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Abstract

We examine an Unruh-DeWitt particle detector coupled to a scalar field in
three-dimensional curved spacetime. We first obtain a regulator-free expression
for the transition probability in an arbitrary Hadamard state, working within
first-order perturbation theory and assuming smooth switching, and we show that
both the transition probability and the instantaneous transition rate remain well
defined in the sharp switching limit. We then analyse a detector coupled to a
massless conformally coupled field in the Hartle-Hawking vacua on the Bañados-
Teitelboim-Zanelli black hole, under both transparent and reflective boundary
conditions at the infinity. A selection of stationary and freely-falling detector
trajectories are examined, including the co-rotating trajectories, for which the
response is shown to be thermal. Analytic results in a number of asymptotic
regimes, including those of large and small mass, are complemented by numerical
results in the interpolating regimes. The boundary condition at infinity is seen to
have a significant effect on the transition rate.
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1 Introduction

The Unruh-DeWitt model for a particle detector [1, 2] is an important tool for probing
the physics of quantum fields wherever noninertial observers or curved backgrounds are
present. In such cases there is often no distinguished notion of a “particle,” analogous to
the plane-wave modes in Minkowski space, but an operational meaning can be attached
to the particle concept by analysing the transitions between the energy levels of a detec-
tor coupled to the field: upwards (respectively downwards) transitions can be interpreted
as due to absorption (emission) of field quanta, or particles. The best-known applica-
tions of this procedure are those for which the spectrum of transitions is thermal, which
is the case for uniformly linearly accelerated detectors in Minkowski space [1, 2, 3, 4],
detectors at rest in the exterior Schwarzschild black hole spacetime [5, 6, 7], and inertial
detectors in de Sitter space [8].

With the Unruh-DeWitt detector, the fundamental quantity of interest is the prob-
ability of a transition between the energy eigenstates. In the framework of first order
perturbation theory this probability is proportional the response function, given by a
Fourier transform of the Wightman distribution of the quantum field over the detector’s
wordline, weighted by a switching function that specifies how the interaction is turned
on and off [9, 10]. The response function is mathematically well defined provided the
state of the quantum field is regular in the Hadamard sense [11, 12] and the detector
is switched on and off smoothly [13, 14, 15, 16]. Physically, the response function then
gives the probability for the detector to have completed a quantum jump by the time
the interaction with the field has ceased.

A related quantity of interest is the transition rate, which can be defined as the
derivative of the transition probability with respect to the total detection time and is
observationally meaningful in terms of consequent measurements in identical ensembles
of detectors [17]. There are technical subtleties in isolating in the transition rate the
effects that are merely due to the switch-on and switch-off and the effects that are
genuinely due to the acceleration and to the quantum state of the field [18, 19, 20,
21, 22, 23]: however, a satisfactory treatment within first order perturbation theory
is to start with a smoothly-switched detector and take a controlled sharp switching
limit [17, 24, 25]. In particular, in three-dimensional Minkowski space, with a massless
scalar field in the Minkowski vacuum, this procedure yields a finite result both for the
transition probability and the transition rate even in the sharp switching limit [25].

In this paper we consider a detector in three-dimensional curved spacetime. In
the first part of the paper we investigate a detector that is coupled to a scalar field
in an arbitrary Hadamard state in an arbitrary spacetime. We give for the transition
probability an expression that involves no distributional integrals, and we show that both
the transition probability and the transition rate remain finite in the sharp switching
limit. In the special case of a massless scalar field in the Minkowski vacuum of Minkowski
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spacetime, we recover the results of [25].
In the second part of the paper we apply the transition rate formula to a detec-

tor in the (2 + 1)-dimensional Bañados-Teitelboim-Zanelli (BTZ) black hole space-
time [26, 27], for a massless conformally coupled scalar field in a Hartle-Hawking vacuum
state [6, 7, 28, 29] with transparent, Dirichlet or Neumann boundary conditions at the
asymptotically anti-de Sitter infinity. We first consider a stationary detector outside the
hole, switched on in the asymptotic past. When the detector is co-rotating with the black
hole horizon, we verify that the transition rate is thermal in the co-rotating local Hawk-
ing temperature, in the sense of the Kubo-Martin-Schwinger (KMS) property [30, 31],
as is to be expected from general properties of the Hartle-Hawking state [6, 7, 28, 32]
and also from Global Embedding Space (GEMS) considerations [33, 34, 35, 36]. We
obtain analytic results in a number of asymptotic regimes, including those of large and
small mass, and we provide numerical results in the interpolating regimes. A static de-
tector outside a nonrotating black hole is included as a special case. When the detector
is stationary but its angular velocity differs from that of the horizon, we find that the
transition rate breaks the KMS property already to quadratic order in the difference of
the angular velocities of the horizon and the detector.

We also consider a detector that falls into a nonrotating BTZ hole along a radial
geodesic. We analyse the time evolution of the transition rate, obtaining analytic results
for large black hole mass and large detector energy gap and numerical results in other
regimes. We find no evidence of thermality in the transition rate, not even near the
moment of maximum distance from the black hole, and we trace this phenomenon to
the non-thermal response of an inertial detector in the corresponding vacuum state in
pure anti-de Sitter space, as predicted from GEMS considerations [33, 34, 35, 36].

We find that the boundary condition at the infinity has a significant effect on the
transition rate for all of our detector trajectories. Typically, the Dirichlet condition
gives a transition rate that varies least rapidly as a function of the detector’s energy
gap and the total detection time, owing to partial cancellations between terms in the
Dirichlet Wightman function. Similar cancellations do not occur for the Neumann or
transparent boundary condition.

We begin in Section 2 with a brief review of the Unruh-DeWitt detector model, re-
calling in particular how the distributional character of the Wightman function needs to
be addressed prior to taking a sharp switching limit. In Section 3 we consider an arbi-
trary Hadamard state in an arbitrary three-dimensional spacetime, writing the transition
probability without distributional integrals and obtaining the formulas for the transi-
tion probability and the transition rate in the sharp switching limit. Section 4 briefly
reviews relevant properties of the the BTZ black hole and the Hartle-Hawking vacua for
a massless conformally coupled scalar field. A stationary detector is considered in Sec-
tion 5 and a freely-falling detector in Section 6. Section 7 presents concluding remarks.
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Technical steps in contour integral analyses and asymptotic expansions are delegated to
six appendices.

Our metric signature is (−++), and we use units in which c = ~ = 1. Spacetime
points are denoted by sans-serif letters. O(x) denotes a quantity for which O(x)/x is
bounded as x → 0, o(x) denotes a quantity for which o(x)/x → 0 as x → 0, and
O(1) denotes a quantity that is bounded in the limit under consideration.

2 Unruh-DeWitt detector

In this section we briefly review the Unruh-DeWitt detector coupled to a scalar field,
treated in first-order perturbation theory in the coupling [1, 2].

The detector is an idealised atom with two energy levels, denoted by |0〉d and |E〉d,
with the respective energy eigenvalues 0 and E, where E may be positive or negative.
The detector is spatially pointlike and moves on a timelike wordline x(τ), parametrised
by the detector’s proper time τ , in a spacetime of dimension two or higher. The detector
interacts with a free real scalar field φ, of arbitrary mass and curvature coupling, by the
interaction Hamiltonian

Hint = cχ(τ)µ(τ)φ
(

x(τ)
)

, (2.1)

where c is a small coupling constant and µ(τ) is the atom’s monopole moment operator.
χ is the switching function, positive during the interaction and vanishing elsewhere; this
function specifies how the detector is switched on and off. We assume χ to be smooth
and of compact support, and we assume the trajectory to be smooth on the support
of χ.

Before the interaction begins, we assume the detector to be in the state |0〉d and the
field to be in a state |Ψ〉, and we assume |Ψ〉 to be regular in the sense that it satisfies the
Hadamard property [12]. The detector-field system is hence initially in the composite
state |0〉d ⊗ |Ψ〉. We are interested in the probability for the detector to be found in
the state |E〉d after the interaction has ceased, regardless of the final state of the field.
Working in first order perturbation theory, this probability factorises as [9, 10]

P (E) = c2|d〈0|µ(0)|E〉d|2F (E) , (2.2)

where the response function F(E) encodes the information about the detector’s trajec-
tory, the initial state of the field and the way the detector has been switched on and off.
F(E) can be expressed as [19]

F(E) = 2 lim
ǫ→0+

Re

∫ ∞

−∞
du χ(u)

∫ ∞

0

ds χ(u− s) e−iEsWǫ(u, u− s) , (2.3)

where Wǫ(u, u−s) is a one-parameter family of functions that converge to the pull-back
of the Wightman distribution to the detector’s wordline [11, 13, 14, 17]. The factors in
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front of F(E) in (2.2) depend only on the internal structure of the detector and we shall
from now on drop them, referring to F(E) as the transition probability.

In summary, the response function F(E) answers the question “What is the proba-
bility of the detector to be observed in the state |E〉d after the interaction has ceased?”.
Given F(E), we may define the detector’s transition rate as the derivative of F(E) with
respect to the total detection time [19, 23]. Both F(E) and the transition rate depend
not only on the initial state of the field and the detector’s trajectory but also on the
switching, and their behaviour in the sharp switching limit depends sensitively on the
spacetime dimension [25].

Working directly with the expression (2.3) for F(E) is cumbersome because the limit
ǫ → 0+ may not necessarily be taken pointwise under the integral [17, 19, 20, 21, 22,
23, 24, 25]. In Section 3 we shall address this issue in three spacetime dimensions.

3 Transition probability and transition rate in three

spacetime dimensions

In this section we specialise to three spacetime dimensions. We first rewrite the response
function (2.3) in a form in which the regulator ǫ does not appear. We then take the
sharp switching limit and show that both the transition probability and the transition
rate remain well defined in this limit. We follow closely the procedure developed in [17,
23, 24, 25].

3.1 Hadamard form of Wǫ

In a three-dimensional spacetime, the Wightman distribution W (x, x′) of a real scalar
field in a Hadamard state can be represented by a family of functions with the short
distance form [12]

Wǫ(x, x
′) =

1

4π

[

U(x, x′)
√

σǫ(x, x′)
+
H(x, x′)√

2

]

, (3.1)

where ǫ is a positive parameter, σ(x, x′) is the squared geodesic distance between x and x
′,

σǫ(x, x
′) := σ(x, x′)+2iǫ [T (x)− T (x′)]+ǫ2 and T is any globally-defined future-increasing

C∞ function. The branch of the square root is such that the ǫ→ 0+ limit of the square
root is positive when σ(x, x′) > 0 [11, 12]. Here U(x, x′) and H(x, x′) are symmetric
biscalars which possess expansions of the form

U(x, x′) =
∞
∑

n=0

Un(x, x
′)σn(x, x′), (3.2a)
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H(x, x′) =
∞
∑

n=0

Hn(x, x
′)σn(x, x′), (3.2b)

where the coefficients Un(x, x
′) satisfy the recursion relations

(n + 1)(2n+ 1)Un+1 + (2n+ 1)Un+1;µσ
;µ − (2n+ 1)Un+1∆

−1/2∆1/2
;µσ

;µ

+
(

2x −m2 − ξR
)

Un = 0, n = 0, 1, 2, . . . , (3.3)

with the boundary condition
U0 = ∆1/2, (3.4)

and the coefficients Hn(x, x
′) satisfy the recursion relations

(n+ 1)(2n+ 3)Hn+1 + 2(n + 1)Hn+1;µσ
;µ − 2(n+ 1)Hn+1∆

−1/2∆1/2
;µσ

;µ

+
(

2x −m2 − ξR
)

Hn = 0, n = 0, 1, 2, . . . , (3.5)

where ∆(x, x′) is the Van Vleck determinant, m is the mass and ξ is the curvature
coupling parameter [12].

The iǫ prescription in (3.1) defines the singular part of W (x, x′): the action of the
Wightman distribution is obtained by integrating Wǫ(x, x

′) against test functions and
taking the limit ǫ → 0+ as in (2.3). This limit can be shown to be independent of the
choice of global time function T [13, 14, 15, 16].

3.2 Transition probability without iǫ regulator

To evaluate the ǫ → 0+ limit in (2.3), the main issue is at s = 0, where the Hadamard
expansion (3.1) shows that the integrand develops a nonintegrable singularity as ǫ→ 0+.
We shall work under the assumption that any other singularities that the integrand
develops as ǫ→ 0+ are integrable. This will be the case in our applications in Sections 5
and 6. We note in passing that similar integrable singularities can occur in any spacetime
dimension, and the four-dimensional results in [17] should hence be understood to involve
a similar assumption.

We first split the s-integral in (2.3) into the subintervals (0, η) and (η,∞) where
η =

√
ǫ. We then find the small ǫ expansions of each integral and finally combine the

results.
Let I> denote the s ∈ (η,∞) portion of the s-integral in (2.3), including the taking

of the real part. Let W0 denote the pointwise limit of Wǫ as ǫ → 0+. Replacing Wǫ by
W0 creates in I> the error

2Re

∫ ∞

η

ds χ(u− s) e−iEs
[

Wǫ(u, u− s)−W0(u, u− s)
]

=
1

2π
Re

∫ ∞

η

ds χ(u− s) e−iEs U(u, u− s)

[

1√
σ + 2iǫ∆T + ǫ2

+
i√
−σ

]

, (3.6)
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where σ is evaluated at the pair (x, x′) =
(

x(u), x(u− s)
)

, ∆T := T
(

x(u)
)

− T
(

x(u− s)
)

and we recall that σ < 0 as the trajectory is timelike. The square brackets in (3.6) have
the same form as in the Minkowski analysis in [25] and obey similar estimates. The
function U has the small s expansion

U(u, u− s) = 1 +O(s2) (3.7)

by virtue of (3.2a), (3.4) and the expansions σ = −s2+O(s4) and ∆ = 1+O(s2). These
observations show that the contribution from (3.6) to I> is O(η). We hence have

I> = 2

∫ ∞

0

ds χ(u− s) Re
[

e−iEsW0(u, u− s)
]

+O (η) , (3.8)

where we have extended the lower limit to 0 at the expense of an error that is contained
in the O (η) term since (3.1) shows that taking the real part under the integral makes
the integrand regular at s = 0.

Let then I< denote the s ∈ (0, η) portion of the s-integral in (2.3), including the
taking of the real part. We have

I< = 2Re

∫ η

0

ds χ(u− s) e−iEsWǫ(u, u− s)

=
1

2π
Re

∫ η

0

ds χ(u− s) e−iEs

[

U(u, u− s)√
σ + 2iǫ∆T + ǫ2

+
H(u, u− s)√

2

]

. (3.9)

Since H(u, u− s) is a regular function, its contribution to I< is O (η). The contribution
of the term involving U can be found using the estimates of [25] and the expansion (3.7).
We find

I< = χ(u)/4 +O (η) . (3.10)

Combining (3.8) and (3.10), and noting that their error estimates hold uniformly
in u, it is immediate to take the ǫ→ 0+ limit in (2.3). We find

F(E) =
1

4

∫ ∞

−∞
du [χ(u)]2 + 2

∫ ∞

−∞
du χ(u)

∫ ∞

0

ds χ(u− s) Re
[

e−iEsW0(u, u− s)
]

.

(3.11)

Note that the integrals in (3.11) are regular, at s = 0 by the Hadamard short-distance
behaviour of W0, and at s > 0 by our assumptions about the the singularity structure
of W0 at timelike-separated points.
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3.3 Sharp switching limit and the transition rate

Up to now we have assumed the switching function χ to be smooth. When χ approaches
the characteristic function of the interval [τ0, τ0+τ ] in a sufficiently controlled fashion [17,
24, 25], the integrands in (3.11) remain regular, and taking the sharp switching limit
under the integral can be justified by dominated convergence. The transition probability
takes the form

Fτ (E) =
∆τ

4
+ 2

∫ τ

τ0

du

∫ u−τ0

0

dsRe
[

e−iEsW0(u, u− s)
]

, (3.12)

where ∆τ := τ − τ0 and the subscript τ is included as a reminder of the dependence on
the switch-off moment. Differentiation with respect to τ shows that the transition rate
is given by

Ḟτ (E) =
1

4
+ 2

∫ ∆τ

0

dsRe
[

e−iEsW0(τ, τ − s)
]

. (3.13)

Note that both (3.12) and (3.13) are well defined under our assumptions, and in the
special case of a massless scalar field in the Minkowski vacuum they reduce to what was
found in [25]. Spacetime curvature has hence not introduced new singularities in the
sharp switching limit.

Note also that the pre-integral term 1
4
in (3.13) would have been missed if the limit

ǫ→ 0+ had been taken näıvely under the integral in (2.3). Yet this term is essential: it
was observed in [25] that without this term one would not recover the standard thermal
response for a uniformly linearly accelerated detector in Minkowski vacuum [3, 37], and
we shall see in Section 5 that without this term we would not recover thermality for a
co-rotating detector in the BTZ spacetime.

4 Detector in the BTZ spacetime

We now turn to a detector in the Bañados-Teitelboim-Zanelli (BTZ) black hole spacetime
[26, 27], specialising to a massless conformally coupled scalar field in the Hartle-Hawking
vacuum with transparent or reflective boundary conditions. In this section we briefly
recall relevant properties of the spacetime and the Wightman function. More detail can
be found in the review in [29].

Recall first that three-dimensional anti-de Sitter spacetime AdS3 may be defined as
the submanifold

−ℓ2 = −T 2
1 − T 2

2 +X2
1 +X2

2 (4.1)

in R
2,2 with coordinates (T1, T2, X1, X2) and metric

dS2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 , (4.2)
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where ℓ is a positive parameter of dimension length. The BTZ black hole is obtained as a
quotient of an open region in AdS3 under a discrete isometry group ≃ Z. Specialising to
a nonextremal black hole, a set of coordinates that are adapted to the relevant isometries
and cover the exterior region of the black hole are the BTZ coordinates (t, r, φ), defined
in AdS3 by

X1 = ℓ
√
α sinh

(r+
ℓ
φ− r−

ℓ2
t
)

, X2 = ℓ
√
α− 1 cosh

(r+
ℓ2
t− r−

ℓ
φ
)

,

T1 = ℓ
√
α cosh

(r+
ℓ
φ− r−

ℓ2
t
)

, T2 = ℓ
√
α− 1 sinh

(r+
ℓ2
t− r−

ℓ
φ
)

, (4.3)

where

α(r) =

(

r2 − r2−
r2+ − r2−

)

(4.4)

and the parameters r± satisfy |r−| < r+. The coordinate ranges covering the black hole
exterior are r+ < r < ∞, −∞ < t < ∞ and −∞ < φ < ∞, and the Z quotient is
realised as the identification (t, r, φ) ∼ (t, r, φ + 2π). The outer horizon is at r → r+,
and the asymptotically AdS3 infinity is at r → ∞. The metric takes the form

ds2 = −(N⊥)2dt2 + f−2dr2 + r2
(

dφ+Nφdt
)2

(4.5)

with

N⊥ = f =

(

−M +
r2

ℓ2
+
J2

4r2

)1/2

, Nφ = − J

2r2
, (4.6)

where the mass M and the angular momentum J are given by

M = (r2+ + r2−)/ℓ
2, J = 2r+r−/ℓ, (4.7)

and they satisfy |J | < Mℓ.
In a quantum state invariant under ∂φ, the Wightman function on the black hole

spacetime can be expressed as an image sum of the corresponding AdS3 Wightman
function. If GA(x, x

′) denotes the AdS3 Wightman function, the BTZWightman function
reads [29]

GBTZ(x, x
′) =

∑

n

GA(x,Λ
n
x
′) (4.8)

where Λx′ denotes the action on x
′ of the group element (t, r, φ) 7→ (t, r, φ+2π), and the

notation suppresses the distinction between points on AdS3 and points on the quotient
spacetime. The scalar field is assumed untwisted so that no additional phase factors
appear in (4.8).
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We consider a massless, conformally coupled field, and the family of AdS3 Wightman
functions [29]

G
(ζ)
A (x, x′) =

1

4π





1
√

∆X
2(x, x′)

− ζ
√

∆X
2(x, x′) + 4ℓ2



 , (4.9)

where the parameter ζ ∈ {0, 1,−1} specifies whether the boundary condition at infin-
ity is respectively transparent, Dirichlet or Neumann. Here ∆X

2(x, x′) is the squared
geodesic distance between x and x

′ in the flat embedding spacetime R
2,2, given by

∆X
2(x, x′) := −(T1 − T

′

1)
2 − (T2 − T

′

2)
2
+ (X1 −X

′

1)
2
+ (X2 −X

′

2)
2
, (4.10)

and we have momentarily suppressed the iǫ prescription in (4.9).
With (4.8) and (4.9), the transition rate (3.13) takes the form

Ḟτ (E) =
1

4
+

1

2π
√
2

∞
∑

n=−∞

∫ ∆τ/ℓ

0

ds̃Re



e−iEℓs̃





1
√

∆X̃2
n

− ζ
√

∆X̃2
n + 2







 , (4.11)

where we have introduced the dimensionless integration variable s̃ := s/ℓ and written

∆X̃
2
n := ∆X

2
(

x(τ),Λn
x(τ − ℓs̃)

)

/
(

2ℓ2
)

= −1 +
√

α(r)α(r′) cosh
[

(r+/ℓ) (φ− φ′ − 2πn)− (r−/ℓ
2) (t− t′)

]

−
√

(

α(r)− 1
)(

α(r′)− 1
)

cosh
[

(r+/ℓ
2) (t− t′)− (r−/ℓ) (φ− φ′ − 2πn)

]

,

(4.12)

where the unprimed coordinates are evaluated at x(τ) and the primed coordinates at
x(τ − ℓs̃).

What remains is to specify the branches of the square roots in (4.11). As s extends
to a global time function in the relevant part of AdS3, the prescription (3.1) implies that
the square roots in (4.11) are positive when the arguments are positive, and the square
roots are analytically continued to negative values of the arguments by giving s a small
negative imaginary part.

5 Co-rotating detector in BTZ

In this section we investigate the transition rate of a detector that is in the exterior
region of the BTZ black hole and co-rotating with the horizon. As the detector is
stationary, we take the switch-on to be in the asymptotic past. When the black hole is
spinless, the detector is static.
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5.1 Transition rate and the KMS property

The angular velocity of the horizon is given by [26, 27, 29]

ΩH = r−/(r+ℓ), (5.1)

and it has an operational meaning as the value that dφ/dt takes on any timelike worldline
that crosses the horizon. The worldline of a detector that is in the exterior region and
rigidly co-rotating with the horizon reads

r = constant , t =
ℓr+τ

√

r2 − r2+
√

r2+ − r2−
, φ =

r−τ
√

r2 − r2+
√

r2+ − r2−
, (5.2)

where the value of r specifies the radial location and τ is the proper time. We have set
the additive constants in t and φ to zero without loss of generality.

Substituting (5.2) into (4.12) and taking the switch-on to be in the asymptotic past,
the transition rate (4.11) takes the form

Ḟ(E) =
1

4
+

1

4π
√

α(r)− 1

∞
∑

n=−∞

∫ ∞

0

ds̃Re



e−iEℓs̃





1
√

Kn − sinh2
(

Ξs̃+ nπr−/ℓ
)

− ζ
√

Qn − sinh2
(

Ξs̃+ nπr−/ℓ
)







 , (5.3)

where

Kn :=
(

1− α−1
)−1

sinh2
(

nπr+/ℓ
)

, (5.4a)

Qn := Kn + (α− 1)−1, (5.4b)

Ξ :=
(

2
√
α− 1

)−1
, (5.4c)

α is given by (4.4), and we have dropped the subscript τ from Ḟ as the situation is
stationary and the transition rate is independent of τ . The square roots in (5.3) are
positive for positive values of the argument, and they are analytically continued to
negative values of the argument by giving s a small negative imaginary part. Note that
the integrand in (5.3) has singularities at s̃ > 0, at places where the quantity under a
square root changes sign, but all of these singularities are integrable.

We show in Appendix A that (5.3) can be written as

Ḟ(E) =
e−βEℓ/2

2π

∞
∑

n=−∞
cos
(

nβEr−
)

×

×
∫ ∞

0

dy cos
(

yβEℓ/π
)

(

1
√

Kn + cosh2y
− ζ
√

Qn + cosh2y

)

, (5.5)

11



or alternatively as

Ḟ(E) =
1

2(eβEℓ + 1)
− ζe−βEℓ/2

2π

∫ ∞

0

dy
cos
(

yβEℓ/π
)

√

Q0 + cosh2y

+
e−βEℓ/2

π

∞
∑

n=1

cos
(

nβEr−
)

∫ ∞

0

dy cos
(

yβEℓ/π
)

(

1
√

Kn + cosh2y
− ζ
√

Qn + cosh2y

)

,

(5.6)

where

β := 2π
√
α− 1 . (5.7)

It is evident from (5.5) or (5.6) that Ḟ depends on E only via the dimensionless com-
bination ℓβE. It is further evident that Ḟ has the KMS property [30, 31]

Ḟ(E) = e−ℓβEḞ(−E). (5.8)

The transition rate is hence thermal in the temperature (ℓβ)−1.
It can be verified that (ℓβ)−1 = (−g00)−1/2T0, where T0 = κ/(2π), κ is the surface

gravity of the black hole with respect to the horizon-generating Killing vector ∂t +
ΩH∂φ, and g00 is the time-time component of the metric in coordinates adapted to
the co-rotating observers. This means that the temperature (ℓβ)−1 of the detector
response is the local Hawking temperature, obtained by renormalising the conventional
Hawking temperature T0 by the Tolman redshift factor at the detector’s location. This is
the temperature one would have expected by general properties of the Hartle-Hawking
state [6, 7, 28], including the periodicity of an appropriately-defined imaginary time
coordinate [32], and also by GEMS considerations [33, 34, 35, 36].

Note that the expressions (5.5) and (5.6) contain both terms of (3.13), as shown
in Appendix A. The pre-integral term 1

4
in (3.13) is hence essential for recovering

thermality: in (5.6) it can be regarded as having been grouped in the term 1
2
(eβEℓ + 1)

−1
,

which gives the transition rate in pure AdS3 with the transparent boundary condition.
The superficial Fermi-Dirac appearance of this pure AdS3 term is a general feature of
linearly-coupled scalar fields in odd spacetime dimensions [3, 28, 37, 38].

5.2 Asymptotic regimes

We consider the behaviour of the transition rate (5.6) in three asymptotic regimes.
First, suppose r+ → ∞ so that r−/r+ and r/r+ are fixed. Physically, this is the

limit of a large black hole with fixed J/M , and the detector is assumed not to be close
to the black hole horizon. Note that α and β remain fixed in this limit. It follows from

12



(4.4) and (5.4) that in (5.6) this is the limit in which Kn and Qn with n ≥ 1 are large.
Assuming that E is fixed and nonzero, and using formula (B.2a) in Appendix B, we find

Ḟ(E) =
1

2(eβEℓ + 1)
− ζe−βEℓ/2

2π

∫ ∞

0

dy
cos
(

yβEℓ/π
)

√

Q0 + cosh2y

+
e−βEℓ/2 cos

(

βEr−
)

√
πβEℓ

×

×
{

Im

[

(

(4K1)
iβEℓ/(2π)

√
K1

− ζ(4Q1)
iβEℓ/(2π)

√
Q1

)

Γ

(

1 +
iβEℓ

2π

)

Γ

(

1

2
− iβEℓ

2π

)

]

+O
(

e−2πr+/ℓ
)

}

, (5.9)

where the displayed next-to-leading term comes from the n = 1 term in (5.6) and is
of order e−πr+/ℓ. The corresponding formula for E = 0 can be obtained from formula
(B.2b) in Appendix B and has a next-to-leading term of order r+e

−πr+/ℓ.
Next, suppose that r+ → 0 so that r−/r+ and r/r+ are again fixed. This is the limit

of a small black hole. Note that α and β are again fixed. The dominant behaviour comes
now from the sum over n and can be estimated by the integral technique of Appendix C.
We find

Ḟ(E) =
ℓe−βEℓ/2

π2r+

∫ ∞

0

dv

∫ ∞

0

dy cos

(

vβEℓr−
πr+

)

cos

(

yβEℓ

π

)

×

×
[

(

α sinh2v

(α− 1)
+ cosh2 y

)−1/2

− ζ

(

1 + α sinh2v

(α− 1)
+ cosh2y

)−1/2
]

+O(1).

(5.10)

The leading term is proportional to 1/r+ and it hence diverges in the limit of a small
black hole.

Finally, suppose that E → ±∞ with the other quantities fixed. The analysis of
Appendix D shows that each integral term in (5.6) is oscillatory in E, with an envelope
that falls off as 1/

√
−E at E → −∞ but exponentially at E → +∞. Applying this

estimate to the lowest few values of n in (5.6) should be a good estimate to the whole
sum when r+/ℓ is large. We have not attempted to estimate the whole sum at E → ±∞
when r+/ℓ is small.
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5.3 Numerical results

We now turn to numerical evaluation of the transition rate (5.6). We are particularly in-
terested in the interpolation between the asymptotic regimes identified in subsection 5.2.

Ḟ (5.6) depends on five independent variables. Two of these are the mass and the
angular momentum of the black hole, encoded in the dimensionless parameters r+/ℓ and
r−/ℓ. The third is the location of the detector, entering Ḟ only in the dimensionless
combination α (4.4). The fourth is the detector’s energy gap E, entering Ḟ only in the
dimensionless combination βEℓ where β was given in (5.7). The last one is the discrete
parameter ζ ∈ {0, 1,−1} which specifies the boundary condition at infinity.

We plot Ḟ as a function of ℓβE, grouping the plots in triplets where ζ runs over
its three values and the other three parameters are fixed. We proceed from large r+/ℓ
towards small r+/ℓ.

In the regime r+/ℓ & 3, numerics confirms that the n ≥ 1 terms in (5.6) are small.
Ḟ therefore depends on r+/ℓ and r−/ℓ significantly only through β, that is, through the
local temperature. The detector’s location enters Ḟ in part via β (5.7), but also via Q0

in (5.6), and the latter affects only the the boundary conditions ζ = 1 and ζ = −1, in
opposite directions. Plots for r+/ℓ = 10 are shown in Figure 1.

As r+/ℓ decreases, the n = 1 term in (5.6) starts to become appreciable near r+/ℓ ≈
1. The dependence on r−/ℓ is then no longer exclusively through β, and the effect is
largest for ζ = 0 and ζ = −1 but smaller for ζ = 1, owing to a partial cancellation
between the two terms under the integral in (5.6) for ζ = 1. Plots for r+/ℓ = 1 are
shown in Figures 2 and 3.

As r+/ℓ decreases below 1, the next-to-leading asymptotic formula (5.9) starts to be-
come inaccurate near r+/ℓ = 0.3, as shown in Figure 4, although the partial cancellation

(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 1: Ḟ as a function of βEℓ for r+/ℓ = 10 and r−/ℓ = 0, with α = 4 (solid) and
α = 100 (dotted). Numerical evaluation from (5.6) with n ≤ 3.
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(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 2: Ḟ as a function of βEℓ for r+/ℓ = 1 and α = 2, with κ = 0 (solid) and
κ = 0.99 (dotted) where κ := r−/r+. Numerical evaluation from (5.6) with n ≤ 3.

(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 3: As in Figure 2 but for α = 100.

between the two terms under the integral in (5.6) and the similar partial cancellation in
(5.9) moderates the effect for ζ = 1. At r+/ℓ = 0.1, shown in Figure 5, Ḟ is sensitive
to changes in both r−/ℓ and α. When α ≫ 1, the ζ = −1 curves in Figure 5 have
approximately the same profile as the ζ = 0 curves but at twice the magnitude: from
(5.4a) and (5.4b) we see that this indicates the regime where the n ≥ 1 terms in (5.6)
give the dominant contribution to Ḟ .

As r+/ℓ decreases further, we enter the validity regime of the asymptotic formula
(5.10), as shown in Figure 6 for r+/ℓ = 0.01. Note that again the ζ = −1 curve has
approximately the same profile as the ζ = 0 curve but at twice the magnitude, indicating
that the dominant contribution comes from the n ≥ 1 terms in (5.6).
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(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 4: Ḟ as a function of βEℓ for r+/ℓ = 0.3 and r−/ℓ = 0.299, with α = 2.
Solid curve shows numerical evaluation from (5.6) with n ≤ 3. Dotted curve shows the
asymptotic large r+/ℓ approximation (5.9).

(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 5: Ḟ as a function of βEℓ for r+/ℓ = 0.1, with selected values of the pair (α, r−/ℓ)
as shown in the legend. Numerical evaluation from (5.6) with n ≤ 35.
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(a) ζ = 0 (b) ζ = 1 (c) ζ = −1

Figure 6: Ḟ as a function of βEℓ for r+/ℓ = 0.01 and r− = 0, with α = 4. Solid curve
shows numerical evaluation from (5.6) with n ≤ 300. Dotted curve shows the asymptotic
small r+/ℓ approximation (5.10). Qualitatively similar graphs ensue for r−/r+ = 0.99.

6 Radially in-falling detector in spinless BTZ

In this section we consider a detector on a radially in-falling geodesic in a spinless BTZ
spacetime.

6.1 Transition rate

Recall from Section 4 that for a spinless hole r− = 0 and r+ =Mℓ > 0, and the horizon
is at r = r+. To begin with, we assume that at least part of the trajectory is in the
exterior region, r > r+. Working in the exterior BTZ coordinates (4.3), the radial
timelike geodesics take the form

r = ℓ
√
Mq cos τ̃ ,

t =
(

ℓ/
√
M
)

artanh

(

tan τ̃
√

q2 − 1

)

,

φ = φ0, (6.1)

where q > 1, φ0 denotes the constant value of φ, and τ̃ is an affine parameter such that
the proper time equals τ̃ ℓ. The additive constants in τ̃ and t have been chosen so that
r reaches its maximum value ℓ

√
Mq at τ̃ = 0 with t = 0.
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Substituting (6.1) in (4.11) and (4.12), we find that the transition rate is given by

Ḟτ (E) = 1/4

+
1

2π
√
2

∞
∑

n=−∞

∫ ∆τ̃

0

ds̃Re

[

e−iẼs̃

√

−1 +Kn cos τ̃ cos(τ̃ − s̃) + sin τ̃ sin(τ̃ − s̃)

− ζ
e−iẼs̃

√

1 +Kn cos τ̃ cos(τ̃ − s̃) + sin τ̃ sin(τ̃ − s̃)

]

, (6.2)

where
Kn := 1 + 2q2 sinh2

(

nπ
√
M
)

. (6.3)

The detector is switched off at proper time τ and switched on at proper time τ0 = τ−∆τ ,
and we have written τ̃ := τ/ℓ, ∆τ̃ := ∆τ/ℓ and Ẽ := Eℓ. The square roots in (6.2)
are positive when the arguments are positive, and they are analytically continued to
negative values of the arguments by giving s̃ a small negative imaginary part.

Although the above derivation of (6.2) proceeded using the exterior BTZ coordinates,
the result (6.2) holds by analytic continuation even if the geodesic enters the black or
white hole regions. The ranges of the parameters are −π/2 < τ̃−∆τ̃ < τ̃ < π/2, so that
the detector is switched on after emerging from the white hole singularity and switched
off before hitting the black hole singularity.

6.2 The n = 0 term and KMS

We write (6.2) as

Ḟτ = Ḟn=0
τ + Ḟn 6=0

τ , (6.4)

where Ḟn=0
τ consists of the n = 0 term and Ḟn 6=0

τ consists of the the sum
∑

n 6=0. We

consider first Ḟn=0
τ .

Ḟn=0
τ gives the transition rate of a detector on a geodesic in pure AdS3. Ḟn=0

τ does
not depend on M or q, and it depends on the switch-on and switch-off moments only
through ∆τ̃ , that is, through the total detection time. Using (6.3), we find

Ḟn=0
τ (E) =

1

4
− 1

4π

∫ ∆τ̃

0

ds̃

[

sin
(

Ẽs̃
)

sin(s̃/2)
+ ζ

cos
(

Ẽs̃
)

cos(s̃/2)

]

, (6.5)

where Ẽ := Eℓ. As 0 < ∆τ̃ < π, (6.5) is well defined.
Numerical examination shows that Ḟn=0

τ does not satisfy the KMS condition. This is
compatible with the embedding space discussion of [33, 34, 35, 36], according to which
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a stationary detector in AdS3 should respond thermally only when its scalar proper
acceleration exceeds 1/ℓ.

The asymptotic behaviour of Ḟn=0
τ at large positive and negative energies for fixed

∆τ̃ can be found by the method of Appendix E. We find

Ḟn=0
τ (E) =

Θ
(

−Ẽ
)

2
+

1

4πẼ

(

cos
(

Ẽ∆τ̃
)

sin(∆τ̃ /2)
− ζ

sin
(

Ẽ∆τ̃
)

cos(∆τ̃ /2)

)

+O
(

1/Ẽ2
)

, (6.6)

where Θ is the Heaviside step-function.

6.3 The n 6= 0 terms and large M asymptotics

We now turn to Ḟn 6=0
τ , which contains the dependence of Ḟτ on M and q.

We consider Ḟn 6=0
τ in the limit of large M . We introduce a positive constant c ∈

(0, π/2), and we assume that the switch-on and switch-off moments are separated from
the initial and final singularities at least by proper time cℓ. In terms of τ̃ and ∆τ̃ , this
means that we assume

−π/2 + c < τ̃ < π/2− c , 0 < ∆τ̃ < τ̃ + π/2− c . (6.7)

As Kn = K−n, we can replace the sum
∑

n 6=0 in (6.2) by 2
∑∞

n=1. Given (6.7), the
expression cos τ̃ cos(τ̃ − s̃) is bounded below by a positive constant. Using (6.3), this
implies that the quantities under the n 6= 0 square roots in (6.2) are dominated at large
M by the term that involves Kn, and we may write

Ḟn 6=0
τ (E) =

1

π
√
2 cos τ̃

∞
∑

n=1

1√
Kn

∫ ∆τ̃

0

cos
(

Ẽs̃
)

ds̃
√

cos(τ̃ − s̃)

(

1
√

1 + f−/Kn

− ζ
√

1 + f+/Kn

)

(6.8)

where

f± :=
sin τ̃ sin(τ̃ − s̃)± 1

cos τ̃ cos(τ̃ − s̃)
. (6.9)

The large M expansion of Ḟn 6=0
τ is then obtained by a binomial expansion of the square

roots in (6.8) at Kn → ∞ and using (6.3). The expansion is uniform in τ̃ and ∆τ̃ within
the range (6.7), and by (6.3) it is also uniform in q. The first few terms are

Ḟn 6=0
τ (E) =

1

π
√
2 cos τ̃

∫ ∆τ̃

0

cos
(

Ẽs̃
)

ds̃
√

cos(τ̃ − s̃)

[

(1− ζ)

(

1√
K1

+
1√
K2

)

+
ζf+ − f−

2K
3/2
1

]

+O
(

e−5π
√
M
)

, (6.10)

where the dominant contribution comes from the term proportional to (1− ζ) and is of

order e−π
√
M .
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6.4 Numerical results

At large M , the dominant contribution to Ḟτ comes from Ḟn=0
τ (6.5), which depends

only on Eℓ and ∆τ/ℓ. Plots are shown in Figures 7 and 8. When |Eℓ| is large, the
oscillatory dependence on ∆τ/ℓ shown in the plots is in agreement with the asymptotic
formula (6.6).

When M decreases, the contribution to Ḟτ from Ḟn 6=0
τ becomes significant. For

M = 0.1, the terms shown in (6.10) are still a good fit to the numerics provided both
the switch-on and the switch-off are in the exterior region. For smaller M , the number
of terms that need to be included in Ḟn 6=0

τ increases rapidly. A set of plots is shown in
Figures 9 and 10 for M = 10−4 with q = 100, taking the detector to be switched on at

−20

−10

0

10

20π/2

π/4

0.2

∆τ/ℓEℓ

0
0

Figure 7: Ḟn=0
τ (6.5) as a function of Eℓ and ∆τ/ℓ for ζ = 0.
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(a) Eℓ = −100
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(b) Eℓ = −5
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∆τ/ℓ

(c) Eℓ = 20

Figure 8: Ḟn=0
τ (6.5) as a function ∆τ/ℓ for selected values of Eℓ, with ζ = 0 (dashed

line), ζ = 1 (thick line) and ζ = −1 (dotted line).
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(c) ζ = −1

Figure 9: Ḟτ (6.2) with M = 10−4, q = 100, τ0 = 0 and Eℓ = −5. Solid curve shows
numerical evaluation from (6.2) with 200 terms and dashed curve shows the individual
n = 0 term Ḟn=0

τ (6.5). The horizon-crossing occurs outside the plotted range, at
∆τ/ℓ = arccos(0.01) ≈ 1.56.
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Figure 10: As in Figure 9 but with Eℓ = 20.

the moment where r reaches its maximum and following the detector over a significant
fraction of its fall towards the horizon. Ḟn 6=0

τ turns out to be still insignificant at large
negative Eℓ, but it starts to become significant at Eℓ & −5, and its effect then depends
strongly on the boundary condition parameter ζ , being the smallest for ζ = 1.

For fixed M , following the detector close to the future singularity numerically would
pose two complications. First, an increasingly large number of terms would need to be
included in Ḟn 6=0

τ . Second, the evaluation of the individual terms to sufficient accuracy
would need to handle numerically integration over an integrable singularity in s̃. This
singularity arises because the the quantity under the first square root in (6.2) can change
sign within the integration interval. We have not pursued this numerical problem.

7 Conclusions

In this paper we have investigated the response of an Unruh-DeWitt particle detector
in three-dimensional curved spacetime. We first obtained a regulator-free expression for
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the transition probability of a detector coupled to a scalar field in an arbitrary Hadamard
state, working within first-order perturbation theory and assuming that the detector is
switched on and off smoothly, and we showed that both the total transition probability
and the instantaneous transition rate remain well defined when the switching becomes
sharp. In the special case of a detector in Minkowski space, coupled to the Minkowski
vacuum of a massless scalar field, these results reduce to those found in [25]. The
results confirm that the sharp switching limit is qualitatively different between three
and four spacetime dimensions even when the spacetime is curved: in four dimensions,
the sharp switching limit yields a well defined transition rate but a divergent transition
probability [17, 24].

We then specialised to a detector in the BTZ black hole spacetime, coupled to a
massless conformally coupled scalar field in a Hartle-Hawking vacuum state with trans-
parent, Dirichlet or Neumann boundary conditions at the infinity. For a stationary
detector that is outside the horizon and co-rotating with the hole, and switched on
in the asymptotic past, we verified that the transition rate is thermal in the sense of
the KMS property, in the local Hawking temperature that is determined by the mass
and angular momentum of the hole and by the Tolman redshift factor at the detector’s
location. This is the temperature that was to be expected by general properties of
the Hartle-Hawking state [6, 7, 28, 32], and by GEMS considerations [33, 34, 35, 36].
A static detector outside a nonrotating black hole was included as a special case. We
obtained analytic results for the transition rate in a number of asymptotic regimes of the
parameter space, including those of large and small black hole mass, and we provided
numerical results in the interpolating regimes. We have not pursued in detail the case of
a stationary detector whose angular velocity differs from that of the hole, but we shall
show in Appendix F that the parameter space has at least some regimes in which the
response of such a detector does not have the KMS property.

We also considered a detector that falls into a nonrotating BTZ hole along a radial
geodesic. As the trajectory is not stationary, the transition rate is not constant along
the trajectory, and in particular the switch-on cannot be pushed to the asymptotic
past since the trajectory originates at the white hole singularity. We obtained analytic
results for the transition rate when the black hole mass is large, and we evaluated the
transition rate numerically for small values of the black hole mass provided the switch-
on and switch-off take place in the exterior. We found no parameter ranges where the
transition rate would be approximately thermal in the sense of the KMS property, not
even near the moment of maximum radius on a trajectory, and we traced the reasons for
this to the properties of AdS3 geodesics that have been previously analysed from GEMS
considerations [33, 34, 35, 36]. Our expression for the transition rate as a countable sum
remains valid after the detector crosses the horizon, but the sum becomes then more
difficult to estimate analytically and more labour-intensive to evaluate numerically, and
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we have not pursued a detailed investigation of this regime.
It would be interesting to compare our BTZ transition rates to those of a detector on

similar trajectories in four-dimensional Schwarzschild space-time, where the Wightman
function needs to be evaluated fully numerically. Some differences can be expected to
arise from the different asymptotic infinities of BTZ and Schwarzschild: for example,
an inertial detector in Schwarzschild should respond to the Hartle-Hawking vacuum
approximately thermally in the asymptotically flat region. We leave this question subject
to future work.
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A Appendix: Derivation of (5.5) and (5.6)

In this appendix we verify the passage from (5.3) to (5.5) and (5.6).

A.1 n = 0 term

Let

I(a, P ) := Re

∫ ∞

0

e−iax dx
√

P − sinh2x
, (A.1)

where a ∈ R, P ≥ 0, and the square root is positive for positive argument and positive
imaginary for negative argument. We shall show that

I(a, 0) = −π tanh(πa/2)
2

, (A.2a)

I(a, P ) = e−πa/2

∫ ∞

0

cos(ay) dy
√

P + cosh2y
for P > 0 . (A.2b)

Applying (A.2) and (A.3) to the n = 0 term in (5.3) yields the corresponding terms in
(5.5) and (5.6).
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Suppose first P = 0. For P = 0, (A.1) reduces to I(a, 0) = −
∫∞
0

sin(ax)
sinhx

dx, which
evaluates to (A.2a) [39].

We note in passing the relation

I(a, 0) = −π
2
+ e−πa/2

∫ ∞

0

cos(ay) dy

cosh y
, (A.3)

which follows by evaluating the integral in (A.3) [39] and using (A.2a). Comparison of
(A.2b) and (A.3) shows that I(a, P ) is not continuous at P = 0.

Suppose then P > 0. We rewrite (A.1) as the contour integral

I(a, P ) := Re

∫

C1

e−iaz dz
√

P − sinh2z
, (A.4)

where the contour C1 goes from z = 0 to z = ∞ along the positive real axis, with a dip
in the lower half-plane near the branch point z = arsinh

√
P . The square root denotes

the branch that is positive for small positive z.
We deform C1 into the union of C2 and C3, where C2 goes from z = 0 to z = −iπ/2

along the negative imaginary axis and C3 consists of the half-line z = y − iπ/2 with
0 ≤ y <∞. As the integrand has no singularities within the strip −π/2 ≤ Im z < 0 and
falls off exponentially within this strip as Re z → +∞, the deformation does not change
the value of the integral. The contribution from C2 is purely imaginary and vanishes on
taking the real part. The contribution from C3 yields (A.2b).

A.2 n 6= 0 terms

Let

Ib(a, P ) := Re

∫ ∞

0

e−iax dx
√

P − sinh2(x+ b)
, (A.5)

where a ∈ R, P > 0, b ∈ R and the square root is positive for positive argument and
analytically continued to negative values of the argument by giving x a small negative
imaginary part.

We shall show that

Ib(a, P ) + I−b(a, P ) = 2 cos (ab) I(a, P ) , (A.6)

where I(a, P ) is given in (A.2b). Applying (A.6) with (A.2b) to the n 6= 0 terms in (5.3)
yields the corresponding terms in (5.5) and (5.6).

For b = 0, (A.6) follows from (A.2b). As both sides of (A.6) are even in b, it hence
suffices to consider (A.6) for b > 0.
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Let b > 0. Changing the integration variable in (A.5) to y = x+ b yields

Ib(a, P ) + I−b(a, P ) = 2 cos (ab) Re

∫ ∞

0

e−iay dy
√

P − sinh2y

− Re

(

eiab
∫ b

0

e−iay dy
√

P − sinh2y
+ e−iab

∫ −b

0

e−iay dy
√

P − sinh2y

)

, (A.7)

where the branches of the square roots are as inherited from (A.5): positive when the
argument is positive and continued to negative argument by giving y a small negative
imaginary part. Examination of the branches shows that the last two terms in (A.7)
cancel on taking the real part, and using (A.1) in the first term leads to (A.6).

B Appendix: Derivation of (5.9)

In this appendix we verify the asymptotic formula (5.9).
Let

J(a, P ) :=

∫ ∞

0

cos(ay) dy
√

P + cosh2y
, (B.1)

where P > 0 and a ∈ R. Note from (A.2b) that I(a, P ) = e−πa/2J(a, P ) for P > 0. We
shall show that as P → ∞ with fixed a, J(a, P ) has the asymptotic form

J(a, P ) =
1

a
√
πP

Im
[

(4P )ia/2Γ(1 + ia/2)Γ(1
2
− ia/2)

]

+O
(

P−3/2
)

for a 6= 0, (B.2a)

J(0, P ) =
1

2
√
P

[

ln(4P ) + ψ(1)− ψ(1
2
)
]

+O
(

P−3/2 lnP
)

, (B.2b)

where ψ is the digamma function [40].
Starting from (B.1), writing cos(ay) = Re(eiay) and making the substitution y = ln t,

we find

J(a, P ) = 2Re

∫ ∞

1

tia dt

√
t4 +B2t2

√

1 +
1

t4 +B2t2

= 2
∞
∑

p=0

bp Re

∫ ∞

1

tia dt

t2p+1
(

t2 +B2
)p+(1/2)

, (B.3)
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where B =
√
4P + 2 and bp are the coefficients in the binomial expansion (1 + x)−1/2 =

∑∞
p=0 bpx

p. As the p > 0 terms in (B.3) are O
(

B−2p−1
)

= O
(

P−p−(1/2)
)

by dominated

convergence, we have J(a, P ) = J0(a, P ) +O
(

P−3/2
)

, where the substitution t = Bv in
the p = 0 terms gives

J0(a) =
2

B
Re

(

Bia

∫ ∞

1/B

via−1 dv√
1 + v2

)

. (B.4)

When a 6= 0, integrating (B.4) by parts and extending the lower limit of the integral
to zero gives

J0(a, P ) =
2

Ba
Im

[

Bia

∫ ∞

0

v1+ia dv
(

1 + v2
)3/2

+O
(

B−2
)

]

. (B.5)

The integral in (B.5) may be evaluated by

writing (1 + v2)
−3/2

=
(

Γ(3/2)
)−1 ∫∞

0
dx x1/2 e−(1+v2)x and interchanging the order of

the integrals, with the result (B.2a). When a = 0, similar manipulations lead to (B.2b).

C Appendix: Derivation of (5.10)

Let p > 0, q > 0, a ∈ R and γ ∈ R. For n ∈ R, let Kn := p2 sinh2(nq), and define

Fn :=

∫ ∞

0

cos (nγq) cos(ay) dy
√

Kn + cosh2y
, (C.1)

where we suppress the dependence of Fn on p, q, a and γ. We shall show that the sum
S :=

∑∞
n=−∞ Fn has the asymptotic form

S =
2

q

∫ ∞

0

dr

∫ ∞

0

cos (rγ) cos(ay) dy
√

p2 sinh2r + cosh2y
+O(1) (C.2)

as q → 0 with the other parameters fixed. Note that the leading term in (C.2) diverges
as q → 0.

We begin by writing Fn = F
(+)
n + F

(−)
n , where F

(+)
n (respectively F

(−)
n ) comes from

those intervals in y in (C.1) where cos (nγq) cos(ay) is positive (respectively negative).

Note that F
(±)
−n = F

(±)
n . We then have S = S(+) + S(−) where S(±) :=

∑∞
n=−∞ F

(±)
n .

The function K 7→
(

K + cosh2y
)−1/2

is non-negative and decreasing in K for 0 ≤
K <∞ for each y. It follows that F

(+)
n is decreasing in n for n ≥ 0 and F

(−)
n is increasing

in n for n ≥ 0. Bounding
∫∞
0
F

(±)
n dn by upper and lower Riemann sums gives the
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inequalities
∑∞

n=1 F
(+)
n ≤

∫∞
0
F

(+)
n dn ≤

∑∞
n=0 F

(+)
n and

∑∞
n=0 F

(−)
n ≤

∫∞
0
F

(−)
n dn ≤

∑∞
n=1 F

(−)
n , from which it follows that

F
(−)
0 − F

(+)
0 + 2

∫ ∞

0

Fn dn ≤ S ≤ F
(+)
0 − F

(−)
0 + 2

∫ ∞

0

Fn dn . (C.3)

(C.2) follows from (C.3) by changing the integration variable in
∫∞
0
Fn dn to r := nq

and noting that F
(+)
0 − F

(−)
0 is independent of q.

D Appendix: Co-rotating response at Eℓ → ±∞
In this appendix we analyse the individual terms in the co-rotating detector response
(5.6) in the limit Eℓ→ ±∞. These terms are of the form

Ĩ(χ, a, P ) := cos(χa) e−πa/2J(a, P ) , (D.1)

where χ ∈ R, a ∈ R, P > 0 and J(a, P ) is given by (B.1). We shall show that when
a→ ±∞ with fixed χ and P , Ĩ(χ, a, P ) has the asymptotic expansion

Ĩ(χ, a, P ) =























2
√
π e−πa cos (χa) cos(αa− π/4)

√

a sinh(2α)
+ o
(

a−1/2 e−aπ
)

, a→ +∞,

2
√
π cos (χa) cos(−αa− π/4)

√

−a sinh(2α)
+ o
(

(−a)−1/2) , a→ −∞.

(D.2)

Assuming a 6= 0 and writing cos(ay) = Re
(

ei|a|y
)

, we start by rewriting J(a, P ) from
(B.1) as

J(a, P ) = Re

∫

C1

ei|a|y dy
√

P + cosh2y
, (D.3)

where the contour C1 consists of the positive imaginary axis travelled downwards and
the positive real axis travelled rightwards. The contribution from the imaginary axis
vanishes on taking the real part.

Writing P = sinh2α where α > 0 and factorising the quantity under the square root
in (D.3), we obtain

J(a, P ) = Re

∫

C1

ei|a|y dy
√

sinh(α + y − iπ/2) sinh(α− y + iπ/2)
. (D.4)
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The branch points of the integrand in (D.4) are at y = ±α+ iπ(n+ 1
2
), n ∈ Z. We may

deform C1 into the contour C2 that comes down from α + i∞ at Re y = α, passing the
branch points from the left, encircles the branch point at y = α+ iπ/2 counterclockwise,
and finally goes back up to α+ i∞ at Re y = α but now passing the branch points from
the right. Changing the integration variable by y = α + iπ/2 + iu, we then have

J(a, P ) = e−|a|π/2 Re

(

ieiα|a|
∫

C3

e−|a|u du
√

−i sin(u) sinh(2α + iu)

)

, (D.5)

where contour C3 comes from u = +∞ to u = 0 on the upper lip of the positive u
axis, encircles u = 0 counterclockwise and goes back to u = +∞ on the lower lip of
the positive u axis. The square root is positive at u = π/2 on the upper lip and it is
analytically continued to the rest of C3.

We now note that sinh(2α + iu) = sinh(2α) cos(u) + i cosh(2α) sin(u), and that the
modulus of this expression is bounded below by sinh(2α). In (D.5), the contribution from
the two intervals in which π/2 ≤ u ≤ π is therefore bounded above by e−|a|π/

√

sinh(2α)
times a numerical constant, and the contribution from the two intervals in which nπ ≤
u ≤ (n + 1)π, n = 1, 2, . . . , is bounded above by e−|a|π[n+(1/2)]/

√

sinh(2α) times a
numerical constant. The sum of all of these contributions is hence O

(

e−|a|π). In the
remaining contribution, coming from the two intervals in which 0 ≤ u ≤ π/2, we combine
the upper and lower lips and change the integration variable to w = |a|u. This gives

J(a, P ) =
2 e−|a|π/2
√

|a|
×

× Re



ei(α|a|−π/4)

∫ |a|π/2

0

e−w dw
√

|a| sin(w/|a|)
[

sinh(2α) cos(w/|a|) + i cosh(2α) sin(w/|a|)
]





+ O
(

e−|a|π) , (D.6)

where the the square root denotes the branch that is positive in the limit w → 0+.
By Jordan’s lemma, the modulus of the integrand in (D.6) is bounded from above

in the range of integration by the function g(w) :=
√

π
2 sinh(2α)

w−1/2 e−w. As g(w) is

integrable over 0 < w < ∞ and independent of a, dominated convergence guarantees
that when |a| → ∞, the limit in the integrand in (D.6) can be taken under the integral.
The integral that ensues in the limit is elementary, and we obtain

J(a, P ) =
2
√
π e−|a|π/2 cos(α|a| − π/4)

√

|a| sinh(2α)
+ o
(

|a|−1/2 e−|a|π/2) . (D.7)

(D.2) then follows by substituting (D.7) in (D.1).
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E Appendix: Derivation of (6.6)

In this appendix we verify the asymptotic expansions

∫ m

0

dx
cos (βx)

cosx
=

sin(mβ)

β cosm
+O

(

β−2
)

, (E.1a)

∫ m

0

dx
sin (βx)

sin x
=
π sgn β

2
− cos (mβ)

β sinm
+O

(

β−2
)

, (E.1b)

valid as β → ±∞ with fixed m ∈ (0, π).
(E.1a) follows by repeated integrations by parts that bring down inverse powers of

β [41].
In (E.1b), we split the integral as

∫ m

0

dx

(

1

sin x
− 1

x

)

sin(βx)−
∫ ∞

m

dx
sin (βx)

x
+

∫ ∞

0

dx
sin (βx)

x
. (E.2)

Repeated integrations by parts now apply to the first two terms in (E.2), and the third
term equals π

2
sgn β [39]. Combining, we obtain (E.1b).

F Stationary but non-co-rotating detector

In this appendix we discuss briefly a detector that is stationary in the exterior region of
the BTZ black hole but not co-rotating with the horizon. For the transparent boundary
condition at the infinity, we show that the n = 0 term in the transition rate (4.11)
breaks the KMS property already in second order in the difference between the horizon
and detector angular velocities. As the n = 0 term is expected to gives the dominant
contribution when the black hole mass is large, we take this as evidence that the tran-
sition rate does not satisfy the KMS property, in agreement with the GEMS prediction
[33, 34, 35, 36].

Consider a detector that is stationary in the exterior region of the BTZ spacetime
at exterior BTZ coordinate r, but not necessarily co-rotating with the horizon. The
tangent vector of the trajectory is a linear combination of ∂t and ∂φ. By (4.3) and (4.4),
the lift of the trajectory to AdS3 reads

X1 = ℓ coshχ sinh(2ky) ,

T1 = ℓ coshχ cosh(2ky) ,

X2 = ℓ sinhχ cosh(2y) ,

T2 = ℓ sinhχ sinh(2y) , (F.1)
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where we have written
√
α = coshχ with χ > 0, the constant k is proportional to the

difference of the detector and horizon angular velocities, and y is a parameter along
the trajectory. We assume |k| < tanhχ, which is the condition for the trajectory to be

timelike. The proper time τ is related by y by τ = 2ℓ sinhχ
√

1− k2 coth2χ y.
Let Ḟn=0 denote the n = 0 term in the transition rate (4.11). Substituting (F.1)

in (4.12), and specialising to the transparent boundary condition, ζ = 0, we find

Ḟn=0(E) =
1

4
− 1

2π

√

1− k2 coth2χ

∫ ∞

0

dy
sin
(

2Eℓ sinhχ
√

1− k2 coth2χy
)

√

sinh2y − coth2χ sinh2(ky)
. (F.2)

It can be verified that the quantity under the square root in the denominator is positive
for 0 < y <∞.

Expanding (F.2) as a power series in E and then expanding the coefficients as power
series in k, we find

Ḟn=0(E) =
1

4
+

[

−π
4
sinhχ+

π

8

(

π2

4
− 1

)

cosh2χ

sinhχ
k2 +O

(

k4
)

]

Eℓ

+

[

π3

12
sinh3χ+

π3

4

(

1− π2

6

)

sinhχ cosh2χ k2 +O
(

k4
)

]

(Eℓ)3 +O
(

(Eℓ)5
)

.

(F.3)

From (F.3) it is seen that the power series expansion of Ḟn=0(−E)/Ḟn=0(E) in E is
incompatible with a pure exponential in E, and the discrepancy arises in the coefficient
of the (Eℓ)3 term in order k2. Ḟn=0 (F.2) hence does not satisfy the KMS property at
small but nonzero k.
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