃q) matrix in Eq. (6.14) has two different eigenvalues (in the limit of equal quark
masses), namely

(q̃q)AB = diag(z, ..., z, y, ..., y), (7.4)

where (at small m) z appears p times while y appears (Nf − p) times, and, in addition,

z + y = µm . (7.5)

From (6.14) we can write the following equation [19]:

zp−Ñ = (µΛN=2)
N−Ñ yp−N (7.6)

which, in combination with (7.5), allows us to determine both z and y.

Following [19] we note that for p ≥ N Eq. (7.6) is a polynomial of degree (p− Ñ) with
respect to z and, therefore, has (p− Ñ) solutions for z. For 1

2
Nf ≤ p < N this equation has

(N − Ñ) solutions. Summing up all solutions together we get the number of vacua in the
form

Nr<N =

Nf
∑

p=N+1

(p− Ñ)Cp
Nf

+ (N − Ñ)







N
∑

p=
Nf

2
+1

Cp
Nf

+
1

2
C

1

2
Nf

Nf







=

Nf
∑

p=N

(p−N)Cp
Nf

+
1

2
(N − Ñ)

Nf
∑

p=0

Cp
Nf

. (7.7)

8At this point we keep the quark masses slightly different so that all vacua are isolated and can be counted.
The calculation of [19] refers to the equal-mass limit and, in fact, corresponds to counting the number of the
Higgs branches which are continuously degenerate in the equal-mass limit (vacuum moduli).
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The last sum here reduces to (N − Ñ) 2Nf−1; and then Eq. (7.7) can be rewritten as [18]

Nr<N =

Nf
∑

p=N

(p−N)Cp
Nf

+

Nf
∑

p=0

(N − p)Cp
Nf

=

N
∑

r=0

(N − r)Cr
Nf

. (7.8)

This calculation refers to the small-mass limit. The first term corresponds to the number
of the classical vacua (7.3), while the second one counts the missing quantum vacua. The
total number of vacua obviously coincides with Eq. (6.16) obtained at large m.

Now, we can solve Eqs. (7.5) and (7.6) at small m. In addition to “large” solutions with
z ≈ −y ∼ ΛN=2, we also get “small” solutions

(q̃q)A = z ≈ µm, A = 1, ..., p

(q̃q)A = y ≈ µ
m

p−Ñ

p−N

Λ
N−Ñ
p−N

N=2

e
2πk
p−N

i, A = (p+ 1), ..., Nf ,

k = 1, ..., (p−N) . (7.9)

These solutions should be compared with the classical solutions (7.1). We see that the
m dependence of (q̃q) matches; thus, these solutions corerespond to the classical vacua of
Seiberg’s dual theory. In order to have y much smaller than z in the small-mass limit we
impose the condition p > N . (This is to be contrasted with the condition r < N in (6.15) for
large m). Given the multiplicity of these solutions equal to (p−N) we see that the number
of these vacua precisely matches the number of the classical Seiberg vacua (7.3).

The behavior of (q̃q) in (7.9) ensures that the gaugino condensate is very small in these
vacua, see (6.20). Namely,

S ≈ µ
m

2p−Nf

p−N

Λ
N−Ñ
p−N

N=2

e
2πk
p−N

i , k = 1, ..., (p−N) . (7.10)

What is the relation between r and p?

At large mA we start from an r vacuum, with r quarks (classically) condensed, hence
r ≤ N . On the other hand, p is defined as the number of “plus” signs in Eq. (6.20) for

(q̃q)A = z .

(Then (Nf − p) is the number of “minus” signs). In fact, p depends on mA. At large mA we
have p(∞) = r. As we reduce mA certain poles can pass through the cut from the first sheet
to the second or vice versa [26]. When it happens p(mA) reduces by one unit or increases
by one unit.

In Eqs. (7.9) and (7.10) p is p(mA) in the small mass limit, p = p(0). Clearly p can differ
from r, and the condition (6.4) does not apply for p. In fact, (p − r) is the net number of
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poles which pass through the cut from the second sheet to the first one as we reduce the
quark masses from infinity to zero.

At large m we start in the r vacuum, with r < N , and the quark condensate given by
(6.15). This solution corresponds to

S ≈ µΛ
N−Ñ
N−r

N=2 m
Nf−2r

N−r e
2πk
N−r

i, k = 1, ..., (N − r) . (7.11)

This behavior can be seen in Eq. (6.22) as follows. We expand the square roots in S/µm2

in the right-hand side of (6.22). The second factor tends to a constant while the first factor
gives Sr, which reproduces the behavior in (7.11).

Now, to determine the relation between r and p in the vacua which are described by
Seiberg’s duality we must find the solution of Eq. (6.22) which approaches (7.11) at large m
and has the behavior (7.10) at m → 0.

There is only one possibility for this to happen. As m reduces all poles should pass
thorough the cut, so that the signs of the square roots in (6.22) change. In other words, as
we reduce m from large to small values, all r poles from the first sheet pass to the second
one and, simultaneously, all (Nf − r) poles from the second sheet pass to the first one. Then
at small m the first factor in the right-hand side of Eq. (6.22) tends to a constant, while the
second one gives SNf−r. This gives the behavior (7.10) where

p = Nf − r . (7.12)

We stress that there are other solutions to (6.22) which have different behavior at small
m (S ∼ µΛ2

N=2). We are interested in the behavior (7.10) with p > N because these
solutions correspond to the vacua seen classically in the Seiberg dual theory. Other vacua
are “quantum” vacua (see (7.8)) which remain classically invisible.

For Seiberg’s classical vacua we need p > N . This translates into the constraint

r < Ñ. (7.13)

In this paper we study r-duality in the range 2
3
Nf < r ≤ N ; thus, the above vacua are

beyond the range of our analysis. This means that the r vacua described by our r-duality
should be interpreted as “missing quantum” vacua from the standpoint of Seiberg’s duality.

8 r Duality versus Seiberg’s duality for

the 2

3
Nf < r < N vacua

For 2
3
Nf < r < N vacua our r-dual theory does not agree with the generalized Seiberg dual

theory. First, we have the U(ν) gauge group, while the Seiberg dual has the gauge group
U(Ñ). Light matter sectors and effective superpotentials are also different in two theories:
the DlA dyons (l = 1, ..., ν) with superpotential (5.12) versus “dual quarks” hlA (l = 1, ..., Ñ)
plus M fields with superpotential (6.2).
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Both dual theories are well justified and verified. On the one hand, the r-dual theory
is derived from the N = 2 limit by increasing µ and keeping the theory at weak coupling
at all intermediate stages. On the other hand, as was checked in Sec. 6.3, the generalized
Seiberg dual theory (more exactly, the generalized ADS superpotential (6.13)) matches the
exact solution of [26]. What is going on?

Our interpretation is as follows. In the r-vacua (in the range 2
3
Nf < r < N) the general-

ized Seiberg dual theory is at strong coupling and, therefore, cannot describe low-energy
physics in its entirety. However, it does describe the chiral sector in the sense of the
Veneziano–Yankielowicz effective superpotential [33]. Namely, condensates from the chiral
ring are correctly reproduced. The spectrum of excitations is not.

As an example consider superpotentials (6.13) or (6.21). Although these superpotentials
correctly reproduce the chiral condensates, taken at their face value they do not describe
low energy-spectrum. Namely, it is clear that neither the quark mesonic field (q̃q) nor the
glueball field S are light degrees of freedom at strong coupling.

We believe that the superpotential (6.2) is of the same kind in the window 2
3
Nf < r < N .

This assertion is supported by the fact that supersymmetric vacua are not seen at the
classical level in the superpotential (6.2) for 2

3
Nf < r < N . In order to find supersymmetric

vacua we have to integrate out the h fields and search for solutions in the effective quantum
superpotential (6.13). This suggests that the “dual quarks” h are not the low-energy degrees
of freedom and, in fact, Seiberg’s dual theory (6.2) is strongly coupled at small ξ’s in this
window.

Instead, the r-dual theory is the low-energy description at small ξ, where the original
N = 1 SQCD is at strong coupling. As long as we keep the parameters ξ small (see (5.8)) the
r-dual infrared-free theory is at weak coupling and under control. Condensation of the quark-
like dyons DlA in this theory leads to confinement of monopoles and “instead-of-confinement”
phase for the quarks and gauge bosons.

As was shown in Sec. 7, in the range r < Ñ the generalized Seiberg’s dual theory has
supersymmetric classical vacua and, being infrared-free, is at weak coupling (the same applies
to the r = N vacuum where it matches r-duality). Therefore, it does describe low-energy
physics in the r vacua with r < Ñ . The schematic picture of both dual descriptions versus
r is shown in Fig. 1.

A very important problem for future studies is extrapolating r duality to r ≤ 2
3
Nf and

comparing it in this range with Seiberg’s duality. Another problem is understanding r duality
in the framework of strings/branes, in the spirit it had been done with the Seiberg duality.
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Appendix: Non-single-trace deformations in the r = N

vacuum

In this Appendix we show the matching of the effective superpotentials for r-dual and gen-
eralized Seiberg’s dual theories for generic deformation (3.2) with γ 6= 0. For this case the
superpotential of r-dual theory obtained in [15] has the form

W = − 1

2µ

[

(D̃AD
B)(D̃BD

A)− αD

Ñ
(D̃AD

A)2
]

+

[

mA − γ (1 + Ñ
N
)

1 + γ Ñ
N

m

]

(D̃AD
A), (A.1)

where

αD =
γ Ñ

N

1 + γ Ñ
N

, m =
1

Nf

Nf
∑

A=1

mA (A.2)

and γ is given by (3.3).
On the other hand the generalized Seiberg’s superpotential for γ 6= 0 is

WS = −κ2

2µ
Tr (M2) +

κ2

2Nµ
α (TrM)2) + κmAMA

A + h̃Alh
lB MA

B , (A.3)

where

α = 1−
√

N

2

µ

µ0

= − γ

1− γ
. (A.4)

Upon integrating out the M fields we get

WLE
S =

µ

2κ2

[

(h̃Ah
B)(h̃Bh

A)− αD

Ñ
(h̃Ah

A)2
]

+
µ

κ

[

mA − γ (1 + Ñ
N
)

1 + γ Ñ
N

m

]

(h̃Ah
A). (A.5)

We see again that upon change of variables (6.8) two superpotentials (A.5) and (A.1)
coincide (up to a sign).
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