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Abstract

We present a Newtonian multi-fluid formalism for superfluid neutron star cores, focussing on the

additional dissipative terms that arise when one takes into account the individual dynamical degrees

of freedom associated with the coupled “fluids”. The problem is of direct astrophysical interest

as the nature of the dissipative terms can have significant impact on the damping of the various

oscillation modes of the star and the associated gravitational-wave signatures. A particularly

interesting application concerns the gravitational-wave driven instability of f- and r-modes. We

apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both

Λ and Σ− hyperons are present, and (ii) a core of deconfined quarks in the colour-flavour-locked

phase in which a population of neutral K0 kaons is present. The formalism is, however, general and

can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations

close to the superfluid transition temperature) as well as laboratory multi-fluid systems.
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I. INTRODUCTION

Neutron stars provide unique laboratories for the study of the state of matter under

extreme conditions. Comprising roughly one and a half solar masses within a radius of

about 10 km, these very compact objects are likely to have core densities reaching several

times the nuclear saturation density. Thus, they offer the opportunity to probe the cold,

high density region of the QCD phase diagram (that cannot be explored in laboratory

experiments). Improvements of our theoretical description of these systems are crucial. Not

only is a wealth of data from X-ray and radio observations available already, but ground-

based gravitational-wave detectors have reached their initial design sensitivities and are now

being upgraded to the second generation level [1]. This is significant since gravitational-wave

observations would provide truly complementary information about these exotic objects [2].

Gravitational waves carry an imprint of the dynamics of the internal, high density, regions

of the star while the electromagnetic signature relies on a complex interaction with, and

processes within, the star’s magnetosphere.

Accurate modelling of neutron star interiors is important, but fraught with difficulty. A

detailed model of neutron star dynamics must not only account for exotic states of mat-

ter at high density. It must also consider the interaction of the crustal nuclei (the outer

kilometer or so) with the star’s core, the presence of a strong magnetic field and various

superfluid/superconducting states. Superfluidity, in particular, adds dimensions to the prob-

lem by introducing new dynamical degrees of freedom. This can have profound consequences

for the dissipation in the interior of the star [3, 4]. In the last few years, the effect of super-

fluidity on the damping of the gravitational-wave driven instability of the so-called r-modes

has sparked much interest (see [5–7] for recent discussion), and we now know that the details

of the interior microphysics can play a significant role. Effects such as the vortex-mediated

mutual friction damping [7–9] and the enhanced bulk viscosity due to the presence of hyper-

ons [7, 10–12] or of a quark condensate in the colour-flavour locked (CFL) phase [13] can all

modify the damping of the unstable modes considerably. It has, in fact, recently been shown

that measured neutron star spins and inferred temperatures in Low-mass X-ray binaries are

not consistent with the standard models for the r-mode instability window. These results

suggest that some form of enhanced damping is required [14, 15]. Further theoretical inves-

tigation is clearly necessary if we want to be able to make direct, quantitative, comparisons
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with the X-ray data.

The aim of this paper is to construct a general framework for dissipative multi-fluid

neutron star cores, building on the variational formulation of two-fluid neutron star hydro-

dynamics [4, 16] (see also [17, 18]). We will focus on the dynamics of three-fluid systems at

finite temperature. This problem is relevant both in the case of hyperon cores, where one

expects not only neutrons and protons, but also a population of Λ and Σ− hyperons [19],

and in the case of cores of deconfined quarks in the CFL phase, where one should account

not only for the quark condensate but also for the thermal excitations of the system and

possibly a population of kaons [20–22]. Moreover, given the strong density dependence of

the various superfluid pairing gaps [23] there will always be regions in the star that are

close to the critical superfluid transition temperature. In these regions thermal effects are

not negligible. Again, this situation can be described by a three-fluid system comprised of

neutrons, protons and thermal excitations [24].

We pay particular attention to the dissipative terms in the hydrodynamical equations. It

is well known from the study of superfluid 4He that there are more dissipation coefficients

in a superfluid system than in the standard Navier-Stokes description. However, although

this was first pointed out in [3] in the context of neutron star physics, and several authors

have studied the effect of superfluidity on the standard dissipation coefficients (see [25, 26]

for examples), very little effort has been made to understand the nature (and dynamical

role) of these extra coefficients. Having said that, there have been some recent attempts to

quantify the effect of superfluidity on dissipative neutron star oscillations [6, 27]. In this

paper we build on the work of [4], correcting some conceptual issues, in order to develop a

general formalism for dissipation in multi-fluid systems. We are developing the formalism

with neutron star problems in mind, but the framework is sufficiently general that it can be

applied to entirely different systems, e.g. ones that can be studied in the laboratory. In fact,

a three-fluid model is required to account for the interactions between phonons and rotons

(and the associated thermal conductivity) in 4He [28, 29]. A recent discussion of extended

thermodynamics and causal heat conduction [30] in relativistic models should also be noted.

Finally, it is worth pointing out the close connection between the multi-fluid model that we

advocate and the general framework of extended irreversible thermodynamics [31].

The paper is structured as follows: In section II we discuss the key length-scales associated

with, and the general notion of, a “multi-fluid” system. In section III we outline our flux-
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conservative multi-fluid formalism, leading to the general form for the dissipation coefficients

presented in section IV. In section V we discuss the irrotational constraint for superfluid

flows. Section VI then deals with perturbations of the multi-fluid system for backgrounds

representing slowly rotating stars, while section VII is devoted to two explicit examples, (i)

that of a hyperon core and (ii) that of a core of deconfined quarks in the CFL-K0 phase.

Finally, we present our conclusions in section VIII.

Throughout the paper we use a coordinate basis to represent tensorial relations. We thus

distinguish between contravariant (of the form vi) and covariant (of the form vi) objects,

and raise and lower indices with the (three dimensional flat-space) metric gij. We shall also

identify the different fluids with constituent indices, so that vix will be the velocity of the

x-th fluid, while viy relates to the y-th. We do not assume that the constituent indices have

any geometric meaning (although it is worth noting that it is possible to develop the idea

of “chemical covariance”), so they can be placed either as sub- or superscripts, depending

on which makes the relevant expression the clearest.

II. THE DIFFERENT SCALES IN THE PROBLEM

Before we discuss specific models, it is useful to consider the “big picture” of fluid dy-

namics for ultra-dense matter. This is a key issue, because many neutron star scenarios

require an understanding of dynamics on the macroscopic scale, for which hydrodynamics

is the natural tool. At the same time, these models must build on an understanding of

the microsphysics, for which we need to turn to nuclear and particle physics. A properly

formulated theory of fluid dynamics tracks the evolution of fluid elements — their trajec-

tories through spacetime and how the various thermodynamic properties (i.e. an equation

of state with relatively few parameters) change. Each fluid element is small enough that

it can be considered as a “point”, but large enough to contain many particles so that a

“smooth-averaged” thermodynamic description is appropriate.

Let us consider some of the issues involved; first of all, nuclear and particle physics models

tend to assume global Lorentz invariance for all (matter) fields. This means that gravity

is neglected. However, one thing that general relativity does well is break global Lorentz

invariance, while maintaining it locally. Glendenning [32] points out that over the scale of a

fluid element in a neutron star, the change in the spacetime metric is negligible and one can
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always erect a local reference frame where Lorentz invariance holds. Basically, there is a clear

separation of scales and one can use Lorentz-invariant nuclear and particle physics models

provided one accepts that “global” in this context means “on the scale of a fluid element”.

In essence, for a compact star, we do not have a global phase space to be applied to all

particles; rather, each fluid element has its own phase space that applies to the particles

within that element.

This has repercussions when we consider the micro-physics. For example, in the case of

fermions (like neutrons and protons) one may ask to what extent one can ignore particle

states “below” the Fermi surface. On the one hand, one might argue “yes” because the

lowest energy is zero, and particles occupying that and the other energy states below the

Fermi surface are locked in, on average, because nearby states will be occupied, and the

available energy reservoir may not be sufficient to launch particles above the Fermi surface.

In this line of reasoning, it will only be states near the Fermi surface that participate in

the fluid dynamics. To some extent this argument is correct, and only particles near the

Fermi surface contribute to the transport coefficients required in the fluid model (viscosities,

thermal conductivity etcetera). However, at the same time all particles contribute to the

global dynamics, as represented by the star’s large scale oscillation modes. This is easy

to see if we consider the fact that these modes couple to the gravitational field, which is

sourced by all the matter. The fluid dynamics model requires information about both bulk

properties and transport phenomena, making its formulation a challenge.

Next, let us consider the scales associated with fluid dynamics. This problem is central

to the analysis in this paper. In order to discuss a “multi-fluid” system, we obviously need

to have some understanding of what this concept entails. For ordinary matter, the scale

is simply set by interparticle collisions. Since we need to associate a single “velocity” with

each fluid element, the particles must be able to equilibrate in a meaningful sense (e.g. have

a velocity distribution with a well defined peak). The relevant length-scale is the mean-free

path. This concept is closely related to the shear viscosity of matter. In the case of neutrons

(which dominate the outer core of a typical neutron star) we would have

λ ≈
η

ρvF
≈ 10−4

(

ρ

1014 g/cm3

)11/12(
108 K

T

)2

cm , (1)

where vF is the relevant Fermi velocity and we have used the estimate for the neutron-

neutron scattering shear viscosity η from [25].
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This estimate gives us an idea of the smallest scale on which it makes sense to consider

the system as a fluid (about a micron). It also hints at systems with distinguishable multi-

fluid behaviour. Consider a system with two particle species, and assume that the mean-free

path associated with scattering of particles of the same kind is (for some reason) significantly

shorter than the scale for cross-species collisions. Then we have two clearly defined “fluids”

and it makes sense to consider the problem using the machinery that we will discuss later.

This is, however, not quite the situation that is motivating the present work. Our focus

is on systems that exhibit superfluidity. At the most basic level, superfluidity implies that

there is no friction impeding the flow. Technically, the mean-free path diverges and the

previous argument does not work anymore. However, a superfluid system has a different

scale associated with it; the so-called coherence length. The coherence length arises from

the fact that a superfluid is a “macroscopic” quantum state, the flow of which depends on

the gradient of the phase of the wave-function (the so-called order parameter). On some

small scale, the superfluidity breaks down due to quantum fluctations. This scale is known

as the coherence length. It can be taken as the typical “size” of a Cooper pair in a Fermionic

system. On any larger scale the system exhibits fluid behaviour (in the sense of the Landau

two-fluid model for Helium [28, 29]). For neutron-star superfluids, the coherence length is

of the order of tens of Fermi [33, 34]; much much smaller than the mean-free path in the

normal fluid case. This means that superfluids can exhibit extremely small scale dynamics.

Since a superfluid is inviscid, superfluid neutrons and superconducting protons (say) do not

scatter (at least not as long as thermal excitations can be ignored) and hence the outer core

of a neutron star requires a multi-fluid treatment.

It would seem then, that one can meaningfully take the fluid elements to have a size

of the order of the coherence length. However, in reality yet another length-scale needs

to be considered. On scales larger than the Debye screening length, the electrons will be

electromagnetically locked to the protons, forming a charge-neutral conglomerate that does

exhibit friction (due to electron-electron scattering). Moreover, at finite temperatures we

need to consider thermal excitations for both neutrons and protons, making the problem

rather complex.

Furthermore, ideal superfluids are irrotational and neutron stars are not. In order to

mimic bulk rotation the neutron superfluid must form a dense array of vortices (breaking

the superfluidity locally). This brings another length-scale into the picture. In order to
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develop a useful fluid model, we need to average over the vortices as well. This makes the

effective fluid elements much larger. The typical vortex spacing in a neutron star is of the

order [33]

dn ≈ 4× 10−4

(

P

1 ms

)1/2

cm , (2)

where P is the neutron star spin period. For a slowly rotating object the fluid elements we

consider (at the end of the day) may be quite large (although obviously still much smaller

than the size of the star).

III. FLUX-CONSERVATIVE MULTI-FLUID MODEL

We take as our starting point the flux-conservative multi-fluid formalism developed in [4].

This model combines the conservation laws for mass, energy and angular momentum with

the variational approach developed by Prix [16] (see also [17, 18]). In this model (which

represents the Newtonian limit of Carter’s convective variational formalism in relativity

[35, 36]) the main variables are the particle fluxes nx
i = nxvxi (where nx is the particle

number density of the x-th component, and vxi its velocity) and the equations of motion are

derived from a Lagrangian density L of the form

L =
∑

x

mx

2nx

gijn
i
xn

j
x − E(nx, n

i
x) . (3)

This allows us to define the conjugate momenta

pix ≡
∂L

∂ni
x

∣

∣

∣

∣

nx

= gijm
xvjx −

∂E

∂ni
x

∣

∣

∣

∣

nx

, (4)

where we still need to provide the energy density functional E , which includes the internal

energy. Following [4] we consider an energy functional that is manifestly isotropic and

Galileian invariant, i.e. we take

E = E
(

nx, w
2
xy

)

, (5)

with the relative velocities defined by

wi
xy = vix − viy and w2

xy = gijw
i
xyw

j
xy . (6)

The chemical potentials are then obtained from

µx
≡

∂E

∂nx

∣

∣

∣

∣

w2
xy

, (7)
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while the entrainment coefficients are given by

αxy
≡

∂E

∂w2
xy

∣

∣

∣

∣

nx

. (8)

These coefficients describe the fact that the momentum of each species is not necessarily

parallel to the associated flux. Instead, it takes the form:

πx
i = nxpxi = mxn

xvxi + 2
∑

x6=y

αyxw
xy
i . (9)

The most common context in which this effect has been studied relates to neutrons and

protons in neutron star cores. In this case the effect is due to the fact that, because of

the strong nuclear interaction, each neutron is associated with a virtual cloud of protons.

This modifies the effective neutron mass in a dynamical setting [16, 37]. Recently, the

entrainment parameters in a hyperon core have also been discussed [38, 39]. The usefulness

of the entrainment concept for entropy, and its relation with thermal relaxation and causal

heat conduction has also been explored in recent work [30, 40–42]

The entrainment is a dynamical effect that arises naturally within the variational model.

In a practical application, it depends on the nature of the microphysics that one includes in

the equation of state (represented by E). As discussed in [4] the momentum equations take

the form:

∂tπ
x
i +∇j

(

vjxπ
x
i +Dxj

i

)

+ nx∇i

(

µx −
1

2
mxv

2
x

)

+ ρx∇iΦ + πx
j∇iv

j
x = fx

i , (10)

where the tensor Dx
ij represents the viscous stresses, while the “forces” fx

i allow for the

transfer of momentum between the two components [67]. The particle mass densities are ρx

and Φ is the gravitational potential. The latter satisfies the usual Poisson equation

∇
2Φ = 4πG

∑

x

ρx . (11)

In the following we shall consider the case of an isolated system, for which
∑

x f
x
i = 0.

The continuity equations can be written

∂tnx +∇j

(

nxv
j
x

)

= Γx. (12)

We will assume overall mass conservation for our system, which in terms of the particle

creation rates Γx leads to
∑

x

mxΓx = 0 . (13)
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This constraint makes sense in Newtonian theory, but is not necessarily justified from a

microphysics point of view, as it is baryon number, rather than mass that is conserved in a

given nuclear reaction.

Finally, the total energy creation rate per unit volume is given by

ǫext =
∑

x

[

vixf
x
i +Dx

ij∇
jvix +

(

µx −
1

2
mxv

2
x

)

Γx

]

. (14)

So far the model is quite general, but we now want to make direct contact with thermo-

dynamics. In doing so, it makes sense to highlight the entropy component. We will, after

all demand that the various dissipation channels adhere to the second law. For an isolated

system we have ǫext = 0, so that if we consider one of our fluids to represent the entropy of

the system [68] (we denote this component by the subscript s), the above relation leads to

TΓs = −fiv
i
s −Dij∇

jvis −
∑

x6=s

(

Γxµ
x + f̂x

i w
i
xs +Dx

ij∇
iwj

xs

)

. (15)

where

f̂x
i = fx

i −
1

2
mxΓxgij(v

j
x + vjs ) , (16)

fi =
∑

x f
x
i is the total force acting on the system, and Dij =

∑

x D
x
ij . Note that, as we are

considering a closed system in the following, we take fi = 0. Not also that, the individual

Dx
ij do not have to be symmetric, even though the sum Dij must be. Finally, the entropy

component is taken to be massless, and its chemical potential is the temperature µs = T .

IV. THE ONSAGER APPROACH

Let us now move on to consider the general form of the dissipation coefficients. To do this

we continue to follow the analysis in [4], and make use of the Onsager symmetry principle

[43]. Our analysis will, however, differ from that in [4], as in that work the authors neglected

(erroneously) a number of terms involving ∇iv
j
s . Hence, the resulting dissipative model was

not as general as it should have been. This has already been noted in [28], where the analysis

was reworked in the case of two fluids, one of which represented the entropy. As we intend

to apply the discussion to the case of three (or more) fluids, we first consider the general

form of the dissipation coefficients, turning to particular examples later.
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For any system, perturbations of the entropy density s away from equilibrium must be

given by quadratic deviations. This allows us to write [4]

s ≈ seq −
∆t

2T

∑

a,b

XaL
abXb , (17)

which can be expressed, in terms of the entropy creation rate Γs, as

TΓs = −
1

2

∑

a,b

XaL
abXb =

N
∑

a=1

JaXa , (18)

where the Xa are known as “thermodynamic forces”. They represent a measure of the

departure of the system from equilibrium, while the “thermodynamic fluxes”

Ja = −
1

2

∑

b

LabXb , (19)

arise in response. The Onsager symmetry principle states that microscopic reversibility

implies Lab = Lba.

By comparing equation (18) to equation (15) we can, by constructing the most general

form for the tensor Lab in terms of the thermodynamical forces in the system, obtain the

most general description of the dissipative terms in the Euler equations; the stress tensor

Dx
ij , the forces f̂x

i and the terms associated with the reaction rates. With this in mind, let

us write down the most general form for the tensor Lab.

From equation (15) it might be tempting to take the thermodynamic forces to be wxs,

∇jw
i
xs, ∇jv

i
s and µx, as in [4]. This is not quite appropriate, however, as we need the forces

to vanish when thermodynamic equilibrium is reached. Hence, we should not work with

the chemical potentials, which obviously do not vanish in equilibrium. This point comes

to the fore when we consider problems with reactions, as in the case of bulk viscosity in

a multi-fluid setting [6]. We need to replace the chemical potential with a more suitable

“force”, and the affinity [44] is the natural choice. In the context of neutron stars, this point

has been made by Carter and Chamel [45]. The following analysis combines the key points

of their discussion with the general multi-fluid formalism from the previous section.

Suppose there are N total reactions among M various constituents x of our multi-fluid

system, to be characterized in the usual way as stoichiometric relations between the particle

number densities [69] νx = nx/ (
∑

x n
x) ; i.e.

M
∑

x

RI
x νx

→

M
∑

x

PI
x νx , I = 1, ..., N , (20)
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where RI
x and PI

x are, respectively, the reactant and product stoichiometric coefficients. The

affinity AI of the Ith reaction is then defined as

AI
≡

M
∑

x

(

RI
x − PI

x

)

µx . (21)

At thermodynamic equilibrium the affinities vanish, which is why they make appropriate

thermodynamic forces.

While it is clear that the affinities provide a natural description of the problem, it is

important to recognize that the formulation is not quite complete at this point. In partic-

ular, the chemical potentials µx become somewhat ambiguous in a multi-fluid context. In

principle, the chemical potentials should be defined as the energy per particle in the ref-

erence frame where the chemical (or nuclear) reactions occur [18]. However, a multi-fluid

mixture is characterized by the presence of distinct velocity fields, neither of which provides

the required frame. The relevant frame may, in fact, not be known a priori. The formula-

tion we consider assumes an expansion away from “equilibrium”, which ultimately involves

both dynamical and chemical considerations. The equilibrium frame may well depend on

the dynamical evolution of the whole system. This complicates the issue considerably. Of

course, in many situations of practical interest this problem may not be too severe. This is

particularly the case when the relative velocities between the different fluid frames are small

enough that it makes sense to linearise the problem. Noting that a satisfactory solution to

the conceptual problem still remains to be developed, we proceed on the assumption that a

low-velocity model makes sense.

According to Hess’s Law, for each chemical reaction there is only one thermodynamic

variable to track in order to determine the changes; namely, the “degree of advancement” ξI

for the various reactants. For each of the I = 1...N reactions, a variation ∆ξI corresponds

to a variation ∆νx
I of the participating fluids:

∆νr
I

RI
r

= ... =
∆νs

I

RI
s

= −
∆νu

I

PI
u

= ... = −
∆νv

I

PI
v

= ∆ξI , (22)

where r, ..., s and u, ..., v represent the x-components for which the RI
x and PI

x are non-zero.

The (irreversible) change ∆s in the entropy due to these reactions is given by

∆s =
1

T

N
∑

I=1

AI∆ξI . (23)
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By comparing with equation (17), we see that the ∆ξI represent the appropriate thermody-

namic “fluxes”.

The variations ∆νx of the individual number densities, in some time interval ∆t, can also

be determined by

∆νx = Γx∆t , (24)

where Γx is the particle number creation rate.

Each of the N reactions has a corresponding change νx
I that contributes to ∆νx, with the

net result (as ∆t → 0)
dνx

dt
=
∑

I

(

RI
x − PI

x

) dξI
dt

. (25)

Hence,

Γx =
∑

I

(

RI
x − PI

x

) dξI
dt

. (26)

If we define the reaction “velocity” V I ≡
dξI
dt

to be the thermodynamical flux, then the

change in entropy due to the reactions is

∆s =
∑

x6=s

µxΓx =
∑

x6=s

µx

[

∑

I

(

RI
x − PI

x

) dξI
dt

]

=
∑

I

AIVI . (27)

In the general framework the thermodynamic forces will then be AI , wi
xs, ∇jv

i
s, ∇jw

i
xs,

and the corresponding fluxes are −VI ,−f̂x
i , −Dij and −Dx

ij . Given this, we can follow the

strategy of [4] to construct the fluxes out of the forces, limiting ourselves to the inclusion

of quadratic terms. By making use of the Onsager symmetry principle, and noting that

conservation of angular momentum [70] requires Dij to be symmetric (see equation (22) of

[4]), we then arrive at;

−V I =
∑

x,y 6=s

∑

J

[

LIJ
x AJ + L̃J

ij∇iv
j
s + L̃yJ

ij ∇
iwj

xs

]

, (28)

−f̂x
i =

∑

y 6=s

[

Lxy
ij w

j
ys + L̃xy

ijk∇
jwk

ys

]

, (29)

−Dij =
∑

y 6=s

[

∑

J

(

L̃J
ijAJ

)

+ Lijkl∇
kvls + L̃y

ijkl∇
kwl

ys

]

, (30)

−Dx
ij =

∑

y 6=s

[

∑

J

(

L̃xJ
ij AJ

)

+ L̃xy
ijkw

k
ys + L̃x

ijkl∇
kvls + Lxy

ijkl∇
kwl

ys

]

, (31)
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with

LIJ
x = γIJ

x = γJI
x L̃J

ij = τJgij L̃yJ
ij = τyJgij , (32)

Lxy
ij = 2Rxygij = 2Ryxgij L̃xy

ijk = S
xyǫijk = S

yxǫijk , (33)

Lijkl = ζ sgijgkl + ηs
(

gikgjl + gilgjk −
2

3
gijgkl

)

, (34)

L̃y
ijkl = ζygijgkl + ηy

(

gikgjl + gilgjk −
2

3
gijgkl

)

, (35)

Lxy
ijkl = ζxygijgkl + ηxy

(

gikgjl + gilgjk −
2

3
gijgkl

)

+
1

2
σxyǫijmǫ

m
kl

= ζyxgijgkl + ηyx
(

gikgjl + gilgjk −
2

3
gijgkl

)

+
1

2
σyxǫijmǫ

m
kl . (36)

These relations suggest that the complete set of dissipation coefficients is given by

γIJ
x , τJ , τyJ , R

xy, S
xy, ζ s, ηs, ζy, ηy ζxy, ηxy, and σxy ,

essentially the same as in [4]. The important difference is that, not only have we now

correctly identified the affinities as the thermodynamic forces, but we also have a host of

new terms relating to the gradients of the entropy velocity vis. These were neglected in [4].

An already complex problem has been made richer...

The problem may seem almost unmanageable at this point. In particular, how are we

going the determine all the different dissipation coefficients? Maybe we would be better

off focusing on a specific set of coefficients/mechanisms that are expected to be

the “most important” rather than treating the general problem? In practice,

this is probably the case. Given a particular situation, e.g. a prescribed class of

fluid motion, it may well be that one can predict what the dominant dissipation

channels may be. It may also be that the nature of the fluid flow is such that some

channels are not open. Still, in order to make such an assessment one will need

to be clear on what is included and what is not. Our general analysis provides

important insight into this issue. To make progress on the full problem we need

to complement the phenomenological multi-fluid model with insights from microphysics (e.g.

kinetic theory). Once we turn to that question we see that the complexity of the problem

may reduce drastically. In fact, it is easy to argue that many of the different coefficients in

the model will have the same microphysics origin (although various geometrical factors may
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differ). To see this, let us consider an example. Let us ask how particle scattering enters the

problem. In a single-component system, the answer is simple. Scattering leads to friction

that prevents fluid element from shearing, i.e. determine the coefficient of shear viscosity.

The multi-fluid setting is more complicated, because we have to account for scattering both

between particles of the same species and inter-species scattering. The former will (again)

lead to the familiar shear viscosity from the Navier-Stokes equations, one term for each

fluid species. The inter-species scattering affects the relative degrees of freedom. Two

fluids can flow linearly through one another, and they can also have relative shear and

expansion. The corresponding coefficients will all relate back to the scattering rates. A

similar analysis relates to the various bulk viscosities. In this case, the problem reduces

because the dissipation originates either from the relevant reaction rates (the case of main

importance for neutron stars) or from fluctuations of the internal degrees of freedom for each

species (as in water). A useful example, with direct relevance for one of the models discussed

below, has been analysed by Gusakov and Kantor [10] (although it should be noted that a

translation between their model and that considered here is non-trivial). Other interesting

discussions can be found in [46] and [47].

One may also simplify the problem by constraining the physics. In the present con-

text, the most relevant constraint is associated with superfluidity, and we now turn to the

corresponding problem.

V. THE SUPERFLUID CONSTRAINT

Let us now assume that one of the fluids (labelled S in the following, not to be confused

with the entropy component which is represented by a lowercase s) is superfluid. In this case

we would expect it to be, at least in the limit of low temperatures and velocities, irrotational.

Following [16] and generalising the work of [28], we impose the irrotational constraint on

the momentum of this fluid. This means that we require

ǫijk∇jp
S
k = 0 , (37)

which leads to the constraint

∇iΨ =
1

nS

(f̂S
i −∇

jDS
ji) , (38)
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for some scalar Ψ. In order to analyse this constraint it is useful to rewrite equation (15) in

terms of the variables jxs = nxw
i
xs. This leads to

TΓs = −Dij∇
ivjs −

∑

x6=s

(

F
x
i jxs +D

x
ij∇

ijjxs
)

+
∑

I

AIV
I , (39)

where

D
x
ij =

1

nx

Dx
ij and F

x
i =

1

nx

[

fx
i −

(

∇jnx

nx

)

Dx
ji

]

. (40)

The constraint in (38) thus takes the form

∇iΨ = F
S
i −∇

j
D

S
ij . (41)

Repeating the analysis of the thermodynamic fluxes (from the previous section) in terms of

the new variables, we find that

−V I =
∑

x,y 6=s

∑

J

M IJ
x AJ + M̃J

ij∇iv
j
s + M̃yJ

ij ∇
ijjys , (42)

−F
x
i =

∑

y 6=s

Mxy
ij j

j
ys + M̃xy

ijk∇
jjkys , (43)

−Dij =
∑

y 6=s

∑

J

M̃J
ijAJ +Mijkl∇

kvls + M̃y
ijkl∇

kjlys , (44)

−D
x
ij =

∑

y 6=s

∑

J

M̃xJ
ij AJ + M̃xy

ijkj
k
ys + M̃x

ijkl∇
kvls +Mxy

ijkl∇
kjlys . (45)

(where the M coefficients essentially replace the L’s from the previous section). The con-

straint in (38) now implies that, for the superfluid component one must have

∇iΨ = ∇
j
(

M̃SJ
ij AJ +MSy

ijkl∇
kjlys + M̃S

ijkl∇
kvls

)

+
(

∇
jM̃Sy

ijk −MSy
ik

)

jkys , (46)

which implies

MSy
ik = ∇

jM̃Sy
ijk = 0 . (47)

To see that these coefficients must vanish individually, consider Eq. (33). The coefficient MSy
ik

has the same form as Lxy
ik in Eq. (33), i.e. it is symmetric, while the M̃Sy

ijk is antisymmetric

when i and k are interchanged.

The superfluid constraint thus takes the form

∇iΨ = ∇
j
(

M̃SJ
ij AJ +MSy

ijkl∇
kjlys + M̃S

ijkl∇
kvls

)

, (48)
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from which we infer that

M̃xJ
ij = τ̂Sgij , (49)

MSy
ijkl = ζ̂Sygijgkl , (50)

M̃S
ijkl = ζ̂Sgijgkl . (51)

If we compare these results to the general expressions in (36) we see that imposing the

superfluid constraint on one, or more, of the fluids significantly reduces the number of

dissipation coefficients.

It is important to appreciate that this reduction comes about once we identify the ap-

propriate thermodynamical fluxes in the system. This highlights the fact that there may be

different ways of formulating any given problem, possibly leading to systems of seemingly

different complexity. This is somewhat unfortunate, but we are not aware of any general

prescription for avoiding this ambiguity. It is also worth noting that it is generally not

meaningful to “translate” the coefficient in the two models we have provided. The basic

reason for this is that the two systems are “separated” by a phase-transition (at the critical

temperature for superfluidity). The models we have outlined apply either above, or well

below, the relevant temperature. The increasing role of thermal excitations as the transition

is approached make the corresponding problem tricky. In principle, the system must “switch

on” the various dissipation channels that were removed by the superfluid constraint as the

critical temperature is approached (reverting to the general system discussed in the previous

section).

The reduction associated with the superfluid problem may only be of formal interest,

however. In practice, the irrotational constraint is too severe since a superfluid can rotate

by forming an array of vortices. This complicates the problem rather than simplifying it.

First of all, we need to use the expressions in (36). Secondly, we need to worry about

additional dissipation channels that come into play when vortices are present. Having said

that, there may be some merit to an argument that one can take the irrotational model as

starting point, adding only the particular mechanisms that are due to the vortices. In such

a model, which may turn out to be accurate in many situations, the reduction of complexity

due to the irrotational constraint is helpful. Most current discussions of neutron star vortex

dynamics build on this idea.

The main problem with the irrotational assumption is that it means that we eliminate the
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vortex-mediated mutual friction, which arises from the balance between the Magnus force

and the dissipative drag forces (such as electron scattering of vortex cores) on the vortices

[48–50]. This is known to be a key mechanism in neutron star dynamics. We will not

discuss the mutual friction in detail here, but it is nevertheless worth making a few general

remarks. In the standard two-fluid system of neutrons and protons, and if one considers

straight vortices, the friction between a superfluid component x and another component y

can be taken into account by explicitly including a force of the form:

fxy
i = B

′

ρxnvǫijkκ
jwk

xy + Bρxnvǫijkǫ
klmκ̂jκlw

xy
m , (52)

where κi is a vector aligned with the vortices, with magnitude κ = h/2mx [71] (a hat

indicates a unit vector) and nv is the vortex number density per unit surface area. B and B′

are coefficients that encode the strength of the mechanism, but only the former is associated

with actual dissipation. Given this additional force we see that, in the presence of vortices

our analysis of the dissipation coefficients in the system is formally incomplete. We could

make our analysis more general by accounting for the preferred direction associated with

κi when we design the dissipation terms. This extended model would obviously allow for

the standard mutual friction represented by (52), but also for the presence of a (significant)

number of additional dissipative terms coupling the flows to the vorticity (see [28] for a

discussion).

Before moving on, it is also worth noting that the standard form for the mutual friction

force may not be entirely appropriate. In many circumstances the superfluid flow is expected

to be turbulent. This means that the vortices are no longer “straight” but form a complicated

tangle. In this case one can no longer use the expression in (52). Alternative forms in which

the force is proportional to the cube of the relative velocity have been proposed. The form

of this turbulent force and the coefficients involved are not well established in the neutron

star context, although there have been attempts to understand the relevance of the effect

[51–53].

In fact, the nature of mutual friction in a general multi-fluid system may be considerably

more complex. One may have to account for the interaction between several kinds of vortices

which can form in the different superfluid or superconducting condensates. For example, [54]

has recently shown that for strong entrainment, or in the presence of superfluid Σ− hyperons,

the usual picture in which one has rotation-induced neutron vortices, but not proton vortices,

17



does not hold. Rather one can have “composite” vortices, strongly reducing the interaction

between the superfluid and the magnetic-field carrying superconducting components of the

star. Another possible complication has been discussed in [55]. Clearly, more work is needed

in order to understand how to include such concepts in our general picture.

VI. PERTURBATIONS

The development of the dissipative multi-fluid formalism is obviously somewhat abstract,

and we need to consider explicit examples in order to see how it can be applied. Ultimately,

we are interested in how dissipation affects the modes of oscillation of a rotating superfluid

neutron star. Given this, and the fact that dissipation is associated with deviations from

equilibrium, let us consider linear perturbations of the multi-fluid equations of motion, (10)

and (12). Assuming that we are interested in rotational instabilities, like that of the Coriolis

driven r-mode [5–7], we work in the slow rotation approximation to linear order, meaning

that we perturb around a spherical background in which all fluids co-rotate and are in

hydrostatic and chemical equilibrium. These assumptions simplify the background equations

considerably, as there is no dissipation and no terms involving relative velocities [72]. One

simply has to consider the standard equations for hydrostatic equilibrium:

∇ip+ ρ∇iΦ = 0 , (53)

where Φ is the gravitational potential (as before) and where total density and pressure are

given by

ρ =
∑

x

ρx , (54)

∇ip =
∑

x

nx∇iµx . (55)

The perturbed Euler equations in the rotating frame can then be written in the form (rep-

resenting Eulerian variations by δ)

∂tδπ
x
i + nx∇iδµx + δnx∇iµx + 2ρxǫijkΩ

jδvkx + δρx∇iΦ + ρx∇iδΦ = δfi −∇
jδDx

ij , (56)

where Ωi is the angular velocity of the star and ρx = mxnx. The perturbed momentum

δπx
i will not in general be parallel to the perturbed velocity of the x component; due to the
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entrainment effect it acquires components along the relative flows. We have

δπx
i = gij

(

mxnxδv
j
x + 2

∑

y

αxyδwj
yx

)

, (57)

where the αxy are the entrainment coefficients defined in (8), the perturbations of which we

do not need to consider since we are considering a co-moving background. We also need the

perturbed continuity equations, which take the form

∂tδρx +∇j

(

ρxδv
j
x

)

= mxΓx , (58)

where we have assumed that the background is in chemical equilibrium. In other words, we

take the reaction rates Γx to arise at the linear perturbation level. This obviously makes

sense since the reactions are triggered by deviations from chemical equilibrium.

The relations in (56) and (58) have the same structure for each fluid and represent the

equations of motions for the x coupled degrees of freedom. In many situations, it can be

an advantage to make use of this “symmetry”. At the same time, it is instructive to show

that the equations can be combined to regain the usual Navier-Stokes equations. To do

this, we sum the perturbed continuity equations in (58) and assume mass conservation (i.e.
∑

x m
xΓx = 0). This leads to

∂tδρ+∇j(ρδv
j) = 0 . (59)

where we have introduced the velocity, vi, associated with the total mass flux;

ρvi =
∑

x

ρxv
i
x . (60)

Meanwhile, the sum of the Euler equations in (56) leads to:

ρ∂tδvi +∇iδp+ 2ρǫijkΩ
jδvk −

δρ

ρ
∇ip+ ρ∇iδΦ = −∇

jδDij , (61)

where δDij =
∑

x δD
x
ij.

Clearly, equations (59) and (61) only account for one of the N dynamical degrees of

freedom, and one has to supplement them with the equations of motion for the remaining

N − 1 degrees of freedom, either directly from equations (56) and (58) or with suitable

combinations of these. In most previous work, focused on the two-fluid case [7, 56–58], it

has been found advantageous to work with the difference of the Euler equations. This leads

to an evolution equation for the relative velocity, sourced by the deviation from chemical
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equilibrium. In the general case, where one has more fluids and different kinds of reactions

it is not so obvious what the best combination to use may be. One may have to consider

the issue on a case by case basis.

Before we consider explicit examples, it is worth commenting on one particular problem

area where the present results may be applied. Problems in neutron star dynamics are

closely linked to the effort to detect gravitational waves. A key problem concerns oscillations

and instabilities of rotating compact stars. In order to consider neutron star models with

realistic interior composition, one needs a formalism able to determine the timescale on

which oscillations of superfluid neutron stars are damped out by various dissipative processes.

There are essentially two approaches to this problem. The first consists of solving the full

dissipative problem, essentially “integrating” equations (56) and (58). Given the complexity

of the different dissipative terms this approach is, however, often not viable. The second

option is to estimate the various dissipation timescales from energy integrals, see [58] for

discussion. This approach is based on the assumption, valid in many physical circumstances,

that the dissipation is weak and does not significantly alter the nature of the solutions to

the conservative problem (in which the dissipative terms are absent). This will be the case

when the damping timescale is significantly longer than the dynamical timescales we are

interested in, i.e. the oscillation periods considered. In this case one “simply” has to solve

the continuity equations in (58) and Euler equations in (56) without the dissipative termsDx
ij

and force terms fx
i . In addition, one requires an energy for the system. The relevant object

can be obtained by multiplying the Euler equations for each component by ρxv
i∗
x (where

the ∗ represents complex conjugation) and adding it to its complex conjugate. Combining

the contributions leads to a total time derivative of a quantity which we can define as the

energy, E. The time derivative of this energy ∂tE follows from the “right-hand side” of the

dissipative equations of motion, and allows us to estimate the damping timescale

τ ≈
2E

∂tE
. (62)

Examples of this kind of analysis are discussed in [59].
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VII. EXAMPLES: EXOTIC NEUTRON STAR CORES

So far, our discussion has mainly concerned the general multi-fluid formalism. Once

we move beyond the single-fluid model the situation clearly becomes very complex. The

main lesson is that we need to consider (at least in principle) a plethora of new dissipation

channels. In order to gain better insight into this reality, we will consider two problems with

direct relevance for neutron star astrophysics. Both problems concern the deep neutron star

core. In the first case we assume that the core has a sizeable hyperon component while the

second example concerns a deconfined quark core. The examples are similar in that they

both require us to consider three coupled “fluids”. Yet, they are sufficiently different to

illustrate the subtleties of these kinds of problems.

A. Hyperon cores

The first of our examples concerns a neutron star with a hyperon core. Several proposed

equations of state predict the appearance of hyperons at supranuclear densities (see e.g.

[11, 19]). The recent measurement of a neutron star mass of 1.97 M⊙ [60] appears to place

stringent constraints on equations of state with softening components, like hyperons, but it is

important to keep in mind that the presence of hyperons is expected for fundamental physics

reasons [61] and the models remain incomplete until the many-body interactions are fully

accounted for. As this is an immensely difficult problem, it is relevant to consider indirect

evidence for the presence (or, indeed, absence) of hyperons in the core of astrophysical

neutron stars. The r-mode instability may provide interesting constrains in this respect.

The Λ and Σ− hyperons are predicted to have the lowest thresholds for formation. The

resultant problem is of great interest, in particular for gravitational-wave physics, as the

presence of hyperons increases the strength of the bulk viscosity and reduces the part of

parameter space in which gravitational-wave driven instabilities may operate. The exact

details of the damping can have observational consequences. Two of us have recently ex-

amined the effect of the additional damping coefficients on the r-mode instability [6]. That

analysis was based on the simpler case of a Σ− hyperon core, which can be cast as a two-fluid

problem. In the following we develop present the formalism for a core in which both Λ and

Σ− hyperons are present. As we will see, this is essentially a three-fluid problem.
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We start from the equations of motion for a cold four fluid system, formed by neutrons

(n), protons (p), Σ− and Λ (in the interest of clarity, we do not account for the presence of

muons, even though they would be easily included in the model). This means that we have

already assumed that the electrons are locked to the protons on a much shorter timescale

than the dynamical timescales we are considering [73], and neglect their mass compared to

that of the other components [34, 49]. For similar reasons, the Σ− hyperons can be considered

locked to the charged component. Hence, we let viΣ = vip such that all remaining “fluids”

are overall charge neutral (the scale considered is assumed to be larger than the relevant

screening length). We will, however, retain a separate Σ− mass fraction in the continuity

equations. We do this in order to make the analysis of the bulk viscosity damping simpler.

After all, the expectation [11, 62] is that the bulk viscosity will be dominated by hyperon

creating processes like

n + n ⇀↽ p + Σ− , (63)

n + p ⇀↽ p + Λ . (64)

Moving on to the perturbations of the hyperon core, we write the momenta of our three

components (n=neutrons and c=protons (p) locked to electrons and Σ− hyperons (Σ), Λ = Λ

hyperons) as

πn
i = gij

[

mnnnv
j
n − 2(αnpwj

np + αnΣwj
nΣ + αnΛwj

nΛ)
]

, (65)

πc
i = gij

{

(mpnp +mΣnΣ)v
j
p + 2[(αnp + αpΛ)wj

np − αpΛwj
nΛ]
}

, (66)

πΛ
i = gij

{

mΛnΛv
j
Λ + 2[(αΣΛ + αpΛ + αnΛ)wj

nΛ − (αΣΛ + αpΛ)wj
np]
}

. (67)

We can then write the perturbed Euler equations as one equation for the centre-of-mass

velocity, equation (61), and two equations for relative velocities. As there will be no pertur-

bations of the entrainment for co-rotating backgrounds, the two difference equations take

the form:

(

1− ε̄1 −
ε̄2ε̄4
1− ε̄3

)

∂tδw
np
i +∇i

(

δβ̃c +
ε̄2

1− ε̄3
δβ̃Λ

)

+ 2ǫijkΩ
j

(

δwk
np +

ε̄2
1− ε̄3

δwk
nΛ

)

=

= −

(

1 +
ε̄2

1− ε̄3
−

ρn
ρΣ + ρp

)

∇jδD̃
jn
i +

(

ε̄2
1− ε̄3

−
ρΛ

ρΣ + ρp

)

∇jδD̃
jΛ
i +

1

ρΣ + ρp
∇jδD

j
i+

+

(

1 +
ε̄2

1− ε̄3
+

ρn
ρΣ + ρp

)

δF̃n
i −

(

ε̄2
1− ε̄3

−
ρΛ

ρΣ + ρp

)

δF̃Λ
i , (68)
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(

1− ε̄3 −
ε̄2ε̄4
1− ε̄1

)

∂tδw
nΛ
i +∇i

(

δβ̃Λ +
ε̄4

1− ε̄1
δβ̃c

)

+ 2ǫijkΩ
j

(

δwk
nΛ +

ε̄4
1− ε̄1

δwk
np

)

=

= −

(

1 +
ε̄4

1− ε̄1

ρn + ρΣ + ρp
ρΣ + ρp

)

∇jδD̃
jn
i +

(

1−
ε̄4

1− ε̄1

ρΛ
ρΣ + ρp

)

∇jδD̃
jΛ
i

+
1

ρΣ + ρp

ε̄4
1− ε̄1

∇jδD
j
i−

−

(

1−
ε̄4

1− ε̄1

ρΛ
ρΣ + ρp

)

δF̃Λ
i +

(

1 +
ε̄4

1− ε̄1

ρn + ρΣ + ρp
ρΣ + ρp

)

δF̃n
i . (69)

In these expressions the tildes (̃ ) indicate that the variable has been rescaled with the

relevant mass mx, e.g. δβ̃c = δβc/m
c. We have accounted for the different masses of

the individual components, but it is worth noting that neglecting the mass difference of

the hyperons, taking all masses to be equal, is a reasonable approximation if we want to

determine the damping timescale of the r-mode instability [6]. This obviously also makes

the problem more tractable.

We have also defined various combinations of the entrainment parameters

ε̄1 =
2(αnp + αnΣ)

ρn
+

2(αnp + αpΛ)

ρΣ + ρp
, ε̄2 =

2αnΛ

ρn
−

αpΛ

ρΣ + ρp
, (70)

ε̄3 =
2(αnΛ)

ρn
+

2(αpΛ + αnΛ + αΣΛ)

ρΛ
, ε̄4 =

2(αnp + αnΣ)

ρn
−

2(αΣΛ + αpΛ)

ρΛ
. (71)

It is worth noting that, while the problem would simplify significantly if we were to ignore

these coefficients we have physics justification for doing so. In fact, based on the familiar

case of neutron-proton entrainment, there is every reason to expect the mechanism to be

relevant also for the hyperons. This is, indeed, borne out by the results in [38, 39].

From the perturbed continuity equations we derive the usual relation for the total density

perturbations, equation (59), and three equations for the mass fractions

∂tδxp = −
1

ρ
∇j

{

ρxp[xΛδw
j
nΛ − (1− xp − xΣ)δw

j
np]
}

− δvj∇jxp +
mpΓp

ρ
, (72)

∂tδxΛ = −
1

ρ
∇j

{

ρxΛ[(xp + xΣ)δw
j
np − (1− xΛ)δw

j
nΛ]
}

− δvj∇jxΛ +
mΛΓΛ

ρ
, (73)

∂tδxΣ = −
1

ρ
∇j

{

ρxΣ[xΛδw
j
nΛ − (1− xp − xΣ)δw

j
np]
}

− δvj∇jxΣ +
mΣΓΣ

ρ
, (74)

where we have introduced the fractions xx = ρx/ρ. Note that the above equations are not

independent (otherwise one would have four, not three, fluids). We have considered the

hyperon and proton fractions separately in order to have the hyperon and proton creation
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rates explicit in the equations. The intention is to make the analysis of bulk viscosity simpler

when one has to deal with the rates of several reactions, as in (64). One then needs to apply

the additional condition of charge neutrality, which implies that np = nΣ + ne where ne is

the number density of electrons. However, when the fraction of Σ− is significant the electron

population is depleted and we may be able to use the approximate relation np ≈ nΣ [6].

Let us now examine the nature of the dissipative terms in the equations of motion. We

shall assume that the neutrons and Λ hyperons are superfluid, and thus apply the irrotational

constraint (38) to both these components. Meanwhile, following [4], we shall neglect heat

conduction and assume that the entropy flows with the charged components, which thus

represents the “normal” component. Note that we are explicitly taking vΣ = vp, so that

jΣs = jps = 0. In this approximation the required thermodynamic fluxes take the form

−V I =
∑

x

∑

J

M IJ
x AJ + M̃J

ij∇iv
j
p + M̃nJ

ij ∇
ijjns + M̃ΛJ

ij ∇
ijjΛs , (75)

−F
n
i = −F

Λ = 0 , (76)

−Dij =
∑

J

M̃J
ijAJ +Mijkl∇

kvlp + M̃n
ijkl∇

kjlnp + M̃Λ
ijkl∇

kjlΛp , (77)

−D
n
ij =

∑

J

M̃nJ
ij AJ + M̃n

ijkl∇
kvlp +Mnn

ijkl∇
kjlnp +MnΛ

ijkl∇
kjlΛp , (78)

−D
Λ
ij =

∑

J

M̃ΛJ
ij AJ + M̃Λ

ijkl∇
kvlp +MΛn

ijkl∇
kjlnp +MΛΛ

ijkl∇
kjlΛp , (79)

with coefficients

M IJ
x = γIJ

x M̃J
ij = τJgij M̃nJ

ij = τnJgij M̃ΛJ
ij = τΛJgij , (80)

Mijkl = ζ sgijgkl + ηs
(

gikgjl + gilgjk −
2

3
gijgkl

)

, (81)

M̃n
ijkl = ζ̂ngijgkl M̃Λ

ijkl = ζ̂Λgijgkl , (82)

Mnn = ζ̂nngijgkl MnΛ = ζ̂nΛgijgkl MΛΛ = ζ̂ΛΛgijgkl . (83)

We thus have the standard shear viscosity coefficient ηs that appears in the Navier-Stokes

equations, but there are now 6 bulk viscosity coefficients and the reaction rates depend

on the flows via the τJ and τxJ coefficients. It is important to note that the new viscosity

coefficients in the equations of motion are related to the relative flow. A generic perturbation

of the system, or indeed a typical oscillation mode, will be represented by the coupled degrees

of freedom. It is by no means obvious from the outset to what extent the various degrees

of freedom are excited in a given situation. A useful illustration is provided by the (polar)
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f-mode of a superfluid neutron stars, for which the damping is dominated by the vortex

mutual friction and hence relies on the relative motion of the two components [58]. The

damping can be strong because the excitation of the relative motion is considerable. This

is in clear contrast to the results for the (axial) r-modes [7], for which the exitation of the

relative flow is weak (at least for the mode that is the strongest gravitational-wave emitter).

B. CFL and kaons

Our second example concerns a core of deconfined quarks in the colour-flavour locked

(CFL) phase combined with a population of kaons. This problem is of great interest as the

ground state of matter in neutron star cores has been the object of vigorous investigation (see

e.g. [20] for a review). While the pure CFL phase (which can be conveniently be described

by a two-fluid model with a CFL condensate coupled to phonons [13]) is the ground state of

cold matter at asymptotically high densities, it is thought that a kaon condensate is likely

to be present at realistic neutron star core densities (leading to the so-called CFL-K0 phase

[21]). This possibility has recently been considered in connection with the damping of the

r-mode instability [63], but the multi-fluid aspects of the problem have (so far) been ignored.

In order to model this situation we need to consider a three-fluid system given by the

(neutral) CFL condensate, the kaons and the excitations of the system, which we treat as

a massless entropy fluid (as in [13, 30]). The analysis then proceeds (essentially) as in the

previous section. We indicate the CFL condensate with c, the kaons with k and the entropy

with s. The momenta of the different fluids are

πc
i = gij

[

mcncv
j
c − 2(αckwj

ck + αcswj
cs)
]

, (84)

πk
i = gij

{

mknkv
j
k + 2[(αck + αks)wj

ck − αcswj
cs]
}

, (85)

πs
i = 2gij

[

(αcs + αks)wj
cs − αkswj

ck

]

, (86)

Note that, as we impose that the fluids flow together in the background, the unperturbed

entropy momentum (86) vanishes. From the Euler equations (10) one then finds that

s∇iT = 0 , (87)

which implies that the unperturbed core has uniform temperature (we have made the iden-

tification ns = s, µs = T ). The background system is isothermal.
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We can again write the perturbed Euler equations as one equation for the total velocity,

equation (61), and two equations for the counter-moving velocities:

∂tδw
i
cs =

[

εT (ε
k − εsc)

ǫ̃
− 1

]

s

ᾱ
∇

iδT −
εT
ǫ̃
(∇iδβ̃ + 2ǫijkΩjδw

ck
k )−

1− εck − ε̄

ε̃ᾱ
∇jδD

ij

+

(

ρc
ᾱ

1− εck − ε̄

ε̃
−

εT
ε̃

)

∇jδD̃
ij
c +

(

ρk
ᾱ

1− εck − ε̄

ε̃
+

εT
ε̃

)

∇jδD̃
ij
k

+

(

εT
ε̃

−
ρc(1− εk − ε̄)

ᾱε̃

)

δF̃ i
c −

(

εT
ε̃

+
ρk(1− εk − ε̄)

ᾱε̃

)

δF̃ i
k , (88)

∂tδw
i
ck =

[

(εk − εsc)

ǫ̃

]

s̄∇iδT −
1

ǫ̃
(∇iδβ̃ + 2ǫijkΩjδw

ck
k ) +

εk − εcs
ε̃ᾱ

∇jδD
ij

−
ᾱ + ρc(εk − εcs)

ᾱε̃
∇jδD̃

ij
c +

ᾱ− ρk(εk − εcs)

ᾱε̃
∇jδD̃

ij
k

+
ᾱ + ρc(εk − εcs)

ᾱε̃
δF̃ i

c −
ᾱ− ρk(εk − εcs)

ᾱε̃
δF̃ i

k , (89)

where δβ̃ = δµc/mc − δµk/mk

εck =
2αck

ρc
εcs =

2αcs

ρc
ε̄ =

2(αck + αks)

ρk
ᾱ = 2(αcs + αks) , (90)

εk =
2αcs

ρk
εT =

αks

αcs + αks
ε̃ = 1− εck − ε̄+ εT(ε

k
− εcs) . (91)

Since the background is co-moving, perturbations of the entrainment parameters do not

appear in the equations of motion. In contrast is the previous example, most of the required

coefficients have not been previously considered in the literature. Hence, we do not know if

it necessary to retain the entrainment between quarks and kaons. The entropy entrainment,

on the other hand, is known to be key to the thermal relaxation in the problem [30]. The

effect may be weak at low temperatures, but there are fundamental arguments for why it

should be present.

From the perturbed continuity equations we derive the usual relation for the total density

perturbations, equation (59), a continuity equation for the kaon mass fraction (xk = ρk/ρ)

∂tδxk =
1

ρ
∇i

[

xk(1− xk)δw
i
ck

]

− δvi∇ixk +
mkΓk

ρ
, (92)

and a conservation law for entropy

∂tδs+∇i(sδv
i
s) = ∂tδs+∇is(δv

i + xkδw
i
ck − δwi

cs) = 0 . (93)
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Here it is worth noting that, since we are working at the linear perturbation level and the

background is isothermal (i.e. there is no heat flow in the unperturbed configuration) the

problem is adiabatic.

Let us now turn to the dissipative terms in the Euler equations. If we assume that the

CFL condensate and the kaons are superfluid we can apply the irrotational constraint (38)

to both these components. Meanwhile, the entropy represents the “normal” fluid. The

situation is thus very similar to that for hyperons, and the fluxes are explicitly given by;

−V I =
∑

x

∑

J

M IJ
x AJ + M̃J

ij∇iv
j
s + M̃ cJ

ij ∇
ijjcs + M̃kJ

ij ∇
ijjks , (94)

−F
c
i = −F

k = 0 , (95)

−Dij =
∑

J

M̃J
ijAJ +Mijkl∇

kvls + M̃ c
ijkl∇

kjlcs + M̃k
ijkl∇

kjlks , (96)

−D
c
ij =

∑

J

M̃ cJ
ij AJ + M̃ c

ijkl∇
kvls +M cc

ijkl∇
kjlcs +M ck

ijkl∇
kjlks , (97)

−D
k
ij =

∑

J

M̃kJ
ij AJ + M̃k

ijkl∇
kvls +Mkc

ijkl∇
kjlcs +Mkk

ijkl∇
kjlks , (98)

with

M IJ
x = γIJ

x M̃J
ij = τJgij M̃ cJ

ij = τ cJgij M̃kJ
ij = τkJgij , (99)

Mijkl = ζ sgijgkl + ηs
(

gikgjl + gilgjk −
2

3
gijgkl

)

, (100)

M̃ c
ijkl = ζ̂cgijgkl M̃k

ijkl = ζ̂kgijgkl , (101)

M cc = ζ̂ccgijgkl M ck = ζ̂ckgijgkl Mkk = ζ̂kkgijgkl . (102)

Once again we have the standard shear viscosity coefficient ηs and 6 bulk viscosity coeffi-

cients.

In the above analysis we accounted for a charge-neutral superfluid K0 condensate. An-

other possibility is that, for sufficiently hot neutron stars, there exists a sizable thermal

population of kaons [22, 64]. This would change the problem considerably, as one would

expect that (at least as a first approximation) the thermal kaons would be locked to the

entropy (the thermal excitations), thus adding to the “normal” fluid. Moreover, the thermal

kaons would be massive. To deal with this situation, we could once again solve a two-fluid

problem, similar to that of a CFL condensate coupled to phonons [13]. The main difference

would be that the superfluid condensate would no longer be coupled to a massless fluid, but

rather to the fluid formed by thermal kaons and phonons. The mass density of such a fluid
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would be temperature dependent. This situation has not been considered previously. It

could be interesting, both from a conceptual and a practical point-of-view. There may, for

example, be interesting consequences for the r-mode instability, as the Coriolis force which

drives the mode will not act on a massless fluid (such as a phonon gas) but it would act on

the thermal kaons.

A similar problem that we need to consider is that of superfluid neutrons and protons

coupled to thermal excitations [24, 65]. In the simplest approximation one may assume that

the system is well below the superfluid transition temperature in which case thermal effects

can safely be neglected. This is, indeed, the assumption in most existing work on neutron

star dynamics. However, given the strong density dependence of the superfluid pairing gaps

there will always be regions of the star that are close to the superfluid transition temperature.

In these regions thermal effects are important. To model such regions one should consider a

three-fluid system of superfluid neutrons, superconducting protons (locked to the electrons)

and thermal excitations (the entropy). Formally, such a system would be very close to the

CFL-K0 core. It may be sufficient to replace the density of the CFL condensate with the

neutron density and the kaon density with the proton density in all the above equations.

VIII. CONCLUSIONS

We have presented a general flux-conservative formalism for modelling dissipation in

multi-fluid systems, extending and correcting the model from [4]. The formalism was devel-

oped with superfluid neutron star cores in mind, but is sufficiently general that it can be

applied to a variety of analogous multi-fluid systems. The introduction of extra degrees of

freedom (the separate “fluids”) leads to a number of additional dissipation coefficients com-

pared to standard single-fluid hydrodynamics. This may affect the dynamics of the system

significantly, e.g. impact on the nature of the modes of oscillation of a neutron star. This

may, in turn, have repercussions for the gravitational waves emitted by the system. In order

to understand this effect we developed the most general form for the dissipation coefficients

and discussed how their number can be reduced by imposing the “superfluid” constraint

on one or more fluids (imposing that the flow must remain irrotational). This constraint is

often too severe, as a superfluid condensate will not be macroscopically irrotational, but will

rather mimic the effect of bulk rotation by creating an array of vortices. This leads to new
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dissipative effects, such as the vortex mediated mutual friction. The superfluid constraint

does, however, drastically simplify the dissipation problem and may be a reasonable approx-

imation at temperatures well below the superfluid transition temperature. The simplified

model may also give some insight into which dissipation channels are likely to make the

most important contributions.

As examples of relevant applications, that take us (quite far) beyond the level that has

been previously considered, we outlined two problems where a three-fluid description is

appropriate. In fact, although two-fluid hydrodynamics is a useful approximation for the

study of a system of neutrons and protons at low temperature (i.e. the outer core of a

neutron star) [4, 58], there will always be regions of the star that are close to the superfluid

transition temperature and in which the thermal excitations of the system (the entropy in our

language) should be considered as a separate component [24]. Furthermore, several equations

of state predict the appearance of hyperons in neutron star cores, with Λ and Σ− expected

to have the lowest threshold densities [11, 62]. The effects of multi-fluid hydrodynamics on

the bulk viscosity damping of the gravitational-wave driven r-mode instability have already

been studied in [6], although in that case the model was simplified to the two-fluid level by

neglecting the Λ hyperons. A “complete” model would require a three-fluid description to

account for neutrons, Λ hyperons and a charge neutral fluid of protons, electrons and Σ−

hyperons.

Another interesting possibility is that the ground state of matter at the extreme densities

of neutron star cores may correspond to deconfined quarks. At asymptotically high densities

matter is expected to be in the CFL state, and one can thus model the system by considering

a two-fluid model of a CFL condensate coupled to phonons (the entropy). For realistic core

densities it is, however, believed that the ground state will be represented by the so-called

CFL-K0 phase [21] in which one also has a kaon condensate. Motivated by this, we presented

an example of a three-fluid system given by two superfluids, the CFL condensate and the

kaons, coupled to a phonon gas. This example is interesting also because it can easily be

adapted to describe neutrons and protons coupled to thermal excitations by replacing the

kaon and CFL densities with the neutron and proton densities. The two systems are formally

equivalent.

From a technical point-of-view, the model developed in this paper takes us to the level

where we need to focus on more detailed applications. In order to do this, we must give
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some thought to the nature of the many new dissipation coefficients that the system allows.

Are there situations where the additional channels are important? Our experience from

neutron star oscillations and the case of the superfluid mutual friction suggests that the

answer is non-trivial (as one would expect), and that one may have to work out the detailed

dynamics of each model system before knowing for certain. A better insight into the relative

strength of the different dissipation coefficient and their nature (e.g. the scaling with the

key variables of the problem, like density and temperature) would be very useful, and may

suggest suitable simplifications for any problem at hand. Of course, this presents us with

a challenge given that most considerations of NS transport phenomena are based on the

single-fluid model. We need to move beyond this level to make further progress.
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[24] Andersson, N., Krüger, C., Comer, G.L., Samuelsson, L., A minimal model for finite temper-

ature superfluid dynamics in preparation

[25] Andersson N., Comer G.L., Glampedakis K., Nucl. Phys. A 763, 212 (2005)

[26] Cutler C., Lindblom L., ApJ 314, 234 (1987)

[27] Kantor E.M., Gusakov M.E., Phys. Rev. D 79, 43004 (2009)

[28] Andersson N., Comer G.L., Int. J. Mod. Phys. D, 20, 1215 (2011)

[29] Khalatnikov I.M, An introduction to the theory of superfluidity (W.A. Benjamin, New York,

1965)

[30] Andersson N., Comer G.L., Proc. R. Soc. A 466, 1373 (2010)

[31] Jou, D., Casas-Vázquez, J., and Lebon, G., Extended irreversible thermodynamics, (Springer,

New York, 2010)

[32] Glendenning N.K., Compact Stars: Nuclear Physics, Particls Physics and General Relativity,

2nd Edition (Springer Verlag, New York, 2000)

[33] Glampedakis K., Andersson N., Samuelsson L., MNRAS 410, 805 (2011)

31



[34] Mendell G., ApJ., 380, 515 (1991)

[35] Carter, B., Covariant Theory of Conductivity in Ideal Fluid or Solid Media, pp 1-64 in Rel-

ativistic Fluid Dynamics, Lectures given at the 1st 1987 session of the Centro Internazionale

Matematico Estivo (C.I.M.E.) held at Noto, Italy, May 25 June 3, 1987, Ed. A. Anile & M.

Choquet-Bruhat, vol. 1385 of Lecture Notes in Mathematics, (Springer, Berlin, 1989)

[36] Andersson N., Comer G.L., Living Rev. Relativity 10, http://www.livingreviews.org/lrr-2007-

1(2007)

[37] Comer G.L., Joynt R., Phys. Rev. D 68, 023002 (2003)

[38] Gusakov M.E., Kantor E.M., Haensel P., Phys. Rev. C 79, 015803 (2009)

[39] Gusakov M.E., Kantor E.M., Haensel P., Phys. Rev. C 79, 055806 (2009)

[40] Lopez-Monsalvo C.S., Andersson N., Proc. R. Soc. London A, 467, 738 (2011)

[41] Andersson, N., and Lopez-Monsalvo, C.S., Class. Quantum Grav. 28, 195023 (2011)

[42] Andersson, N., Resistive relativistic magnetohydrodynamics from a charged multi-fluids per-

spective preprint arXiv:1204.2695

[43] Onsager L., Phys. Rev. 37, 405 (1931)

[44] Kondepudi D, Prigogine I., Modern Thermodynamics (John Wiley and Sons, Chichester, 2005)

[45] Carter, B., Chamel, N., Int. J. Mod. Phys. D, Volume, 14, 749 (2005)

[46] Gusakov, M.E., Phys. Rev. D. 76 083001 (2007)

[47] Manuel, C., Mannarelli, M., Phys. Rev. D 81 043002 (2010)

[48] Alpar M.A., Langer S.A., Sauls J.A., ApJ, 282, 533 (1984)

[49] Mendell G., ApJ., 380, 530 (1991)

[50] Andersson N., Sidery T.L., Comer G.L., MNRAS 368, 162 (2006)

[51] Melatos A., Peralta C., ApJ 662, L99 (2007)

[52] Melatos A., Peralta C., ApJ 709, 77 (2010)

[53] Andersson, N.; Sidery, T.; Comer, G. L., MNRAS, 381, 747 (2007)

[54] Babaev E., Phys. Rev. Lett. 103, 231101 (2009)

[55] Buckley, K.B., Metlitski, M.A., Zhitnitsky, A.R., Phys. Rev. C 69, 055803 (2004)

[56] Lindblom, L., Mendell, G., Ap. J. 421, 689 (1994)

[57] Lindblom, L., Mendell, G., Phys. Rev. D 61, 104003 (2000)

[58] Andersson N., Glampedakis K., Haskell B., Phys. Rev D 79, 103009 (2009)

[59] Andersson N., Kokkotas K.D, Int. J. Mod. Phys. D 10, 381 (2001)

32



[60] Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T., Nature 467,

1081 (2010)

[61] Stone, J.R., Guichon, P.A.M., Thomas, A.W., Role of Hyperons in Neutron Stars, preprint

arXiv:1012.2919

[62] Haensel P., Levenfish K.P., Yakovlev D.G., A&A 381, 1080 (2002)

[63] Rupak G., Jaikumar P., Phys. Rev. C., 82, 055806 (2010)

[64] Alford M.G., Braby M., Mahmoodifar S., Phys. Rev. C 81, 025202 (2010)

[65] Gusakov, M.E., Andersson, N., MNRAS 372, 1776 (2006)

[66] Colucci, G., Mannarelli, M., Manuel, C., preprint arXiv:1007.2304

[67] Note that if one expands the term ∂tπ
x
i in Eq. (10) and makes use of Eq. (12), a so-called

“rocket” term emerges, i.e. a force of the form fx
i = pxiΓx acting on each constituent. An

analysis of this effect in the context of the gravitational-wave driven r-mode instability was

recently provided by Colucci et al. [66], who argued that the effect is not relevant for the

damping of the standard r-mode, but will affect a restricted class of counter-moving superfluid

r-modes that may exist in non stratified stars. However, the inclusion of the rocket term in

such a problem is not straightforward, as it will in general, be of higher than linear order if

the background configuration is in chemical equilibrium. This means that the problem is more

complicated than it would appear from the analysis in [66]. In the following, we assume that

reactions arise at the linear perturbation level, and thus do not include the rocket term in the

perturbative analysis (cf. Section 6).

[68] Throughout the discussion we consider the regime where the thermal excitations of the system

can be treated as a fluid, i.e. we assume that the phonon mean free path is sufficiently short

that this makes sense [13, 28, 30].

[69] Technically speaking one should consider mole numbers in these relations. However, for the

kind of reactions that we consider in neutron star cores there is no difference.

[70] Note that there is no similar constraint on the individual Dx
ij coeffients, despite this being a

common assumption in the literature.

[71] Note that in general κ = h/mp wheremp is the mass of the ”boson” that forms the condensate.

In the case of fermions that we are considering in this context mp is the mass of the Cooper

pair, so that mp = 2mx.

[72] The general problem, with a rotational lag between different components, is vastly more

33



complicated.

[73] This is reasonable approximation as long as the characteristic frequency of the phenomena we

consider is below the electron-proton plasma and cyclotron frequency, which is the case for

most problems of astrophysical interest.

34


