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Abstract

Quantum fluctuations of matter fields contribute to the thermal entropy of black holes. For free

minimally-coupled scalar and spinor fields, this contribution is precisely the entanglement entropy.

For gauge fields, Kabat found an extra negative divergent “contact term” with no known statisti-

cal interpretation. We compare this contact term to a similar term that arises for nonminimally-

coupled scalar fields. Although both divergences may be interpreted as terms in the Wald entropy,

we point out that the contact term for gauge fields comes from a gauge-dependent ambiguity in

Wald’s formula. Revisiting Kabat’s derivation of the contact term, we show that it is sensitive

to the treatment of infrared modes. To explore these infrared issues, we consider two-dimensional

compact manifolds, such as Euclidean de Sitter space, and show that the contact term arises from

an incorrect treatment of zero modes. In a manifestly gauge-invariant reduced phase space quanti-

zation, the gauge field contribution to the entropy is positive, finite, and equal to the entanglement

entropy.
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I. INTRODUCTION

The entropy of a horizon is given to leading order by the Bekenstein-Hawking formula

SBH = A/4G (c = ~ = 1). However, the quantum fields near the horizon are in a highly

entangled state, and their entropy Sent = −tr(ρ ln ρ) should contribute to the Bekenstein-

Hawking entropy. It is well known [1, 2] that the leading-order divergence of the entan-

glement entropy Sent scales as the area A of the horizon. However, Sent also depends on

the number of each kind of particle species and their interactions, whereas the Bekenstein-

Hawking entropy depends only on Newton’s constant G. This “species problem” would be

elegantly solved if the number of species affected the renormalization of 1/G, so that SBH

implicitly depends on the field content [3, 4].

This solution can only work if the fields’ entanglement entropy divergence matches their

renormalization of 1/G. For minimally coupled scalars and spinors the matching is exact, at
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least at one loop [5–10].1 Since entropy is an intrinsically positive quantity, as one flows to

the infrared, this requires a positive contribution to 1/G, resulting in screening of Newton’s

constant (i.e. gravity falls off with distance faster than would be expected in classical

physics).

However, there appears to be a discrepancy for gauge fields. This discrepancy was first

identified by Kabat [6], who found an extra “contact term” divergence in 1/G for spin-1

Maxwell fields, which does not correspond to the divergence in the entanglement entropy.

Similar issues arise for linearized gravity [12], but here we will focus on the simpler case of

Maxwell theory.

The entropy can be calculated by the conical method [13, 14] (see Ref. [15] for a review).

Let Z(β) be the Euclidean partition function on a spacetime with a conical singularity at

the horizon with conical angle β. The conical entropy is given by

Scone =

(

1− β
∂

∂β

)

lnZ(β)
∣

∣

∣

β=2π
. (1)

The one-loop partition function can be calculated using a heat kernel regulator, and is given

by lnZ = −
∫ √

gLeff where

Leff = −1

2

∫ +∞

ǫ2
ds

e−sm2

(4πs)D/2

(c0
s
+ c1R +O(s)

)

, (2)

with s a Schwinger proper time coordinate, ǫ an ultraviolet cutoff, and m the mass. The

coefficient c1 associated with renormalization of 1/G also determines the coefficient of the

leading-order entropy divergence using Eq. (1):

S = 2πAc1

∫ ∞

ǫ2
ds

e−m2s

(4πs)D/2
. (3)

For a minimally coupled scalar field, c1 = 1/6. For a Maxwell field, the entropy divergence

coefficient was found to be [6]

c1 =
D − 2

6
− 1. (4)

1 For scalars in odd-dimensional spacetimes one calculation [11] found a discrepency. In fact they did not

even recover the standard leading order area divergence. We suspect that this may be due to the fact that

the entanglement entropy, unlike most physical observables, is sensitive to arbitrarily high energy states

and therefore receives contributions from near the cutoff. This means that a) different regulator schemes

need not commute past one another, and b) because the Pauli-Villars regulator permits negative normed

states, there can be large, negative, unphysical contributions to S.
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In addition to the D−2 bosonic degrees of freedom which contribute just like D−2 scalars,

there is an additional contact term that makes the entropy negative for D < 8. Negative

values of c1 correspond to antiscreening of Newton’s constant by Maxwell fields.

This contact term is surprising for a number of reasons. First, the term seemingly appears

as a UV divergence even in D = 2, in which Maxwell fields have no local degrees of freedom.2

In what follows we will work primarily in D = 2. The reason is that in Kabat’s original

calculation the polarizations in which the vector is transverse to the horizon contribute

exactly like D − 2 minimally coupled scalar fields, while the contact term comes from the

theory reduced to the remaining two dimensions normal to the horizon. Thus the effect in

higher dimensions is closely related to the effect in D = 2 dimensions.

Secondly, because the entanglement entropy Sent cannot be negative, one cannot explain

the contact term by means of the entanglement entropy divergence. A similar discrepancy

occurs for a nonminimally coupled scalar field, for which c1 = 1/6− ξ, but the leading order

entanglement entropy divergence is independent of ξ. (This can be seen most easily in flat

space where there is no curvature to couple to.)

However, this nonminimal scalar discrepancy can be explained [16, 17] if we add to

the Bekenstein-Hawking entropy the Wald entropy [18–21] associated with the nonminimal

coupling of the scalar [20]

S
(φ)
Wald = −2πξ

∫

Σ

dD−2x
√
hφ2, (5)

where Σ is the bifurcation surface of the horizon, and h is the determinant of the induced

metric on Σ. This term in the entropy is a consequence of the scalar coupling directly to

the singular curvature at the tip of the cone [22]. In the quantum theory, φ2 is divergent

and therefore also contributes to the renormalization of 1/G. In section IIA we will show

how this exactly accounts for the ξ-dependent term.

It has been suggested [8] that the Kabat contact term can be attributed to an effective

nonminimal coupling of the vector field to gravity. Following the same method as for the

2 More generally, for D 6= 4 it is not invariant under electric-magnetic duality which relates a massless

p-form field to a massless (D − p − 2)-form field (up to issues involving zero modes of the fields). For

example, in D = 3 the on-shell dynamics of the Maxwell field are exactly the same as a massless scalar

field, and yet their contributions to the entropy divergence are not even of the same sign.
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nonminimally coupled scalar, the divergent term in the Wald entropy would take the form

S
(A)
Wald = −π

∫

Σ

√
hAaAbg

ab
⊥ (6)

where gab⊥ is the inverse metric perpendicular to the horizon [23]. In section IIB we will verify

that this term can indeed explain the extra renormalization of 1/G in Feynman gauge. How-

ever, this term is not manifestly gauge-invariant, nor is it invariant under BRST symmetry.

Furthermore, this term actually corresponds to a Jacobson-Kang-Myers [20] ambiguity in

the derivation of the Wald entropy as a Noether charge. These JKM ambiguities vanish

for classical fields at the Killing horizon, but may have nonvanishing quantum expectation

values.

In section III, we review Kabat’s derivation of the contact term [6]. In this derivation, the

gauge-fixed Maxwell action is integrated by parts in order to put it in the form field-operator-

field. Because of the JKM ambiguity, the Wald entropy can depend on an integration by

parts. So one might wonder whether the contact term comes from an improper treatment

of the boundaries at the conical singularity and/or infinity. To eliminate these boundaries,

in section IV we will consider the analogue of the contact term for two-dimensional smooth

compact spacetimes. The partition function of a cone should be obtainable as a limit of the

partition function of smooth, compact geometries. Indeed we will see that the contact term

persists even in the compact case. However, in this case the contact term in the entropy

comes entirely from the zero mode sector. We will argue that these zero modes have not

been properly treated, so that in this case the contact term should be viewed as unphysical.

In section V, we calculate the physical partition function on a 2D compact manifold in the

reduced phase space, without the use of gauge-fixing or ghosts, taking into account all non-

perturbative effects. We find that the entropy is finite and equal to the entanglement entropy.

As expected on physical grounds, there is no renormalization of 1/G in two dimensions.

Thus we conclude that—at least in two dimensions—Maxwell fields do not antiscreen

Newton’s constant. The Kabat contact term is not present in the horizon entropy, and

appears to be purely a gauge artifact. We discuss the implications of this result in section VI.
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II. CONTACT TERM AS RENORMALIZATION OF WALD ENTROPY?

The entropy of a bifurcate Killing horizon can be calculated in a D-dimensional

diffeomorphism-invariant classical theory by the Wald Noether charge method [18, 21]. If

the Lagrangian L does not depend on derivatives of the Riemann tensor, and all derivatives

of the matter fields are symmetrized, the Wald entropy is given by differentiating L with

respect to the Riemann tensor [19, 20]:

SWald = −2π

∫

Σ

dD−2x
√
h

∂L

∂Rabcd
ǫabǫcd, (7)

where h is the pullback of the metric to the D − 2 dimensional bifurcation surface Σ and

ǫab is the binormal to the slice. This formula was proven to be equivalent to the “Noether

charge” on stationary Killing horizons. However, on nonstationary backgrounds, Eq. (7) is

ambiguous, since it can be affected by integrating the action by parts, or by performing field

redefinitions that involve the metric.

The Wald entropy is classical, and we are interested in the full entropy as defined by

the conical entropy formula (1). For a classical theory, the conical entropy is equivalent

to the Wald entropy [24], while for minimally coupled scalar and spinor fields it equals the

entanglement entropy [25]. It is thus natural to conjecture, in accordance with the arguments

of Refs. [17, 24], that for a general quantum field theory the conical entropy is given by the

sum

Scone = 〈SWald〉+ Sent, (8)

where the Wald term comes from the coupling of fields to the curvature at the tip of the cone,

while the entanglement term comes from the angle deficit away from the tip. For general

relativity with minimally coupled matter, the right-hand side of Eq. (8) is the generalized

entropy, which is conjectured to obey the generalized second law [26].3

Since Scone is defined in terms of the renormalized effective action − lnZ, it must be

independent of the renormalization scale. Therefore an important consistency check of Eq. 8

3 The generalized second law has been proven in various regimes [26–28] for fields minimally coupled to

general relativity, where SWald = A/4G. For higher curvature gravity and nonminimal couplings, it is

not even known whether the theory obeys a classical second law, except for special cases such as f(R)

gravity [29], nonminimally coupled scalars [30], and first order perturbations to Lovelock horizons [31].

However, it is also known that the Wald entropy can decrease in classical mergers of Lovelock black holes

[20, 32, 33]
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is whether the generalized entropy is also invariant under the renormalization group flow.

This is nontrivial, since the terms SWald and Sent depend explicitly on the renormalization

scale: the latter because of the ultraviolet divergence of −tr(ρ ln ρ), and the former because

of the RG flow of the coupling constants such as 1/G, and (in some cases) divergent products

of fields such as φ2. In order for Eq. (8) to hold, the renormalization of the entanglement

entropy must match the renormalization of the Wald entropy, when both are regulated in

the same way. We will now check this using the heat kernel regulator for the nonminimally

coupled scalar, and for Maxwell theory.

A. Nonminimally coupled scalar field

An illustrative example of a field theory with a consistent contact term is the nonmini-

mally coupled scalar field [22]. Its action is

I =

∫

dDx
√
g
1

2
φ(−∇2 + ξR)φ. (9)

Its contribution to the generalized entropy (8) is given by

Sgen = −2πξ

∫

dD−2x
√
h
〈

φ2
〉

+ Sent. (10)

The coefficient of the entropy divergence is given by c1 = 1/6−ξ. The value of 1/6 comes

from the usual entanglement entropy divergence in Sent, which in flat spacetime is indepen-

dent of ξ. However, there is also a contact term coming from divergences in 〈φ2〉. Divergences

of this term are not associated with the entanglement entropy. Instead they correspond to

particle loops that interact with the curvature at the conic singularity.4 Although φ2 is an

intrinsically positive quantity, the coupling ξ can take either sign. Positive ξ corresponds

to antiscreening of Newton’s constant. In fact there is exact numerical consistency between

the divergences in Eq. (10) and the renormalization of 1/G.

The partition function of the theory (9) is a functional determinant,

lnZ = −1

2
ln det∆ξ

0, (11)

4 This is not necessarily inconsistent with the hypothesis [3] that the horizon entropy ultimately comes

entirely from entanglement entropy. It could be that the nonminimal coupling term is induced by entan-

glement at an even higher energy scale, as in the O(N) model considered in Ref. [16].
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where ∆ξ
0 = (−∇2 + ξR). In the heat kernel regularization, the functional determinant is

expressed in terms of the trace of the heat kernel,

Kξ
S(s) = tr e−s∆ξ

0. (12)

The partition function is then given by

lnZ =
1

2

∫ ∞

ǫ2
ds
e−m2s

s
Kξ

S(s) (13)

where m is the mass of the field, and ǫ is an ultraviolet cutoff with dimensions of length.

The heat kernel can be expressed as a Schwinger path integral over paths xa(s) through

the Euclidean spacetime with s as the “time” parameter:

Kξ
S(s, x, y) =

∫ x(s)=y

x(0)=x

Dxe−
∫ s

0
ds′ 1

4
ẋa(s′)ẋa(s

′) + ξR. (14)

The heat kernel and its trace are related by

Kξ
S(s) =

∫

dDx
√
g Kξ

S(s, x, x). (15)

We are interested in the heat kernel for first-order variations of β away from 2π. The conical

deficit introduces a singular curvature at the tip, given by [34]

Rtip(x) = 2(2π − β)δΣ(x). (16)

The Schwinger path integral depends on β through both the change of angular periodicity,

and the introduction of curvature at the tip. To first order in β−2π, these two contributions

are independent and we can write the trace of the heat kernel as a sum of paths that do not

interact with the singularity, and those that do [22]:

Kξ
S(s) = Kξ

S(s)|∂nφ=0 +Ktip(s). (17)

The first term is the heat kernel with Neumann boundary conditions ∂nφ = 0 at the tip

of the cone, whose contribution to Scone is the entanglement entropy Sent [35]. The second

term is

Ktip(s) =

∫

dDx
√
g

∫ x(s)=x

x(0)=x

Dx
∫ s

0

ds′ (−ξRtip(x(s
′))) e−

∫ s

0
ds′′ 1

4
ẋa(s′′)ẋa(s

′′) + ξR (18)

= −2ξ(2π − β)

∫

dDx
√
g

∫

Σ

dD−2y
√
h

∫ s

0

ds′Kξ
S(s

′, x, y)Kξ
S(s− s′, y, x) (19)

= −2ξ(2π − β)

∫

Σ

dD−2y
√
h sKξ

S(s, y, y). (20)
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where we have used the heat kernel identity

Kξ
S(s, y, y) =

∫

dDx
√
gKξ

S(s
′, x, y)Kξ

S(s− s′, y, x). (21)

The contribution to the effective action is

lnZtip =
1

2

∫ ∞

ǫ2
ds
e−m2s

s
Ktip(s) (22)

= −ξ(2π − β)

∫

Σ

dD−2y
√
h

∫ ∞

ǫ2
ds e−m2sKξ

S(s, y, y). (23)

We can identify in this last expression the expectation value of φ2 in heat kernel regulariza-

tion:
〈

φ2(y)
〉

=

∫ ∞

ǫ2
ds e−m2sKξ

S(s, y, y). (24)

We therefore have

lnZtip = −ξ(2π − β)

∫

Σ

dD−2y
√
h
〈

φ(y)2
〉

, (25)

and the contribution to the conical entropy is

Stip = (1− β∂β) lnZtip

∣

∣

β=2π
= −2πξ

∫

Σ

dD−2y
√
h
〈

φ(y)2
〉

. (26)

This is precisely the same as the expectation value of the scalar contribution to the Wald

entropy (7). So we see that the conjecture (8) holds in the case of the nonminimally coupled

scalar field.

B. Maxwell field

It is tempting to interpret the Maxwell contact term in the same way, as a contribution

coming from the Wald entropy, just as in the case of the nonminimally coupled scalar field.

In Ref. [6], the thermal entropy of Maxwell fields in Rindler space was obtained from

the partition function Z on the cone. The Euclidean action for the Maxwell field includes

(fermionic-scalar) ghosts and a gauge fixing term. In Feynman gauge:

I =

∫

dDx
√
g

[

1

4
FabF

ab +
1

2
(∇aA

a)2 − c̄∇2 c

]

. (27)

To express the one-loop effective action as a determinant, we integrate by parts:

I =

∫

dDx
√
g

[

−1

2
Aa(gab∇2 − Rab)A

b − c̄∇2 c

]

. (28)
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The gauge-fixed vector field Aa has D degrees of freedom, while the two Faddeev-Popov

ghosts c and c̄ each represent −1 degrees of freedom. c exists to cancel out the pure gauge

modes A = ∇α, while c̄ exists to cancel out the Lorenz-gauge violating modes with ∇aA
a 6=

0.

The partition function can then be expressed as a functional determinant

lnZ = −1

2
ln det∆1 + ln det∆0. (29)

where

∆0 = −∇2, ∆1 = −gab∇2 +Rab. (30)

The ghosts are minimally coupled and so do not contribute a contact term.

The manipulations leading to Eq. (26) can be repeated for any theory in which the action

depends on the Riemann tensor. On the conical manifold, the singular part of the Riemann

tensor is given by [34]

Rtip
abcd(x) = (2π − β)ǫabǫcdδΣ(x). (31)

The calculation proceeds much as in the case of the nonminimally coupled scalar, with the

result that

Stip = −2π

〈
∫

Σ

dD−2x
√
h

∂L

∂Rabcd

ǫabǫcd

〉

. (32)

Calculating the Wald entropy (7) by differentiating the action (28) with respect to the

curvature, we obtain [23]:

SWald = −π
∫

Σ

d(D−2)x
√
hAaAbg

ab
⊥ , (33)

where gab⊥ is the inverse metric projected onto the directions perpendicular to the horizon.

The expectation value of Eq. (33) is the same as the contribution of two nonminimally

coupled scalars with ξ = 1/2 [8]. This gives a contribution c1 = −1, in exact agreement

with the contact term. Thus at first sight it appears that the antiscreening of Newton’s

constant can be explained physically through a divergence in the Wald entropy.

But this interpretation is problematic, because the A2 term is not gauge-invariant. This

lack of gauge invariance is just a consequence of the gauge-fixing of the action (28). How-

ever an avatar of the original gauge invariance remains in the form of the fermionic BRST

symmetry s relating the ghosts to the unphysical vector modes:

sAa = ∇ac, sc̄ = ∇aA
a, sc = 0. (34)
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BRST symmetry guarantees that the expectation values of BRST-invariant operators are

independent of the choice of gauge. The operator appearing in Eq. (33) is not BRST-

invariant, but instead transforms as

s(AaAbg
ab
⊥ ) = 2Aa∇bc g

ab
⊥ . (35)

This may help explain the results of Ref. [36], where it was found that the contact term

depends on the parameter ξ of the Rξ gauge using ζ-function regularization inD = 4 (though

not in D = 2).

The A2 term (33) is actually a JKM ambiguity [20] in the definition of the Wald entropy,

since it can be removed by adding a total derivative to the Lagrangian; the Wald entropy (7)

of the original Maxwell Lagrangian 1
4
FabF

ab vanishes. Classically, ambiguity terms such as

AaAbg
ab
⊥ vanish on the Killing horizon for stationary field configurations, but in the quantum

theory they can have nonzero expectation values.

Additionally, since Maxwell fields (coupled to general relativity) satisfy the null energy

condition, there is a classical second law in which the horizon entropy is given by the

Bekenstein-Hawking area term alone. The addition of Eq. (33) to the entropy seems likely

to spoil this result. This is in contrast with the nonminimally coupled scalar field, for which

the inclusion of the Wald entropy term −2πξφ2 is necessary for the classical second law [30].

III. DERIVATION OF THE KABAT CONTACT TERM

We now summarize the calculation that led to the puzzling contact term in Eq. (4).

Following the same method as in section II, we express the partition function in terms of

the heat kernels of the vector and scalar Laplacians. Let φn be a complete set of modes for

∆0 (with ξ = 0):

−∇2φn = λnφn. (36)

The scalar heat kernel is given by

KS(s, x, y) =
∑

n

e−sλnφn(x)φn(y). (37)

Although we have written the heat kernel in the case of a discrete spectrum, the results

generalize naturally to the case of continuous spectrum.
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To compute the heat kernel of the vector Laplacian, we construct a complete set of

eigenfunctions of the operator ∆1:

(−gab∇2 +Rab)A
b = λnA

a, (38)

and define the vector heat kernel

KV (s, x, y)ab =
∑

n

e−sλnAna(x)Anb(y). (39)

In two dimensions, the vector modes can be written in terms of the scalar eigenfunctions as

1√
λn

∇aφn,
1√
λn
ǫab∇bφn. (40)

The vector heat kernel at coincident points and with the vector indices contracted can be

expressed in terms of the scalar heat kernel as

KV (s, x, x)
a
a =

∑

n

e−sλn

λn
[2∇aφn∇aφn] (41)

=
∑

n

e−sλn

λn
[−2φn∇2φn + 2∇a(φn∇aφn)] (42)

=
∑

n

e−sλn [2φ2
n +

1

λn
∇2(φ2

n)] (43)

= 2KS(s, x, x) +

∫ ∞

s

ds′∇2KS(s
′, x, x). (44)

In the heat kernel regularization, the partition function (29) is given by

lnZ =
1

2

∫ ∞

ǫ2
ds
e−m2s

s
KM(s) (45)

where the mass m is an infrared regulator. Here we have defined KM(s) as the trace of the

“Maxwell heat kernel”:

KM(s) =

∫

d2x
√
g (KV (s, x, x)− 2KS(s, x, x)) (46)

=

∫

d2x
√
g

∫ ∞

s

ds′∇2KS(s
′, x, x) (47)

using (44) in the last line. It seems tempting to move the integration with respect to s past

the Laplacian, turning this expression into the integral of a total derivative. However this

would not be valid as KS behaves as 1/s for large s, so the s integral would be ill-defined.
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To evaluate KM on a cone of angle β, Kabat exploits rotation and scale symmetry to

write KS(s
′, x, x) = f(r2/s′)/s′, so that Eq. (47) becomes

KM(s) = β

∫

rdr

∫ ∞

s

ds′
1

r
∂rr∂rs

′f(r2/s′). (48)

By dimensional analysis, r∂rK = −2∂s(sK). Both integrals can then be carried out, yielding

KM(s) = −2βf(r2/s′)
∣

∣

s′=∞
s′=s

∣

∣

r=∞
r=0

. (49)

When r2 ≫ s, the heat kernel on a cone takes the same form as on the plane, f(r2/s) ≈ 1
4π
.

When r2 ≪ s, the heat kernel is very sensitive to the conical singularity, and f(r2/s) ≈ 1
2β
.

In Eq. (49), there are two contributions from r = 0 that each give 1
2β
, and a contribution

from r = ∞, s′ = s that yields 1
4π
. But there is also a contribution from s = ∞, r = ∞

that depends on the order in which the limits are taken. If we take the limit s → ∞ first,

we find the same result as Kabat:

KM(s) = − 1

2π
(2π − β) = − 1

4π

∫ √
gR. (50)

If instead we take the r → ∞ limit first, the Maxwell heat kernel vanishes identically, and

we obtain no contact term.

The partition function associated to (50) is given by

lnZ = − 1

4π
(2π − β)

∫ ∞

ǫ2
ds
e−m2s

s
, (51)

from which we easily find the entropy using (1):

Scone = −2π

∫ ∞

ǫ2
ds
e−m2s

4πs
. (52)

This corresponds to a term c1 = −1 in the conical entropy (3).

We note that the Maxwell heat kernel on the cone (50) is independent of s. Thus it enters

the heat kernel in the same way as (β/2π − 1) zero modes would, although this coefficient

is not in general an integer. This suggests that the calculation may depend on the way that

zero modes are handled. Indeed, the dependence on the order of limits s→ ∞ and r → ∞
shows that the calculation is sensitive to the far infrared. Taking the limit s → ∞ first

corresponds to allowing paths a sufficient amount of Schwinger proper time to probe the

boundary at large r.

In section IV we will repeat the contact term calculation on a smooth compact space

without boundary or singularities. We will see that the contact term does indeed arise from

zero modes.
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IV. 2D MAXWELL THEORY ON A COMPACT SPACETIME

Because Kabat derived the contact term on a manifold with a conical singularity and

a boundary at infinity, one might wonder whether the result comes from the improper

treatment of these boundaries. To show that this is not the case, in this section we will

re-derive the Kabat contact term for smooth compact orientable two-dimensional Euclidean

manifolds. However the interpretation is different: the contact term in the entropy arises

from zero modes of ghosts, explaining its negative sign.

When calculating the entropy on smooth manifolds, we will replace the conical singularity

with a smooth cap, smearing out the curvature over some finite radius r0 [24, 34, 37]. Because

of approximate translation symmetry near the horizon, to first order in the angle deficit

2π − β and in the limit that r0 → 0, the heat kernel does not depend on the details of the

smoothing. Formally therefore, the replacement of the conical singularity with the smoothed

tip should have no consequences, and indeed this is what we will find.

To compute the effective action, we use the trace of the Maxwell heat kernel (46)

KM(s) = tr(e−s∆1)− 2 tr(e−s∆0). (53)

Both operators ∆0 and ∆1 are cases of the Hodge Laplacian acting on p-forms:

∆p = dδ + δd (54)

where d is the exterior derivative and δ is the codifferential.

By the Hodge decomposition, any 1−form A can be expressed as

A = dφ+ δψ +B (55)

where φ is a 0-form (scalar), ψ is a 2-form and B is a harmonic 1-form i.e. ∆1B = 0.

By Eq. (55), the spectrum of ∆1 is the union of the spectrum of ∆0 and ∆2 up to zero

modes. Moreover, by Hodge duality, the spectra of ∆0 and ∆2 are equivalent on orientable

manifolds. In terms of the heat kernels, this implies that

KV (s) = 2KS(s) + b1 − b0 − b2 (56)

where bp = dimker∆p is p
th Betti number, which counts the number of p−form zero modes.

On a connected orientable manifold, b0 = b2 = 1 and b1 is twice the genus, so we have

KV (s) = 2KS(s)− χ (57)

14



where χ = b0 − b1 + b2 is the Euler characteristic.

Subtracting the two scalar ghosts from the vector heat kernel (57), we find the Maxwell

heat kernel

KM(s) = −χ = − 1

4π

∫

d2x
√
gR. (58)

where we have used the Gauss-Bonnet theorem. Now note the similarity between this result

and Kabat’s result for the cone: the right-hand side of Eq. (58) and Eq. (50) are the same.

To find lnZ in terms of the heat kernel, we again introduce an ultraviolet cutoff length

ǫ and an infrared regulating mass m,

lnZ =
1

2

∫ ∞

ǫ2
ds
e−m2s

s
KM(s) (59)

= −
∫ √

g

(

1

2

∫ ∞

ǫ2
ds
e−m2s

4πs
R

)

. (60)

By comparison with equation (2), this corresponds to c1 = −1 in the effective action.

We have therefore confirmed the presence of the contact term for compact manifolds.

But more importantly, we have elucidated the origin of the contact term: it arises from the

difference in the number of degrees of freedom in the vector zero modes as compared to the

ghost zero modes.5

As an example, let us consider the effective action on de Sitter space dS2, for which the

Euclidean geometry is the sphere S2. All modes cancel except for the two zero modes of the

ghosts c and c, since there are no vector zero modes on the sphere. These modes are ghosts

and contribute negatively to the entropy S = (1− β∂β) lnZ. The β variation of the sphere

(which corresponds to deforming it into a “football” with two smoothed out conical caps)

vanishes, because Z depends only on the topology, not β. This leaves only the lnZ term,

which is negative.

5 One may wonder how these zero modes could possibly give rise to a logarithmic divergence in 1/G, consid-

ering that a finite number of modes cannot give rise to an ultraviolet divergence. The explanation is that

when taking the determinant of a dimensionful operator ∆, one must insert a dimensionful parameter µ

so that the partition function Z = det(µ−2∆) is dimensionless. Although conceptually µ has no neces-

sary relationship to an ultraviolet cutoff Λ on short-distance modes, since both µ and Λ are dimensionful

parameters needed to make the path integral well defined, one may as well identify Λ = µ. In any case

both parameters must be varied in order to perform an RG flow. The distinction between these two

conceptually distinct reasons for renormalization is obscured by the heat kernel regulator ǫ, which does

not distinguish between them.
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Thus we rederive the contact term, but now the interpretation is that it comes from

negative entanglement entropy due to ghosts. But this should immediately arouse suspicion!

The sole purpose of ghosts is to cancel out unphysical vector modes, and the ghost zero modes

are extra fields which are not associated with any such vector modes.

A similar calculation was carried out in Ref. [38] in which all vector and ghost zero modes

were omitted, leading to a trivial partition function Z = 1. This prescription removes the

contact term; however it neglects nonperturbative contributions to Z that will be considered

in section V.

A. Problems with the näıve Maxwell heat kernel

Let us go back to the original justification for the ghosts. In the Faddeev-Popov trick,

one takes a path integral of the form

∫

DAe−S(A), (61)

and inserts the “identity”

∫

Dα δ(G(Aα)) det

[

δG(Aα)

δα

]

= 1. (62)

Here G(A) = ∇aA
a is the Lorenz gauge-fixing condition, and Aα = A +∇α. This assumes

that for every A there is exactly one α such that G(Aα) = ∇aA
a +∇2α = 0. However if α

satisfies this condition, then so does α+ c where c is a spacetime constant. This means that

we should integrate over equivalence classes of functions α under the relation α ∼ α + c, in

other words the determinant in Eq. 62 should not include zero modes; hence the ghost zero

modes are spurious.

On manifolds with handles, the vector zero modes must also be treated with great care.

If the gauge group of the Maxwell theory is R, there will be infrared divergences coming

from these winding modes. For a U(1) gauge field, this infrared divergence is replaced with

an integral over the moduli space of flat connections, which has finite volume. These zero

modes must be exluded from the one-loop determinant and handled separately. It is also

necessary to sum over nontrivial U(1) bundles.

Finally, there is an additional problem that the BRST state space is not the same as

the physical Hilbert space of the canonical Maxwell theory, but contains extra degrees of
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freedom with negative norm states. This problem arises on any spatially compact manifold,

but for specificity consider a static Lorentzian manifold (of any dimension) taking the form

Σ×Rtime. Let q be the determinant of the spatial metric, and t be the time coordinate on R.

On any t = const. time slice, the following pair of canonically-conjugate spatially constant

ghost modes

c0 =

∫

Σ

dD−1x
√
q c, ˙̄c0 =

∫

Σ

dD−1x
√
q
dc̄

dt
(63)

are BRST-trivial, i.e. they are not paired by BRST symmetry with any other modes. In

the canonical BRST formalism, the physical Hilbert space is defined as the cohomology of

Q, the generator of the BRST symmetry s (34). In other words, the Hilbert space is given

by restricting to states in the kernel of Q, and modding out by states in the image of Q.

This means that the BRST-trivial ghost modes remain in the “physical” state space despite

the fact that they include negative norm states, and do not correspond to any modes in the

canonical Maxwell theory. These spurious degrees of freedom are similar to the extra ghosts

that arise when BRST-quantizing the zero mode of a string, and which are normally cured

by imposing Siegel gauge [39]. This problem arises even in the 0+1 dimensional gauge-fixed

Maxwell theory, where there are are two Faddeev-Popov ghosts, yet only one component of

the vector field.

These problems cast doubt on the validity of the “vector minus two scalars” calculations

of the contact term. Rather than try to resolve these issues here, we will instead quantize the

two-dimensional theory using the reduced phase space of gauge-invariant canonical degrees

of freedom. We will see that the contact term is absent.

V. REDUCED PHASE SPACE QUANTIZATION

Two dimensional Maxwell theory has no local degrees of freedom, but there are still global

degrees of freedom. In fact, the system is exactly solvable without the introduction of gauge

fixing or ghosts (for a review see Ref. [40]).

On a 2-dimensional orientable Euclidean manifold the Maxwell action is

I =

∫

d2x
√
g
1

2
F 2, (64)

where we define F = 1
2
√
g
Fabǫ

ab. In order to perform a canonical analysis, we will start

by assuming that the manifold can be foliated by circles (i.e. is a sphere or torus); this
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assumption will be lifted at the end of this section.

At a fixed time, the configuration degrees of freedom are the gauge equivalence classes of

a U(1) connection Aa on the circle. These equivalence classes are parameterized by a single

degree of freedom, the Wilson loop around the circle,

A =

∮

Aadx
a. (65)

Note that the action (64) depends on the metric only via the volume form. By choosing a

coordinate x ∈ [0, 1] parameterizing the circle, and a coordinate t that measures the elapsed

spacetime volume, the volume element becomes
√
gd2x = dtdx. Then we can reduce the

phase space by imposing Coulomb gauge, in which Ax is constant, and At = 0. Maxwell

theory in two dimensions then reduces to the free particle with Hamiltonian

H =
1

2
E2 (66)

where the electric field E is canonically conjugate to A:6

{A,E} = 1. (67)

All the relevant information about the manifold is encoded in the total volume V , and the

boundary conditions imposed on A at t = 0 and t = V .

To quantize the theory, we simply replace the Poisson brackets by commutators, giving

a free particle. For a theory with gauge group R, A can take any real value, but for a U(1)

gauge theory A is periodic:

A ∼ A +
2π

q
, (68)

where q the minimal charge, so the free particle lives on a circle. This implies that the

electric field is quantized as

E ∈ qZ. (69)

To compute the partition function, we first need to specify the topology of the Euclidean

manifold, which determines the boundary conditions for A. We first consider the torus, for

which the appropriate boundary conditions are the periodic ones:

A(0) = A(V ). (70)

6 Although on-shell E = F , off-shell it is important to distinguish between the momentum E and the

velocity F . The former is conserved and the latter fluctuates.
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The partition function is

Z = tr e−V H =
∑

E∈qZ

e−
1

2
V E2

. (71)

We can also compute Z by the Euclidean path integral. Because the action is quadratic,

we can factor the partition function into a sum over classical paths times a contribution

from fluctuations about the classical paths,

Z =
∑

n∈Z

e−S[An] × Zfluctuations (72)

where An is the classical path that wraps around the circle with winding number n:

A(t) =
2πn

qV
t, F =

2πn

qV
(73)

which is the familiar quantization of magnetic flux. The fluctuations can be calculated from

the Euclidean free particle propagator on the plane,

U(∆x,∆τ) =

√

1

2π∆τ
e−(∆x)2/2∆τ , (74)

yielding

Zfluctuations =

∫ 2π/q

0

dAU(0, V ) =

√

2π

q2V
. (75)

Combining this result with the classical action, the partition function is

Z =

√

2π

q2V

∑

F∈(2π/qV )Z

e−
1
2
V F 2

. (76)

While the formulae for the partition function Eq. (71) and Eq. (76) have a similar form, the

quantization of E (electric quantization) and of F (magnetic quantization) are completely

different in nature. The electric quantization condition is quantum kinematical effect arising

from the finite radius of the circle, whereas the magnetic quantization condition is a classical

topological result that makes use of the equation of motion. Nevertheless, Eq. (71) and

Eq. (76) can be shown to be equal by the Poisson summation formula.

When the spacetime manifold is a sphere, the circle shrinks to a point at t = 0 and t = V ,

leading to the boundary conditions

A(0) = A(V ) = 0. (77)

The partition function on the sphere is then given by

Z = 〈ψ| e−V H |ψ〉 (78)
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where |ψ〉 is the (unnormalizable) wavefunction given in the E basis by ψ(E) = 1 and in

the A basis by ψ(A) =
√

2π/qδ(A).7 The result is identical to Eq. (71), showing that the

partition function of 2D Maxwell theory does not distinguish between a sphere and a torus

of the same volume.

In fact, we can generalize this result to Euclidean manifolds of arbitrary genus by sewing

together manifolds with boundary. Using the same boundary condition (78) as the sphere,

one can show that manifold of volume V with the topology of a disk produces the state

ψ(E) = e−
1

2
V E2

. These disks can be sewn together using manifolds with three spatial

boundaries (“pairs of pants”). If we consider a pair of pants in the limit in which the

volume vanishes, it can be viewed as a wavefunction of the electric fields on each of its three

boundaries, given by ψ(E1, E2, E3) = δ(E1, E2)δ(E2, E3), where the normalization factor is

fixed by the requirement that one recover the partition function of the sphere when sewing

the pants to three disks. By sewing together an arbitrary number of pants and disks, we

find that the partition function for an arbitrary two-dimensional closed Euclidean manifold

without boundary depends only on the volume,

Z =
∑

E∈qZ

e−
1

2
V E2

. (79)

The conical entropy is easily calculated from Eq. (79). Since the volume of the Euclidean

manifold is linear in the deficit angle β, the formula (1) for the entropy yields

S = (1− V ∂V ) lnZ = −
∑

E∈qZ

p(E) ln p(E) (80)

where p(E) is the probability of measuring a given value of E locally, p(E) = Z−1e−
1

2
V E2

.

This entropy is manifestly positive, and has an obvious statistical interpretation: the only

local observable is E, and this is constant over space. Therefore observers on different sides

of the horizon measuring E will find perfect correlation of their measurement results; the

degree to which their states are entangled is given by the entropy in Eq. (80). We conclude

that in two dimensions, the conical entropy of a gauge field coincides with its entanglement

entropy. Note that this entropy vanishes in the large volume limit q2V → ∞.

7 Although this normalization is the most natural, if one were to choose a different normalization of |ψ〉,
this would be equivalent to a finite shift of 1/G.
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The results of this section can be generalized immediately to (D − 1)-form electromag-

netism in D dimensions. Since the action depends only on the total spacetime volume, the

dimension is irrelevant.

Although 1/G is not renormalized in the reduced phase space space calculation, one might

worry that this may depend on the quantization scheme used. In a D = 2 theory with

scale-invariance, any divergence in 1/G would be logarithmic, with a scheme-independent

coefficient which appears in the trace anomaly [41]. However, D = 2 electromagnetism is not

scale-invariant since the minimum charge q is dimensionful. However, we note that the trace

of the stress-energy tensor is scheme-independent. In the reduced phase space calculation,

this is given by

〈T 〉 = −
〈

E2
〉

. (81)

This is equal to the classical result, and does not include any term proportional to the Ricci

curvature R, as expected in a theory in which 1/G is not renormalized.

A. Topological Susceptibility

In Ref. [42], it was proposed that the contact term is related to the topological susceptibil-

ity χt, which measures the response of F to the introduction of a source term i( q
2π
)θ
∫ √

gF ,

χt = − 1

V

∂2

∂θ2
lnZ

∣

∣

∣

∣

θ=0

= Z−1

√

2π

q2V

∑

F∈ 2π
qV

Z

( q

2π

)2

V F 2e−
1

2
V F 2

=
( q

2π

)2

V
〈

F 2
〉

. (82)

The topological susceptibility has properties reminiscent of Kabat’s contact term: in par-

ticular the contribution from the electromagnetic field has a sign opposite to all possible

matter terms (which contribute negatively). In Ref. [42] it was conjectured that the “wrong

sign” term in the topological susceptibility is responsible for the negative contact term in

the entropy. We will now show that, although the entropy remains manifestly positive, the

topological susceptibility does contribute to the entropy with a negative sign.

To see how the susceptibility appears in the entropy, we can compute the entropy from

the partition function (76):

S = (1− V ∂V ) lnZ = lnZ +
1

2
− 1

2

(

2π

q

)2

χt. (83)

The first term is proportional to the free energy. The 1/2 comes from the fluctuation

term (75). The last term comes from differentiating the sum over nontrivial bundles, and
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is proportional to the topological susceptibility. It appears that the χt term could make

the entropy negative, but this is not the case. At small V , the lnZ term is positive and

dominates the entropy. As V increases, χt increases to (q/2π)2 in the large volume limit,

and its negative contribution to the entropy exactly cancels with the 1/2 contribution from

the fluctuations.

B. Yang-Mills

The partition function of non-abelian gauge theory is also known exactly in 2D and is

given by the generalization of Eq. (79),

Z =
∑

R

(dimR)χe−
1

2
q2V C2(R) (84)

where the sum extends over all irreducible unitary representations R of the gauge group,

and C2 is the quadratic Casimir. In the U(1) theory, the representations are labelled by

integers, with dim(Rn) = 1 and C2(Rn) = n2. The dependence on the Euler characteristic χ

is reminiscent of the contact term, but the contribution of this term to the entropy is finite

and positive:

S = −
∑

R

p(R) ln p(R) +
∑

R

p(R) ln dimR (85)

where p(R) is the probability distribution over representations, p(R) ∝ e−
1

2
q2V C2(R). We

can see that the entropy is positive, and is equal to the entanglement entropy derived in

Ref. [43].

VI. DISCUSSION

We have shown in section V that in two dimensions, when the physical Wilson loop is

regulated by introducing a finite minimum charge and is normalized correctly, the partition

function depends only on the Euclidean volume, not the curvature. The contribution of the

Maxwell field to the effective action is finite, and vanishes as the Euclidean volume goes

to infinity. In two dimensions, Maxwell fields do not renormalize 1/G. The contact term

does not appear when the theory is quantized using the true physical degrees of freedom.

Hence there is no need to include the gauge-dependent term in the Wald entropy discussed in
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section IIB. Thus, the JKM ambiguity in the Wald entropy is resolved in a gauge-invariant

way: the contribution to the Wald entropy from a Maxwell field is zero.

This result is in disagreement with the partition function computed from the Maxwell

heat kernel KM = KV − 2KS, which we have calculated for compact manifolds in section

IV. Although we confirm the existence of the contact term in this model, the model is un-

physical because it includes contributions from spurious ghosts identified in section IVA.

The path integral contains a contribution from ghost zero modes, and the canonical phase

space contains a pair of spatially constant BRST-invariant ghost modes. Additionally, the

infrared divergence of the vector zero modes was treated in an unphysical way by intro-

ducing a small mass. This is physically incorrect since gauge fields cannot be given masses

without introducing an extra degree of freedom. The physically correct infrared regulator is

invariance under large U(1) gauge transformations, and this gives a different result for the

partition function.

Since a noncompact manifold can be viewed as the limit of an infinitely large compact

manifold, the absence of the contact term ought to manifest somehow in this limit as well.

Since a noncompact manifold has a continuous spectrum, it is harder to see the effects of

the zero mode prescription. However, in section III it was observed that the derivation of

the contact term for the cone is sensitive in the infrared to an order of limits: if one takes

r → ∞ before taking s→ ∞, the contact term does not appear. Thus the calculation on the

cone is also sensitive to the prescription for dealing with the infrared aspects of the theory.

Although these conclusions are confined to the case of D = 2, the absence of the contact

term in D = 2 suggests that the D > 2 calculations should also be revisited. Since in

Kabat’s derivation, the contact term in the higher-dimensional heat kernel just comes from

the product of the contact term in the two-dimensional Maxwell heat kernel times the D−2-

dimensional scalar heat kernel, one might think that the contact term will also be absent in

higher dimensions. However, in higher dimensions the contact term no longer arises solely

because of zero modes, so the analysis will be different. Since 1/G is power-law divergent

in D > 2, the results may also depend on ones choice of renormalization scheme, as well as

the choice of gauge [36].

A similar negative contact term appears in the case of gravitons [12, 15]. Hence pure

gravity seems to antiscreen itself, suggesting the possibility of a nontrivial UV fixed point

at positive G [44]. However, since the Maxwell contact term is not actually present (at least
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in D = 2), these calculations should be carefully revisited.
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