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We propose a modified configuration of an advanced gravitational-wave detector that is a speed
meter type interferometer with improved sensitivity with respect to quantum noise. With the addi-
tion of polarization controlling components to the output of an arm cavity Michelson interferometer,
an orthogonal polarization state of the interferometer can be used to store signal, returning it later
with opposite phase to cancel position information below the storage bandwidth of the opposite
mode. This modification provides an alternative to an external kilometer scale Fabry- Pérot cavity,
as presented in earlier work of Purdue and Chen [P. Purdue and Y. Chen. PRD 66, 122004 (2002)].
The new configuration requires significantly less physical infrastructure to achieve speed meter op-
eration. The quantity of length and alignment degrees of freedom is also reduced. We present
theoretical calculations to show that such a speed meter detector is capable of beating the strain
sensitivity imposed by the Standard Quantum Limit over a broad range of frequencies for Advanced
LIGO-like parameters. The benefits and possible difficulties of implementing such a scheme are out-
lined. We also present results for tuning of the speed meter by adjusting the degree of polarization
coupling, a novel possibility that does not exist in previously proposed designs, showing that there
is a smooth transition from speed meter operation to that of a signal recycling Michelson behavior.

I. INTRODUCTION

Gravitational-wave (GW) detectors, such as Advanced
LIGO, are Michelson-like interferometers designed to de-
tect strains of 10−23 or less [1]. One contributing noise
source limiting the sensitivity of these instruments is the
quantum fluctuations in their light fields, also known
as quantum noise, that imposes a theoretical limit to
their sensitivity known as the Standard Quantum Limit
(SQL)[2]. This limit applies to non-resonant Michelson
detectors and is imposed by the compromise between
laser shot noise and radiation pressure noise that results
from photon recoil off mirrors. Radiation pressure noise
is expected to dominate at low frequencies and is a kind
of measurement back action that limits the sensitivity of
the instrument. Various schemes have been investigated
with the express aim of circumvent the SQL [2–8].

This paper explores a theoretical speed meter config-
uration that is a relatively minor modification to the
proposed advanced interferometer configurations, such
as the Advanced Laser Interferometer Gravitational-wave
Observatory (Adv. LIGO), Virgo and KAGRA [1, 9, 10].
The configurations explored in this paper are proposed
as third generation concepts for these instruments. With
the addition of polarization optics, light may be stored on
a second polarization of the interferometer before being
returned with opposite phase to cancel position signals
below the bandwidth of the opposite polarization stor-
age mode. This design was inspired by a speed meter
topology proposed by Purdue and Chen [11] that used an
external four kilometer Fabry-Pérot (FP) cavity to pro-
vide position signal cancellation. An alternative speed
meter configuration, using polarization, was previously
proposed by Danilishin [12] that replaced the Michelson
beam splitter with a polarizing beam splitter and placed
quarter-wave plates in the arms to couple the two arm

cavity modes. In the scheme presented here quarter-wave
plates are removed to the output to avoid having to pass
large circulating power and a linear orthogonal polariza-
tion is used as a storage mode. An advantage of the
design proposed here is that the existing infrastructure
of the LIGO interferometers would require minimal mod-
ification with changes only to the output optics and the
Michelson beam splitter.

A speed meter interferometer is a device that measures
the relative velocity of test masses instead of relative posi-
tion. This is achieved by sampling the test mass position
twice, cancelling position signals and modifying the reac-
tance of test mass to amplitude quadrature fluctuations
in the light field. The result is an interferometer that
has a strain signal response proportional to frequency
and a test mass response to amplitude quadrature vac-
uum fluctuations that is constant in frequency. The recoil
of test masses to amplitude fluctuations leads to corre-
lations forming from the amplitude quadrature into the
phase quadrature. For speed meters, this response is con-
stant in magnitude as a function of frequency. Thus its
contribution to quantum noise competing with the GW
signal will be cancelled with the correct choice of homo-
dyne readout angle. Speed meters are a type of quantum
non-demolition scheme that can circumvent back action
noise, allowing measurement below the SQL over a broad
range of frequencies.

We first describe the operation of the polarization
speed meter and sketch a mathematical description of
its operation. We show that, in the absence of other
noise sources, such a speed meter detector is capable of
beating the strain sensitivity limit imposed by the SQL
over a broad frequency range. We also show how a small
variation in this design, involving adjustment of polariza-
tion coupling by rotation of a wave plate, can be used to
tune a speed meter. This results in a smooth transition
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from speed meter operation to that of a signal recycling
Michelson behavior. Finally we report on the possible
sensitivity improvements achievable with this configu-
ration for advanced LIGO like parameters and discuss
the implementation for a kilometer scale detector of this
kind.

II. POLARIZATION CONFIGURATION

CONCEPT AND THE MATHEMATICAL

DESCRIPTION

A. The proposed polarization folded speed meter

The proposed polarization folded speed meter is illus-
trated Fig. (1). This interferometer configuration is
based on the advanced topologies of LIGO, Virgo and
KAGRA [1, 9, 10] but with the addition of a quarter-
wave plate and output coupling mirror as well as an-
cillary polarization readout optics. The advanced inter-
ferometer configuration (dashed box, Fig. (1)) consists
of an arm cavity power recycled Michelson interferom-
eter held to its dark fringe for destructive interference
at the output (quadrature fields f ′

i). In the absence of
arm length modulations, injected laser light on the hor-
izontal polarization is returned along its path of inci-
dence. When a GW differentially modulates the arm
lengths, phase modulation sidebands are generated that
constructively interfere at the output side of the beam
splitter. Thus, gravitational-wave signals are generated
in the phase quadrature of the horizontal field at the out-
put (f ′

i) by differential motion of end test masses.
In advanced configuration topologies power recycling

and signal extraction mirrors are included to resonantly
couple carrier light in and signal sidebands out of the
arm cavities: these are omitted in this paper for the
sake of simplifying the analysis of speed meter opera-
tion. The high circulating cavity power is similar to the
800kW expected to be implemented in Adv. LIGO [13]
and the large laser power required can be reduced by
re-introducing a power recycling mirror. Here we princi-
pally concern ourselves with fixing arm cavity circulating
power and understanding the dynamics of the system.
The purpose of the additional polarization optics at

the output of the arm cavity Michelson is to couple sig-
nal and noise sideband fields to an orthogonal polariza-
tion mode of the Michelson interferometer. The output
mirror and quarter-wave plates are a short distance from
the Michelson beam splitter compared to the kilometer
scale of the detector arms. Horizontally polarized signal
and noise fields, reflected by the output coupler mirror,
double pass through the quarter-wave plate, delaying one
optical axis by half a wavelength. When the wave plate
slow axis is oriented at 45◦, the polarization of the light
is rotated by 90◦ to the vertical and on this mode is
coupled back into the interferometer. On this vertical
polarization the light is unaffected, by modulations in
end mirror position. In the absence of carrier light on
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FIG. 1: Schematic of the polarization speed meter configu-
ration including power recycling (Tprm)and signal extraction
(Trse ) mirrors (in gray). Horizontal linear polarization fields
a, b, e and f and vertical fields c, d, g and h are indicated in
red and blue respectively. Arm cavities are formed between
the test mass mirrors and the arm cavity mirrors Ti, photons
undergo a number of round trips, increasing their response to
changes in the optical path due to GW. Carrier laser light is
injected into the left port of the configuration in the horizontal
polarization where the Michelson is held to its dark fringe on
transmission. Differential test mass motion generates phase
modulation sidebands in the horizontal polarization at the
quadrature field point f ′

i . The quarter-wave plate (λ/4) and
output coupler mirror (To) couple these signals into an or-
thogonal polarization so that stored signals may couple back
π out of phase to cancel position signals below the bandwidth
of the polarization storage. The polarizing beam splitter iso-
lates the two polarizations from one another so that the ver-
tical polarization port can be closed with a mirror to prevent
vacuum noise coupling in and signals may be read out on the
horizontal port only. The horizontal polarization is detected
with a homodyne detector.
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the vertical mode, periodic changes in arm length do not
pump coherent carrier light into signal and noise side-
bands, sidebands generated from signal and noise side-
bands are negligibly small. Thus sidebands are stored
on an orthogonal polarization in what is effectively a two
mirror cavity. Signals stored in the opposite polarization
couple back π out of phase to cancel sidebands below the
bandwidth of the orthogonal storage mode, canceling po-
sition information. The remaining phase modulations are
due to velocity and higher order derivatives of position.
The design invites direct comparisons to a speed meter
topologies previously proposed by Purdue and Chen [11]
in which the orthogonal mode storage is instead provided
by an external FP cavity. The equivalence between these
two configurations is that the external FP cavity is now
folded into an orthogonal mode of the Michelson interfer-
ometer. With the addition of polarization optics at the
output an additional kilometer scale external cavity and
associated infrastructure are not needed.

B. Mathematical description of interferometer

Vacuum fluctuations in the electro-magnetic fields cou-
ple in from open ports and points of loss in the system.
In this analysis we consider the disturbance to the test
masses by the open detector ports only.
In order to compute the strain sensitivity performance

of the interferometer, it is first necessary to calculate
the whole system input-output transfer function. This
quantum transfer function expresses the output quadra-
ture fields, (bi) at the output detection port, in terms of
the vacuum quadrature fields (ai) coupled in from the
open detection port and the gravitational strain ‘h’ that
is pumped from the carrier light field by modulation of
the optical path. This relationship is found by solving the
set of simultaneous equations including mirror junction
conditions and linking free space propagation equations.
For an interferometer held on its dark fringe and driven
with a carrier field in the cosine quadrature and with
arm cavities and output cavity held on resonance with
the carrier, the transfer function takes the form,
[

b1
b2

]

= e2iβ
[

1 0
−κ 1

] [

a1
a2

]

+
√
2κeiβ

h

hSQL

[

0
1

]

, (1)

where ai and bi are the quadrature fields as labeled in
Fig. (1) and include gravitational-wave strain signal h en-
coded in the phase quadrature. Here β is the overall side-
band phase accrued and κ is the frequency dependent ra-
diation pressure coupling function of the system. Quan-
tum noise in the interferometer output quadrature fields
results from fluctuations of the input quadrature fields
ai. In the first term of Eq. (1), κ represents the strength
of correlations from the amplitude to phase quadratures
due to the recoil of photons off test masses. The second√
κ term is proportional to the amplitude of the carrier

beam that is pumped into the phase quadrature by mod-
ulations of arm optical paths from gravitational-waves.

The factor hSQL =
√

8~/mΩ2L2 is the single-sided stan-
dard quantum limit that is factored out for convenience:
this term represents the highest strain referenced sensi-
tivity for a non-resonant Michelson detector. Thus Eq.
(1) represents a generic input-output transfer function
for a non-resonant detector and is wholly characterized
by the two principle quantities β and κ. By carefully en-
gineering their form, one can determine the characteristic
response and sensitivity performance of such a detector.
For speed meter operation the function κ should be

constant over a broad range of frequencies. This is so
the signal response is linear in frequency. In this regime
a homodyne readout quadrature angle ϕ can be chosen
to measure bϕ = b1 cos(ϕ)+b2 sin(ϕ) such that the strain
equivalent quantum noise contribution is

hn =
hSQL√
2κ

eiβ [a1(cotϕ− κ) + a2] . (2)

For the correct choice of ϕ, where κ(Ω = 0) = cotϕ,
contributions to the quantum noise floor from the ampli-
tude quadrature are canceled for a broad set of frequen-
cies. This is not the case in position-like measurements
for the unmodified advanced configuration where κ is a
function of frequency. In that case, back action contribu-
tions from amplitude fluctuations (a1) in the light field
can only be minimized at select frequencies.
To solve the quantum transfer function for the config-

uration illustrated in Fig. (1), we must solve the simul-
taneous equations linking light fields along propagation
path of the vacuum fields. For an arm cavity Michel-
son the output quadrature fields (fi), in terms of input
quadrature fields (ei) on the horizontal polarization, are
as outlined by Kimble et al. [4] (see Fig. (1) for fields),

[

f1
f2

]

= e2iα
[

1 0
−K 1

] [

e1
e2

]

+
√
2Keiα

h

hSQL

[

0
1

]

,

(3)
where K = (2(I0/ISQL)γ

4)/(Ω2(γ2 +Ω2)) is the radia-
tion pressure driven coupling function of the arm cavity
Michelson and α = arctanΩ/γ is the phase accrued by
sidebands at GW frequency Ω reflected off each of the FP
arm cavities. Here, γ is the bandwidth of each arm cav-
ity. I0 and ISQL are the carrier laser power in the arms
and laser power required to reach the SQL in a non SR
interferometer. The form of these equations is identical
to Eq. (3): however in this case K is frequency depen-
dent. Because there is no injected coherent light on the
vertical polarization, quadrature components of the field
have nothing to beat against and K (for the vertical po-
larization) is zero. Thus the output fields (di) expressed
in terms of the input fields (ci) are

d1 = ei2αc1, (4)

d2 = ei2αc2. (5)

The quadrature fields are reflected with the same
fixed phase delay α as the horizontal polarization. It
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is also necessary to take into account the evolution of
the fields as they propagate between optics. Details are
given in Appendix A where Eq. (A8) and (A9) may
be applied for the propagation between the points fi,
di, ei, ci and f ′

i , d
′
i, e

′
i, c

′
i as labeled in Fig. (1). Here

the phase evolution of the fields is broken into side
band phase, φj = ΩL/c, proportional to the side band
frequency Ω, arm length L and speed of light c, and a
carrier phase Φj = ωL/c, proportional to to the carrier
frequency ω, that rotates the basis of the quadratures.
Assuming that length scales to and from the polarization
optics are negligible, then sideband phases accrued over
these paths are φ1 = φ2 ≈ 0. Additionally, absolute
length is set to an integral and half integral numbers of
wavelength such that Φ1 = 0 and Φ2 = π/2.

For the quarter-wave plate oriented at 45◦ to the hori-
zontal, light is rotated 90◦ upon reflection. On transmis-
sion a second quarter-wave plate is oriented 90◦ to the
first wave plate to cancel the rotation on transmission.
The resulting junction conditions at the output coupler
mirror, of transmittance T0, are

ei =
√

Toai +
√

1− Toci, (6)

di =
√

Togi +
√

1− Tofi, (7)

hi =
√

Toci −
√

1− Toai, (8)

bi =
√

Tofi −
√

1− Togi. (9)

Finally, a closing mirror is necessary in order to pre-
vent vacuum field coupling in from the additional vertical
open port. The closing mirror is assumed to be perfectly
reflective so that g′i = −h′

i.
We solve for the output quadrature fields bi in terms

of input vacuum fluctuations ai and the GW strain h. A
solution for quadrature fields, bi was found in the form
of Eq. (3). The exact algebraic form for β and κ is cum-
bersome and the analytic expressions are not presented
here. The noise spectral density is computed by setting
the signal equal to noise and finding the corresponding
square root of spectral density as outlined by Buonanno
and Chen [5]. The resulting coupling factor κ and strain
equivalent sensitivity curve are presented in Figs. (2)
and (3) respectively, using parameters provided in table
I. These parameters are chosen specifically to correspond
to soon-to-be-implemented Advanced LIGO parameters
[1].
Speed meter operation is shown for arm cavity mir-

ror transmissivities Ti = 0.10 and Ti = 0.05 and the
parameters outlined in table I. Fig. (2) shows the two
radiation coupling functions for the choices of arm cavity
finesse: their function is constant below the bandwidth of
the arm cavities. This is the characteristic response of a
speed meter interferometer. For |κ| ≈ 0.7 and |κ| ≈ 4.5,
the homodyne angles of 55◦ and 12.3◦ can be chosen to
select a quadrature that cancels contributions from the
vacuum amplitude quadrature (see Eq. (2)). Over a
broad range of frequencies below 100 Hz, the strain ref-
erenced quantum noise floor presented in Fig. (3) shows
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FIG. 2: Plot of the amplitude of the radiation pressure cou-
pling function, κ, as a function of frequency. This shows a
constant degree of coupling from the amplitude to the phase
quadrature for frequencies up to 100 Hz. Below this band-
width a homodyne readout angle may be chosen that projects
out noise contribution from the amplitude quadrature. This
plot is produced from the parameters presented in table I
with two choices of arm cavity finesse set by a Ti of 0.10 and
0.05. Circulating power was fixed at 850 kW with the power
at the beam splitter adjusted for each of the Ti. Labels on
curves indicate the beam splitter power and arm cavity mirror
transmissivity.

that, with the correct choice of homodyne readout angle,
contributions to quantum noise can be less than SQL by
a factor of four. Outside the bandwidth of the arm cavi-
ties, the κ functions are no longer constant in frequency
and no longer beat the SQL. Using the software package
GWINC [14], the quantum noise contribution to the Ad-
vanced LIGO noise budget is plotted alongside the two
polarization speed meter curves for comparison. Finally
it should be noted that because the gravitational-wave
signal is only encoded in the phase quadrature b2, the
choice of an arbitrary readout quadrature will take pro-
jections of its magnitude onto the quadrature of choice.
Thus, although quantum noise from the vacuum port are
minimized, the desired signals are also reduced.
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TABLE I: Parameters used to model a polarization-folded speed meter. Values were chosen to correspond to Advance LIGO
[1].

Parameter Symbol Value Units
Carrier laser frequency ω0 1.77 × 1015 rad.s−1

Mirror mass m 40 kg
Circulating power in the cavity arms I0 850 kW
Arm length L 3995 m
Arm cavity half bandwidth γ Tic/4L s−1

Internal arm cavity transmittance Ti (Power) 0.10 and 0.05 -
Output coupler mirror transmittance To (Power) 0.72 -
Gravitational-wave frequency Ω 101 − 103 s−1
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FIG. 3: Strain equivalent quantum noise contribution as a
function of frequency for the polarization folded speed meter.
Here three curves a displayed: two for the different choices
of arm cavity mirror transmissivity Ti = 0.10 and Ti = 0.05
and a third that is the Advanced LIGO quantum noise con-
tribution calculated using the software package GWINC [14].
Labels on curves indicate the choice of Ti and the beam split-
ter power to ensure circulating power at 850 kW. Also, for the
polarization speed meter calculations, the homodyne readout
phase has been adjusted to cancel amplitude quadrature con-
tributions to the noise. It is shown here that the configuration
can match the SQL using the parameters presented in table
I over a broad range of frequencies. Over a narrower range
operation (Ti = 0.05) the configuration can be less than the
SQL by factors of four. The sensitivity no longer matches the
slope of the SQL when the function κ is no longer constant
in frequency.
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III. SPEED METER OPERATION FOR OTHER

CHOICES OF WAVE PLATE ANGLE

In this section we consider the more general case where
the quarter-wave plate between the Michelson and the
output coupler may be oriented at any arbitrary rotation
angle θ. By changing the rotation of this component, the
degree of coupling between horizontal (signal) and ver-
tical (storage) polarizations can be adjusted. A possible
advantage of this tunability is that the bandwidth of the
speed meter operation may be adjusted without the need
to switch optics. With full rotation of the quarter-wave
plate fast axis from 45◦ to 0◦, the interferometer can be
tuned from full speed meter behavior to that of a signal
recycled Michelson. This may be desirable in a future
iteration of LIGO in the event that high strain sensitivi-
ties are sought for sources in different frequency detection
bands from a single detector.
Two additional quarter-wave plates oriented with their

slow axis to the vertical are required for polarization tun-
ing. In section II, where quarter-wave plate was assumed
to oriented at 45◦, light was completely coupled between
horizontal and vertical polarizations on reflection from
the output mirror. As the wave plate is detuned from
this angle, some light is reflected back into its incident
polarization. On reflection from the quarter-wave plate
and output coupler mirror, the vertical polarization re-
ceives a π phase flip on reflection making the vertical
polarization anti-resonant. The additional wave plates,
inserted either side of the output coupler mirror correct
for this, cancelling each others action on transmission in
either direction.
In order to compute the effect of polarization coupling

tuning it is necessary to modify Eq. (6 - 9), for the more
general case of arbitrary wave plate rotation θ, the new
equations become

ei =
√

1− To cos 2θfi +
√

1− To sin 2θci +
√

To cos 2θgi +
√

To sin 2θai, (10)

di =
√

1− To sin 2θfi +
√

1− To cos 2θci +
√

To sin 2θgi +
√

To cos 2θai, (11)

hi =
√

To cos 2θfi +
√

To sin 2θci −
√

1− To cos 2θgi −
√

1− To sin 2θai, (12)

bi =
√

To sin 2θfi +
√

To cos 2θci −
√

1− To sin 2θgi −
√

1− To cos 2θai, (13)

where output coupler mirror transmissivity is To and θ
is the rotation of the fast axis from the horizontal.
The output quadrature fields bi were solved, in a

similar manner to section II B, in terms of ai and the
gravitational-wave strain signal h with the more general
Eq. (10-13). Using the parameters presented in table I,
with arm cavity circulating power set to 850 kW and the
specific case of Ti = 0.10, the radiation pressure coupling

functions and strain sensitivities were plotted as a func-
tion of frequency, see Figs. (4) and (5). Here the plots
show an evolution of the characteristic behavior of the
interferometer. As the quarter-wave plate angle is tuned
away from 45◦, there is a decreased degree of coupling
between the polarizations and the κ function (Fig. (4))
shows that bandwidth of the signal storage and speed
meter operation narrows. Conversely the strength of cou-
pling is increased as θ is reduced allowing for choices of
readout angle that increase the strain equivalent perfor-
mance below the SQL for the same operating power. Fig.
(4) shows that as θ approaches zero degrees, the inter-
ferometer approaches signal recycled operation giving a
κ response, with 1/Ω2, that can only optimized to beat
the SQL at select frequencies.
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FIG. 4: Plot of radiation pressure coupling function, κ, as
function of frequency for different choices of quarter-wave
plate rotation θ. As the degree of wave plate rotation ap-
proaches zero degrees the bandwidth of speed meter opera-
tion narrows. The configuration approaches the behavior of
signal recycling as the coupling function is no longer constant
as a function of frequency. The arm cavity circulating power
for these plots was adjusted to 850 kW. All other parameters
are as presented in table I.

Thus it follows that, by rotating the wave plate the
storage time of the orthogonal mode is modified chang-
ing the bandwidth over which radiation pressure noise is
suppressed. By tuning the rotation of the quarter-wave
plate, the bandwidth of speed meter operation can be ef-
fectively tuned smoothly from speed meter operation to
a resonant signal recycled Michelson interferometer.

IV. IMPLEMENTING A POLARIZATION

SPEED METER AND ASSOCIATED ISSUES

Fig. (5) shows that the interferometer sensitivity
changes smoothly as the wave-plate angle is detuned. As
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FIG. 5: Plot of gravitational strain referenced noise sensitivity
as a function of frequency for different choices of quarter-wave
plate rotation θ. Corresponding to the evolution of the radi-
ation pressure coupling function, κ (see Fig 4), for different
choices of θ sensitivities beats the standard quantum limit be-
low the roll off of the κ function. Homodyne readout angles
are chosen for each choice of θ that cancel contributions of
amplitude noise obscuring the GW signal. The bandwidth of
speed meter operation narrows as the degree of coupling be-
tween the polarizations is turned down (i.e. the quarter-wave
plate is oriented toward zero). The arm cavity circulating
power for these plots was set to 850 kW, all other parameters
are as presented in table I.

a consequence, the interferometer is expected to be toler-
ant to imperfections in wave-plate angle. A second area
of potential concern relates to the polarization character-
istics of the main beam splitter. Ideally the beam splitter
would be 50:50 for both horizontal and vertical polariza-
tions and produce no differential phase shift. This con-
figuration is not expected to be sensitive to asymmetric
amplitude reflectivity (rbs 6= tbs) if the second polariza-
tion is held close to a dark fringe. In this case the loss of
this polarization mode by leakage towards the input laser
will be minimized (rbs× tbs− tbs×rbs = 0). A differential
phase shift between the two polarizations is nevertheless
of concern, as this will prevent the horizontally polar-
ized field from operating on the Michelson dark fringe,
resulting in significant loss. For a beam splitting optic
appropriate for use in LIGO it is anticipated that bire-
fringence can be controlled to with 1% difference in phase
between the two polarizations [15]. Careful design of the
beam splitter coating or other methods to compensate
for this phase may be required.
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V. SUMMARY AND CONCLUSIONS

In this paper we have explored a novel implementation
of a speed meter interferometer using polarization modes
of an arm cavity Michelson interferometer. By modifying
the topology of an advance detector such as LIGO, Virgo
or KAGRA with polarization optics at its output port,
it was shown that in principle such a detector could be
modified to beat the standard quantum limit below 100
Hz. This presents a significant advantage over an un-
modified detector such as the Advanced LIGO as far as
quantum noise is concerned. In addition this analysis was
extended to consider the possibility of varying the degree
of polarization coupling, achieved by rotating the orien-
tation of its quarter-wave plate, as a way of tuning the
speed-meter operating bandwidth. As shown in Figs. (4)
and (5) this tuning resulted in a smooth transition from
broadband speed meter operation to signal extraction op-
eration. This narrowing of the speed meters bandwidth
was associated with a much stronger correlation between
the amplitude and phase quadrature.
As identified in the previous section, birefringence in

the beam splitter is of significant concern and would be
of principle technical concern for any real implementa-
tion. A more complete analysis of the polarization speed
meter would include losses and injected squeezing. Fi-
nally a feasibility survey outlining necessary polarization
specifications would better inform whether this design is
a realistic implementation of a generation III iteration of
the LIGO interferometer.
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Appendix A: Two-photon formalism

We analyze the dynamics of a proposed interferometer
configuration using the two-photon formalism developed
by Caves and Schumaker [16, 17]: see [4, 5, 11, 18] for
other examples.
The two-photon formalism involves decomposing the

quantized electric field into upper and lower sidebands
about a carrier frequency. The fields are then factored
into quadrature operators associated with the cosine and
sine components of the laser carrier field. These quadra-
ture fields are then readily propagated between optical
components and used to compute the transfer of vacuum
noise sources to the detector ports. To begin with, the

quantized electromagnetic field, less its coherent ampli-
tude, can be written in terms of the usual creation and
annihilation operators (a†ω and aω),

E(t) =

∫ +∞

0

√

2π~ω

A c

[

aωe
−iωt + a†ωe

+iωt
] dω

2π
, (A1)

where the quantity A is the effective cross-sectional area
of the beam, c is the speed of light, ~ is the reduced
Planck constant and ω is the photon frequency that is in-
tegrated over to form the electric field operator E. Here
the field is described for components traveling in one di-
rection along the optic axis at a fixed point.
Gravitational-waves modulate the optical path along

which laser beams are propagated resulting in phase
modulation sidebands being generated from coherent
light. This signal, generated as a result of the
gravitational-wave strain h(t), must compete with vac-
uum noise sidebands coupled in from open ports of the
interferometer. We group vacuum noise sidebands (a+
and a−) pairwise corresponding to the upper and lower
frequency sideband components of the gravitational-wave
signal at frequency Ω. Here the sidebands are split at
frequencies ω0±Ω around the laser carrier frequency ω0,
giving annihilation operators,

a+ ≡ aω0+Ω and a− ≡ aω0−Ω, (A2)

where operator hats are omitted for notational conve-
nience. Assuming the gravitational-wave frequency is
much less than the carrier frequency (Ω ≪ ω0) the quan-
tized electric field may be rewritten as,

E(t) =

√

2π~ω0

Ac
e−iω0t

∫ +∞

0

[

a+(Ω)e
−iΩt+

a−(Ω)e
iΩt

] dΩ

2π
+H.c., (A3)

where H.c. is the Hermitian conjugate. From these side-
bands, quadrature fields a1 and a2 are defined that cor-
responding to the cosine and sine quadratures giving the
two-photon modes defined as,

a1 =
a+ + a†−√

2
and a2 =

a+ − a†−

i
√
2

. (A4)

Thus factoring electric field in terms cosine and sine
quadratures the field can be written as,

E(t) =
√

4π~ω0

Ac

[

cos(ω0t)
∫∞

0

(

a1e
−iΩt + a†1e

+iΩt
)

dΩ
2π

+

sin(ω0t)
∫∞

0

(

a2e
−iΩt + a†2e

+iΩt
)

dΩ
2π

]

, (A5)

or more conveniently

E(t) = cos(ω0t)E1(a1; t) + sin(ω0t)E2(a2; t), (A6)

where

Ej(aj ; t) =

√

4π~ω0

Ac

∫ +∞

0

(aje
−iΩt+a†je

iΩt)
dΩ

2π
, j = 1, 2.

(A7)
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The two photon formalism lends itself readily to propa-
gation of quantum noise as the phase accrued during free
space propagation is now decomposed two components:
a side band phase, φ1 = ΩL/c, proportional to the side
band frequency Ω, length L and speed of light c, and a
carrier phase Φ1 = ωL/c, proportional to ω, that rotates
the basis of the quadratures. The evolution equations,
between two points qi and q′i, in terms of carrier and side
band phase accrued, are derived in Buonanno and Chen

[5] and are given by,

q′1 = eiφ1 (cos(Φ1)q1 − sin(Φ1)q2) , (A8)

q′2 = eiφ1 (sin(Φ1)q1 + cos(Φ1)q2) . (A9)

Thus in the form of quantized quadrature fields, quantum
noise can be propagated through the interferometer from
the various open ports to the read out port where their
associated noise contributions can be computed.
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