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Standard puncture initial data have been widely used for numerical binary black hole evolutions
despite their shortcomings, most notably the inherent lack of gravitational radiation at the initial
time that is later followed by a burst of spurious radiation. We study the evolution of three alterna-
tive initial data schemes. Two of the three alternatives are based on post-Newtonian expansions that
contain realistic gravitational waves. The first scheme is based on a second order post-Newtonian ex-
pansion in ADMTT gauge that has been resummed to approach standard puncture data at the black
holes. The second scheme is based on asymptotic matching of the 4-metrics of two tidally perturbed
Schwarzschild solutions to a first order post-Newtonian expansion in ADMTT gauge away from the
black holes. The final alternative is obtained through asymptotic matching of the 4-metrics of two
tidally perturbed Schwarzschild solutions to a second order post-Newtonian expansion in harmonic
gauge away from the black holes. When evolved, the second scheme fails to produce quasi-circular
orbits (and instead leads to a nearly head-on collision). This failure can be traced back to inac-
curacies in the extrinsic curvature due to low order matching. More encouraging is that the latter
two alternatives lead to quasi-circular orbits and show gravitational radiation from the onset of the
evolution, as well as a reduction of spurious radiation. Current deficiencies compared to standard
punctures data include more eccentric trajectories during the inspiral and larger constraint viola-
tions, since the alternative data sets are only approximate solutions of Einstein’s equations. The
eccentricity problem can be ameliorated by adjusting the initial momentum parameters.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.30.Tv,

I. INTRODUCTION

One of the best candidates for observation of gravita-
tional radiation is the coalescence of two black holes. The
successful detection of these gravitational waves by any
ground or space-based interferometer (e.g. LIGO [1, 2],
VIRGO [3, 4], GEO600 [5], eLISA/NGO [6]) will be con-
firmed by matched filtering of the observed signal against
an extensive compilation of waveforms produced numeri-
cally from the binary black hole parameter space. There-
fore, it is important that this collection of constructed
waveforms represent the most physically viable scenarios
of binary black hole evolution.

Full numerical evolution of the Einstein equations
made possible since 2005 [7–9] is the method of choice
for producing waveforms than span part of the inspiral,
and the subsequent merger and ringdown phases. The
waveform templates are dependent on the physical accu-
racy of the data being used. Currently, the most widely
used approach for initial data construction is known as
the “puncture” method. Developed by [10], this method
is able set up data for binary black holes with generic
momenta and spins. These initial data are used almost
exclusively by all groups that evolve black holes using
the BSSNOK formulation [11] together with the moving
punctures approach [8, 9]. Standard puncture initial data
have the disadvantage that they contain no realistic grav-
itational waves, because a conformally flat metric is used
in this method. When evolved, these data lead to a grav-
itational wave signal that is zero for some time followed
by a spurious burst. Only after this burst do we get an
astrophysically realistic chirp signal, thereby making the
prescription inherently unphysical. Other methods have

begun to emerge whereby post-Newtonian (PN) approx-
imations are used, either as the sole contributor [12–14]
or in conjunction with analytical solutions near the black
hole [15–17], to develop initial data. These methods al-
low for increased astrophysical accuracy by including,
to leading PN order, gravitational waves on the space-
time from the onset of the simulation. In this paper,
we investigate three methods of initial data construction
and use them for full numerical evolution of binary black
holes. These methods can be considered alternatives to
the standard puncture technique for creating templates.
We find that evolutions of two of these methods lead
to improved gravitational waves. There is a chirp signal
right from the start, and the (still present) burst of spuri-
ous radiation has a smaller amplitude than for evolutions
starting from standard puncture data. The burst occurs
when the built-in post-Newtonian waveform transitions
to a fully numerically generated signal.

Throughout this paper, we will use units where G =
c = 1. Latin indices such as i run from 1 to 3 and denote
spatial indices, while Greek indices such as µ run from
0 to 3 and denote spacetime indices. The paper is orga-
nized as follows: In Section II, we briefly recall the 3+1
formulation for numerical relativity. In Section III, we
summarize the standard puncture technique for creating
initial data and discuss weaknesses in this approach. In
Section IV, we describe our first alternative scheme; a
post-Newtonian expansion of the 3-metric and extrinsic
curvature in ADMTT gauge [18] resummed to approach
standard puncture data at the black holes. In Section V,
we describe the technique of asymptotic matching the
4-metrics of tidally perturbed Schwarzschild black hole
solutions to post-Newtonian expansions away from the
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black holes. Also within this section, we describe two
more initial data schemes: asymptotic matching with
a low-order post-Newtonian expansion of the 4-metric
in ADMTT gauge away from the holes, and asymp-
totic matching of the 4-metrics with a second-order post-
Newtonian expansion in harmonic gauge away from the
black holes. In Section VI, we describe additional ad-
justments required for numerical evolution. In particu-
lar, we describe an algorithm we use to fill black hole
interiors for initial data that contain singularities. We
then show comparisons of evolutions starting from dif-
ferent initial data schemes. Section VII summarizes our
results and includes discussion of future improvements to
certain schemes.

II. 3+1 FORMULATION

For numerical evolutions of general relativity, it is
useful to split the four-dimensional spacetime described
in terms of the metric gµν into three-dimensional spa-
tial hypersurfaces and time. The Arnowitt-Deser-Misner
(ADM) [19] decomposition of the Einstein equations de-
fines the line element as

ds2 = −α2dt2 + gij(dx
i + βi)(dxj + βj), (1)

where α is the lapse function, βi is the shift vector, and
gij is the 3-metric. The extrinsic curvature is defined as

Kij = −
1

2α
(∂tgij − Lβgij). (2)

Under the ADM decomposition, the Einstein equations
yield evolution equations of the form

∂tgij = −2αKij + Lβgij (3)

∂tKij = α(Rij − 2KijK
ij)−DiDjα+ LβKij

−8πSij + 4πgij(S − ρ) (4)

and the Hamiltonian and momentum constraint equa-
tions

R−KijK
ij +K2 = 16πρ (5)

Dj(K
ij − gijK) = 8πji. (6)

Here, Rij and R are the Ricci tensor and scalar of the 3-
metric gij , and Di is the derivative operator compatible
with gij . In binary black hole simulations, these equa-
tions simplify due to the vanishing of the source terms ρ,
ji, Sij , and S = gijSij .

III. STANDARD PUNCTURE INITIAL DATA

The most common approach to producing initial data
used currently is the standard puncture prescription of
Brandt & Brügmann [10] using Bowen-York extrinsic

curvature. This method uses a conformal transverse-
traceless decomposition of the extrinsic curvature [20, 21]
to simplify the constraint equations. A conformally flat
three-metric, gij , is defined as

gij = ψ4δij , (7)

where ψ is the conformal factor. The extrinsic curvature
is given by

Kij = ψ−10Aij
BY , (8)

where

Aij
BY =

2
∑

A=1

3

2r2A
[piAn

j
A + piAn

i
A − (gij − ni

An
j
A)p

k
AnAk]

+
3

r3A

(

ǫiklsAknAln
j
A + ǫjklsAknAln

i
A

)

, (9)

is of Bowen-York form and where na
A is the radial normal

vector, paA is the linear momentum, and saA is the spin
of black hole A. This Kij is chosen so that it already
satisfies the momentum constraint for arbitrary spin and
momentum.
The exact solution for a black hole pair with zero mo-

menta and spins is the Brill-Lindquist solution [22]

ψBL = 1 +

2
∑

A=1

mA

2rA
, (10)

where mA is the “bare” puncture mass of black hole A
and rA = |~x − ~xA| is the distance from the black hole
at position ~xA. As one can see, this conformal factor
diverges at the puncture location ~xA. Such divergences
also occur for non-zero masses and spins. To avoid nu-
merical problems with these divergences when solving the
Hamiltonian constraint equation, one usually splits the
conformal factor [10]

ψ = ψBL + u (11)

into a regular piece u and the divergent piece ψBL. By
doing this, the Hamiltonian constraint is reduced to a
single elliptic equation

∆flatu = −
1

8
ψBL

−7Aij
BY A

kl
BY δikδjl

(

1 +
1

ψBL
u

)

−7

(12)
without any divergences, that can be easily evaluated by
elliptic solvers such as in [23]. Notice that Aij

BY = 0
for zero momentum and spin, so that u = 0. Further-
more, if one of the masses (e.g. m2) is zero we obtain the
Schwarzschild solution in isotropic coordinates.
The fact that data is built using the assumption of con-

formal flatness is an inherent problem. It is unrealistic to
demand conformal flatness in the context of astrophys-
ical constructions, because it implies that there are no
gravitational waves on the initial time slice.
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Often, gravitational waveforms are described in terms
of the Newman-Penrose scalar, Ψ4, extracted at some dis-
tance from the sources. Usually this Ψ4 is decomposed
into individual ℓ and m modes by projecting onto spheri-
cal harmonics Y −2

ℓm of spin weight -2 [24]. Figure 1 shows
the real part of the dominant ℓ = 2, m = 2 waveform
mode of ψ4 over time extracted at a distance of 90M .
We observe a lack of any gravitational radiation until
∼ 80M ; this delay in the waveform signal at arbitrary
extraction radii is common of standard punctures. Also,
we see the beginning of an outward traveling wave profile
only after about ∼ 150M and differing significantly from
the initial burst; the waves up until this outward pro-
file region have been commonly referred to as spurious
radiation.

If such a simulation is used to make gravitational wave
templates, the early part of the wave signal has to be
discarded up to the time when the spurious radiation
has become sufficiently small. How much exactly one
has to discard depends on the desired accuracy, but in
our experience it typically amounts to between 10% and
20% of the total simulation time. This kind of waste will
only increase with future code upgrades that will allow
us to extract the waves at larger distances, since then
we have to wait longer for the spurious burst to even
reach the extraction distance. These problems are the
reason why we seek alternative constructions of binary
black hole initial data. In [25] it was shown that spurious
radiation can be reduced by using a 3-metric that is not
conformally flat.
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FIG. 1: The real part of the dominant ℓ = 2, m = 2 waveform
mode of ψ4 over time extracted at a distance of r = 90M . The
lack of a gravitational wave signature for the initial phase of
the evolution is a direct consequence of prescribing conformal
flatness. The burst behavior (visible as the waveform tran-
sitions from zero to a regular chirp signal) is indicative of a
so-called spurious radiation signal.

IV. INITIAL DATA BASED ON

POST-NEWTONIAN EXPANSION IN ADMTT

GAUGE

One alternative to standard puncture data has been
introduced by Tichy et al. in [12] with further devel-
opments in [13, 14]. This method uses post-Newtonian
expansions in ADMTT gauge [18] for the 3-metric and
extrinsic curvature on the initial time slice. While PN
theory is strictly valid only away from regions of strong
gravity such as black holes, it is possible to rewrite the 3-
metric and extrinsic curvature in ADMTT gauge in such
a way that they approach the puncture form as in Eq. (7)
and Eq. (9). In this way one can obtain globally valid
data provided the initial black hole separation, r12, is
within the PN regime. This is seen as a first step away
from the standard puncture approach and a step towards
constructing astrophysically realistic initial data. Using
ADMTT gauge, the expressions for the 3-metric and the
extrinsic curvature are taken up to O(v/c)5 and O(v/c)4

respectively, where v ∼
√

M/r12 with M = m1+m2 and
c is the speed of light. A formal expansion parameter,
ǫ ∼ (v/c), is used below to distinguish terms of different
PN order. The 3-metric in ADMTT gauge is given as

gPN
ij = ψ4

PN δij + ǫ4hTT
ij(4) +O(ǫ5). (13)

The full expression for hTT
ij has been computed by Kelly

et al. [13]. It denotes the gravitational wave contribution
to the 3-metric. The conformal factor

ψPN = 1 +

2
∑

A=1

ǫ2
mA

2rA
+ ǫ4

P 2

A

2mA
− m1m2

r12

2rA
+O(ǫ6), (14)

is very similar to that of standard punctures in Eqs. (10)
and (11). The only difference is that it contains an addi-
tional term at order O(v/c)4 and no u piece as in Eq. (11)
since the constraints are satisfied only approximately. It
must be noted that the PN expressions in Eqs. (13) and
(15) are not pure Taylor expansions in (v/c) since terms
such as ψ4 in Eq. (13) are not expanded in powers of ǫ.
This amounts to adding specific higher-order terms for
the purpose of creating a metric that is similar to the
standard puncture expression. This selective inclusion of
terms does not improve the accuracy of the PN expan-
sion, however it is performed to ensure the presence of
black hole apparent horizons in the initial data [12]. The
extrinsic curvature is

Kij
PN = ψ−10

PN

[

ǫ3Aij
BY − ǫ5

1

2
ḣTT
ij(4) − ǫ5(φ(2)π̃

ij
(3))

TT
]

,

(15)
where the leading order term contains the Bowen-York
extrinsic curvature as in the case of standard punctures.
The additional terms at order O(v/c)5 can be found
in [12]. The trace of the extrinsic curvature can be shown

to vanish up to O(v/c)
6
.
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V. ASYMPTOTIC MATCHING OF 4-METRICS:

AN OVERVIEW

Another alternative to the standard puncture method
involves a post-Newtonian expansion of the 4-metric
away from the black holes. This expansion is then asymp-
totically matched to tidally perturbed black hole metrics
used for, and in close proximity to, the black holes. This
approach is believed to produce more astrophysically re-
alistic initial data based on several reasons; the method
is built on physical approximations and not on the poten-
tially unphysical ansatz of assuming the punctures form
close to each black hole, and the level of analytic control
over the physical approximations allows for the method,
in principle, to accommodate ever higher-order expan-
sions if desired.

Matching requires dividing the spacetime into 4 zones;
2 inner zones, a near zone, and a far zone. The in-
ner zones are considered as regions where perturbative
Schwarzschild solutions are valid. The near zone is the
region where PN theory will hold (provided (v/c) ≪ 1).
The far zone is the region of spacetime where retarda-
tion effects will influence the system. Within each zone,
4-metric approximations are constructed in some coordi-
nate system with corresponding parameters (mass, mo-
mentum, etc.). Matching these different approximations
becomes possible because their regions of validity over-
lap in certain regions called buffer zones. Figure 2 shows
a schematic sketch of the different regions. Asymptotic
matching [26–29] involves comparing two asymptotic so-
lutions inside of a 4-volume. This returns a map between
the local coordinates and parameters of each of the differ-
ent regions, and forces both solutions to be asymptotic to
each other within the buffer zone. It is inside the buffer
zone where these solutions can be merged into a smooth
global metric by way of a transition function. We refer
the reader to [15–17] for our choice of transition func-
tions.

For a coordinate separation of r12 the gravitational
wavelength is given by

λGW = π

√

r312
m
. (16)

A diagram of the regions is shown in Figure 2, and a
summary of the regions’ influences is seen in Table 1.

Zone rin rout
Inner Zones 0 ≪ r12

Near Zone ≪ mA ≪
λGW

2π

Far Zone ≪ r12 ∞

TABLE I: Location of inner and outer boundaries of each
spacetime zone.
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FIG. 2: This figure illustrates the separation of the space-
time into specific zones: the inner zones, near zone and far
zone. In each zone one can use a specific approximation. The
corresponding buffer zones are the regions where two zones
overlap.

A. Matching an ADMTT-Gauge Post-Newtonian

Metric to a Black Hole Perturbative Metric

One of the first implementations that has used the
above asymptotic matching approach is described in [16].
In this initial data scheme, a PN 4-metric in ADMTT co-
ordinates [18, 30, 31] is used in the near zone. Since
in this approach the Post-Newtonian metric is accu-
rate only up to terms of order O(v/c)2, there are no
retardation effects and the near zone results are valid
also in the far zone. In the inner zones, a perturbed
Schwarzschild metric in isotropic coordinates is used. A
globally valid 4-metric is then obtained by asymptotic
matching. The matching procedure is simplified by the
fact that ADMTT and isotropic coordinates are similar.
The matched result has errors of O(v/c)4 away from the
black holes and errors of order O(v/c)2O(rA/r12)

3 near
each black hole. The PN part of the matched results that
is valid away from the black holes has the same 3-metric
and extrinsic curvature as in Eqs. (13) and (15), but
with all terms of order ǫ4 and higher dropped. The per-
turbed black hole solutions that are valid near each hole
can be found in [16]. Both metrics are matched in the
buffer zones and smoothed through the transition func-
tion mentioned earlier.

B. Matching a Harmonic-Gauge Post-Newtonian

Metric to a Black Hole Perturbative Metric at

Higher Order

The second matching approach we consider here is
from work by Johnson-McDaniel et al. [17]. It applies
higher-order asymptotic matching of the 4-metric solu-
tions in the buffer zones. For this approach the inner
zones approximate the 4-metric in a quasi-Cartesian form
of Cook-Scheel harmonic coordinates [32], the near zone
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now approximates the 4-metric in harmonic coordinates,
and the far zone region is now considered through ap-
proximating the 4-metric in harmonic coordinates. The
reader is referred to [17] for the complete construction
of the 4-metric within the near zone regime. The in-
ner zone solution is expressed to higher-order than what
was used in the previous matching approach in ADMTT
gauge and is found in its full form in [17]. The inclusion
of a far zone contribution introduces an additional buffer
zone, wherein another transition function will smoothly
join the near and far zone approximations in the region
where the errors from both approximations are compa-
rable.
The main difference between this matching approach

and the one prior is that it is now carried out to higher or-
der; in both the PN expansion of the 4-metric away from
the black holes and also the perturbation expansion of
the inner zone black hole solutions. Also, the PN expan-
sions are now in harmonic gauge. The matched result has
errors of O(v/c)5 away from the black holes and errors of
order O(v/c)5O(r/r12)

3 near each black hole. This result
is then further augmented by additional (but formally
unmatched) PN terms away from the black holes which
include gravitational radiation, so that away from the
black holes one has only an error of O(v/c)6. The choice
of harmonic coordinates is one of convenience; matching
has already been established between the near and far
zones through [33] which simplifies the inclusion of the
far zone region. This high-order matching yields more
accurate results than the previous lower-order matching
in ADMTT gauge. With the inclusion of initial gravita-
tional radiation, we can expect improvements in the data
set over the standard punctures approach.
In [34] the tidal deformations present in the inner zones

of [17] (but not the near and far zones) are added to a
superposition of two spinning black holes in Kerr-Schild
coordinates. Evolutions display a reduction in the (2,0)
mode of the outgoing gravitational waves. The expec-
tation is that a full inclusion of outer zone phenomena,
as in our work, will also reduce the (2,2) mode spurious
signal.

VI. NUMERICAL EVOLUTION RESULTS

Evolutions from all initial data were done using the
BAM code [24, 35–37]. The gravitational fields are evolved
using the BSSNOK formalism [11, 38, 39] in the variation
known as the “moving punctures” method [8, 9]. Thus
the 3-metric gij is written as

gij = χ−1γ̃ij (17)

where the conformal metric γ̃ij has unit determinant. In
addition, the extra variable

Γ̃i = γ̃ij γ̃klγ̃jk,l (18)

is introduced where γ̃ij is the inverse of the conformal
metric. Furthermore, the extrinsic curvature is split into

its trace-free part, Ãij , and its trace, K, which is given
by

Kij = χ−1

(

Ãij +
K

3
γ̃ij

)

. (19)

The particulars of our BSSNOK implementation can be
found in [40].
All our evolutions use equal-mass non-spinning black

hole binaries at initial separation of 10M . Also, all
sets are tested through evolutions using a resolution of
∼ 3M/224 near the black holes. Furthermore, all sets
use the same expressions for α and βi at the initial time;

α = ψBL
−2, (20)

βi = 0. (21)

These forms of the lapse and shift are known as the
”1+log” slicing condition [41] modified with the ad-
dition of an advection term as used in [9, 42], and
the “Gamma freezing condition” [43] modified and used
in [42] and [40], where it is labeled as the “shifting-shift
case” in the former and the “000” shift choice in the lat-
ter. For the initial data obtained by matching or from PN
approaches, the constraints are only approximately sat-
isfied. In the case of standard punctures the constraints
are solved numerically using the approach in [23].

A. Filling Black Hole Interiors

In the case of initial data obtained by asymptotic
matching, each black hole is described by a perturbed
black hole solution. This black hole solution can con-
tain physical singularities inside the event horizons that
have to be dealt with before a numerical evolution can
be attempted. We have developed an algorithm (called
BHfiller in our code) that fills a specified region inside
the black hole apparent horizon with smooth data. The
justification for this procedure is that the physics outside
a black hole remains unaffected if we only change the
inside of the horizon. Our algorithm modifies the BSS-
NOK variables at the initial time as follows: For each
black hole (centered at the point ~xA) we pick a sphere of
radius rfill contained inside the black hole horizon. The
radius rfill is chosen such that this sphere contains all
singular points. To set valid data at each point ~x inside
this sphere we use a weighted average of linear extrapo-
lation and a value that corresponds to standard puncture
data. Let us define r = |~x− ~xA|, n̂ = (~x− ~xA)/r and de-
note a particular BSSNOK variable component at point
~x by u(~x). If r < rfill we set

u(~x) = urΥ + u0(1− Υ ), (22)

where

ur = u(rfilln̂) + [∂ru(rfilln̂)](r − rfill), (23)
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u0 =























0.1 if u is α,
(

2 +
mA

2r

)

−4

if u is χ,

1 if u is γ̃xx, γ̃yy or γ̃zz ,

0 otherwise.

(24)

and the weight is given by

Υ =
1

2

{

1 + tanh

[

48

125

(

rfill
rfill − r

−
3 rfill
2 r

)]}

.(25)

We apply this method of filling the region inside radius
rfill to all BSSNOK variables except Γ̃i, which we simply
recompute from the filled γ̃ij using Eq. (18). We only
need to use this algorithm for the case of asymptotically
matched data sets, as all other data sets are free of any
physical singularities.
Note that the constraints are generically not satisfied

in the filled region. We have tested our filling algorithm
by evolving standard puncture data with filling, applied
at the initial time or some predetermined later time, and
without filling and compared various quantities. Gauge
invariant quantities, such as the gravitational wave am-
plitude as a function of gravitational wave frequency, are
unchanged when we compare with and without black hole
filling. We have also checked that in our evolutions no vis-
ible constraint violations are emitted by the black holes
filled with this algorithm. The latter is expected since
the BSSNOK system together with the gauge conditions
used here has been shown [44] to lead to causal constraint
propagation, so that any constraint violations introduced
inside the black holes cannot affect the exterior space-
time. Notice, however, that the BSSNOK system has
superluminal gauge modes [44]. Thus gauge dependent
quantities such as the lapse are somewhat different, even
outside the black holes. Hence the black hole trajecto-
ries (while qualitatively the same) are slightly different
as well.

B. Shortcomings of Low-Order Asymptotic

Matching

The real part of the dominant ℓ = 2, m = 2 wave-
form mode of ψ4 illustrates whether a gravitational wave
signal has been implemented starting from the t = 0
slice. Figure 3 shows the waveforms, extracted at ra-
dius r = 90M , for a simulation starting from standard
puncture data and that produced from the first data
set; asymptotic matching of a low-order PN expansion
in ADMTT-Gauge to a perturbative black hole solution
(Hereafter called ADMTT-match). As with standard
punctures ADMTT-match fails to incorporate gravita-
tional radiation at t = 0. This is not surprising as the
3-metric is still conformally flat.
Another undesired result is that the binary merges

within a time of 250M , which is much too fast. This be-
havior indicates an accelerated evolution timescale that is
not expected for a quasi-circular inspiral. Figure 4 shows

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0  50  100  150  200  250  300

R
e
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FIG. 3: The (2,2) mode of ψ4 extracted at a radius of r =
90M for standard punctures and ADMTT-match initial data
sets. Both waveforms show no initial wave signature at t = 0,
due to their reliance on conformal flatness for the 3-metric
expressions. It can also be seen that ADMTT-match merges
much faster (within 250M). This is evidence that the orbits
were not quasi-circular at all.

the orbit of the binary system in the ADMTT-match
approach. We see that ADMTT-match leads to nearly

-5
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y
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ADMTT-match(Hole 1)
ADMTT-match(Hole 2)

FIG. 4: Trajectories of both black holes in the ADMTT-
match approach. A nearly head-on collision between the two
holes indicates there is insufficient tangential momenta to sat-
isfy a PN quasi-circular orbit starting from t = 0.

head-on trajectories for the black holes. The individual
black holes do not have enough momentum to complete
even one orbit. One can track this problem back to the
order of asymptotic matching used in the construction
of these initial data. The terms in the extrinsic curva-
ture that are associated with momentum are computed
from the 4-metric perturbation expansions used near the
black holes. However, as discussed in Appendix A, the
matching procedure used in [16] is of an order that is
too low to correctly obtain the the O(v/c)3 piece of the
extrinsic curvature that would lead to an orbiting black
hole. Thus we see that this data set is merely a proof
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of concept. To obtain useful initial data, we need to use
higher order matching.

C. Analysis of Higher-Order Methods

In this subsection, we compare evolutions starting from
data obtained by the higher order matching approach dis-
cussed in Sec. VB and data from the pure PN approach
of Sec. IV with standard puncture initial data. How-
ever, we first need to inform the reader of a modification
to the transition function in [17] used for smoothing the
far-zone and near-zone metric contributions in the out-
ermost buffer zone. The parameters r0 and w, which
define where the transition begins and the width of the
transition window respectively, have been adjusted. The
analysis in [17] uses r0 = λGW /5 and w = λGW (see
Eqs. (8.4) and (8.6) in [17]), which then put the mid-
point (where the transition function has a value of 1/2)
at r ≈ 14λGW . In the work here we choose values of
r0 = 0.044λGW and w = 0.22λGW , which lead to a mid-
point at r ≈ λGW . This adjustment is justified because
one would expect the transition region (from near zone to
far-zone) to be more suitable closer to λGW than 14λGW .

1. Waveforms

We first discuss the gravitational waveforms obtained
from these data sets. In the figures that follow we de-
note our results as Harmonic-match or ADMTT-PN; de-
pending on whether we evolve initial data constructed by
asymptotic matching of a Second-Order Post-Newtonian
4-metric Expansion in Harmonic Gauge to a Perturbative
Black Hole Solution, or data from a Post-Newtonian Ex-
pansion in ADMTT Gauge. We do not expect to see the
same deficiencies as seen in ADMTT-match. Figure 5
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FIG. 5: The (2,2) mode of ψ4 extracted at a radius of r = 90M
for standard punctures, Harmonic-match, and ADMTT-PN
data sets.

shows the real part of the (ℓ = 2,m = 2) waveform

mode of ψ4 at an extraction radius of 90M for all three
data sets. Harmonic-match produces gravitational waves
starting from t = 0, more characteristic of an astrophys-
ically realistic evolution. The diminished amplitude in
the spurious radiation region for Harmonic-match is an
additional positive outcome for this data set (although
the ultimate goal is to completely eliminate this behav-
ior from the waveform). Figure 5 also shows the wave-
form for ADMTT-PN and standard punctures. As with
Harmonic-match, ADMTT-PN shows a non-zero wave-
form signature at t = 0 and comparable reduction of the
spurious radiation amplitude. It is also noted that a com-
parative‘ reduction of the spurious radiation amplitude
has been seen in [45] as well using their hybrid initial
data technique.

2. Eccentricity and Horizon Mass

We can see from Figure 5 that the waveform behav-
ior of both Harmonic-match and ADMTT-PN is non-
monotonic in amplitude. This differs from the standard
chirp signal expected during the inspiral phase of the two
black holes. The reason for this behavior is due to the
black hole orbits being noticeably eccentric. The high
eccentricity can be seen through plots of the coordinate
separation over time (See Figure 6). For a sense of scale,
the coordinate separation for standard puncture initial
data is included to indicate the small level of deviation
for an evolution to be accepted as having low eccentric-
ity. Note, however, that unlike in the case of standard

 0

 2
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 10

 0  200  400  600  800  1000  1200

r(
M

)

t(M)

Standard Punctures
Harmonic-match

ADMTT-PN
Unmodified ADMTT-PN

FIG. 6: Coordinate separation for standard punctures,
Harmonic-match, unmodified ADMTT-PN, and modified
ADMTT-PN.

punctures, the tangential momentum of the black holes
has not been fine-tuned and is simply coming from PN
expressions for circular orbits. For example, in the case
of ADMTT-PN we use the momentum for circular PN
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orbits given by

pPN
2 = µ

[

[MΩ]
1

3 + ǫ2
(15− η)MΩ

6

+ǫ4
(441− 324η − η2)[MΩ]

5

3

72

]

, (26)

where M = m1 +m2, µ = m1m2/M , η = µ/M and Ω is
defined as

Ω =
1

M

[

64( r
M )3

(1 + 2( r
M ))6

+
η

( r
M )4

+

(

−0.625µ+ η2
)

( r
M )5

]
1

2

(27)
Increased eccentricity, with respect to standard punc-

tures, is again apparent in Figure 7 for both the
Harmonic-match and ADMTT-PN sets. The eccentric-
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FIG. 7: Eccentricity estimation for standard punctures,
Harmonic-match, unmodified ADMTT-PN, and modified
ADMTT-PN. The range between 100M and 600M is the
range to analyze all sets simultaneously while guaranteeing
no errors due to incomplete information (Before 100M our
eccentricity estimator which averages over an orbital time is
unreliable, and after 600M most sets have begun merger so
that one cannot define an eccentricity.).

ity calculation is performed as in [46], and is calculated
through a time-average over the orbital period.
For the case of ADMTT-PN, we have added an ad-

ditional parameter, C3, that can be used to adjust the
initial tangential momenta of the black holes. The mod-
ified tangential momentum, p is given by

p2 = pPN
2 + ǫ6

µ2M

8r12
C3

(

M

r12

)3

, (28)

Note that the term with C3 comes into the expression at
order O(v/c)6. Thus this additional term is of the or-
der of one of the PN terms that were neglected in the
expansion in Eq. (26). By adjusting C3 we can then de-
crease the eccentricity. For C3 = −396.4844 we change
our tangential momentum to 98.3% of the original pPN .

This choice effectively minimizes the eccentricity. In Fig-
ures 6 and 7 we can compare the results with and with-
out this modification to Harmonic-match and standard
punctures.

A useful local definition for the mass of a black hole
is the apparent horizon mass. An algorithm for finding
apparent horizons without any symmetries is described
in [47]. Over time, numerous variations on Gundlach’s
methodology have produced routines for many of the
main computational groups involved in black hole sim-
ulation. The version used here is known as AHmod and
was developed by Norbert Lages [48] as an improvement
to the CACTUS thorn AHfinder developed by Miguel
Alcubierre [49]. Figure 8 shows the apparent horizon
mass of one of the (equal mass) black holes for all three
data sets versus time. We see that ADMTT-PN and
Harmonic-match show much more variation than stan-
dard puncture data. We see that the two alternative
methods lead to a “mass loss” over the evolution time
where they eventually approach the apparent horizon
mass obtained from evolving standard puncture data.
This “mass loss”, albeit of low scale, is unphysical and
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FIG. 8: Apparent horizon mass of one of the black holes in
the inspiral phase under the standard punctures, Harmonic-
match, and ADMTT-PN approach.

we expect it is due to larger Hamiltonian constraint vio-
lations in the approximate initial data sets. For example,
in [45] the Hamiltonian constraint (but not the momen-
tum constraint) is solved numerically for ADMTT-PN,
which leads to a horizon mass that is closer to the result
for standard puncture data.

Figure 9 shows the apparent horizons masses of the
final black hole after merger for evolutions with each
data set. The masses obtained with the alternatives tend
to deviate from punctures, with Harmonic-match yield-
ing an increase and ADMTT-PN yielding a decrease in
the common horizon mass respectively over time. This
decrease is certainly unphysical and is likely related to
larger constraint violations.
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FIG. 9: Apparent horizon masses of the final black hole after
merger under the standard punctures, Harmonic-match, and
ADMTT-PN approach.

3. Constraints

The violation of the Hamiltonian constraint equation
at the beginning of the evolution, as seen in Figure 10
is between two and three orders of magnitude larger
for Harmonic-match and ADMTT-PN than for standard
punctures a t = 0. We expect that these violations are
responsible for the observed drift in the apparent horizon
masses. Over time, the evolution of ADMTT-PN relaxes
the constraints to the regime of standard punctures where
both are almost indistinguishable. This result brings the
expectation that these initial data methods are stable
over the life of the evolution, and a case for astrophysical
relevance.
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FIG. 10: The L2-norm of the Hamiltonian constraint violation
for the standard punctures, Harmonic-match, and ADMTT-
PN approach. The y-axis is plotted in log10. The inset shows
the violations at the beginning of the evolution.

Figure 11 shows the L2-norm of the x-component of
the Momentum constraint. It is seen that the initial dis-
crepancies (compared to standard punctures) are of two

orders of magnitude for ADMTT-PN and roughly five
orders of magnitude for Harmonic-match. The y and z
components are so similar that they would yield almost
the same plots. Over time, all data sets relax to within
an order of magnitude difference until they become al-
most indistinguishable during the merger and ringdown
phases.
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FIG. 11: The L2-norm of the x-component of the Momentum
constraint violation, for the standard punctures, Harmonic-
match, and ADMTT-PN approach. The y-axis is plotted in
log10. The inset shows the violations at the beginning of the
evolution.

VII. DISCUSSION

We have investigated three alternative approaches of
constructing initial data for a binary black hole system.
Two of these alternatives involve asymptotic matching
of Post-Newtonian expansions to perturbative black hole
solutions of the metric, and one uses a resummed Post-
Newtonian expansion of the metric everywhere. We nu-
merically evolve all three alternatives using the BSS-
NOK system [11] together with the moving punctures
approach [8, 9] and compare them with evolutions that
start from standard puncture initial data. The two alter-
native data sets that were derived by asymptotic match-
ing have not been evolved before. Since they contain
singularities near the black hole centers, we have also
developed a particular algorithm to fill a certain region
inside each black hole with smooth data that approaches
puncture data at the center. In this way we can avoid the
use of black hole excision, so that we are able to use the
same moving punctures approach to evolve all our data
sets.
We find that the simplest data set, using low-order

asymptotic matching, does not lead to physically accu-
rate evolutions. Insufficient expansion of the extrinsic
curvature leads to black hole momenta that are far too
small for quasi-circular orbits, so that we observe an al-
most head-on collision. Also, low-order expansion of the
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metric yields gravitational waveforms lacking an initial
signature. Thus, this initial data set is not an improve-
ment over standard punctures.

Higher-order expansion techniques resulted in the pro-
duction of gravitational wave signals at the initial time
as well as proper quasi-circular inspiral orbits that subse-
quently lead to merger and ringdown. Eccentricity mea-
sures were higher for the Harmonic-match and ADMTT-
PN sets than what is seen in standard punctures, when
the puncture momentum parameters are fine-tuned to
achieve low eccentricities. However, by tuning our 3PN
order C3 parameter (see Eq. (28)) we were able to bring
the eccentricity of ADMTT-PN down as well. Both
Harmonic-match and ADMTT-PN sets look promising in
the sense that, unlike for standard puncture data, they
have realistic gravitational wave signals built-in from the
beginning of the evolution. In addition, they show a
reduction of spurious radiation when we compare with
standard puncture data.

There are, however, still problems with these alterna-
tive data sets that stem from the fact that they only
approximately satisfy the constraint equations of Gen-
eral Relativity. We have monitored the Hamiltonian and
momentum constraint violations during the evolutions.
We find that constraint violations of Harmonic-match
and ADMTT-PN sets are above the usual level com-
ing from numerical truncation errors observed when we
evolve standard puncture data. In the case of ADMTT-
PN these violations eventually decrease and reach a level
similar to what is seen for standard puncture data evo-
lutions. However, until this happens we see an unphys-
ical drop in the apparent horizon masses. In the case
of Harmonic-match, the constraint violations start at an
even higher level and never quite fall to the level observed
for standard puncture data evolutions, and again result
in unphysical behavior of the apparent horizon masses.

Future improvements need to be focused on these
constraint violations. An obvious remedy would be to
project the alternative data sets onto the solution mani-
fold of General Relativity by solving the constraint equa-
tions, e.g. as in [12] by using the York-Lichnerowicz con-
formal decomposition [50]. If the constraints are satis-
fied we expect the apparent horizon masses to be strictly
non-decreasing over time. Evolutions, horizon masses,
and eccentricity could then be compared to the standard
punctures approach and conclusions could be made on
more stringent grounds.

Most astrophysical black holes are expected to be spin-
ning. It is thus important to include spin in the initial
data construction. As already mentioned in Sec. III, stan-
dard punctures contain spin parameters that enter the
Bowen-York extrinsic curvature in Eq. (9), so that one
can set up initial data with spins. Including spins in the
alternative data sets discussed in this paper is possible
as well. For any of the data sets that are produced from
asymptotic matching one would have to redo the match-
ing calculation as in [17] and match a post-Newtonian
4-metric with spin to a perturbed black hole metric with

spin. This calculation, while certainly long and tedious,
is in principle possible. The situation is much simpler
for the post-Newtonian data set in ADMTT gauge dis-
cussed in Sec. IV. To leading order, the spin only enters
the Bowen-York piece Aij

BY in Eq. (15) in the same way
as in the case of standard punctures. It would thus be
easily possible to add these missing spin terms. This
alone would already result in spinning black holes. How-
ever, in order to obtain the correct waveform at the ini-
tial time we have to ensure that hTT

ij(4) in Eqs. (13) and

(15) is computed for post-Newtonian particle trajecto-
ries where spin is included in the equation of motion.
Since post-Newtonian trajectories for spinning particles
are well known, and since hTT

ij(4) is known for arbitrary

trajectories [13], the inclusion of spin in this data set is
not a complicated problem.
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Appendix A: Drawbacks of Asymptotic Matching

In [15–17] the ansatz,

Xα(xβ) =

5
∑

j=0

(m2

b

)j/2

(Xα)j (x
β) +O(v/c)6 (A1)

is made for the coordinate transformation that trans-
forms the coordinates Xα of the perturbed black hole
solution in inner zone 1 to the coordinates xβ that are
used in the near zone for the post-Newtonian metric.

Note that
(

m2

b

)j/2
∼ O(v/c)j . In Sec. V of [17] it is

shown that the zeroth order piece (Xα)0 of this coordi-
nate transformation corresponds to a simple translation
and the first order piece is

(Xα)1 = (Fβα)1 x
β + (Cα)1 , (A2)

where (Fβα)1 is anti-symmetric. The (Fβα)1 and (Cα)1
correspond to constants of integration that appear when
matching at O(v/c). As shown in Sec. V.E. of [17], the
(Fβα)1 can only be determined by matching the two 4-
metrics up to O(v/c)3. To be precise, (Fβα)1 comes

from matching the gij and g00 components at O(v/c)3.
This pattern continues in the sense that at each order
of matching one finds free constants of integration that
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can only be fixed once matching has been performed two
orders higher in v/c.
In the case of the lower order matching procedure used

in [15, 16], matching of the gij and g00 components of the
two 4-metrics has only been performed up to O(v/c)2.
This means that the piece (Fβα)1 could not be computed.
In fact, it was merely set to a value that simplified fur-
ther calculations. This has important consequences. As
shown in Sec. V.E. of [17] the only non-zero components

of (Fβα)1 are (F02)1 = − (F20)1 = −
√

m2/m. This yields

a term
(

m2

b

)1/2
(F02)1 t = −m2

m

(

m
b

)1/2
t in Y = X2(xβ),

which corresponds to a boost. This boost is needed to
transform the metric of the perturbed black hole solu-

tion in inner zone 1 (from a frame where it is at rest to a
frame where it is moving in the y-direction). In the case
of lower order matching as in [15, 16] this term is absent,
so that the metric used near the black hole is missing this
boost. The resulting extrinsic curvature (which is always
smaller than the 3-metric by a factor of v/c) is thus cor-
rect only up to O(v/c)2 and has errors of O(v/c)3, where
the missing boost would enter. This leads to a black hole
without sufficient momentum.

In general, this implies that if we want to obtain a
4-metric that is correct up to O(v/c)n with the match-
ing procedure in [15–17] we need to find the matching
coordinate transformation up to order O(v/c)n+2.
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[12] W. Tichy, B. Brügmann, M. Campanelli, and P. Diener,
Phys. Rev. D67, 064008 (2003), gr-qc/0207011.

[13] B. J. Kelly, W. Tichy, M. Campanelli, and B. F. Whiting,
Phys. Rev. D76, 024008 (2007), arXiv:0704.0628 [gr-qc].

[14] B. J. Kelly, W. Tichy, Y. Zlochower, M. Campanelli, and
B. F. Whiting, Class. Quant. Grav. 27, 114005 (2010),
0912.5311.

[15] N. Yunes, W. Tichy, B. J. Owen, and B. Brügmann,
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[18] G. Schäfer, Annals of Physics 161, 81 (1985).
[19] R. Arnowitt, S. Deser, and C. W. Misner, in Gravita-

tion: An Introduction to Current Research, edited by
L. Witten (John Wiley, New York, 1962), pp. 227–265,
gr-qc/0405109.

[20] T. W. Baumgarte and S. L. Shapiro, Phys. Rep. 376, 41
(2003), gr-qc/0211028.

[21] G. B. Cook, Living Rev. Rel. 3, 5 (2000).
[22] D. Brill and R. Lindquist, Phys. Rev. 131, 471 (1963).
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U. Sperhake, Phys. Rev. D77, 064010 (2008), 0709.2160.

[38] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor.
Phys. Suppl. 90, 1 (1987).

[39] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).
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