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Abstract

The classical limit of polymer quantum theories yields a one parameter family of ‘effective’

theories labeled by λ. Here we consider such families for constrained theories and pose the problem

of taking the ‘continuum limit’, λ → 0. We put forward criteria for such question to be well

posed, and propose a concrete strategy based in the definition of appropriately constructed Dirac

observables. We analyze two models in detail, namely a constrained oscillator and a cosmological

model arising from loop quantum cosmology. For both these models we show that the program can

indeed be completed, provided one makes a particular choice of λ-dependent internal time with

respect to which the dynamics is described and compared. We show that the limiting theories

exist and discuss the corresponding limit. These results might shed some light in the problem of

defining the corresponding continuum limit for quantum constrained systems.
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I. INTRODUCTION

A somewhat nonstandard and “exotic” representation of the canonical commutation re-

lations (CCR) in quantum mechanics [1], has received recently some attention in view of its

possible relevance for some physical models [2–4]. On its own, it represents an interesting

model to study from the mathematical physics perspective. In particular, there has been

some recent interest in exploring its relation with the standard Schroedinger representation

of the CCR [3], a quantization that is privileged by the Stone-Von Neumann theorem. One

feature that characterizes these new, polymeric representations is the appearance of a new

dimension-full parameter λ labeling them. In some cases this parameter can be thought of

as providing a measure of discretization of space (or in some other cases, a lattice spacing).

In all these cases, one expects to recover the standard theory in the limit λ → 0 [3–5]. In

some of these instances, this limit has been referred to as a the continuum limit of the theory,

borrowing the nomenclature used in lattice gauge theories. These new, polymeric represen-

tations are fundamental in the quantum treatment of simple cosmological models in what

is known as loop quantum cosmology (LQC) [6]. In that case, the corresponding parameter

has the interpretation of providing a fundamental quanta for the spacial geometry. Thus,

in LQC the limit λ → 0 corresponds to the vanishing of ‘loopy’corrections to the theory,

and one expect to recover then the standard Wheeler-De Witt quantum cosmology (see for

instance [7] and [8]).1

Given that in some cases the parameter λ can be seen as a ‘lattice regulator’ whose contin-

uum limit can be investigated, a natural avenue is to consider ideas from the renormalization

group approach. The first steps were taken in [5] for some simple quantum mechanical sys-

tems. An open issue is to even formulate the program when the system under consideration

is subject to constraints. For instance, for totally constrained systems, there is no time

evolution and one has to consider Dirac observables to describe the system. It is then not

clear how to compare states and observables corresponding to different ‘scales’ λ and λ′, and

even less how to approach the continuum limit. One certainly needs some new set of ideas

to investigate this issue.

1 It should be noted that λ captures the information about the non-local character of holonomies in loop

quantum gravity. It is independent from ~ even when, in LQC, it carries the information about the

discreteness of the spectrum of quantum geometric operators.
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One important question that has emerged from the study of these quantum systems

pertains to the existence of their semiclassical limit. That is, one might ask what is the clas-

sical theory that best describes the dynamics of semi-classical states. As it turns out, the

corresponding classical description is not the classical system one started with, before quan-

tization. Instead, one recovers a different classical theory where the ‘discreteness parameter’

λ plays a fundamental role. To be precise, one generically finds a corrected Hamiltonian Hλ

that controls the dynamics in such a way that, in the limit λ → 0, one recovers both the

classical Hamiltonian H0 and the classical equations of motion. In what follows, we shall call

these λ-dependent classical theories the effective theories, and the corresponding equations

of the motion will be referred to as the effective equations.2 For instance, in the case of LQC

the effective classical theory was analyzed in [9, 10], for a fixed value of λ, proportional to

Planck length. However, it is perfectly valid and logically more generic to keep λ as a free

parameter and to explore changing it, while keeping the Planck length fixed (this has already

been done at the quantum level in [7] and [8]). In this way we obtain a family of λ-dependent

classical theories. Here we are interested in the corresponding classical “continuum limit”

λ → 0 (with a slight abuse of notation).

Somewhat interestingly, in many cases one can obtain these effective equations by a

simple substitution of some of the canonical variables by particular trigonometric functions

(more details later). Thus, in this process, sometimes called polymerization, one starts

with the classical Hamiltonian (or Hamiltonian constraint) H0 and simply replaces some of

the variables qi by λ-dependent periodic functions fi(λ) and arrives to the corresponding

effective Hamiltonian Hλ.
3 From this perspective, one could study the 1-parameter family

of classical theories per se and consider their continuum limit, with no reference to the

corresponding quantum theory. Thus, from the viewpoint of purely classical physics, one

would be studying the family of λ-dependent theories and consider their λ → 0 limit. This

is precisely the problem that we shall consider here. The strategy will be simple: start with

2 In the LQC literature, where this nomenclature was first introduced [9, 10], the effective equations have

been obtained using a rigorous procedure (see next footnote).
3 This is not to be regarded as a fundamental derivation but rather as a shortcut to arrive to the effective

equations. The correct procedure is to derive the effective equations from the polymer quantum theory

by standard methods, that shall not be discussed here (See, for instance [9–13] for details). It should also

be noted that there are examples in loop quantum cosmology, such as the k=1 model where the effective

Hamiltonian can not be obtained by the simple polymerization method [14].
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the family of effective theories and investigate the λ → 0 limit. For simple, unconstrained

systems this has been done before to some extent [2–4], but the same is not true of generic

constrained systems.

The purpose of this article is to explore some of these issues. The first one is to put

forward a formalism to deal with this family of classical constrained theories and to study

what ‘taking the continuum limit’ means. A short reflexion shows that the question is rather

subtle. Unlike unconstrained systems, here each theory labeled by λ lives on a different

space, namely different constrained submanifolds Γ̄λ ⊂ Γ of the common kinematical phase

space Γ. Each physical configuration is an equivalence class of points on each of these

submanifolds Γ̄λ, so how can we compare them? What is then the strategy to compare

physical predictions from these theories and how does one define a limit? What is then

the meaning of convergence of such limit? When can we say that the limit exists and that

effective theories converge to another theory? Is this limit point equivalent to the original

classical theory? In what follows we shall try to give answers to these questions. The second

objective of this paper is to provide a conceptual framework that could be useful for the

problem of answering the corresponding set of questions in the quantum theory. If we are

able to answer some of these conceptual problems in the classical theory, this might help

when constructing the corresponding continuum limit in the quantum realm. We shall not

attempt to do that in this manuscript [15].

The relation between all these theories is illustrated in Fig. 1. The vertical arrows cor-

respond to changing Planck’s constant ~, with the top row corresponding to ~=0. The

horizontal arrows depicts changing the value of λ, with the left column corresponding to

λ=0. Thus, the top left corner is the classical theory. Following the vertical arrow down

corresponds to the standard process of Dirac-Schroedinger quantization. The vertical ar-

rows in the upward direction correspond to the “classical limit”. The diagonal arrow is the

so-called polymer quantization, that starts with the classical theory and provides a polymer

quantum theory. The left pointing arrow in the bottom row, corresponds to the so called

“continuum limit” that starts from the λ 6= 0 polymer quantum theory and defines the limit

λ → 0. The process called ‘polymerization’ corresponds to the right pointing arrow in the

top row. The problem we are considering here, namely the continuum limit for classical

theories, corresponds to the left pointing arrow in the top row that, as we shall here argue,

does not lead in general to the original classical theory. This fact is depicted in the figure as
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FIG. 1: Connection between theories on various levels: classical, classical-quantum and quantum.

a dotted arrow. Note that we shall not discuss in this note the quantum theories, nor their

semiclassical and continuum limits.

The strategy we shall follow can be stated rather succinctly. We shall define and construct

appropriate physical observables that will serve for the purpose of comparing theories at

different scales. One possible approach would be to isolate the corresponding reduced phase

spaces Γ̂λ and to define a mapping between them such that observables are ‘pullbacked’

and compared. While this strategy seems natural, it can only give us insight into the

frozen description of dynamics. How can we then consider the ‘dynamical’ evolution –even

when generated by constraints– in this formalism? For that we shall follow the strategy put

forward by Rovelli, Dittrich and others to construct relational (Dirac) observers that describe

dynamics even in the totally constrained case [16, 17]. But the choice of such observables and

thus of the notion of dynamics is far from being unique. Does this choice has then an impact

on the notion of convergence and the limit? As we shall see in detail, the answer is in the

affirmative. It is then a non-trivial task to select the correct observable that shall play the

role of time, for which the reconstructed dynamics converges. Taking the limit then means

taking the corresponding observables and comparing them in the limit with, for instance,

the alleged ‘continuum theory’. Using this as our guiding principle we shall see that in two

examples of interest, one can indeed find such λ-dependent time observable, with respect

to which the question of convergence can be posed. As we shall see clearly illustrated by

these examples, this choice is unique, which implies that the notion of convergence and the

existence of a ‘continuum limit’ has some limited domain of validity. That is, convergence

can not be generically realized for arbitrary observables and time functions.

The structure of the paper is as follows. Section II corresponds to the core of the paper.
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In this section, we define the class of theories we are interested in, construct the correspond-

ing effective theories and discuss the notion of convergence we shall consider. We end by

specifying the type of observables that one should construct for such purposes. In Section III

we give our first example, namely a parametrized harmonic oscillator and corresponding ef-

fective theories. We construct Dirac observables and analyze their convergence. Section IV

is dedicated to the convergence of effective classical theories based on a solvable model of

LQC. In Section V we summarize our results and give some ideas for future work.

II. FORMULATION OF THE PROBLEM

As we have discussed in the Introduction, our objective is to consider one parameter

families of ‘polymeric classical theories’ in totally constrained systems and to study its

possible limit –and convergence– when taking the limit λ → 0. In this section we shall be

more precise about the different steps that need to be taken in order to achieve this. This

section has three parts. In the first one, we shall specify the type of constrained theories

under consideration. In the second part, we describe in detail our strategy to identify

configurations at different scales in order to be able to take the limit and we specify our

notion of convergence. In the third part we shall introduce complete Dirac observables

constructed from the so-called partial observables.

A. Class of theories

We start with a finite dimensional classical theory that describes a system with one

constraint C on the kinematical phase space Γ. The elements of Γ where the constraint

vanishes represent points on the ‘classical’ constraint surface Γ̄. The constraint generates

canonical transformations on Γ̄ that, in the standard interpretation, are regarded as gauge

transformations. Let us now specify the family of effective gauge theories, characterized by

the parameter λ, with constraint Cλ.
Suppose that the finite dimensional kinematical phase space Γ is parametrized by canon-

ical coordinates (qi, pi), i = 1, . . . , n, with {qi, pj} = δij . The classical theory is defined by

the constraint

C(qi, pi) ≈ 0 . (1)
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A special case which is of interest to us is when the constraint is of the following form,

C(qi, pi) ≡ C̃(q1, . . . qn−1, p1, . . . pn−1) + α(pn)
k ≈ 0 , (2)

where α is an arbitrary parameter and k > 0. Now, since the constraint does not depend on

qn, its canonically conjugate momentum pn is a Dirac observable ({pn, C} = 0), so it remains

constant along the gauge orbits, while qn is a linear function of the ‘affine parameter’ t along

the orbit, and can be viewed as an evolution parameter.

Now we shall construct a one parameter family of effective theories. This particular

construction is motivated by the results from polymer quantization, where, in one dimension,

the derivative operator that would correspond to the operator p̂ does not exist, but the Weyl

operator corresponding to finite translations along q is well defined. In this case we can

approximate the operator acting on state f(q) corresponding to the derivative with respect

to q as

∂qf(q) ≈ 1

2λ

[
f(q + λ)− f(q − λ)

]

=
1

2λ
(êipλ − ê−ipλ)f(q) =

i

λ
̂sin(λp) f(q) . (3)

Similarly, the second derivative can be approximated by

1

λ2

[
f(q + λ)− 2f(q) + f(q − λ)

]
=

2

λ2

(
ĉosλp− 1

)
f(q) . (4)

where λ is the free parameter that represents the displacement along q in the approximation.

Note that by keeping λ finite, the process sometimes called ‘polymerization’ could be defined

as the substitution

p̂ −→ 1

λ
̂sin(λp) and p̂2 −→ 2

λ2
( ̂cos(λp)− 1) , (5)

in the Hamiltonian or any other operator of the theory. This substitution, that is defined

in the quantum theory, suggests that one can also define a ‘polymerization’ of the classical

theory. Let us now see how that comes about. Consider a function F (p, q) on phase space.

One can then define its polymer transform P[F ] as the function F with the substitution

given by (5). Thus, we have

P[F (q)] = F (q) ; P[p] =
1

λ
sin(λp) (6)

P[p2] =
2

λ2
(cos(λp)− 1) (7)
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and similarly for higher powers of p.4

We are interested in the analysis of the effective classical theories defined by the ‘effective

constraint’

Cλ(q1, . . . qn−1,P[p1],P[p2], . . .P[pn−1], pn) ≈ 0 . (8)

Note that the moment we can consider P[pi] instead of pi, that coordinate becomes effectively

compactified, given that the Hamiltonian (and all observables) are now periodic functions

of pi. One could still regard pi as unbounded, but with the restriction that all physically

relevant observables are periodic.

It is clear that we have a one parameter family of “effective Hamiltonian constraints” Cλ
with the property that

lim
λ→0

Cλ = C . (9)

Each of these constraints defines a submanifold of Γ, the corresponding λ-dependent con-

strained surface Γ̄λ ⊂ Γ defined as those points of Γ where Cλ vanishes. Clearly, the subman-

ifolds Γ̄λ do not intersect for λ 6= λ′, so what we have is a one parameter family of distinct

constrained theories that foliate a region of Γ.

Let us now pose the question of convergence, with the goal of comparing physical config-

urations on each of these submanifolds.

B. Convergence

The first challenge in our program to define a ‘λ-flow’ in our space of theories (each one

labeled by λ), is to provide a prescription for identifying physical configurations at different

scales. Since we are dealing with totally constrained systems, physical states correspond to

gauge orbits under the flow generated by the constraint Cλ. In other words, they correspond

to equivalence classes under the constraint flow or, equivalently, points in the corresponding

reduced phase space Γ̂λ. How are we to define a mapping Rλ,λ′ : Γ̂λ′ → Γ̂λ? Are there

any preferred criteria motivated by physical or consistency considerations? It is clear that

among such criteria, one should ask that, for two scales λ, λ′ that are close to each other

4 It has sometimes been suggested that by polymerization of p, one could consider other periodic functions

that behave as p when λp ≪ 1, such as tan(λp)/λ. However, the choice of sin(λp)/λ is uniquely selected

since it comes, as we have seen, from the discretization of the derivative in the quantum theory.
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(say, satisfying |λ−λ′| < ǫ), the two gauge orbits should be ‘close to each other’. But, what

does ‘close to each other’ mean when they lie on different spaces? How can we even hope to

compare them?

In order to define such correspondence we need to analyze the behavior of the gauge

orbits for different values of λ. For instance, we know that the ‘equations of motion’ for all

theories are very close to each other when λp ≪ 1. Thus, one would expect that the orbits

follow very similar trajectories in a neighborhood of such plane. Thus the strategy to the

find the mapping R is to identify, in that neighborhood, orbits that are close to each other

(as seen in the large kinematical space Γ), by fixing some constants of the motion, such as

pn and other ‘initial conditions’. Even if one is able to identify the correspondence between

scales, the second challenge is to establish that those points, related by the mapping R are

indeed close to each other.

Let us now argue that such strategy indeed exists, and uses in a crucial way the notion of

physical, Dirac observables. The idea is simple: we can use observables to compare physical

states at two scales and decide when they are close to each other, namely when the value

of such observables is nearby. For that, we want to construct the family of complete Dirac

observables, at every scale λ, and analyze its behavior as λ → 0. We say that the effective

theories converge as λ → 0 if there is a family of complete Dirac observables that converge

in this limit. Convergence of observables will then induce a flow R on the space of theories

and we shall then be in position of giving meaning to the limit λ → 0.

In the next part we shall review the construction of complete observables from partial

observables that will be useful for our purposes.

C. Observables

Since we are dealing with constrained systems we need to find gauge invariant phase space

functions, i.e. Dirac observables. We shall follow the ideas of Rovelli and Dittrich, who

associate to every pair of phase space functions a one-parameter family of Dirac observables

[16, 17]. We first construct a phase space function R(qi, pi) which is a monotonous function

of t, the evolution parameter associated to C. We can choose R as a function that measures

the “time” along the gauge orbits, generated by the constraint. We shall consider another

phase space function F and calculate its value when R = t0, the result F |t0 will then give a

9



Dirac observable. The procedure goes as follows. First, we consider the flow αt
C generated

by the constraint C. For an arbitrary smooth phase space function F it can be calculated as

αt
C(F ) =

∞∑

n=0

tn

n!
{C, F}n , (10)

where {C, F}0 = F and {C, F}n+1 = {C, {C, F}n}. Then, one can define the function

F |t0 ≡ αt
C(F )|αt

C
(R)=t0 . (11)

Since αt
C(R) = t0 is an invertible function, F |t0 is a family of Dirac observables, i.e.

{F |t0, C} = 0 (For details, see [17]).

In the following sections we shall show that the question of convergence is a subtle one

that one has to consider carefully, in every particular case. In our case, the “time function”

R will in general depend on the parameter λ. As we shall see, one needs to carefully select

such time function in order to built meaningful complete observables. We shall also consider

gauge trajectories and their convergence, as well as the relation between the corresponding

reduced phase spaces.

III. PARAMETRIZED HARMONIC OSCILLATOR

In order to illustrate some aspects of convergence of the effective theories let us analyze

as an example the case of parametrized simple harmonic oscillator (PSHO), which is a

reformulation of the SHO as constrained theory.

The kinematical phase space Γpsho of a 1-dimensional PSHO is four dimensional, and

convenient coordinates are (q, p; τ,Πτ), where τ is the original Newtonian time that has

been elevated to a phase space coordinate. The theory is defined by the constraint

C =
p2

2m
+

k

2
q2 +Πτ ≈ 0 . (12)

The constrained surface Γ̄ ⊂ Γpsho is given by solutions to the previous equation. The

‘dynamical’ solutions for q and p of the corresponding equations of motion are periodic

functions of τ , with constant period T = 2π
√

m
k
. One should, however, have in mind that

this ‘evolution’ is a gauge transformation, and the corresponding solutions are the gauge

orbits on the constrained surface.
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Let us now consider, in the same kinematical phase space Γpsho, the one parameter family

of effective theories defined by constraints

Cλ =
k

2
q2 +

1

λ2m
(1− cos (λp)) + Πτ ≈ 0 , (13)

where p is now effectively compactified, since all the dependence on such coordinate is

periodic with period 2π
λ
. For convenience, let us assume p is periodic and lies in the interval

p ∈ [−π
λ
, π
λ
). In the limit λ → 0 this constraint reduce to (12), and the range of p is the real

line. The constraint (13), for every λ describes a ‘pendulum’ (where the periodic variable

is p and not q), with an energy −Πτ , and with the formal correspondence given by p = λθ,

l = 1
λ
√
km

and g =
√
km

λm2 (θ is an angle, l the length and g is a constant acceleration).

The gauge orbits, when deparametrized and interpreted as dynamical evolution, exhibit

two types of trajectories in the phase space. Since Πτ is a Dirac observable, and therefore

constant along the gauge orbits, one can use it to separate the two class of trajectories. First,

there are orbits that correspond to oscillations, for |Πτ | < Ec, with Ec a critical energy. The

second class of orbits are rotations for |Πτ | > Ec. The quantity Ec =
2

λ2m
, the critical energy,

is a constant on each space Γ̄λ, and diverges in the limit λ → 0. The surface |Πτ | = Ec

is where the corresponding phase space separatrices lie. The motion of the pendulum is

periodic. For instance p(τ) has a period that depends on λ and Πτ given by

T (λ,Πτ) = 4

√
m

k
F
(π
2
, α
)
, (14)

where F is the elliptic integral of the first class, and α = sin λp0
2

=
√

−Πτ

Ec
. For small α

T (λ,Πτ ) = 2π

√
m

k

(
1 +

1

4
α2 +

9

4 · 16α
4 + . . .

)

Note that small α is precisely the regime where the effective theory approximates very well

the SHO. We can attain small α by fixing the energy Πτ and then making λ sufficiently

small. Alternatively, for a fixed λ, the approximation is good if we restrict ourselves to

energies much lower than Ec. What is then the procedure to identify orbits for different

values of λ? In this case the answer is simple. One can, to begin with, fix the observable Πτ ,

and synchronize the initial condition for p at τ = τ0. With this prescription, in the plane

(τ, p) one can superimpose two orbits, with the same ‘energy’ Πτ , with different values of λ,

that start from the same point p at a given time τ = τ0.
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Let us now consider observables in order to pose our convergence conditions. For Dirac

observables in both theories we can choose Πτ , as it is already a Dirac observable and

therefore, a constant of the motion. The other natural choice is to consider the family

of complete observables, p|τ0, corresponding to ‘the value of p for fixed τ = τ0’. We can

therefore choose p and τ as partial observables and calculate their flow.

In the case of the classical SHO we easily obtain

αt
C(τ) = τ − t , αt

C(p) = p cosωt+
k

ω
q sinωt ,

then the observable becomes

p|τ0 = p cos (ω(τ − τ0)) +
k

ω
q sin (ω(τ − τ0)) . (15)

In the case of the effective theories, the flow αt
Cλ
(p) can not be obtained in closed form, but

nevertheless we can still draw some conclusions about the behavior of the corresponding

family of Dirac observables, for different values of λ. Let us first remark that the difference

between the values of p|τ0 and pλ|τ0 (the notation pλ indicates that we are in the effective

theory labeled by λ), for |Πτ | < Ec fixed, is always bounded
∣∣∣p|τ0 − pλ|τ0

∣∣∣ ≤
√

−2mΠτ +
1

λ
arccos (1 + λ2mΠτ ) , (16)

Note that this inequality provides a bound, but it does not tend to 0 as λ → 0. Nevertheless,

the left hand side tends to zero pointwise when λ → 0, due to the fact that dynamical

trajectories approach each other in this limit. However, this convergence is not uniform.

If we compare pλ1
|τ with pλ2

|τ we notice that their difference is not periodic in τ , so if we

start with two nearby values of p, for τ and Πτ fixed, on two different scales, they do not

stay nearby as τ changes, due to the fact that the period of pλ(τ), depends on λ. Thus, the

naive strategy of constructing observables, starting from the same function τ in all theories

labeled by λ, does not yield observables that are close to each other. Let us now define

slightly different observables, where the idea is to try to synchronize the oscillation for all

values of λ.

One can synchronize measurements in different effective theories (with different λ) as well

as the SHO with an effective theory for some given λ, only if the solutions in all the theories

have the same period. In order to achieve that we introduce a new parameter, in all the

effective theories, defined by

τλ = 2π

√
m

k

τ

T (λ,Πτ)
(17)
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Notice that τλ → τ as λ → 0. Now, as a complete set of Dirac observables in effective

theories we can consider Πτ , and p|τλ , the value of p for τλ fixed. We can now test the

convergence of these observables by noting that

∣∣∣p|τ=τ0 − p|τλ=τ0

∣∣∣ ≤
∣∣∣
√

−2mΠτ −
1

λ
arccos (1 + λ2mΠτ )

∣∣∣ , (18)

which is uniformly bounded and tends to 0 as λ → 0. It is important to note that in the

previous equation we are evaluating the flux of the observable p, at the point where the

fluxes of the partial observables τ and τλ, along the orbit generated by C, take the value τ0.

Also, we have used the shorthand notation τλ = τ0 to denote αt
C(τλ) = τ0. We shall use this

notation in what follows. As we have shown, this new set of Dirac observables converge in a

uniform way as λ → 0 and, therefore, provide a precise sense in which the effective theories

converge to the classical one, as λ → 0.

Let us end this section by making some remarks about the reduced phase space of the

PSHO and the effective theories. The kinematical phase space in all of these theories is

given by Γ = R4, with the coordinates (q, p, τ,Πτ). The constraints define a family of

hypersurface Γ̄λ ⊂ Γ, and the resulting induced pre-symplectic form Ω̄ ( Ω̄λ) has degenerate

directions corresponding to the Hamiltonian vector fields of the constraint. Every gauge

orbit is represented by a point in the reduced phase space Γ̂λ. An alternative description

is to consider a gauge fixing condition, in which one selects one point of each equivalence

class. For that purpose we select the following gauge fixing condition: τ = τ0, with τ0 a

constant. It is easy to show that this is an acceptable global gauge choice. The reduced

phase space can then be parametrized in various ways. For instance, we can choose (q, p),

since the corresponding (non-degenerate) symplectic structure is independent of λ,

Ω̂λ = dp ∧ dq .

It might appear that we have arrived to a common description for all Γ̂λ, given that neither

the coordinates nor the symplectic structure depend on λ. However, one has to be careful

with the periodicity conditions introduced by λ. In the PSHO theory, Dirac observables are

arbitrary functions in the reduced phase space, while in the effective theories they have to

be periodic functions of p with a period 2π
λ
. Thus, even in this picture, we are forced to

consider λ-dependent observables (functions on Γ̂λ) to talk about convergence, as we have

done in previous parts of this section.
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IV. k=0 ISOTROPIC LOOP COSMOLOGY

Our next example will be a simple isotropic and homogeneous cosmological model that

has received some of attention given that it can be solved both classical and quantum

mechanically, for arbitrary values of λ in loop quantum cosmology. This will allow us to

make our consideration precise and analyze in detail the issue of convergence. The model in

question is a k = 0 FRW cosmological model coupled to a massless scalar field. For details

of the model see [7]. The classical phase space for the gravitational sector is described by

two variables β and V , where, on shell, β is proportional to the Hubble parameter, β = γ ȧ
a

(γ is the Barbero-Immirzi parameter, and a is the scale factor) and V is the physical volume

of the cell V. Note that β ∈ (−∞,∞) and V ≥ 0. The pair conjugate variables satisfy

{β, V } = 4πGγ . The matter sector is given by a scalar field φ and it momentum pφ, such

that {φ, pφ} = 1.

A. Classical theory

The classical system is subject to the Hamiltonian constraint:

C = − 3

8πGγ2
V β2 +

pφ
2

2V
. (19)

The ‘equations of motion’, corresponding to the gauge motions generated by the constraint

C are

β̇ ≈ −4πGγ
p2φ

V 2
, V̇ =

3

γ
V β , φ̇ =

pφ

V
, ṗφ = 0 .

from which one can obtain the Friedman equation that contains information about “dynam-

ics” (
ȧ

a

)2

=

(
V̇

3V

)2

=
8πG

3
ρ , (20)

where ρ is the scalar field density. Here the derivative ˙ := d
dτ
, is taken with respect to the

cosmological proper time τ , that happens to be the affine parameter of the gauge orbits

generated by C (or, alternatively, for lapse N = 1). In order to gain some insight into the

structure of the gauge orbits, let us study some aspects of the solutions of the dynamics

equations. Note that, φ(τ) and β(τ) are monotonic functions, so both can be used as an

internal relational time. The momentum pφ is a Dirac observable and therefore, a constant of
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motion (we choose pφ > 0). In the classical theory the solutions of the Hamilton’s equations

are not defined for τ = 0, so there are two branches, corresponding to the sign of β,

V (τ) = (sgnβ) κpφ τ , β(τ) =
γ

3τ
,

φ(τ) = φ0 +
(sgnβ)

κ
ln

τ

τ0
,

where κ =
√
12πG, an integration constant is fixed with the condition V (τ) → 0 as τ → 0,

and φ0 = φ(τ0). Note that the constrained surface Γ̄ is disconnected in four connected

components (labeled by the signs of β and pφ). Choosing pφ > 0 does not remove any

generality (we can recover those branches in a trivial manner), so we are then left with two

connected components, labeled by sgnβ. Gauge orbits with the space-time interpretation of

an expanding universe correspond to sgnβ > 0, while the contracting branch corresponds to

sgnβ < 0.

Our objective is to find suitable observables that will allow us to study the issue of

convergence. Therefore, we need to understand the dynamics generated by the constraint in

terms of an internal dynamics, where the external, unphysical parameter (in this case, τ),

is not present. Let us then explore the different possibilities we have at our disposal. This

discussion will then be taken over to the effective description. Since, β̇ ≤ 0 one can choose

β as a relational time in the classical theory, and consider the evolution with respect to β.

The advantage of this election is that no external time variable is needed. Every trajectory,

that corresponds to β > 0, expands forever, where the big bang corresponds to β = ∞ and

the volume increases without bound as β → 0.

The scalar field can also be used as an internal time variable, the volume as a function

of φ is given by

V (φ) = V0e
κ(sgnβ)(φ−φ0) , (21)

where V0 = V (φ0). These two possibilities will be further explored when constructing

complete observables. Let us now considered the λ-dependent descriptions.

B. Effective theories

In the solvable LQC model, the effective dynamics with non-zero parameter λ can be seen

as containing corrections due to quantum geometry effects. The parameter λ is associated
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to a fundamental granularity of quantum geometry. It is also possible to consider λ as a

regulator in the same spirit as those used in quantum field theory, it appears in the model

as the prescription of a regular lattice in the real line. The effective theory at scale λ is

determined by the constraint that takes the form [7]

Cλ = − 3

8πGγ2

1

λ2
V sin2 (λβ) +

pφ
2

2V
, (22)

where β can be seen as being compactified, taking values in β ∈ [− π
2λ
, π
2λ
).

The only equation of motion different from the classical one (on the constraint surface)

is

V̇ =
3

γλ
V sin (λβ) cos (λβ) , (23)

leading to the modified Friedman equation

(
ȧ

a

)2

=

(
V̇

3V

)2

=
8πG

3
ρ

(
1− ρ

ρb

)
, (24)

where ρb =
9

2κ2

1
λ2 is the scalar field density at the bounce. At each scale there are quantum

turning points at β = ± π
2λ
, where V̇ = 0, and it corresponds to a bounce. Note that, at the

bounce

V̈ |β= π
2λ

= 2κ2V ρb > 0 ,

so the bounce corresponds to a minimum of volume.

In the case of effective theories the proper time appears as a natural choice for an evolution

parameter. In the corresponding quantum theories there is no notion of a proper time,

nevertheless one can choose a relational time variable, as a function on the reduced phase

space, with respect to which the quantum dynamics can be described.

Since, β̇ ≤ 0 one can choose β as a relational time in the effective theories, and consider

the evolution with respect to β. The advantage of this election is that no external time

variable is needed. Every trajectory, that corresponds to β > 0, has a bounce at β = π
2λ
,

and this value tends to infinity as λ → 0. If we are interested in the analysis of the

continuum limit of the effective theories we should pay a special attention to the behavior

of the solutions at the bounce. To be able to investigate it we need an evolution parameter

that does not diverge at the bounce as λ → 0. So, one possibility is to define

τλ(β) =
γλ2

3

∫ π
2λ

β

du

sin2 λu
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as a function on the constrained surface Γ̄λ, such that τ( π
2λ
) = 0. The analogous construction

should be performed for β < 0, as well. The result is exactly the proper time. The conceptual

difference is that τλ(β) is to be seen as a function on Γ̄λ, that has been constructed in

search of a consistent description from the Hamiltonian perspective. Interestingly, the end

result coincides with the original parameter τ that was the affine parameter of the original

constraint (with N = 1), and has the space-time interpretation of cosmic proper time.

In the effective theories, we consider the interval β ∈ [− π
2λ
, π
2λ
).5 The solutions are defined

for every τ and are given by

cot λβ =
3τ

γλ
, Vλ(τ) =

κ

3
pφ
√

γ2λ2 + 9τ 2 , (25)

and

φλ(τ) = φ0 + λϕ+
1

κ
ln

3τ +
√
γ2λ2 + 9τ 2

3τ0 +
√
γ2λ2 + 9τ 20

, (26)

so that φλ(τ0) = φ0 + λϕ and the initial condition approaches the classical one (for τ = τ0)

as λ → 0. Note that φλ(0) → sgnβ
κ

lnλ as λ → 0.

In order to gain more intuition about the behavior of the effective solutions and their

relation to their classical counterpart, let us consider the following two observations. First,

we can consider the proper time needed to expand from V (0) to some fixed Ṽ . If we denote

by τ0 the proper time it would take in the classical theory, then in the effective theory given

by λ the corresponding proper time is given by τλ =
√

τ 20 − γ2λ2

9
. Note that for late times

after the bounce, namely when τ0 ≫ γλ, the age of the universe in the classical and effective

theories are practically the same. Second, we can ask the following question. Given a matter

density, say, at late times after the bounce, can we find the age of the universe? That is,

what is the proper time elapsed from the bounce to that instant. The answer is strikingly

simple. In the effective theory there is a maximal density given by ρb =
p2
φ

2V (0)2
. The proper

time needed to reach ρ = ρb
D

(with D > 1) is then τ = 1
3
γλ

√
D − 1. Finally, note that,

for any given value of pφ, Vλ(τ), βλ(τ) and φλ(τ) converge uniformly in the limit λ → 0 to

an expanding branch of the classical trajectory for τ > 0, and to a contracting branch for

τ < 0.

5 Recall that all the functions and observables in Γ̄λ are periodic in β with period π/λ. It is then totally

equivalent to regard the coordinate as compactified on a circle.
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FIG. 2: Volume as a function of proper time for different values of λ and fixed pφ. The solid lines

corresponds to the classical expanding trajectory, for τ > 0 and the contracting one for τ < 0.

For all effective theories the bounce occurs at τ = 0, at this point

Vλ(0) =
κ

3
pφγλ , V̇λ(0) = 0 , V̈λ(0) =

3κpφ
γλ

.

Note that, in the limit λ → 0, Vλ(0) → 0 and V̈λ(0) → ∞. That is, the hyperbolas in the

plane (τ, V ), become degenerate in the limit λ → 0 to a curve proportional to |τ |, that has
a spike at the origin.

Let us now consider, as we did for the classical theory, an intrinsic description of the

dynamics. In order to solve V as a function of φ, note that

dV

dφ
= κ(sgnβ)

√
V 2 − α2 ,

where α = 1
3
γλκpφ. The solution is of the form

Vλ(φ) = V+e
κ(sgnβ)(φ−φ(τ0)) + V−e

−κ(sgnβ)(φ−φ(τ0)) , (27)

where V+ = 1
2
(V0 +

√
V 2
0 − α2) and V− = α2

4
(V+)

−1, where V0 = V (φ(τ0)). Note that

V+ → V0 and V− → 0 as λ → 0. The convergence of Vλ(φ) as λ → 0 is not uniform, because

φλ at the bounce tends to ∓∞ in this limit. Thus, describing the intrinsic dynamics in

terms of the scalar field φ is not convenient for taking the limit. In other words, there is no

continuum limit with respect to the internal time φ. Note that this result is consistent with

previous claims [7, 8].

As we mentioned β can also be used as a relational time, and V = V (β) is determined

from Cλ ≈ 0.
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FIG. 3: Volume as a function of scalar field for different values of λ and fixed pφ, for τ0 > 0. The

solid curve corresponds to the classical expanding trajectory.

FIG. 4: Volume as a function of β > 0 for different values of λ and fixed pφ. The solid curve

corresponds to the classical expanding trajectory.

FIG. 5: Volume as a function of compactified β for fixed λ and pφ.
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The convergence results are easy to see, for any time chosen to study the evolution of the

system. However, the convergence is in general not uniform. Since the high density regime

(near ρb) is of special interest, one should consider the evolution parameter that yields the

better convergence behavior at the bounce. In this case the preferred choice is the proper

time, because the bounce occurs for τλ = 0, for every effective theory and, in the limit λ → 0,

the volume Vλ(0) is well defined, allowing us to connect the two branches of the classical

theory. The theory obtained in this limit is well defined before and after the bounce.

All this consideration have given us an intuitive understanding of the behavior of solutions

and to the nature of the convergence. Let us now formalize these results by considering

complete Dirac observables in the spirit of the rest of the sections.

C. Partial and complete observables

In this part we shall construct complete Dirac observables for both the classical theory

and the family of effective theories.

Let us start by considering V and φ as two partial observables of the theory and construct

a family of complete (Dirac) observables V |φ0
labeled by a parameter φ0. In order to calculate

the flow of φ we have to calculate {φ, C}n. The expressions turn out to be complicated

because of the presence of the V −1 term in C. We can simplify these expressions if we first

redefine the classical constraint as C̃ := V C, and calculate the flow of partial observables

with respect to the new constraint C̃. This corresponds to a change in the lapse function,

with the new choice being N(t) = a3 [7]. Then,

αt

C̃
(φ) = φ− pφt , αt

C̃
(V ) = V e

− 3

γ
V βt

. (28)

We see that φ is a good parametrization of the gauge orbits. The family of complete

observables is then given by

V |φ0
= V e−κ(sgnβ)(φ−φ0) . (29)

On shell, one obtains V |φ0
= V0.

If instead of considering the plane (φ, V ) we choose (τ, V ) as the partial observables with

τ = (sgnβ)eκ(sgnβ)φ , (30)
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defined as a proper time (on Γ̄), we find that

V |τ=τ0 = V
τ0

τ
. (31)

In the case of the effective theories we proceed as above and redefine the constraint as

C̃λ = V Cλ and calculate the flows of the partial observables. The flow of φ is the same as

above, while

αt

C̃λ
(V ) = V

[
sinh (−3

γ
V t sinλβ) cosλβ + cosh (

3

γ
V t sinλβ)

]
, (32)

resulting in the following family of Dirac observables

Vλ|φ0
= V

[
sinh (−κ(sgnβ)(φ− φ0)) cosλβ + cosh (κ(sgnβ)(φ− φ0))

]
. (33)

If we now define a proper time as

τλ =
γλ

3
sinh (κ(sgnβ)φ+ ln

3

γλ
) , (34)

we find that

Vλ|τλ=τ0 =
1

2
V
[
(z − 1

z
) cosλβ + (z +

1

z
)
]
, (35)

with z = (3τ0 +
√
γ2λ2 + 9τ 20 )(3τλ +

√
γ2λ2 + 9τ 2λ)

−1.

We can now compare Dirac observables in the classical and the effective theory, for the

different choices of internal dynamics we have considered. In the first case we compare the

volumes for fixed value of a scalar field

Vλ|φ0
− V |φ0

=
1

2
(
√
V 2
0 − α2 − V0)e

−κ(φ0−φ)(sgnβ) +
1

2

α2

V0 +
√
V 2
0 − α2

eκ(φ0−φ)(sgnβ) , (36)

we see that this expression tends to 0 as λ → 0, but the convergence is non-uniform, as we

could have anticipated given the result of the previous part.

On the other hand, for the observable corresponding to volume at a fixed value of a

λ-dependent proper time τλ, we obtain

Vλ|τλ=τ0 − V |τ=τ0 =
κ

3
pφ(
√

9τ 20 + γ2λ2 − 3|τ0|) , (37)

which is uniformly bounded. This proves that there is indeed a ‘continuum limit’. Thus, we

see that only with the choice of a λ-dependent time parameter, the corresponding complete

observables exhibit convergence in the λ → 0 limit. This is exactly the same result that we
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found for the case of the parametrized oscillator, where the original choice of (λ-independent)

Newtonian time did not exhibit convergence. While we can not conclude that this has to be

the case, these two examples provide strong evidence for the claim that one needs to properly

select a λ dependent internal time, for the intrinsic dynamics contained in constrained

systems to exhibit convergence properties.

Now that we have established the existence of a continuum limit, the obvious question

is: what is the limit? Does it correspond to the classical theory? The answer is simple: No.

As the detailed analysis of the previous part shows, the limiting dynamics corresponds to a

universe that is recollapsing following the classical dynamics, and such that the trajectory

can be continued continuously to an expanding one, following again the classical dynamics.

One should however note that the ‘limiting dynamics’ is non-differentiable at the origin, so

it does not obey ‘reasonable’ equations of motion (the acceleration V̈ diverges at the origin

τ=0). This non-smooth dynamics of the limiting theory at the origin can informally be

called a ‘singular bounce’, to distinguish it from the regular bounce exhibited when λ > 0.

Let us end this section by making some remarks regarding the reduced phase space

point of view of the system. The kinematical phase space in the FRW theory coupled

with a massless scalar field is Γ = R4, with coordinates (V, β, φ, pφ). The constraints in

effective theories define a 1-parameter family of hypersurfaces Γ̄λ. The resulting induced

pre-symplectic form Ω̄λ has degenerate directions corresponding to the Hamiltonian vector

fields of the constraint. For any fixed pφ there are two gauge orbits in the classical theory,

for two different signs of β. On the other hand in the effective theory β is compactified and,

for every fixed pφ, there corresponds only one gauge orbit.

Every gauge orbit is represented by a point in the reduced phase space which can be

equivalently obtained by gauge fixing. For that purpose we choose φ = Φ, with Φ a constant,

that is good global choice of gauge. The reduced phase space Γ̂λ can be parametrized in

various ways. We choose (V, β), because the corresponding λ-dependent symplectic structure

is actually the same as in the classical theory [18]

Ω̂λ =
1

4πGγ
dV ∧ dβ

Just as we saw in the case of the parametrized oscillator, in the classical theory β ∈ (−∞,∞)

while in the effective theory β can be defined as living in a finite interval β ∈ [− π
2λ
, π
2λ
), with

the Dirac observables arbitrary functions in the reduced phase space. It is however more
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convenient to extend the domain of β in the effective theory to (−∞,∞) and consider only

periodic functions with a period π
λ
. In this sense, one is forced to consider λ dependent

observables to study the issue of convergence.

It is now straightforward to see the continuum limit from the perspective of the reduced

phase space. In the classical theory every point on Γ̂ represents an expanding or contracting

solution. On the other hand, a point on Γ̂λ represents a solution that contracts and then

expands, approaching in both very early and very late times one of the classical solutions.

Thus in the limit, what we have is that the series of points xλ ∈ Γ̂λ tend not to one point on

Γ̂, but to two points, corresponding to the two solutions that are connected by the singular

bounce. Thus, there is an essential discontinuity in the limit. This is perfectly consistent

with our discussion in the main part of this section where we found the continuum limit

exists but is discontinuous.

V. DISCUSSION

We have considered one parameter families of classical theories labeled by a parameter λ

with the interpretation of a discreteness parameter. These theories arise as “effective”, semi-

classical descriptions of “polymer quantum theories”, which are constructed by considering

non-standard quantum representations of the canonical commutation relations. We have fo-

cused our attention on totally constrained systems and have given answers to the following

question: Can one make sense of a flow along λ and of the corresponding continuum limit

λ → 0? In answering this question we have proceeded in several steps. The first one was

to give a precise formulation of what exactly taking this limit means, and what criteria we

need to impose to talk about convergence of such limit. We put forward a detailed prescrip-

tion in which complete Dirac observables play a fundamental role. Given that at different

scales λ one is comparing states defined on different spaces, it is only through λ-dependent

observables that one can impose convergence criteria. As we saw, if we are interested in

looking at the convergence of ‘dynamical trajectories’, one first needs to introduce an inter-

nal, relational dynamics for such constrained systems. The frozen description provided by

the reduced phase space perspective does not provide such scenario. One needs to define

an internal phase space dependent time function with respect to which the dynamics unrav-

els. In doing so, we learned that we could not make any choice that provides a relational
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dynamics. Only with an appropriate choice of internal time, the limit λ → 0 can be defined.

We studied two examples in full detail. The first one was a parametrized harmonic os-

cillator. In the original, ‘classical system’ one has a good understanding of the dynamics

contained within the ‘frozen’ dynamics of the constrained system. One can de-parametrize

the system and recover the original Newtonian time with respect to which the system os-

cillates at a constant period. The family of effective theories are formally equivalent to a

pendulum, with the oscillator as the λ → 0 limit. What we saw is that one could easily

define the λ flow, but the orbits were not synchronized when described by a common time

function. In order to achieve convergence, one was forced to define a new internal time that

had a highly non-trivial dependence on λ, in order to synchronize all the pendulae. Only

when the dynamics at all scales was synchronized, one could see that there was a uniform

convergence to the standard harmonic oscillator.

The second example came from loop quantum cosmology. The systems correspond to a

k=0 FRW cosmology with a mass-less scalar field. Classically, all solutions have either a

singularity to the past and expand forever, or are contracting with a big crunch singularity

to the future. On the contrary, all solution for the λ > 0 effective theories posses a bounce

where the universe transitions from a contracting phase to an expanding one. Both at

early and late times the effective dynamics approaches one of the classical contracting or

expanding solutions. In this case, the scalar field φ provides a natural internal time with

respect to which the dynamics can be described. As we saw in detail, this choice, however,

does not behave well as λ → 0. There is another internal coordinate of phase space with

respect to which one can describe the dynamics for λ 6= 0, but it is also ill behaved in

the limit. Interestingly, we saw that one can define an internal time with respect to which

the limit can be taken and the theories exhibit better convergence behavior for all energy

regions. Again, the time function has a non-trivial dependence on the parameter λ. What

is perhaps surprising is that such function, constructed entirely within the Hamiltonian

formalism, corresponds precisely to the parameter one calls cosmic proper time in the space-

time description and has a direct physical interpretation. With this choice, convergence

is uniform and the limit exists. One does not, however, recover the classical dynamics.

Instead, the limit corresponds to a classical contracting solution connected (in singular, but

continuous way) to another classical expanding solution.

As we mentioned in the Introduction, the question we have posed is the classical equiv-
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alent of considering the continuum limit for constrained quantum polymeric theories. Such

program is yet to be established. Perhaps the most important lesson we can draw from

our analysis is that one needs to choose very carefully the observables –in this case, a time

observable– in order to be able to consider the question of convergence. In the quantum

theory, the corresponding choice will correspond to appropriate operators whose expectation

values will exhibit the desired convergence properties. We can only hope that the lessons

learnt here will be helpful in such endeavor.
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