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In Dirac-Born-Infeld inflation, changes in the sound speed that transiently break the slow roll
approximation lead to features in the power spectrum. We develop and test the generalized slow
roll approximation for calculating such effects and show that it can be extended to treat order unity
features. As in slow-roll, model independent constraints on the potential of canonical inflation can
be directly reinterpreted in the DBI context through this approximation. In particular, a sharp
horizon scale step in the warped brane tension can explain oscillatory features in the WMAP7 CMB
power spectrum as well as features in the potential. Differences appear only as a small suppression
of power on horizon scales and larger.

I. INTRODUCTION

In Dirac-Born-Infeld (DBI) inflation [1, 2], transient
but rapid changes in the sound speed leave their imprint
as features on the power spectrum. For string-motivated
DBI examples, such features might arise from duality cas-
cades which impart steps in the warped brane tension
[3, 4]. Annihilation of branes during DBI inflation has
also been shown to lead to particle production and to
the imprint of features on the warp [5]. More generally,
within the context of effective field theory [6] it has been
shown that a sharp step in the sound speed leads to os-
cillatory features in the power spectrum of fluctuations
[7].

Power spectrum features from sudden changes in the
warped brane tension of DBI inflation are closely related
to those from sudden changes in the potential for canon-
ical single field inflation. Measurements of the CMB
temperature power spectrum from WMAP place obser-
vational constraints on the latter. Recently, the gener-
alized slow roll approach (GSR) [8, 9] has been used to
extract model-independent constraints from the WMAP
data on features as sharp as 1/4 of an efold [10, 11].
Even sharper features lead to highly oscillatory power
spectrum features which can evade these constraints due
to projection effects. Indeed there is a special case where
a sharp step in the potential on scales near the current
horizon can fit the WMAP data better that a smooth
model in the acoustic regime [12].

The GSR approach remains valid for single field infla-
tion with non-canonical kinetic terms [13], including DBI
inflation, with a suitable reinterpretation of the source of
deviations from slow-roll [14]. In this Paper, we develop
the GSR approach for DBI inflation and show how ob-
servational constraints on potential features translate to
constraints on warp features.

In §II, we briefly review the phenomenology of DBI in-
flation and the exact computation of its power spectrum.
In §III we develop and test the GSR approach in the DBI
context and establish the correspondence between poten-
tial features and warp features. In §IV, we consider the
special case of a sharp step in the warp analytically and

show that it can explain the WMAP data as well as a
sharp step in the potential. We discuss these results in
§V.

II. DBI INFLATION

We consider DBI inflation to be a phenomenological
model with the Lagrangian density

L =
[
1−

√
1− 2X/T (φ)

]
T (φ)− V (φ), (1)

where the kinetic term 2X = −∇µφ∇µφ. In braneworld
theories that motivate the DBI Lagrangian, φ determines
the position of the brane, T (φ) gives the warped brane
tension, and V (φ) is the interaction potential.

As a consequence of the non-canonical kinetic struc-
ture, field perturbations propagate at the sound speed

cs(φ,X) =
√

1− 2X/T (φ). (2)

The inflaton energy density and pressure can be ex-
pressed in terms of the sound speed as

ρ(φ,X) =

(
1

cs
− 1

)
T (φ) + V (φ),

p(φ,X) = (1− cs)T (φ)− V (φ). (3)

Note that for X/T � 1, cs = 1 and the Lagrangian, ρ
and p take on their canonical forms.

For the background equations of motion, we take the
acceleration equation

HN

H
= −φ

2
N

2cs
≡ −εH , (4)

where X = H2φ2N/2, the Hubble parameter satisfies the
Friedmann equation H2 = ρ/3, and the field equation

φNN = −
(
HN

H
+ 3c2s

)
φN − c3s

Vφ
H2

+
1

2
(1− cs)2(1 + 2cs)

Tφ
H2

. (5)
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Here and throughout the subscript N denotes d/d ln a,
the subscript φ likewise d/dφ, and we choose units where
Mpl = (8πG)−1/2 = c = h̄ = 1. If warp and potential
features are absent near the initial conditions, initial val-
ues for {φ, φN , H} can be set on the slow-roll attractor

φN ≈ −
cs
3

Vφ
H2

, H2 ≈ V

3
, (6)

where we assume that the Vφ term dominates over Tφ.
Given that we choose to solve Eq. (4) and (5), we must
ensure that the Friedmann equation is exactly satisfied
on the initial condition [15]. This can be achieved by first
choosing the initial φ(Ni), then taking

HφN
∣∣
Ni

= −
√
V

3

Vφ
V
cs, cs

∣∣
Ni

=

(
1 +

V

3T

V 2
φ

V 2

)−1/2
,

(7)
and calculating ρ, H exactly through Eq. (3). Since
φN = HφN/H, we now have a self-consistent set of ini-
tial conditions {φ, φN , H} at Ni. This technique remains
valid for all cs in the slow-roll approximation. On the
other hand, for cs � 1 the slow-roll approximation can
remain valid even for steep potentials in Eq. (6).

We evolve these equations until the field reaches φ =
φend which we take to be the end of inflation and define
N = 0 to be this epoch

N =

∫ ln aend

ln a

d ln a, (8)

such that N < 0 during inflation. For the purposes of
calculating the power spectrum, it is useful to express
the efolding number, N , in terms of the sound horizon,
the comoving distance sound can travel from N to the
end of inflation

s(N) =

∫ 0

N

dÑ
cs
aH

=
1

aend

∫ 0

N

dÑ
cs

eÑH
. (9)

By defining the effective reheat temperature as Treheat ≡
T0/aend, where the present CMB temperature is T0 =
2.726K, we can express the sound horizon as

s(N)

500Mpc
= e−65.08Treheat

∫ 0

N

dÑ
cs
aH

. (10)

The curvature power spectrum is then given by

∆2
R ≡

k3PR
2π2

= lim
ks→0

∣∣∣∣ksyf
∣∣∣∣2 , (11)

where the mode function y obeys the Mukhanov-Sasaki
equation [14, 16]

d2y

ds2
+

(
k2 − 2

s2

)
y =

g(ln s)

s2
y. (12)

Here

g ≡ f ′′ − 3f ′

f
, (13)

with ′ ≡ d/d ln s throughout and

f2 = 8π2 εHcs
H2

(
aHs

cs

)2

. (14)

We solve Eq. (12) assuming Bunch-Davies initial condi-
tions where limks�1 y = eiks. Note that written in this
form, the Mukhanov-Sasaki equation takes exactly the
same form for canonical and non-canonical kinetic terms.
This fact will allow us to remap existing constraints on
g(ln s) onto DBI models.

III. GSR APPROXIMATION

In this section, we begin by reviewing the GSR ap-
proach to calculating the curvature power spectrum
[8, 9, 14] and show how to apply it to the DBI model.
We then test the accuracy of the approach against the
exact computation for a step-like feature in the warped
brane tension [4] and show that the model-independent
constraints on features in the potential for canonical sin-
gle field inflation [10, 11] can be readily reinterpreted in
the DBI context.

A. Technique

Briefly, the GSR approach to solving the Mukhanov-
Sasaki equation (12) is to consider the RHS as an external
source with an iterative correction to the field value y.
To lowest order, we replace y → y0 where

y0 =

(
1 +

i

ks

)
eiks, (15)

is the solution to equations with g → 0 and solve for
the field fluctuation y through the Green function tech-
nique. To second order in slow-roll, the curvature power
spectrum is given by [10, 17]

ln ∆2
R = G(ln smin) +

∫ ∞
smin

ds

s
W (ks)G′(ln s) (16)

+ ln

{
[1 +

1

4
I21 (k) +

1

2
I2(k)]2 +

1

2
I21 (k)

}
,

where the window function

W (u) =
3 sin(2u)

2u3
− 3 cos(2u)

u2
− 3 sin(2u)

2u
. (17)

Here

G = −2 ln f +
2

3
(ln f)′, (18)

and thus

G′ = −2(ln f)′ +
2

3
(ln f)′′ =

2

3
g − 2

3
[(ln f)′]2. (19)



3

We call G′ the GSR source function. The quadratic term
in (ln f)′ appears to ensure constant curvature fluctua-
tions above the sound horizon.

The I1 and I2 integrals are the second order corrections

I1(k) =
1√
2

∫ ∞
0

ds

s
G′(ln s)X(ks),

I2(k) = −4

∫ ∞
0

du

u
[X +

1

3
X ′]

f ′

f
F2(u), (20)

with u = ks,

F2(u) =

∫ ∞
u

dũ

ũ2
f ′

f
, (21)

and

X(u) =
3

u3
(sinu− u cosu)2. (22)

To calculate the power spectrum in the GSR approx-
imation, we need to obtain the source functions G′ and
f ′/f from the solution to the background equations of
motion (4) and (5). In terms of the slow-roll parameters
[14]

G′ =
2

3
(2εH − 2ηH − σ1) +

2

3
(
aHs

cs
− 1)2 (23)

+
2

3
(
aHs

cs
− 1)(4 + 2εH − 2ηH − σ1)

+
1

3

(
aHs

cs

)2 [
2δ2 + 2ε2H − 2ηH − 2η2H

−3σ1 + 2ηHσ1 + σ2
1 − εH(4ηH + σ1)− σ2

]
,

and

f ′

f
=

(
aHs

cs

)(
ηH − εH +

1

2
σ1

)
+

(
1− aHs

cs

)
(24)

where the additional slow-roll parameters are defined by

ηH ≡ εH −
1

2

d ln εH
dN

,

δ2 ≡ εHηH + η2H −
dηH
dN

,

σ1 ≡
d ln cs
dN

,

σ2 ≡
dσ1
dN

. (25)

Using the field equation (5), we can write

φNN
φN

= εH − c2sη̃H +
1

2

(1− cs)(1 + 2cs)

1 + cs
σ̃1, (26)

where

η̃H ≡
(

3 +
Vφcs
φNH2

)
,

σ̃1 ≡
Tφ
T
φN . (27)

These auxiliary parameters η̃H and σ̃1 quantify slow-roll
deviations generated by features in the potential Vφ and
features in the warp Tφ respectively.

In terms of the auxiliary parameters, the slow roll pa-
rameters themselves become

ηH =
1 + c2s

2
η̃H −

cs
2

1− cs
1 + cs

σ̃1,

σ1 = (1− cs)σ̃1 + (1− c2s)η̃H . (28)

Note that for ηH , the term involving σ̃1 is suppressed
both as cs → 0 and cs → 1. Furthermore η̃H is slow roll
suppressed on the attractor of Eq. (6) and for cs = 1,
ηH = η̃H . If features in T (φ) drive deviations from slow-
roll then the σ̃1 term dominates, ηH = [cs/2(1 + cs)]σ1
and hence |ηH | � |σ1| for cs � 1.

The remaining slow roll parameters σ2 and δ2 can be
constructed by taking the derivatives of σ1 and ηH

σ2 = (1− cs)
dσ̃1
dN
− csσ1σ̃1 + (1− c2s)

dη̃H
dN
− 2c2sσ1η̃H ,

δ2 = −1 + c2s
2

dη̃H
dN

+ εHηH + η2H − c2sσ1η̃H

+
cs
2

1− cs
1 + cs

dσ̃1
dN

+
cs
2

1− 2cs − c2s
(1 + cs)2

σ1σ̃1, (29)

where

dη̃H
dN

= cs
Vφφ
H2

+
csVφ
φNH2

(
σ1 −

φNN
φN

+ 2εH

)
= cs

Vφφ
H2

+ (η̃H − 3)

(
εH + η̃H +

1− cs
1 + cs

σ̃1
2

)
,

dσ̃1
dN

=
Tφφ
T
φ2N −

(
Tφ
T
φN

)2

+
Tφ
T
φNN (30)

=
Tφφ
T
φ2N −

(1 + cs + 2c2s)

2(1 + cs)
σ̃2
1 + (εH − c2sη̃H)σ̃1.

For sharp features in the warp and potential, σ2 and δ2
dominate respectively in G′ due to the appearance of sec-
ond derivatives in Eq. (30). Note that since φ2N = 2εHcs,
the impact of fractional features in the warp vs. the po-
tential potential is suppressed by slow roll parameters.

In the slow roll limit, one can iteratively substitute the
attractor solution Eq. (6) into the field equation to obtain

G′ ≈ 4εH − 2ηH + σ1 (31)

≈ cs(2 + c2s)

(
Vφ
V

)2

− 2c3s
Vφφ
V
− cs(1− c2s)

Tφ
T

Vφ
V
,

where cs(φ) is given by the attractor solution Eq. (7).
The absence of a Tφφ term in Eq. (31) can be attributed
to the fact that the attractor solution is determined by
Vφ. Furthermore, in the slow roll limit, evolution in G′

is second order in slow roll parameters and

f ′

f
≈ −2εH + ηH −

1

2
σ1 ≈ −

1

2
G′ (32)
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and so

I1 ≈
π

2
√

2
(4εH − 2ηH + σ1),

I2 ≈ −4

(
f ′

f

)2

≈ − (4εH − 2ηH + σ1)
2
. (33)

Thus in the slow roll limit the total second order correc-
tion involves a near cancellation of the I1 and I2 terms

ln

{
[1 +

1

4
I21 (k) +

1

2
I2(k)]2 +

1

2
I21 (k)

}
≈ I21 + I2

≈
(
π2

8
− 1

)
(4εH − 2ηH + σ1)

2
. (34)

If sharp features in either the potential or the warp
dominate

G′ ≈ 2

3
δ2 −

1

3
σ2

≈ −2cs
Vφφ
V
− 1− cs

3(1 + cs)

Tφφ
T
φ2N . (35)

Unlike the canonical case, the functional constraints im-
posed by observational constraints on V (φ) and T (φ) dif-
fer in the two limits. Nonetheless deviations in the power
spectrum for the sharp feature case, which can be large
yet observationally viable, share strong similarities be-
tween those generated by T (φ) and V (φ). Also, unlike
the slow-roll limit, I1 tends to be larger than I2 in that
only it depends directly on second derivatives of T (φ) or
V (φ) as we shall see explicitly in the next section.

B. Numerical Tests

The GSR construction in the previous section applies
to any model with features in the warped brane tension
T (φ) or potential V (φ). For definiteness and motivated
by the WMAP data, we test the GSR approximation on
models where T (φ) has a step feature [4]

T (φ) =
φ4

λB
[1 + bF (φ)], (36)

with

F (φ) = tanh

(
φ− φs
d

)
− 1 (37)

and φ inflates on a potential

V (φ) = V0(1− 1

6
βφ2), (38)

rolling from small to large values. We have chosen a con-
vention that after the feature, T (φ) goes back to its b = 0
value. Since physical scales are matched to the end of in-
flation through Eq. (9), this simplifies the comparison to

the smooth featureless case. For simplicity, we will take

Treheat = V
1/4
0 following [18]. Thus the DBI step model

is specified by 4 parameters {λB , V0, β, φend} controlling
the underlying smooth spectrum and 3 parameters de-
scribing the step feature {φs,b,d}.

In order to set the parameters for the smooth b = 0
spectrum, it is useful to re-express the attractor solution
of Eq. (6) in terms of efolds [4]

φN =
dφ

dN
≈ φ2

H
√
λB

, (39)

and hence

φ(N) ≈ −H
√
λB

1

N −N0
,

cs(N) ≈ − 3

β

1

N −N0
,

εH(N) ≈ −β
6
H2λB

1

(N −N0)3
, (40)

where N0 is an integration constant determined by our
definition that N(φend) = 0. In the slow roll approxima-
tion

∆2
R ≈

(
H

2πφN

)2

=
H2

8π2εHcs

≈ (N −N0)4

4π2λB
, (41)

and the tilt

ns − 1 ≡ d ln ∆2
R

d ln k
≈ 4

N −N0
. (42)

Note that to have a tilt that is compatible with ob-
servations ns − 1 ∼ −0.04 at N ∼ −50 one requires
N0 ∼ 50. In string-inspired models where φend ≈ H

√
λB ,

N0 = O(1). While such problems can be ameliorated by
introducing stringy physics not included in the DBI ac-
tion [18] doing so degrades the predictive power of cal-
culations based on this action (cf. [4]). We therefore in-
stead require φend � H

√
λB so that inflation ends while

the field is deep in the DBI regime. Finally, to satisfy
constraints from upper limits on equilateral type bispec-
tra, we require cs > 1/30 for scales relevant to the CMB
[19].

These conditions are satisfied by the following choices

λB = 1.93× 1015,

V0 = 7.10× 10−26,

β = 0.5,

φend = 1.065× 10−7. (43)

In our parameterization V0 drops out of expressions for
the curvature power spectrum at a fixed N−N0 or ns−1
and only impacts the mapping between field and physical
scale through Treheat. It also enters into the tensor-scalar
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FIG. 1. GSR source function G′ for a warp step with b = −0.4
(top) and b = −0.005 (bottom) with d = 2.81 × 10−11 Also
shown is the approximate form based on Tφφ in the sharp,
small amplitude limit from Eq. (45) which is an excellent ap-
proximation for the small b case and remains in good quali-
tative agreement for the high b case.

ratio and so we take for definiteness a small value such
that tensors are negligible.

Since the GSR approximation reproduces the exact
second order expansion in slow roll parameters by con-
struction when they are all small, we test the technique
for the nontrivial case where b is order unity.

In Fig. 1, we show an example of the GSR source func-
tion G′ where b = −0.4 (top) and −0.005 (bottom) and
d = 2.81 × 10−11 and φs = 5.67 × 10−8. Both cases ap-
pear like the second derivative of the step in T (φ) with
a width determined by the number of efolds it takes for
the inflaton to cross the step

δ ln s ≈ δN ≈ d

φN
. (44)

The main difference is that at the larger b value the lo-
cation, amplitude and width of the feature differ slightly.

In Fig. 2 we show the corresponding power spectrum.
In the top panel, we compare the power spectrum from
the full GSR approximation (“GSR2”) of Eq. (16) to the
exact solution. In the middle panel, we show that the
approximation is accurate at the 1-2% level for the or-
der unity feature. Moreover, the second order correc-
tions remain small as shown in the bottom panel where
“GSR1” denotes setting I2 = 0 and “GSR0” denotes set-
ting both I1 = I2 = 0 in Eq. (16). Here the maximum
value that |I1| attains is 0.37. As in the canonical case,

max|I1| < 1/
√

2 ensures accuracy in the power spectrum
of the GSR approximation, typically to a few percent in

FIG. 2. GSR vs exact solution for the power spectrum
(top panel), the fractional difference between the two (middle
panel), and the impact of second order corrections (bottom
panel) corresponding to the b = −0.4 model in Fig. 1 (top).
GSR2 denotes the full solution (16) with I1 and I2, GSR1 the
solution with I2 = 0 and GSR0 with I1 = I2 = 0. While
the GSR2 solution captures effects at the 1 − 2% level for
b = −0.4, even the leading order GSR0 is accurate at the
10% level.

observables such as the CMB power spectrum [11].
Note I2 provides a negligible absolute correction for or-

der unity and smaller features. For small features I1 and
I2 corrections do become comparable but in that case
both are negligible (see Eq. 33). Since both leading or-
der and I1 terms depend only on a single source function
G′(ln s), observational constraints from the power spec-
trum may be directly mapped onto constraints on this
GSR source function [9].

C. Observational Constraints on Broad Features

Model-independent analysis of features in the source
function G′ have been conducted using a principal com-
ponent basis that is complete for the WMAP7 data set
for broad inflaton features that are traversed in δN > 1/4
[10, 11]. In the acoustic regime of s ∼ 100−400 Mpc, con-
straints on possible deviations are extremely tight with
percent level limits on the broadest features [10]. As il-
lustrated in Fig. 1, these constraints can be interpreted
in the DBI context as limits on

G′ ≈ −2(1− cs)
3(1 + cs)

csεH
Tφφ
T
. (45)

The only broadband feature that marginally improves the
likelihood is associated with the known ` ∼ 20−40 glitch
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in the WMAP data. However, a simple step in the warp
does not fit the data as well as a step in the potential due
to the change in cs across the step [4]. Since the attractor
solution for the power spectrum in Eq. (41) depends on
the sound speed, a step leads not only to oscillations, but
also a step in the power spectrum across the feature (see
Fig. 2).

IV. SHARP STEP

Sharp features in the warped brane tension that are
traversed by the inflaton in δN � 1 produce high fre-
quency oscillations in the curvature power spectrum.
These are more difficult to constrain observationally than
broadband features due to projection effects and sky cov-
erage. They are also significantly more cumbersome to
calculate as their effects persist over orders of magnitude
in wavenumber.

In this section, we will derive an analytical solution for
a very small and very sharp step in the warp factor and
then test it against order unity steps. From Fig. 3, we
can infer that for b� 1 an analytic model based on inte-
grating derivatives of T (φ) should be accurate once the
appropriate conversions between the field and sound hori-
zon are made. At larger b we can see that the main differ-
ences are that the location, amplitude, and width of the
feature in G′ changes which we shall see require a recal-
ibration of corresponding effects in the power spectrum.
We use this analytic approximation to show that there is
a DBI equivalent to the sharp potential step model that
improves the WMAP7 likelihood by 2∆ lnL ∼ 12 [12].

We first start with some general considerations dic-
tated by energy conservation and the slow-roll attractor.
If the inflaton crosses a step in δN � 1 then we can
ignore energy loss to the expansion and set the total en-
ergy ρ in Eq. (3) to be equal before and immediately after
the crossing [4]. Kinetic energy in excess (or deficit) of
the attractor after the step will then dilute away on the
δN ∼ 1 timescale. Denoting with ∆ the change in quan-
tities going through the step, we have immediately after
the step

∆cs
cs

=
1− cs

1 + cs∆T/T

∆T

T
. (46)

Note that for a decrease in T , energy conservation re-
stricts an amplitude of |∆T/T | = |2b| < 1/cs. For a
small amplitude warp feature, we can linearize

∆cs
cs
≈ (1− cs)

∆T

T
. (47)

Thus for the case of a small, sharp step in T , the sound
speed takes a fractional step of comparable amplitude.
Furthermore the slow-roll parameters σ1 and σ2 follow
by taking derivatives of ∆T/T during the interval around
the step. Similarly

εH =
3

2

ρ+ p

ρ
≈ 3

2

(
1

cs
− cs

)
T

V
, (48)

and so

∆εH
εH

=
cs

1 + cs∆T/T

1− cs
1 + cs

∆T

T

=
cs

1 + cs

∆cs
cs

. (49)

Note that at low sound speed, the relative effect of the
step on εH is suppressed vs cs by cs/(1 + cs), as are ηH
compared with σ1, and δ2 compared with σ2, in agree-
ment with Eq. (28).

After crossing the step, we know that the inflaton hits
the attractor solution (6) as the kinetic energy from the
step decays after several efolds. For a small amplitude
step

∆cs
cs

=
1

2
(1− c2s)

∆T

T
, (50)

and

∆εH
εH

=
∆cs
cs

. (51)

Given that the change in εH is determined by the change
in the sound speed we seek to quantify the full evolution
of cs from the step through to the attractor regime.

Following [12], we begin by expanding the field as

φ = φ0 + φ1, (52)

where φ = φ0 when b = 0, and calculate to zeroth order
in the unperturbed slow-roll parameters. Furthermore,
the expansion rate is also unaffected by the warp feature
since εH � 1 throughout. The field equation for φ1 then
becomes

φNN1 = −3φN1 +
3

2
(1− c2s0)φN0

T1
T0

+
1

2

(1− cs0)2(1 + 2cs0)

1− c2s0
φ2N0

Tφ1
T0

, (53)

where again 0 and 1 denote unperturbed b = 0 and finite
b perturbations respectively. Here we have used the fact
that

cs1
cs0

=
(c2s0 − 1)

2c2s0

(
2
φN1

φN0
− T1
T0

)
. (54)

We can further transform the time variable from efolds
N to background field value φ0 by taking φN0 ≈ const.

d

dφ0

(
e

3φ0
φN0

dφ1
dφ0

)
= e

3φ0
φN0

[3

2
(1− c2s0)

1

φN0

T1
T0

+
1

2

(1− cs0)2(1 + 2cs0)

1− c2s0
T1φ
T0

]
. (55)

The first term on the RHS can be integrated by parts
to make the whole source proportional to T1φ. For sharp
features, T1φ is very concentrated around the feature and,
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FIG. 3. Analytic vs. GSR0 solution for a small amplitude sharp step b = −0.005, d = 0.005φN0 = 2.44 × 10−12, with
cs0 = 0.0507 (left) and 0.50 (right). Top panel: difference in lnPR between this model and the same b = 0 model. Bottom
panel: difference between the curves in the top panel divided by the smooth envelope of the oscillations (see text).

consequently, we can approximate the background quan-
tities by their values at φs. Combined with the boundary
condition that the field is on the attractor before the step

lim
φ�φs

dφ1
dφ0

= −(1− c2s0)b, (56)

we obtain

dφ1
dφ0

=
1− c2s0

2
bF (φ0)− c2s0

2

1− cs0
1 + cs0

b[F (φ0) + 2]e
3(φs−φ0)
φN0 .

(57)

Using this result in Eq. (54) and replacing

φs − φ0 = φN0(Ns −N), (58)

we obtain

cs1
cs0

=
1− c2s0

2
bF (φ0) +

(1− cs0)
2

2
b[F (φ0) + 2]e3(Ns−N).

(59)

Note that before the step cs1/cs0 = −(1− c2s0)b and right
after the step cs1/cs0 = (1 − cs0)2b and so ∆cs/cs =
2(1 − cs0)b as expected from Eq. (47). Several efolds
after the step cs1/cs0 = 0 and so ∆cs/cs = (1− c2s0)b as
expected from Eq. (50).

From εH = φ2N/2cs we obtain

εH1

εH0
=

1− c2s0
2

bF (φ0) (60)

− 1 + c2s0
2

(1− cs0)

(1 + cs0)
b[F (φ0) + 2]e3(Ns−N),

which also satisfies expectations from Eqs. (49) and (51).
From these quantities, we calculate G′ taking εH → 0,

b→ 0, d→ 0

G′ ≈ −1

3
σ2 +

2

3
δ2 −

5

3
σ1 − 2ηH +

8

3
(
aHs

cs
− 1). (61)

In this approximation,

aHs

cs
− 1 ≈ −5− 2cs0 − 3c2s0

8
bF (φ0)eN−Ns

− 3(1− cs0)2

8
b[F (φ0) + 2]e3(Ns−N). (62)

After several integrations by parts we obtain the change
in ln ∆2

R from Eq. (16) due to the feature, with I1 = I2 =
0 from the feature, as

ln ∆2
R1 = C1W (kss) + C2W

′(kss) + C3Y (kss), (63)

where

Y (x) =
6x cos(2x) + (4x2 − 3) sin(2x)

x3
(64)

is proportional to
∫
d lnxW ′/x. Here

C1 = 2(1− c2s0)b,

C2 = −2

3

1− cs0
1 + cs0

b,

C3 =
5− 2cs0 − 3c2s0

4
b. (65)
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FIG. 4. Analytic vs. GSR0 solution for a large amplitude sharp step b = −0.25 and d = 2.44 × 10−12 with low sound speed
cs0 = 0.0507 model as in Fig. 3. Left: the analytic approximation using the linear in b scalings of Eq. (65) begins to depart
from GSR0 as b approaches unity. Note however that the functional form of the feature remains the same but amplitudes
and damping require rescaling. Right: nonlinearly rescaled amplitudes and damping of Eq. (72) recover the few percent level
accuracy seen in the small step case.

Given that

lim
x→0

W (x) = 1, lim
x→∞

W (x) = 0,

lim
x→0

W ′(x) = 0, lim
x→∞

W ′(x) = −3 cos(2x),

lim
x→0

Y (x) = 0, lim
x→∞

Y (x) = 0, (66)

the W term represents a step in the power spectrum at
kss ∼ 1 of fractional amplitude 2b(1−c2s0), which follows
directly from the attractor solution, and the W ′ term
represents a constant amplitude oscillation at kss � 1.
The latter is exactly the same form as oscillations pro-
duced by a step in the potential for a canonical kinetic
term (see [12] Eq. 32). Unlike the canonical case, the step
in power is comparable to the amplitude of oscillations.
Furthermore, the additional Y term changes the solution
near kss ∼ 1. Since even for b � 1 a small error in the
location of the feature ss, which controls the frequency
of the oscillation, causes a noticeable change in the phase
of the oscillation over many cycles, we define it such that

δG′(ln ss) = 0 (67)

for the change from the smooth b = 0 model. This def-
inition differs slightly from the sound horizon at φs for
large b as shown in Fig. 1.

For finite step width d in field space, the inflaton tra-
verses the step in ∆s/ss ≈ |d ln s/dφ|d ≈ d/φN0. The
window functions W and W ′ oscillate on a time scale

∆s = 1/k. Thus the integral over G′ is damped for
kss > φN/d. For the tanh step, the integral can be
approximated following [12]

ln ∆2
R1 =

[
C1W (kss) + C2W

′(kss) + C3Y (kss)
]

×D
(
kss
xd

)
, (68)

where

xd =
dφ

d ln s

1

πd
≈ φN0

πd
=

√
2εH0cs0
πd

, (69)

and the damping function is

D(y) =
y

sinh y
. (70)

To obtain the full power spectrum we add ln ∆2
R1 to a

calculation of the b = 0 model. This can be an exact nu-
merical solution, a slow-roll approximation, or the GSR
approximation. For comparison purposes, we choose here
to take the GSR0 (I1 = I2 = 0) solution from §III.

In Fig. 3, we test the analytic approximation for a small
amplitude sharp step b = −0.005 and two values of the
sound speed. In the lower panel we divide the difference
between the analytic and GSR0 solutions by the envelope
function

3C2D
(
kss
xd

)
. (71)



9

FIG. 5. CMB temperature power spectrum for the a horizon
scale, sharp step in the potential V (φ) of a canonical inflation
fit to the WMAP7 data versus the matching step in the DBI
warp T (φ). Lower panel shows the fractional deviation from
a smooth spectrum with the same average power. The two
types of steps produce nearly identical deviations at high `
and so fit the data equally well. Both spectra are calculating
using their respective analytic approximations and without
gravitational lensing.

Agreement is at the 1% level except on scales much larger
than the step kss � 1 and those affected by damp-
ing kss >∼ xd. In the former case differences from the
change in φN from φN0 due to the different slow-roll at-
tractor change the mapping between φ and ln s. Near
the damping scale, small changes in xd are amplified in
the fractional difference due to the exponential nature of
the damping even though the absolute prediction remains
accurate.

As b approaches order unity, the analytic approxima-
tion begins to misestimate the amplitudes and damping
of the features. In Fig. 4 (left) we show a case where
b = −0.25 and d = 2.44 × 10−12, with low sound speed
cs0 = 0.0507. Note that the functional form of the power
spectrum in Eq. (63) remains the same only the coeffi-
cients differ. We therefore rescale them as

C1 = ln

[
1− 2bc2s0

1− 2b

]
,

C2 = −2

3

1− cs0
1 + cs0

1√
1− 2b

b,

C3 =
5− 2cs0 − 3c2s0

4

1√
1− 2b

b,

xd =
dφ

d ln s

∣∣∣
ss

1

πd
, (72)

where the form of C1 can be derived from the attrac-

tor solution and the form of the C2, C3 corrections is
motivated by the fact that T = 0 before the feature for
b = 1/2. In Fig. 4 (right), we show that the agreement is
again good after these rescalings even for the b = −0.25
case.

Given that the analytic approximation works quite well
even for relatively large values of b and its functional form
mimics a step in the potential at kss � 1, we can remap
results for the latter onto the former. A potential step
at ss = 8163 Mpc of amplitude C2 = 0.11 improves the
WMAP7 likelihood by 2∆ lnL ≈ 12 [12]. In terms of the
warp step, these parameters translate into b = −0.218
for cs0 = 0.0507 and d → 0. In Fig. 5 we compare the
CMB temperature power spectra predicted by the two
models using the best fit parameters for the cosmological
parameters: Ωbh

2 = 0.0222, Ωch
2 = 0.11, h = 0.71,

τ = 0.10, ln 1010As = 3.077, ns = 0.965 such that the
underlying smooth power spectrum is

∆2
R0 = As

(
k

0.05Mpc−1

)ns−1
. (73)

Note that aside from small changes at low multiple `
where the cosmic variance is high, the two spectra are in-
distinguishable. Thus a step in the warp fits the WMAP7
data as well as a step in the potential.

V. DISCUSSION

We have shown that the GSR approximation can be
applied to DBI inflation to constrain features in the
warped brane tension T (φ) from observational data. The
approximation accurately recovers corresponding fea-
tures for up to order unity deviations. Previous work on
constraining the GSR source function G′ and hence sec-
ond derivatives of the potential V (φ) for canonical fields
can be directly reinterpreted in the DBI context as lim-
its on the second derivative of T (φ) [10, 11]. The main
difference between the two is that features in T (φ) once
traversed can strongly affect the slow-roll attractor for
modes that cross the sound horizon later.

The correspondence between features in V (φ) and
T (φ) is especially close in the limit of extremely sharp
features, for example a step feature. In both cases the
power spectrum exhibits constant amplitude oscillations
for modes that cross the sound horizon after the step.
Consequently, the preference for a horizon-sized step in
the potential in WMAP7 implies a corresponding prefer-
ence for a step in T (φ). The main difference is a reduction
of power for the low k modes that cross before the fea-
ture. The large cosmic variance of these modes prevents
a significant distinction between the two. On the other
hand, features in V (φ) for canonical inflation and T (φ)
for DBI inflation should induce very different bispectra.
We leave these considerations to a future work.
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