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Rapidly rotating, slightly non-axisymmetric neutron stars emit nearly periodic gravitational waves
(GWs), quite possibly at levels detectable by ground-based GW interferometers. We refer to these
sources as “GW pulsars”. For any given sky position and frequency evolution, the F-statistic is
the maximum likelihood statistic for the detection of GW pulsars. However, in ”all-sky” searches
for previously unknown GW pulsars, it would be computationally intractable to calculate the (fully
coherent) F-statistic at every point of (a suitably fine) grid covering the parameter space: the
number of gridpoints is many orders of magnitude too large for that. Therefore, in practice some
non-optimal detection statistic is used for all-sky searches. Here we introduce a “phase-relaxed” F-
statistic, which we denote Fpr, for incoherently combining the results of fully coherent searches over
short time intervals. We estimate (very roughly) that for realistic searches, our Fpr is ∼ 10− 15%
more sensitive than the “semi-coherent” F-statistic that is currently used. Moreover, as a byproduct
of computing Fpr, one obtains a rough determination of the time-evolving phase offset between one’s
template and the true signal imbedded in the detector noise. Almost all the ingredients that go
into calculating Fpr are already implemented in the LIGO Algorithm Library, so we expect that
relatively little additional effort would be required to develop a search code that uses Fpr.

PACS numbers: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

I. INTRODUCTION

The F -statistic is the maximum likelihood statistic
for the detection of nearly monochromatic gravitational
waves (GWs) from a neutron star with known (or as-
sumed) sky location and frequency evolution [1]. The
basic idea behind the F -statistic is simply this: for any
given sky location and frequency evolution, the set of pos-
sible GW signals forms a four-dimensional (real) vector
space [1, 3]. The four basis vectors are the two quadra-
tures (sin and cos) of each of the two polarization bases,
+ and ×. Because the set is a vector space (not just a
4-d manifold), it is computationally trivial to maximize
the likelihood function over this set; F is the maximized
log-likelihood. For Gaussian noise, the probability distri-
bution function (pdf) of F is also particularly simple: a
(perhaps non-central) χ2 distribution with 4 degrees of
freedom. In the original paper by Jaranowski, Krolak &
Schutz [1] (hereinafter referred to JKS), the F -statistic
was derived only for the case of a single GW detector
and a single GW pulsar. (We trust that the reader un-
derstands that GW ”pulsar” is a slight misnomer, since
the GW emission is sinusoidal, not pulsed.) Cutler &
Schutz [4] showed how the F -statistic can be general-
ized in a straightforward manner to the cases of 1) a
network of detectors noise curves, and 2) an entire col-
lection of known sources. A proper Bayesian version of
the F-statistic is derived in [2].

In practice, searches for nearly-monochromatic GWs
are separated into a few different types, depending on
how much is known about the source. The different
types of searches can have vastly different computational
requirements. While the search for a GW counterpart
to a known radio pulsar is trivial in terms of computa-
tional burden, “all-sky” searches for GW pulsars with no

known counterpart (and hence unknown frequency and
frequency derivatives) are currently limited by the avail-
able computational power. That is, we could dig deeper
into the existing data sets if we possessed either larger
computational resources or more efficient algorithms. In
this paper we demonstrate a way of significantly improv-
ing on the existing algorithms.
Currently, the most sensitive all-sky searches are based

on the following idea [5]. For a GW pulsar with unknown

frequency evolution (i.e., unknown f , ḟ , etc.), computa-
tional power required for a fully coherent search grows as
a high-power of the total observation time, T . Therefore
in practice one divides T into some number N (typically
of order 102) short intervals of duration ∆T = T/N , per-
forms a coherent search on each short interval, and then
“adds up” the power from all the subintervals. More
specifically, the current method is to calculate a “semi-
coherent” detection statistic Fsc, defined as the sum of
the F values from each of the short intervals:

Fsc ≡
N
∑

i=1

Fi . (1.1)

Because calcuting each Fi involves a maximization over 4
free parameters, the pdf for 2Fsc is a χ

2 distribution with
4N d.o.f. But this is far more parameters than are actu-
ally needed to describe the physical system! Consider the
very first interval. The imbedded GW signal is described
by 4 parameters: (h0, ι, ψ,Φ). But the triplet (h0, ι, ψ)
are the same for all N intervals. All that changes from
interval to interval is the overall phase Φ. Assuming
maximum ignorance of the signal’s phase evolution, one
therefore needs N − 1 additional phases to fully describe
the signal. So the GW signal is fully described by only
N + 3 parameters. We define Fpr to be the maximized
log-likelihood on this N+3-dimensional space. Our main
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aims in this paper are (i) to demonstrate an efficient al-
gorithm for calculating Fpr and (ii) to illustrate its su-
periority as a detection statistic (superior in the sense of
improved ROC curves, where ROC stands for ”Receiver
Operating Characteristics”).
We note that our work is rather similar in spirtit to a

recent paper by Dergachev [7], though we believe that we
have advanced the idea considerably further; e.g., while
Dergachev [7] essentially restricts to the case of a sin-
gle polarization, we explicitly treat the realistic case of
two polarizations, which in this context represents a sig-
nificant complication. We note, too, a recent paper by
Pletsch [8], which addresses the followng, rather different
weakness in the detection statistic Eq. (1.1). To under-
stand the problem, let (t0, t1, · · · , tN ) be the boundary
points of the N short intervals, and consider any one
such boundary time, say t50. In Eq. (1.1), data sam-
pled ony slightly earlier than t50 gets combined inco-

herently with data sampled only slightly later than t50,
which clearly exacts a price in sensitivity. Pletsch over-
comes this problem (which stems from the rather arbi-
trary choice of boundary points) using his “sliding win-
dow” technique [8]. We suspect that relatively simple
refinements of the detection statistic that we develop in
this paper could also capitalize on Pletsch’s basic insight,
but we leave such refinements to future work.
The plan of this paper is as follows. In Sec. II we

briefly review the fully coherent F -statistic, partly to es-
tablish notation. We generally try to align our notation
with that of JKS, to ease comparison with their work. We
also review the (currently used) semi-coherent F -statistic
and its properties. As further motivation for our work,
in Sec. IV we consider a “warm-up” problem that we can
easily treat analytically and that qualitatively has much
in common with our actual problem. In Sec. V, in order
to illustrate the use of Fpr, we present numerical results
for one example search. For the same search, we also in-
vestigate the relative power/sensitivty of Fpr versus Fsc.
Our conclusions are summarized in Sec. VI.
This paper represents our ”first-cut” analysis of the

Fpr statistic. There remains significant follow-up work to
better elucidate the properties of Fpr and to implement
it in realistic, hierarchical searches. This future work is
also summarized in Sec. VI.

II. REVIEW OF SIGNAL PROCESSING FOR

GW PULSARS

In this section we review the rudiments of signal pro-
cessing that we will require, partly to fix notation. We
also review both the coherent and semi-coherent versions
of the F -statistic. For simplicity of exposition, in this pa-
per we will restrict to the case of a single detector, and
assume that the detector noise is stationary. The exten-
sion to the more realistic case of multiple detectors with
slowly changing noise spectra is completely straightfor-
ward.

A. Mathematics of signal processing

We begin by reviewing the basic mathematics of sig-
nal processing. For more details, we refer the reader to
Thorne (1987), Finn & Chernoff (1993), and/or Cutler
& Flanagan (1994) [3, 9, 10].
Assuming that the noise is stationary and Gaussian,

the noise spectral density Sh(f) determines a natural in-
ner product (. . . | . . .) on the vector space of all detector
outputs x(t):

(x |y) ≡ 2

∫ ∞

−∞

df
x̃∗(f)ỹ(f)

Sh(f)
, (2.1)

where x̃(f) and ỹ(f) denote the Fourier transforms of x(t)
and y(t), and Sh(f) is the single-sided spectral density of
the noise. In terms of this inner product, the probability
distribution function (pdf) for the noise n(t) takes the
form

pdf[n] = N e−(n|n)/2, (2.2)

where N is a normalization constant. Using
〈

· · ·
〉

to
denote ”expectation value” (over many realizations of the
noise), it follows from Eq. (2.2) that

〈

(x |n) (y |n)
〉

= (x |y) . (2.3)

In this paper, we will be concerned with waveforms
h(t) that are nearly monochromatic (here meaning that
their frequencies f(t) are slowly varying). In this case
their inner product is equally simple in the time domain.
Taking the measurement time interval to be 0 to T , by
Parseval’s theorem we have

(h1 |h2) = 2

∫ T

0

h̃1(t)h̃2(t)

Sh

(

f(t)
) dt , (2.4)

B. The fully coherent F-statistic

Next we briefly review the use of the coherent F-
statistic in GW pulsar searches. For more details we
refer the reader to Cutler & Schutz (2005) [4]. Consider
a nearly monochromatic GW signal from an individual
source with known sky location and known frequency
evolution f(t). The GW signal is then characterized by
four remaining unknowns: an overall amplitude A (equiv-
alent to the combination h0 sin ζ sin2θ in the notation of
JKS), two angles ι and ψ that characterize the waves’
polarization (equivalent to determining the direction of
the NS’s spin axis), and an overall phase Φ.
The GW signal h(t) registered by the detector depends

nonlinearly on ι, ψ,Φ, but, crucially, one can make a sim-
ple change of variables–to

(

λ1, λ2, λ3, λ4
)

–such that the
dependence of h(t) is linear in these new variables:

h(t) =

4
∑

a=1

λaha(t) , (2.5)



3

where the four basis waveforms ha(t) are defined by

h1(t) = F+(t)cosΦ(t), h2(t) = F×(t)cosΦ(t),

h3(t) = F+(t)sinΦ(t), h4(t) = F×(t)sinΦ(t) . (2.6)

Here Φ(t) is the waveform phase at the detector:

Φ(t) ≈ 2π

∫ t

f(t′)dt′ , (2.7)

where f(t′) is the measured GW frequency at the de-
tector at time t′. The measured frequency includes the
Doppler effect from the detector’s motion relative to the
source, as well as the Einstein and Shapiro delays as-
sociated with the Earth’s orbit around the Sun. When
the GW pulsar is in a binary, then f(t′) also includes
the Roemer, Einstein, and Shapiro delays associated with
that binary orbit. (We emphasize that the known-pulsar
searches described here do not require that the GW pul-
sar be isolated, but just that there exists an accurate tim-
ing model for the emitted waves.) The F+(t) and F×(t)
terms in Eq. (2.6) are the beam-pattern functions that
describe the detector’s response to the + and × polariza-
tions, respectively. We note that the exact form of F+(t)
and F×(t) depends on one’s convention for decomposing
the waveform into “plus” and “cross” polarizations; a
one-parameter family of choices is possible, correspond-
ing to the freedom to rotate the axes around the line of
sight. JKS follow the conventions of Bonazzola & Gour-
goulhon [11].
Next we define the 4× 4 matrix Γab by

Γab ≡
( ∂h

∂λa
| ∂h
∂λb

)

=
(

ha |hb

)

. (2.8)

Because both the observation time and 1 day (the
timescale on which the F+,×(t) vary) are vastly
larger than the period of the sought-for GWs (typ-
ically 10−2 − 10−3 s), we can replace cos2Φ(t),
sin2Φ(t), and cosΦ(t)sinΦ(t) by their time-averages:
cos2Φ(t), sin2Φ(t) → 1

2 , while cosΦ(t)sinΦ(t) → 0. Then
we have

Γ11 ≈
∫

F+(t) F+(t)S
−1
h

(

f(t)
)

dt

Γ12 ≈
∫

F+(t) F×(t)S
−1
h

(

f(t)
)

dt

Γ22 ≈
∫

F×(t)F×(t)S
−1
h

(

f(t)
)

dt ; (2.9)

additionally, Γ33 ≈ Γ11, Γ34 ≈ Γ12, Γ44 ≈ Γ22, and Γ13 ≈
Γ14 ≈ Γ23 ≈ Γ24 ≈ 0.
The best-fit values of λa satisfy

∂

∂λa
(x−

∑

b

λbhb |x−
∑

c

λchc) = 0 (2.10)

implying that

λa =
∑

b

(Γ−1)ab(x |hb) . (2.11)

Then 2F , which is defined to be twice the log of the
maximized likelihood ratio, is just

2F = (x|x) − (x−
∑

b

λbhb | x−
∑

c

λchc)

=
∑

a,d

(Γ−1)ad(x|ha)(x|hd) . (2.12)

Using 2F as one’s detection statistic satisfies the
Neyman-Pearson criterion for an optimum test: it mini-
mizes the false dismissal (FD) probability for any given
false alarm (FA) probability.
Writing x = n + h, and plugging into Eq. (2.12), we

find

〈

2F
〉

= 4 + (h | h) , (2.13)

where we have used Eq. (2.3) and the fact that
〈

(h | n)
〉

= 0. More generally, it is easy to show that

y ≡ 2F follows a χ2 distribution with 4 degrees of free-
dom (d.o.f) and non-centrality parameter ρ2 ≡ (h|h):

P (y) = χ2(y|4; ρ2) . (2.14)

As pointed out by JKS, if we use the following com-
plexified variables,

2Fa ≡ (x|h1 − ih3) , 2Fb ≡ (x|h2 − ih4) , (2.15)

then the expression (2.12) for 2F can be re-written in a
particularly simple form: Eq. (2.12) becomes

2F =
8

D

[

B|Fa|2 +A|Fb|2 − 2Cℜ(FaF
∗
b )
]

, (2.16)

where

A ≡ (h1|h1) , B ≡ (h2|h2) , C ≡ (h1|h2) , (2.17)

and D ≡ AB − C2. (Note that the A,B,C terms de-
fined here are, in the single-detector case, larger than
the A,B,C terms in JKS by a factor of the observation
time T .)

C. The “semi-coherent” F-statistic

As mentioned above, the current method of incoher-
ently combining the coherent results from successive in-
tervals is just to sum the F -statistics from all the inter-
vals:

2Fsc ≡
N
∑

i=1

2Fi . (2.18)

It also easy to show that y ≡ 2Fsc follows a χ2 distribu-
tion with 4N degrees of freedom:

P (y) = χ2(y|4N ; ρ2) . (2.19)
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where the non-centrality parameter ρ2 =
∑N

i=1 ρ
2
i .

In the cases of interest to us, 4N will generally be
large, and then the χ2 distribution with 4N d.o.f. can
often be approximated as a Gaussian. Let y ≡ 2F , and

let ρ2tot ≡
∑N

i=1 ρ
2
i . Then

P (y) = χ2(y|4N ; ρ2tot) ≈ (16πN)−1/2e−(y−<y>)2/(16N)

(2.20)
where < y >= 4N+ρ2tot. For example, using this approx-
imation (and the fact that for a Gaussian P (y), events
2.326σ above the mean occur 1% of the time), we see that
the threshhold value yth that yields a 1% FA probability
is

yth ≈ 4N + 2.326
√
8N (largeN) . (2.21)

III. THE “PHASE-RELAXED” F-STATISTIC

We are now ready to define Fpr. Basically, Fpr co-
incides with the full matched-filtering SNR2, under the
assumption that the manifold of waveforms is N + 3-
dimensional (i.e., 4 parameters for the first segment, and
N − 1 for the relative phase offsets of the remaining seg-
ments). What makes Fpr useful in practice is that we
have also found a simple and efficient method for calcu-
lating it.

A. Motivation and definition

We begin by defining complex basis functions H+ and
H× by

H+ ≡ h1 − ih3 , H× ≡ h2 − ih4 . (3.1)

This complex representation is especially convenient
for our purposes becauseH+ andH× both transform very
simply under an overall phase shift in Φ(t): under Φ(t) →
Φ(t) + δ, H+ and H× transform as H+(t) → e−iδH+(t)
and H×(t) → e−iδH×(t). (Note that the minus sign in
the exponent in the term e−iδ stems from the minus signs
in the definitions of ofH+ and H× in Eq.( 3.1). For these
complexified signals, our usual inner product becomes a
Hermitian one; for nearly monochromatic signals near
frequency f , this Hermitian inner product is given simply
by

(

x |y
)

=
2

Sh(f)

∫ T

0

x∗(t)y(t)dt . (3.2)

Clearly
(

x |y
)

=
(

y |x
)∗
.

Next we define Γαβ by

Γαβ ≡
(

Hα |Hβ

)

= Γ∗
βα , (3.3)

where α and β run over +,×. It follows immediately that
for GW data x(t), (twice the) F -statistic is given by

2F =
(

Γ−1
)αβ(

Hα |x
)(

x |Hβ

)

. (3.4)

Now imagine breaking up the full integration time T
into N intervals of duration ∆Ti, for i = 1, 2, · · · , N .
(We expect that in practice the ∆Ti will generally be of
approximately the same length, but this is not required.)
Next define xi(t) to be the restriction of x(t) to the ith

interval; i.e, xi(t) = x(t) for t in the ith interval, and
xi(t) = 0 for t outside the ith interval. Then clearly we
have

2F =
(

Γ−1
)αβ

(

∑

i

(

Hα | xi
)(

∑

j

(

xj |Hβ

)

)

. (3.5)

To motivate our definition of Fpr, recall that if we had
practically limitless computer power at our disposal, then
the most sensitive search would be a coherent matched-
filter search over a fine grid covering the entire GW-
pulsar parameter space. However for “blind” GW pul-
sar searches (i.e., searches for GW pulsars whose sky
location and/or time-changing frequency are unknown),
maintaining phase coherence between the template signal
and true imbedded signal, over timescales of months to
years, would require an extremely fine grid on parameter
space, and (one easily shows) many of orders of magni-
tude more computing power than is realistic [12]
The basic idea behind “semi-coherent” searches is to

employ a detection statistic that is less sensitive to phase
decoherence across the whole observation time, which
allows one to use a much coarser grid on parameter
space. In effect, one sacrifices some sensitivity in the
interest of computational practicality. For our phase-
relaxed F -statistic, the idea is that the search-template
signal should remain approximately in phase with the
true, imbedded signal in each interval ∆Ti–up to some
constant phase ”offset” δi–but that the δi should be al-
lowed to vary from interval to interval. That is, we re-
place

(

Γ−1
)αβ

(

∑

i

(

Hα | xi
)

)(

∑

j

(

xj |Hβ

)

)

→

(

Γ−1
)αβ

(

∑

i

(

Hα | xi
)

eiδi
)(

∑

j

(

xj |Hβ

)

e−iδj

)

.(3.6)

Finally, we define (twice) Fpr to be the rhs of (3.6), max-
imized over all phase-offsets δi:

2Fpr = max
δ1,··· ,δn

{

(

Γ−1
)αβ

(

∑

i

(

Hα | x
i
)

e
iδi

)(

∑

j

(

x
j |Hβ

)

e
−iδj

)}

.

(3.7)

While there are N phase angles δi, only N − 1 of them
are actually independent; i.e., it is easy to check that Fpr

is invariant under δi → δi + c, where c is any constant.

B. Maximizing over the phase offsets δi

The whole point of developing alternatives to the fully
coherent F -statistic is to save on computational cost, so
for our phase-relaxed F -statistic to be useful, we need
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a reasonably efficient way of maximizing over the δi. In
this section we demonstrate one efficient method. We
demonstrate only the simplest version of this method,
which we regard as basically an “existence proof” that
efficient methods do exist. It should be clear by the end
of this section that there are many variations on our ba-
sic method by which one might attempt to improve its
efficiency, but we defer such improvements to later work.
Our method is as follows. We can simplify the appear-

ance of the equations by defining

Kji ≡
(

Γ−1
)αβ(

xj |Hβ

) (

Hα |xi
)

(3.8)

and defining v to be the following N -dimensional vector
formed out of the phase offsets:

v ≡ (eiδ1 , eiδ2 , · · · eiδn) . (3.9)

Note that Kji is Hermitian (i.e., Kij = Kji ∗), and that
we can now re-write Eq. (3.6) as

2Fpr = max
δ1,··· ,δn

vj
∗Kjivi . (3.10)

Of course, Kji is completely determined by the two com-
plex templates Hα and their inner products with the
data, while our goal is to find the vi that maximize
v∗jK

jivi, subject to the N constraints that vivi
∗ = 1 ∀i.

(We emphasize that i is not summed over in these con-
straints.) Put another way: v lies on the unit N-torus
(i.e, the unit circle cross itself N times.) Naturally, we
employ the method of Lagrange multipliers to maximize
v∗jK

jivi on this constraint surface. Since there are N con-
straints, we obtain N equations with N (real) Langrange
multipliers λj :

Kjivi = λjvj ∀j . (3.11)

We emphasize that Eq. (3.11) is not an eigenvalue equa-
tion, since in general the N values λj will all be different.
Next we find it convenient to introduce a pro-

jection operator P operating on CN . Let w =
(c1e

iδ1 , c2e
iδ2 , · · · , cNeiδN ), where the ci are all real.

Then P is defined by

Pw ≡ (eiδ1 , eiδ2 , · · · , eiδN ) . (3.12)

I.e., the operator P takes any vector in CN and projects
it down onto the unit torus. (Note that P is not a linear
operator, but it is true that P 2 = P .) Then Eq. (3.11) is
clearly equivalent to the requirement that

PKv = v . (3.13)

Hence the solution v is a fixed point of the operator
PK. In fact, numerical experience shows that it is an
attractive fixed point. That is, let v0 be some initial
guess, and then operate on it repeatedly with PK. Define
(PK)2 ≡ (PK)(PK), (PK)3 ≡ (PK)(PK)(PK), etc.
Then for v0 sufficiently close to the true solution v, we
find that

(PK)mv0 → v (3.14)

as m increases. In practice, we find that the convergence
is quite rapid, and that the initial guess v0 need not be
particulary close to the solution v. In numerical experi-
ments (in many thousands of cases, and covering a large
range of N) we found that the following initial guess al-
ways led to converge of the iterated sequence. For each
segment ∆Ti, it trivial to calculate the fully coherent Fi

and the corresponding best-fit parameters for that seg-
ment alone: (Ai, ιi, ψiΦi). Then we take as our initial
guess

v0 = (eiΦ1 , eiΦ2 , · · · eiΦn) ; (3.15)

i.e., the initial guess for the phase offset in each segment
is the best-fit offset for that segment by itself.

IV. ANALYTIC RESULTS FOR A RELATED,

WARM-UP PROBLEM

It is common sense that when one goes to solve some
problem numerically, it is useful to have analytical results
with which to compare it–ideally for a special case of the
true problem, or, failing that, for some qualitatively sim-
ilar problem. In this section we derive analytic results
for the following case: Consider a vector space of wave-
forms that is completely described by 2 parameters per
interval–so 2N parameters in all, where N is large–and
consider two different searches: one search that maxi-
mizes the fit over those 2N parameters, and another, less
efficient search, that begins with a 4N -dimensional vec-
tor space (in which the true, 2N -dim vector space lies),
whose detection statistic is the maximized log-likelihood
on the 4N -dimensional space. That is, our two detection
statistics are the 2N - and 4N -dimensional F -statistics,
which in this section we will denote F2N and F4N .
For each search, there is a threshold value ρth such that

the signal is detectable with FA = 0.01 and FD = 0.5.
We can solve both problems at the same time, by consid-
ering the general M-dimensional search. Then the expec-
tation value of FM is

〈

FM

〉

= M + ρ2 and its standard

deviation is σM = (2M + 4ρ2)1/2. For large M , the χ2

function approaches a Gaussian, so we will approximate
the pdf of FM as a Gaussian with this mean and stan-
dard deviation. Then the threshold for detection with
FA = 0.01 is

ρthM =
〈

FM

〉

+
√
2σM erfc−1(2FA) (4.1)

= M + 3.29M1/2 , (4.2)

where in Eq. (4.1) both FM and σM are to be evaluated

at ρ = 0. Therefore ρthM =
√
3.29M1/2 = 1.814M1/4, and

we have

ρth4N/ρ
th
2N = 21/4 = 1.189 . (4.3)

Therefore using the correct statistic allows one to see
sources ≈ 19% farther away.
For comparison with results in the next section, we also

plot in Fig. 1 the FA vs. FD curves for the two statistics,
for N = 100 and a range of ρ values.



6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

FD

lo
g 10

F
A

log
10

FA vs. FD for different values of ρ2

 

 

4N
2N

FIG. 1: Compares the false alarm (FA) probabilities for the
two detection statistics, F4N and F2N , as a function of false
dismissal (FD) probability, for N = 100 and for several values

of the total squared signal strength, ρ2 ≡
∑N

i=1
ρ2i . The blue

curves are for F4N and the green for F2N . From upper to
lower, the squared signal strengths are ρ2 = 25, 50, 75, 100.

V. NUMERICAL RESULTS FOR ONE

EXAMPLE SEARCH

To illustrate the utility of our Fpr statistic, in this
section we present results for a simple, one-parameter
family of examples (where the varied parameter is the
strength of the embedded GW signal), and we compare
the the effectiveness of Fpr and Fsc.
We fix the number of intervals at N = 100, and eval-

uate search effectiveness for signals with a range of total

ρ2 ≡ ∑N
i=1 ρ

2
i . We will eventually consider a range of ρ,

but for now imagine ρ as fixed. For simplicity, in this ex-
ample we will consider a case where the ρi are the same
for all i, so ρ2i = ρ2/N , and where the Γi

ab matrices are
also the same for all i: Γi

++ = 3, Γi
+× = 1 = Γi

×+ and

Γi
×× = 1 for all i.

We decompose the measured signal xi into waveform
plus noise,

xi = hi + ni . (5.1)

For each i, filtering the data with H+ and Hx pro-
duces two complex numbers: ci+ ≡

(

xi |H+

)

and ci× ≡
(

xi |H×

)

. Clearly, the measured signals ciα can be de-
composed as

ciα =
(

hi |Hα

)

+
(

ni |Hα

)

(5.2)

≡ giα +mi
α . (5.3)

We simulate the noise piece mi
α by taking random draws

of (pairs of) complex numbers from a Gaussian distribu-

tion with covariance matrix

〈

mi
α

∗
mi

β

〉

≡
〈

(Hα |ni ) (ni |Hβ)
〉

= (Hα |Hβ) = Γαβ (5.4)

Again for simplicity, we will consider a case where the gαi
are the same for each i, modulo a random, complex phase
factor. Our particular (and rather arbitrary) choice is

[ g+i , g
×
i ] = (2N)−1/2ρ [ 2 +

√
6 ,

√
6] eiϕ

i

, (5.5)

where the ϕi are random phases drawn uniformly from

[0, 2π). One easily checks that
∑N

i=1(h
i |hi) = ρ2. The

inclusion of the eiϕ
i

terms reflects our goal of model-
ing a case where frequency evolutions of the tempate
and the true signal are so mismatched that their rela-
tive phases jump significantly and randomly from one
interval to the next. Choosing the ϕi randomly cor-
responds to the ”worst-case scenario”, where the true-
versus-template phase offsets show no pattern. In prac-
tice, we expect that the situation will often be much more
favorable for searches: i.e., the phase offsets might very
often be well fit by some low-order polynomial in time. In
a later paper we plan to investigate the extent to which
the time-evolution of the offsets can be fit by a few pa-
rameters, and how that information can be exploited to
speed up other parts of the search.
Given one simulated data set ciα (200 complex num-

bers), we compute 2Fpr. We repeat for 10000 data sets
to determine the distribution of 2Fpr, and calculate its
mean

〈

2Fpr(ρ)
〉

, standard deviation σpr(ρ), skewness,
and kurtosis. In practice, we find that the skewness and
kurtosis are relatively small (as might be expected, since
our N is large), so for the rest of this section we will
approximate p(2Fpr; ρ

2) as simply a Gaussian with our
measured mean and standard deviation. Given these dis-
tributions, it is completely straightforward to determine
the false alarm probability FA for any threshold value
2F th

pr , and to calculate the false dismissal probability FD

for any pair of 2F th
pr and ρ2.

We expect that, in practical searches, Fpr will find its
main use in hierarchical search algorithms, in which a
very coarse search at relatively low threshold identifies
candidates for further examination, and these are win-
nowed down in successive stages [13, 14]. In this context,
one generally wants a fairly small FD rate (< 1%, say),
so as not to lose any events, and strongly prefers a very
low FA probability, to reduce the computational cost of
follow-ups. With this application in mind, in Figs. 2 and
3. we plot FA as a function of FD, for several values of
ρ2.
How much does employing Fpr increase the sensitity

of a blind GW pulsar search? Obtaining a useful and
accurate answer to this question is much more compli-
cated than it might initially seem, since the most sen-
sitive known search algorithms for GW pulsars are hi-
erarchical searches [13, 14]. These searches involve in-
volve several stages, with successive stages ”ruling out”
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FIG. 2: Compares the false alarm (FA) probabilities for the
two detection statistics, Fsc and Fpr, as a function of false
dismissal (FD) probability, for several values of the (square
of) the signal strength, ρ2. The blue curves are for Fsc and
the green for Fpr. From upper to lower, the signal strengths
are ρ2 = 75, 100, 125.
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FIG. 3: Same as in Fig. 2, except that, from the upper to
lower curves, the signal strengths are ρ2 = 150, 175, 200.

an ever-increasing fraction of the parameter space. We
imagine that the most sensitive search–at some fixed, re-
alistic computational cost–might use Fpr for only some
of its stages. And while calculating Fpr clearly requires
more floating point operations than calculating Fsc, it is
premature to compare these costs in a detailed way, since
(i) there has as yet been no attempt to speed up our it-
erative relaxation scheme, and (ii) the extra information
that comes with the phase offsets δi can presumably be

used to speed up other parts of the search. Despite these
difficulties we can obtain a rough estimate of the sensi-
tivity improvement from using ρ2pr, as follows. We have
seen that given some detection statistic S, one naturally
obtains a map from the total ρ2 to curves in the FA−FD
plane. Let C(S; ρ2) denote that curve. Then we can look
for pairs ρ2pr and ρ2sc such that C(Fpr; ρ

2
pr) lies close to

C(Fsc; ρ
2
sc). Three such pairs are shown in Fig. 4. We

see that, in the most relevant portion of FD−FA plane,
C(Fpr; 140) lies close to C(Fsc; 170), C(Fpr; 160) lies close
to C(Fsc; 200), and C(Fpr; 190) lies close to C(Fsc; 250).
Thus, based on this example, we might estimate that
using Fpr rather than Fsc affords an increase in sensitiv-
ity of ∼ 20 − 30% in ρ2, or ∼ 10 − 15% in ρ. Clearly,
to obtain a more reliable estimate we should perform a
Monte Carlo simulation (based on random locations of
the source on the sky, and random orientations of the
GW pulsar’s spin axis). We plan to do this in follow-up
work.
Comparing Fig. 1 to Fig. 2, we see that the sensitiv-

ity gain from replacing the detection statistic Fsc with
Fpr is qualitatively similar to the gain from F4N → F2N ,
but that the latter gain is greater (at least for our one
numerical example, and for total SNR ∼ 10). That may
seem surprising, since in the former case we are elimi-
nating 3N − 3 redundant parameters, while in the latter
case we are eliminating only 2N redundant parameters.
We conjecture that the main reason that the replacement
Fsc → Fpr ”buys us less” in sensitivity is the following.
In calculating F2N , the noise contributions from differ-
ent intervals i still get combined incoherently. However
in Fpr, the maximization over the phase offsets δi allows
the noise contributions to combine coherently. Indeed for
ρi ∼< 1, the offsets δi are determined more by the noise
than by the imbedded waveform. However we leave a
thorough investigation of this effect to future work.

VI. SUMMARY AND FUTURE WORK

In this paper we defined a “phase-relaxed” F -statistic,
denoted Fpr, to be used in cases where the total observa-
tion time is sufficiently long that straightforward calcu-
lation of the fully coherent F -statistic over the relevant
parameter space is computationally intractable. The cal-
culation of Fpr takes as input the results from coherent
searches overN shorter time intervals. Our Fpr coincides
with the fully coherent F -statistic under the approxima-
tion that the phase offsets between template and imbed-
ded signal are treated as an additional N−1 independent
parameters. We also demonstrated one efficient, itera-
tive method for calculating Fpr. We regard our iterative
method as an ”existence proof” for efficient algorithms.
In future work we intend to explore variations on our
basic method that we suspect would lead to substantial
improvements in computational cost. We illustrated the
use of Fpr in one simple family of examples, in which the
sensitivity improvement (compared to Fsc) was shown to
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FIG. 4: Similar to Figs. 2 and 3, except that here the sensi-
tivity of the Fsc statistic is compared to that of Fpr at lower
ρ2. From upper to lower, the signal strengths for Fsc are for
ρ2 = 140, 160, 190.

be ∼ 10− 15%.
Our example was based on the ”worst-case” assump-

tion that the phase offsets δi are completely random. In
follow-on work we intend to examine the more realistic
case where the δi are a (reasonably low-order) polynomial
in time, and we plan to calculate the increased sensitivity
based on a very large number of cases, in Monte Carlo

fashion.

Other follow-on projects that we intend to work on
include i) the development of new vetoes [15] for instru-
mental artifacts, since, e.g., for true GW pulsars the pa-
rameters (h0, ι, ψ) calculated from the first half of the ob-
servation should be consistent with those calculated from
the second half; ii) the use of the δi to quickly converge
on improved estimates for the GW pulsar’s frequency and
spindown parameters, and iii) the optimal use of Fpr in
multi-stage, hierarchical searches.

Finally, while our primary interest in this paper has
been the application of the Fpr-statistic to GW pulsar
searches, it has not escaped our notice that the same idea
and formalism can be applied, with only trivial modifi-
cations, to searches for (quasi-circular, non-precessing)
inspiraling binaries. With binaries, we expect Fpr to
be most useful in those cases where the observed GW
signal has a very large number of cycles; e.g., searches
for neutron-star binaries by proposed GW detectors that
have reasonable sensitivity at ∼ 1 Hz, such as the Ein-
stein Telescope, Decigo, or the Big Bang Observer.
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