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Abstract

We consider the class of d = 4 CFTs at finite temperature and chemi-

cal potential that are holographically described within D = 5 Einstein-

Maxwell theory with a Chern-Simons term. The high temperature phase,

which is spatially homogeneous and isotropic, is dual to the AdS-Reissner-

Nördstrom black brane solution. For sufficiently large Chern-Simons cou-

pling, we construct new electrically charged AdS black hole solutions that

are dual to the low temperature, spatially modulated phase. In this phase

the current, associated with the abelian global symmetry, spontaneously

acquires a helical order. The new black holes are stationary and also have

Bianchi VII0 symmetry.



1 Introduction

Spatially modulated phases, in which the Euclidean spatial symmetry is sponta-

neously broken down to some smaller subgroup, appear in condensed matter systems

in a wide variety of settings, including spin density waves [1], charge density waves [2]

and FFLO states [3, 4], and are also anticipated in QCD at high baryonic density [5].

It is therefore of interest to investigate the properties of such phases for strongly cou-

pled matter using the AdS/CFT correspondence. In this context it has been argued

that spatially modulated phases can arise for CFTs at finite temperature and charge

density [6, 7, 8, 9, 10, 11] and also in the presence of magnetic fields [12, 13]. Other

work, utilising the brane probe approximation, can be found in [14, 15, 16, 17]. The

simplicity of these constructions has led to the speculation that the typical ground

states of holographic matter at finite charge density and/or in a magnetic field could

be spatially modulated [10].

The first construction of black holes dual to spatially modulated phases was re-

cently presented in the context of a D = 5 gravitational model with a gauge field and

a charged two-form in [11]. Electrically charged AdS5 black holes were constructed

which are holographically dual to p-wave superconductors with a helical order. The

black holes of [11] are static and have a Bianchi VII0 symmetry, which is naturally

associated with the helical order. It was also shown that at zero temperature the

black holes become smooth domain wall solutions interpolating between AdS5 in the

UV and a homogeneous but non isotropic ground state with a scaling symmetry in

the IR, of a type similar to those found in [18].

Here we will consider another class of D = 5 models, first studied in this context

in [6], namely Einstein-Maxwell theory with a Chern-Simons term. This class of

models, parametrised by the strength of the Chern-Simons coupling, γ, can be used

to study d = 4 CFTs with an abelian global symmetry, whose anomaly is fixed by γ.

We will be interested in phases of the dual CFT at finite temperature and chemical

potential with respect to the global symmetry which means that we need to construct

electrically charged AdS5 black holes. At high temperatures the CFTs are described

by the standard AdS-Reissner-Nördstrom black brane solution. When γ is greater

than a specific critical value, γc, the AdS-RN black brane has spatially modulated

instabilities below a critical temperature, suggesting that the system moves into a

spatially modulated phase in which the current acquires a helical order [6]. In the

limit γ →∞, where the back-reaction to gravity gets switched off, it was argued that

the phase transition should be second order with mean field behaviour [7].
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The purpose of this paper is to construct the fully back reacted spatially modu-

lated black holes for γ > γc. As in [11], the key ingredient in the construction of the

new black hole solutions is that they have a Bianchi VII0 symmetry associated with

the helical order. With this symmetry, combined with time-translation invariance,

we can use an ansatz involving several functions which just depend on a single radial

coordinate. After substituting into the equations of motion we are led to a system

of ODE’s which we solve numerically. While the black holes in [11] were static here

they are just stationary and this leads to the dual phase having spatially modulated

momentum in addition to the spatially modulated pressure and shear that was seen

in [11]. The new black hole solutions exist for temperatures lower than the critical

temperature (which is not always the case [19]) and have less free energy than the

AdS-RN black branch. The helical current phase is thus thermodynamically preferred

and we show that it is always second order with mean field behaviour. We will see

that the spatial modulation persists in the T → 0 limit and in this limit the entropy

density approaches zero.

Our black holes are dual to helical current phases which are reminiscent of the

“chiral nematic (or “cholosteric”) phase of liquid crystals (e.g. [20]). Recall that the

order parameter for a nematic phase is a three-dimensional unit vector n, defined up

to sign, called the “director”. In the chiral nematic phase there is a helical structure in

which the director twists along an axis perpendicular to the direction of the director.

For wave-number k the pitch of a helical phase is p = 2π/k. While a general helical

phase, including ours, is periodic with period p, for a chiral nematic it has period p/2

because n ∼= −n. One important issue is to calculate the temperature dependence of

the pitch of the helical order (e.g. [21]). In many materials the pitch increases with

decreasing temperature but materials are known for which it decreases. We can obtain

the precise temperature dependence of the pitch for our helical phases, finding that

it monotonically increases, approaching a non-zero value at T = 0. Chiral nematics

are well known to have interesting optical properties1, such as selective reflection of

circularly polarised light, and it will be interesting to explore analogues of them for

our new black hole solutions using linear response theory.

1This was recently explored using Lie algebra methods in [22].
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2 General setup

We consider the D = 5 action given by

S =

∫
d5x
√
−g
[
(R + 12)− 1

4
FµνF

µν

]
− γ

6

∫
F ∧ F ∧ A , (2.1)

where F = dA and γ is a constant (the boundary terms will be given later). The

corresponding equations of motion are given by

Rµν = −4gµν +
1

2

(
FµρFν

ρ − 1

6
gµνF

2

)
,

d ∗ F +
γ

2
F ∧ F = 0 . (2.2)

These equations admit a unit radius AdS5 vacuum solution which is dual to a class

of d = 4 CFTs with a global abelian symmetry. The metric, gµν , is dual to the d = 4

energy momentum tensor, Tmn, and the gauge-field, Aµ, is dual to the d = 4 abelian

current, Jm. For example, when γ = 2/
√

3 ≈ 1.1547 we obtain the bosonic content

of D = 5 minimal gauged supergravity, and the class is known to include the most

general class of N = 1 SCFTs with type IIB or D = 11 supergravity duals [23, 24, 25].

We will be focussing on the range γ > γc, with γc ≈ 1.1584.

We will construct black hole solutions that are invariant under time translations

and also have Bianchi VII0 symmetry. The Killing vectors associated with the latter

are ∂x2 , ∂x3 , which generate translations in the x2, x3 directions, respectively, and

∂x1 − k(x2∂x3 − x3∂x2), where k is a constant, which generates a helical motion con-

sisting of a translation in the x1 direction combined with a simultaneous rotation in

(x2, x3) plane. The corresponding invariant one-forms are given by

ω1 = dx1,

ω2 = cos (kx1) dx2 − sin (kx1) dx3,

ω3 = sin (kx1) dx2 + cos (kx1) dx3, (2.3)

which satisfy dω1 = 0, dω2 = −kω1 ∧ ω3 and dω3 = kω1 ∧ ω2. The ansatz we shall

consider is given by

ds2 = −g f 2 dt2 +
dr2

g
+ h2 ω2

1 + r2e2α (ω2 +Qdt)2 + r2e−2α ω2
3 ,

A = a dt+ b ω2 , (2.4)

where f , g, h, α, Q, a and b are functions of the radial coordinate r only. Note that

when Q 6= 0 the spacetime is stationary but not static. The black hole event horizon,
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located at r = r+ where g(r+) = Q(r+) = a(r+) = 0, is, generically, the non-compact

Lie group Bianchi VII0.

By substituting this ansatz into the equations of motion we find that f and g

satisfy first order differential equations and that h, α, Q, a and b satisfy second order

equations. Furthermore, these differential equations can be obtained from substitut-

ing the ansatz directly into the action (2.1) and then varying the seven functions of r.

The constant k is held fixed in these variations. As the expressions for the equations

of motion are rather long, we just record the form of the action

S =

∫
d5x r2hf

{
− g′′ − g′

(
3f ′

f
+

2h′

h
+
r

r

)
− 2g

r2hf

[
f ′′r2h+ f ′

(
2rh+ r2h′

)
+ f

(
r2h′′ + 2rh′ + h

)]
− 2g(α′)2 − 2k2 sinh2(2α)

h2
+
e2αr2(Q′)2

2f 2
+
k2r2e−2αQ2

2h2f 2g
+ 12

+
(a′)2

2f 2
− Qb′a′

f 2
− 1

2

(
e−2αg

r2
− Q2

f 2

)
(b′)2 − e2αk2b2

2r2h2

}
+
γk

3

∫
d5x b(ba′ − ab′) . (2.5)

It will be useful to observe that our ansatz, and hence the equations of motion, are

left invariant under the following three scaling symmetries:

r → λr, (t, x2, x3)→ λ−1(t, x2, x3), g → λ2g, a→ λa, b→ λb;

x1 → λ−1x1, h→ λh, k → λk ;

t→ λt, f → λ−1f, a→ λ−1a, Q→ λ−1Q ; (2.6)

where λ is a constant.

The equations of motion admit the electrically charged AdS-Reissner-Nördstrom

black brane solution. It has h = r, f = 1, α = Q = b = 0, and hence,

ds2 = −gdt2 +
dr2

g
+ r2

(
dx21 + dx22 + dx23

)
, A = a dt , (2.7)

with

g = r2 −
r4+
r2

+
µ2

3

(
r4+
r4
−
r2+
r2

)
, a = µ

(
1−

r2+
r2

)
. (2.8)

The AdS-RN black brane is static and has Euclidean, ISO(3), symmetry. It has

temperature T = (6r2+ − µ2)/6πr+ and describes the high temperature, spatially

homogeneous and isotropic phase of the dual CFTs when held at finite chemical

potential µ with respect to the global abelian symmetry.
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2.1 Asymptotic AdS5 and near-horizon expansions

We will be interested in new black hole solutions that asymptotically approach AdS5

in the UV and are dual to d = 4 phases where the breaking of the Euclidean symmetry

to a helical order is spontaneously generated. By analysing the equations of motion

we can construct the following asymptotic expansion as r →∞:

g = r2
(

1− M

r4
+ · · ·

)
f = f0

(
1− ch

r4
+ · · ·

)
h = r

(
1 +

ch
r4

+ · · ·
)

α =
cα
r4

+ · · ·

Q = f0

(cQ
r4

+ · · ·
)

a = f0

(
µ+

q

r2
+ · · ·

)
b =

cb
r2

+ · · · (2.9)

At a convenient juncture we will use the scaling symmetries (2.6) to set f0 = µ = 1.

The UV data is then specified by seven parameters M, ch, cα, cQ, q, cb and k. Note

that we have fixed the asymptotic fall-off of h in (2.9) so we can no longer use (2.6)

to scale k. The holographic interpretation of these parameters will be discussed later.

At the black hole horizon, located at r = r+, the functions have the analytic

expansion

g = g+ (r − r+) + . . .

f = f+ + . . .

h = h+ + . . .

α = α+ + . . .

Q = Q+(r − r+) + . . .

a = a+ (r − r+) + . . .

b = b+ + . . . (2.10)

Regularity of the metric at the black hole horizon can easily be seen by using the

in-going Eddington-Finkelstein coordinates v, r where v ≈ t + (g+f+)−1 ln(r − r+).

The full expansion is fixed in terms of the seven constants f+, α+, h+, Q+, a+, b+
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and r+. In particular, the coefficient g+ is fixed by these constants:

g+ = −
e2α+k2b2+
12h2+r+

+

(
4−

a2+
6f 2

+

)
r+ −

e2α+Q2
+r

3
+

4f 2
+

. (2.11)

After fixing the scaling symmetries (2.6) we have seven UV parameters and seven

IR parameters. We have two first order differential equations and five which are

second order, so a solution is fixed by twelve parameters. Thus, generically, we

expect a two parameter family of black hole solutions, which we will label by k and

temperature T .

2.2 Thermodynamics

To analyse the thermodynamics of the black hole solutions we will need to calculate

the on-shell Euclidean action. Additional details are presented in appendix A. We

analytically continue by setting t = −iτ and in order to get a real metric and vector

field we should also write Q+ = iQ̄+, a+ = iā+. Near r = r+ the Euclidean solution

then takes the approximate form

ds2E ≈ g+ f
2
+(r − r+)

(
dτ +

Q̄+r
2
+e

2α+

g+f 2
+

ω2

)2

+
dr2

g+(r − r+)

+ h2+ ω
2
1 + r2+e

2α+ (ω2)
2 + r2+e

−2α+ ω2
3 ,

A ≈ ā+(r − r+) dτ + b ω2 . (2.12)

Regularity of the solution at r = r+ is then easily seen by making the coordinate

change ρ = 2g
−1/2
+ (r − r+)1/2 and making τ periodic with period ∆τ = 4π/(g+f+),

corresponding to temperature T = (f0∆τ)−1. We can also read off the area of the

event horizon and, since we are working in units with 16πG = 1, we deduce that the

entropy density is given by

s = 4πr2h+ . (2.13)

We will consider the total Euclidean action, ITot, defined as

ITot = I + Ibndy , (2.14)

where I = −iS and Ibndy is the Euclidean boundary action of [26], including counter-

terms, which is given explicitly in appendix A. We next define the potential W , and

a corresponding density w, for the grand canonical ensemble via W = T [ITot]OS =

6



wvol3, where [ITot]OS is the on-shell Euclidean action and vol3 =
∫
dx1dx2dx3. A

calculation reveals that w can be expressed in two equivalent ways

w = −M = 3M + 8ch + 2µq − Ts , (2.15)

with the equality of the two expressions giving a Smarr type formula.

A variation of the bulk action I gives equations of motion and boundary terms.

Thus an on-shell variation only gets contributions from the boundary. We hold k

fixed in these variations, for reasons we discuss in the next subsection, and for the

Euclidean black hole we then only get contributions at r →∞. Combining this with

an on-shell variation of the boundary action Ibndy and using the asymptotic expansion

(2.9) we deduce that w = w(T, µ) and

δw = −sδT + 2qδµ . (2.16)

To illuminate the holographic meaning of the constants appearing in the UV

expansion (2.9), we now compute the expectation value of boundary stress-energy

tensor and the current. The relevant terms for the stress tensor are given by[27]

〈Tmn〉 = lim
r→∞

r2 [−2Kmn + 2(K − 3)(g∞)mn + . . . ] . (2.17)

Using (2.9) we obtain

〈Ttt〉 = f 2
0 (3M + 8ch)

〈Ttx2〉 = 4f0cQ cos (kx1)

〈Ttx3〉 = −4f0cQ sin (kx1)

〈Tx1x1〉 = (M + 8ch)

〈Tx2x2〉 = (M + 8cα cos (2kx1))

〈Tx3x3〉 = (M − 8cα cos (2kx1))

〈Tx2x3〉 = −8 cα sin (2kx1) . (2.18)

One can check that this is traceless (g∞)mn〈Tmn〉 = 0. Setting f0 = 1 we see that the

energy density of our solutions, ε, is given by

ε = 3M + 8ch . (2.19)

Furthermore, we also deduce from (2.15) and (2.16) that the first law can also be

written in the form:

δε = Tδs− 2µδq . (2.20)
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Returning to (2.18) we see that cα specifies spatially modulated pressures and shear in

the (x2, x3) plane, with the length scale of the modulation fixed by the wave-number

k. The pressure in the x1 direction is given by M + 8ch. If we define p̄ to be the

average of the three pressures we have p̄ = M + 8/3ch, and the Smarr formulae in

(2.15) can be written ε+ 2µq = Ts+ p̄− 8/3ch. These features were also seen for the

black holes found in [11]. A new feature of the black holes we are considering here

is that there is spatially modulated momentum in the (x2, x3) plane specified by cQ

and k.

We next calculate the expectation value of the current. The relevant terms are

given by [26]

〈Jm〉 = lim
r→∞

r3 [Frm + . . . ] . (2.21)

where the ellipsis refer to terms that will not be relevant here. Using (2.9) we obtain

〈Jt〉 = −2f0q

〈Jx1〉 = 0

〈Jx2〉 = −2cb cos(kx1)

〈Jx3〉 = 2cb sin(kx1) . (2.22)

From the temporal component we see that the constant q fixes the charge density.

From the spatial components we see that cb fixes the strength of the spontaneously

generated spatially modulated helical current. It is clearly circularly polarised.

2.3 Variations of k

In the variations to get (2.16), or equivalently (2.20), we held the wave-number k

fixed. One can consider arbitrary non-normalisable and normalisable deformations of

the fields and then expand them in a complete basis of functions. Here we are viewing

k as labelling one of the modes and hence should not be varied to obtain the equations

of motion2. Furthermore, it should not be varied to obtain an on-shell variation of

the action in order to obtain the thermodynamics for a particular solution labelled by

k. As we discuss further in the next section, we will obtain a two parameter family of

2An analogous procedure was employed in [11] and also, essentially in a field theory context, in

[7]. To clarify this point, in appendix A we consider a more general set-up in which we also allow a

more general deformation parameter at infinity. Specifically, we consider b = µb + cb
r2 + . . ., with µb

and cb being the non-normalisable and normalisable deformations of the magnetic part of the gauge

field for a particular mode k.
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black hole solutions to the equations of motion that depend on k and T (see figure 2).

At fixed temperature, this should be viewed as a moduli space of solutions, labelled

by k and we should choose the solution labelled by a specific value of k that has the

smallest free energy w. This leads to a one-parameter family of thermodynamically

preferred solutions labelled by T , given by the red line in figure 2. In fact this red

line is specified by the condition that the action ITot is stationary with respect to a

free variation of k:∫ ∞
r+

dr

{
k

(
4r2f sinh2(2α)

h
− r4e−2αQ2

fgh
+
e2αb2f

h

)
− γ

3
b(ba′ − ab′)

}
= 0 . (2.23)

In appendix A we will discuss how this arises from contributions to varying the action

at x1 = ±∞.

Another perspective is to consider the x1 direction to be periodic with x1 ∼= x1+L.

In this case we should only consider discrete wave-numbers k = n/(2πL), for arbitrary

integer n, and there is no issue of varying k to obtain the equations of motion. In this

case there will be a discrete set of solutions on figure 2 and, at a fixed temperature,

one should just choose the one with smallest free energy, as usual. One finds that

the system will, in general, jump discontinuously from one branch to another giving

a series of first order phase transitions. In the limit that L→∞ we will recover the

continuum picture that we have discussed above.

It is worth noting that the same kinds of issues also arise for homogeneous and

isotropic phases. For example, recall the basic s-wave holographic superconducting

black holes [28, 29]. In this setting the AdS-RN black brane, which describes the

high temperature phase, becomes unstable to the formation of charged scalar hair.

Although only scalar modes with k = 0 have been discussed in the literature, a

linearised analysis for k 6= 0 will produce a curve analogous to that in figure 1 but

it will now be symmetric about k = 0. Hence, there should also be a two-parameter

family of superconducting black hole solutions labelled by T and k. In this case,

however, the thermodynamically preferred curve of solutions will just be the solution

with k = 0.

3 Helical black holes

Based on the analysis of linearised perturbations about the AdS-RN black brane

solution carried out in [6] we expect to be able to construct spatially modulated black

hole solutions provided that the Chern-Simons coupling γ is larger than γc ≈ 1.1584.
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0.5 0.9 1.3 1.7 2.1 2.5 2.9
k

0.02

0.04

0.06

T

Figure 1: The curve denotes the critical temperature at which the AdS-RN black

brane becomes unstable and also where the new branches of helical black holes, given

in figure 2, appear. The plot is for γ = 1.7 and µ = 1.

We will now set γ = 1.7, and hence γ/γc ≈ 1.47, but we have checked that several

other values lead to qualitatively similar results. For this value the linearised analysis

of [6], which we summarise in appendix B, leads to the curve presented in figure 1

which denotes, for a given value of k, the temperature at which the AdS-RN black

brane becomes unstable. Hence for k in the range 0.47 . k . 3.05 we expect to be

able to find the new black hole solutions.

The new helical black hole solutions are obtained by solving the equations of

motion numerically for the ansatz (2.4) with boundary conditions at the asymptotic

AdS5 boundary given in (2.9), and at the black hole horizon given in (2.10). We

use the scaling symmetries (2.6) to set f0 = µ = 1. As mentioned earlier a simple

parameter count indicates that we expect, generically, a two-parameter family of

solutions which we take to be labelled by temperature T and wave-number k. In

practise we fix a specific value of k and then construct a one parameter family of

solutions labelled by the temperature T . We considered twenty different values of k,

in the range 0.6 ≤ k ≤ 1.8 (focussing on the peak of the curve in figure 1), and we

have displayed our results in figures 2 - 4.

Figure 2 shows the two-parameter family of solutions and their free energy w. We

first note that the boundary of the surface projected onto the (k, T ) plane reproduces

the curve of critical temperatures as a function of k where the AdS-RN black brane

becomes unstable given in figure 1. We next note that for any fixed temperature the

helical black holes have less free energy than the AdS-RN black hole for any value

of k. Thus, from figure 2 we deduce that there is a second order phase transition at

T = Tc ≈ 0.0627 at k = kc ≈ 1.32 with the system moving from a homogeneous and

isotropic phase to a spatially modulated helical phase. As the temperature is lowered

we need to find the value of k for which the black hole has the lowest free energy. This
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Figure 2: The two-parameter family of helical black holes, labelled by temperature

T and wave-number k, and their free-energy w. The red line denotes the thermody-

namically preferred locus, which minimises w over the moduli space of solutions at

fixed T labelled by k. The plot is for γ = 1.7 and µ = 1.

1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7
k

-0.0004

-0.0002

0.0002

ch

Figure 3: Plot of ch versus k for the one parameter family of helical black hole solu-

tions given in figure 2 for the representative temperature T ≈ 0.0535. In particular

ch = 0 on the thermodynamically preferred red line of solutions given in 2. The plot

is for γ = 1.7 and µ = 1.

leads to the one-parameter family of thermodynamically preferred black hole solutions

which are marked with a red line in figure 1. We have also checked numerically that

this red line coincides with imposing (2.23). Interestingly, our numerical analysis

indicates that all of the black hole solutions on the red line have ch = 0 (a similar

phenomenon was also seen in [11]). In figure 3 we have plotted the behaviour of ch

versus k for a representative temperature of T ≈ 0.535 and we see that it vanishes

along the red curve as well as on on the boundary curve of figure 2. It would be

interesting to understand the underlying reason for this behaviour.

In figure 4 we show the behaviour of various other physical quantities as a function

of temperature for the thermodynamically preferred branch, given by the red line in

figure 2, and marked with red lines in figure 4, as well as for the AdS-RN black hole

solution, marked with blue lines in figure 4. The first two panels show the free energy
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0 0.02 0.04 0.06 0.08
T

-0.18

-0.15

-0.12

-0.09

w

0 0.02 0.04 0.06
T

1.

1.1

1.2

1.3

1.4
k

0.02 0.04 0.06 0.08
T

0.01

0.02

0.03

cQ

0.02 0.04 0.06 0.08
T

0.0003

0.0006

0.0009

0.0012

c
Α

0 0.02 0.04 0.06 0.08
T-0.32

-0.28

-0.24

-0.2

-0.16

q

0.02 0.04 0.06 0.08
T

-0.08

-0.06

-0.04

-0.02

0.
cb

0.02 0.04 0.06 0.08
T

0.5

1.

1.5

2.

s

Figure 4: The red lines plot various physical quantities against temperature T for

the thermodynamically preferred helical black hole solutions on the red line in figure

2. The blue line refers to the AdS-RN black hole solution. w is the free energy and

k is the wave-number of the helical order. cQ and cα fix the spatially modulated

momentum and stress/strain in the (x2, x3) plane, respectively. q and cb determine

the size of the charge and the spatially modulated current, respectively, and s is the

entropy density. The plots are for γ = 1.7 and µ = 1.

w for both solutions and the wave-number k for the red line. The pitch, p of the

helical order is given by p = 2π/k and hence we see that the pitch monotonically

increases as the temperature is decreased. The next two panels show the behaviour
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of cQ and cα which, we recall from (2.18), determine the strength of the spatially

modulated momentum and stress/strain in the (x2, x3) plane, respectively. The next

two panels show the behaviour of the charge density q and also the behaviour of

cb, which we recall from (2.22), determines the strength of the spatially modulated

helical current. The final panel shows the behaviour of the entropy density, s. By

analysing the behaviour close to the critical temperature, T = Tc ≈ 0.0627, we find

the following mean-field behaviour

cQ ≈ 2953T 4
c

(
1− T

Tc

)1/2

, cα ≈ 107T 4
c

(
1− T

Tc

)
,

cb ≈ 530T 3
c

(
1− T

Tc

)1/2

k ≈ Tc

(
11.5 + 9.58

T

Tc

)
. (3.1)

3.1 Low temperature behaviour

It is clear from figures 2 and 4 that the helical order persists as T → 0, and in

particular k approaches a non-zero value in this limit. Furthermore, the entropy

density approaches zero. However, we have not yet been able to pin down the precise

behaviour of the solution in this limit, and we leave this interesting issue for further

instigation. However, we record a couple of conclusions based on our numerical

results. Amongst the coefficients in the near horizon expansion (2.10), we find that

h+ → ∞ and α+ → −∞, with the entropy density, s = 4πr2+h+, going to zero and

r+h+e
−α+ approaching a constant value. We also find that f+, a+ vanish while Q+, b+

go to constant values. Starting from the phase transition the value of FµνF
µν at the

horizon is −8/r2+ and this monotonically increases and approaches 24 as T → 0. Thus

associated with the vanishing entropy density, we have an expulsion of electric charge

somewhat reminiscent of [30]. We also evaluated the horizon value of the Ricci scalar

and the square of the Ricci tensor and it appears that R→ −18 and RµνR
µν → 108.

It is tantalising that that these are the same values for the Schrödinger solution of

[31].

4 Final Comments

We have constructed, numerically, a new class of electrically charged AdS5 black

holes that are dual to d = 4 CFTs at finite charge density acquiring a helical current

order via a second order phase transition. We have extracted a number of physical

properties of the helical phase including the temperature dependence of the wave-

number k that fixes the pitch, p = 2π/k, of the helix. We have shown that the

13



pitch monotonically increases as the temperature is lowered but approaches a finite

value as T → 0. Furthermore, our numerical results indicate that the entropy density

goes to zero in this limit. It will be very interesting to further analyse the precise

behaviour of our solutions as T → 0 in order to better understand the emergent

spatially modulated ground state at T = 0.

Another direction is to calculate various transport coefficients by calculating var-

ious two point functions. There will be a number of different channels to analyse

and we expect a rich structure. It will also be interesting to explore the related

hydrodynamics of the black holes.

Our numerical results imply that the thermodynamically preferred helical black

holes (the red line in figure 2) have the property that the expansion coefficient ch,

appearing in (2.9) and entering the definition of the energy density and the pressure

in the direction of the axis of the helix (see (2.18)), is exactly zero. The same

phenomenon was also seen for the helical superconducting black holes of [11] and it

is desirable to have a better understanding of this property.

The construction of the D = 5 black hole solutions describing spatially modulated

phases here and in [11] has been facilitated by the fact that they are static and

have a Bianchi VII0 symmetry. This leads to the construction of a co-homogeneity

one ansatz for the D = 5 fields and hence solving ordinary differential equations.

Moving to D > 5 (obviously of less interest in making connections with condensed

matter systems), many generalisations are possible while staying within the realm of

solving ODEs. However, constructing D = 4 black holes that are dual to spatially

modulated phases (as in the models [8, 12]) will necessarily involve solving partial

differential equations. Wile this is technically more challenging we expect to see new

phenomenon.
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A More on thermodynamics

Here we will expand upon the discussion of the thermodynamics that we summarised

in section 2.2. We found it illuminating to consider this issue in a slightly more

general setting in which we allow for a non-normalisable fall-off in the magnetic part

of the gauge field at infinity:

b = µb +
cb
r2

+ . . . . (A.1)

We emphasise that our new helical black hole solutions all have µb = 0. The asymp-

totic expansion at infinity now reads

g = r2
(

1− M

r4
+
k4µ2

b + 16c2b + 8q2

24r6
− 2k2µbcb ln r

3r6
+
k4µ2

b ln r2

6r6
+ . . .

)
f = f0

(
1 +
−ch +

k2µ2b
48

r4
− k2µ2

b ln r

16r4
+
−49k4µ2

b + 48k2µbcb − 432c2b
1728r6

+
(−k4µ2

b + 18k2µbcb) ln r

72r6
− k4µ2

b(ln r)
2

16r6
+ . . .

)

h = r
(

1 +
ch
r4

+
k2µ2

b ln r

16r4
+

35k4µ2
b − 96k2µbcb + 144c2b

1728r6
+

(k4µ2
b − 3k2µbcb) ln r

36r6

+
k4µ2

b(ln r)
2

48r6
+ . . .

)
α =

cα
r4
− k2µ2

b ln r

16r4
+

576cαk
2 − 59k4µ2

b + 96k2µbcb − 144c2b
1728r6

+
(−7k4µ2

b + 12k2µbcb) ln r

144r6
− k4µ2

b(ln r)
2

48r6
+ . . .

Q = f0

(
cQ
r4

+
k2µbq − 12cbq + 3k2cQ

36r6
+
k2µbq ln r

6r6
+ . . .

)
a = f0

(
µ+

q

r2
+
−γk3µ2

b + 8γkµbcb
32r4

− γk3µ2
b ln r

8r4
+ . . .

)
b = µb +

cb
r2
− k2µb ln r

2r2
+
−3k4µb + 8k2cb + 16γkµbq

64r4
− k4µb ln r

16r4
+ . . . . (A.2)

The expansion at the black hole horizon is presented in (2.10).

We will consider the total Euclidean action, ITot, defined as

ITot = I + Ibndy , (A.3)

where I = −iS and the (standard) Euclidean boundary action, Ibndy, is given by an

integral on the boundary r →∞ [26]:

Ibndy =

∫
dτd3x

√
−g∞

(
−2K + 6− 1

4
ln r FmnF

mn + . . .

)
. (A.4)
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Here K = gmn∇mnn is the trace of the extrinsic curvature of the boundary, where

nm is an outward pointing normal vector, and g∞ is the determinant of the induced

metric. The ln r term is required to remove the divergence associated with the trace

anomaly Tm
m = − 1

12
FmnF

mn and the ellipsis refers to a Ricci scalar term which will

not be relevant for the ansatz and boundary conditions that we are considering. For

our ansatz we have

Ibndy = vol3∆τ lim
r→∞

r2hfg1/2

[
6− 2g1/2

(
2

r
+
h′

h
+
f ′

f

)
− g−1/2g′

− 1

2
ln r

(
−(a′ −Qb′)2

f 2
+
e2αk2b2

r2h2
+
e−2αg(b′)2

r2

)
+ . . .

]
, (A.5)

where vol3 =
∫
dx1dx2dx3. We next point out two equivalent ways to write the bulk

part of our Euclidean action on-shell:

IOS = vol3∆τ

∫ ∞
r+

dr

[
2rghf +

r4e2αh

2f
QQ′ +

1

2
he−2αfgbb′ +

1

2f
r2h (a′ −Qb′) bQ+

1

6
kγab2

]′
= vol3∆τ

∫ ∞
r+

dr

[
r2hfg′ + 2r2hgf ′ − h

f
r4e2αQQ′ − 1

f
r2ha (a′ −Qb′)− 1

3
kγab2

]′
(A.6)

Notice that the first expression only receives contributions from the boundary at

r → ∞ since g(r+) = Q(r+) = a(r+) = 0, while the second expression also receives

contributions from r = r+. Using the expansions at the AdS boundary (A.2) and at

the black hole horizon (2.10), and combining with (A.5) we obtain the following two

equivalent expressions for the total on-shell action:

[ITot]OS = vol3
1

T
[−M − µb cb −

1

12
µ2
bk

2 +
1

6
µµ2

bkγ]

= vol3
1

T

[
3M + 8ch + 2µq − Ts− 1

8
µ2
bk

2 − 1

3
µµ2

bkγ

]
. (A.7)

A variation of the bulk action I gives equations of motion and boundary terms.

Thus an on-shell variation only gets contributions from the boundary. We hold k

fixed in these variations and then we only get contributions at r → ∞. Combining

this with an on-shell variation of the boundary action Ibndy and using the asymptotic

expansion (A.2) we eventually obtain

[δITot]OS =vol3∆τ

[(
8ch + 3M + 2µq − 1

8
µ2
bk

2 − 1

3
µµ2

bkγ

)
δf0 + f0

(
2q − 1

3
µ2
bkγ

)
δµ

+ f0

(
−2cb −

1

2
µbk

2 +
1

3
µµbkγ

)
δµb

]
. (A.8)
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In this variation we are holding ∆τ fixed and hence ∆τδf0 = −T−2δT . We next define

the potential W , and a corresponding density w, for the grand canonical ensemble

via W = T [ITot]OS = wvol3. We deduce that w = w(T, µ, µb) with

δw = −sδT +

(
2q − 1

3
µ2
bkγ

)
δµ−

[
2cb +

1

2
µbk

2 − 1

3
µµbkγ

]
δµb . (A.9)

We now compute the expectation value of the stress tensor and the current. For

the former we have [26]

〈Tmn〉 = lim
r→∞

r2
[
−2Kmn + 2(K − 3)(g∞)mn +

(
Fm

pFnp −
1

4
(g∞)mnFpqF

pq

)
ln r + . . .

]
.

(A.10)

Using our expansion at the AdS boundary (A.2) we obtain

〈Ttt〉 = f 2
0

(
3M + 8ch −

1

8
µ2
bk

2

)
〈Ttx2〉 = 4f0cQ cos (kx1)

〈Ttx3〉 = −4f0cQ sin (kx1)

〈Tx1x1〉 = M + 8ch −
7

24
µ2
bk

2

〈Tx2x2〉 = M +

(
8cα +

1

8
µ2
bk

2

)
cos (2kx1)

〈Tx3x3〉 = M −
(

8cα +
1

8
µ2
bk

2

)
cos (2kx1)

〈Tx2x3〉 = −
(

8cα +
1

8
µ2
bk

2

)
sin (2kx1) . (A.11)

Observe that 〈Tmm〉 = −µ2
bk

2/6 = − r2

12
FmnF

mn, as expected (here we are raising

indices with gmn∞ and the r2 factor appears because it also appears in (A.10)) . Setting

f0 = 1 we see that the energy density is given by

ε = 3M + 8ch −
1

8
µ2
bk

2 . (A.12)

Observe that the equality of the two expression in (A.7) imply the Smarr type formula

4
3
ε = sT − 2µq + 8

3
ch − µbcb − 1

8
µ2
bk

2 + 1
2
µµ2

bkγ . (A.13)

If we define the average pressure p̄ = (〈Tx1x1〉+ 〈Tx1x1〉+ 〈Tx1x1〉)/3, this can also be

written in the form

ε+ p̄ = sT − 2µq + 8
3
ch − µbcb − 13

72
µ2
bk

2 + 1
2
µµ2

bkγ . (A.14)
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We next calculate the expectation value of the current. The relevant terms are given

by[26]

〈Jm〉 = lim
r→∞

[
r3Frm −

1

6
γ εm

npqAnFpq +∇nF
n
m ln r + . . .

]
. (A.15)

where ∇ is the Levi-Civita covariant derivative with respect to the boundary metric

g∞. Using the expansion (A.2) we obtain

〈Jt〉 = −2f0q +
1

3
µ2
bkγ

〈Jx1〉 = 0

〈Jx2〉 = −
(

2cb +
1

2
µbk

2 − 1

3
µµbkγ

)
cos(kx1)

〈Jx3〉 =

(
2cb +

1

2
µbk

2 − 1

3
µµbkγ

)
sin(kx1) . (A.16)

In terms of the current, the Smarr formula (A.14) can be written in the form

ε+ p̄ = sT + µ〈Jt〉+ 8
3
ch + 1

2
µb (〈Jx2〉 cos kx1 − 〈Jx3〉 sin kx1) + 5

72
µ2
bk

2 . (A.17)

As we discussed in section 2.3 we view k as labelling a particular mode and hence

should not be varied. To amplify this point, it is useful to refer back to our ansatz

(2.4) and define the x1 dependent variation [δA(k)]m via

[δA(k)]t = δµ

[δA(k)]x1 = 0

[δA(k)]x2 = δµb cos(kx1)

[δA(k)]x3 = −δµb sin(kx1) . (A.18)

We then find that the first law (A.9) can be written in the form

δW =

∫
dx1dx2dx3

(
− s δT + 〈Jm(−k)〉 [δA(k)]m

)
, (A.19)

where 〈Jm(−k)〉 is given in (A.16) and we note the integrand is actually independent

of x1. In particular, we interpret δµb as parametrising a specific mode, labelled by k,

of a non-normalisable deformation of the gauge-field, δA(k).

A.1 Another perspective on (2.23)

Let us consider a variation of the gauge field part of the bulk action (2.1). This gives

the boundary term

δSgauge =

∫
∂M

[
∗F +

γ

3
A ∧ F

]
∧ δA (A.20)
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Here we would like to focus on variations of wave-number k which give rise to a

contribution at the boundary of the non-compact x1 direction. Given our ansatz

(2.4) we have

δA = −b x1 ω3 δk (A.21)

We take the boundary to be at x1 = ±L/2 and then take L → ∞. A calculation

shows that the relevant part of the integrand is[
∗F +

γ

3
A ∧ F

]
∧ δA = −dt ∧ dx2 ∧ dx3 ∧ dr

{
ke2αfb2

h
− γ

3
b(ba′ − ab′)

}
x1δk + . . .

(A.22)

After evaluating this at x1 = ±L/2 and then dividing by L in order to find the

variation of the density, we are led to the third and fourth terms of (2.23) (taking

into account a minus sign since here we are looking at the Minkowski signature space-

time).

If we now vary the Einstein-Hilbert term we get the boundary term

δSEH =

∫
∂M

√
−γ nµ

(
∇νδgµν − gνλ∇µδgνλ

)
(A.23)

where γ is the induced metric on the boundary ∂M and for the boundary compo-

nents defined by x1 = ±L/2 we have that the unit normal vector is n = h−1 ∂x1 .

Substituting a variation of the metric obtained by varying k in our ansatz (2.4), we

obtain contributions at x1 = ±∞ which lead to the first and second terms in our

formula (2.23), again up to a minus sign.

This calculation show that variations of k in our ansatz (2.4) are associated with

boundary contributions to the variation of the action at x1 = ±∞. Since we do not

want to modify boundary conditions at x1 = ±∞, k is a parameter to be held fixed

in obtaining the relevant equations of motion.

B Linearised Analysis

We summarise the analysis of linearised perturbations about the AdS-RN black brane

solution considered in [6] in the language of this paper. Specifically, we consider the

perturbation

Q→ εQ, b→ ε b (B.1)
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with h = α = 0 in (2.4) around the AdS-RN black brane solution (2.7), for small ε.

At first order in ε we obtain two coupled ODEs, linear in Q and b, given by

r−5
(
r5Q′

)′ − k2r−2g−1Q+ r−2 a′b′ = 0 ,

r−1g−1 (rgb′)
′ − k2r−2g−1 b+ r2g−1a′Q′ + kr−1g−1γa′ b = 0 , (B.2)

with g and a as given in (2.8). To make contact with equation (4.17) of [6] one should

make the following identifications: u = r+/r, ψ(u) = −
√

3r3Q′(r)/r+, b(r) = φ(u),

q = µ/(r+
√

3), kthere = khere/r+, α = γ/4, q = µ/(r+
√

3).

In order to find a normalisable static linearised mode of interest we should impose

the following boundary conditions. At the horizon, r → r+, we demand that

Q = Q(+) (r − r+) + . . . ,

b = b+ + . . . . (B.3)

We are only interested in deformations of the CFT given by the temperature T and

the chemical potential µ. Hence as r →∞ we demand that

Q =
cQ
r4

+ . . . ,

b =
cb
r2

+ . . . . (B.4)

A solution to B.2 is specified by four integration constants and hence, for a given T, µ,

we expect a unique solution (if any). By numerically solving (B.2) we find solutions

that are summarised in figure 1, for the special value γ = 1.7 (and also µ = 1), which

agrees well with figure 2 of [6].
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