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We establish a relation between certain classes of flux compactifications and certain families of
black hole microstate solutions. This connection reveals a rather unexpected result: there exist
supersymmetric solutions of N = 8 supergravity that live inside many N = 2 truncations, but are
not supersymmetric inside any of them. If this phenomenon is generic, it indicates the possible
existence of much larger families of supersymmetric black rings and black hole microstates than
previously thought.

There is an extensive body of work on obtaining super-
symmetric and non-supersymmetric vacua for flux com-
pactifications of string theory and studying their phe-
nomenology, and a parallel extensive body of work on
constructing supersymmetric and non-supersymmetric
black hole microstate solutions to understand black hole
physics in string theory. While the physical motivations
are different, the technical tools are rather close. In
particular, the equations underlying supersymmetric so-
lutions are well-understood and classified: On the flux
compactification side (see for example [26, 28, 29]) in
ten dimensions, on the black hole microstate side for the
underlying supergravity in five dimensions [9, 24, 32].
Furthermore, some of the methods for constructing non-
supersymmetric solutions from supersymmetric ones are
strikingly similar. These methods include slightly de-
forming the supersymmetric solution by additional fluxes
[26, 29], flipping some signs [27], or writing some effective
Lagrangian as a sum of squares for black holes [1, 11–
13, 16, 20, 22] or flux backgrounds [33, 34].

It is therefore not surprising that one can find a rela-
tion between certain types of solutions on the two sides.
Indeed, as we will show below, certain supersymmetric
flux backgrounds of the type [3] where the “internal”
(non-compact) manifold contains a hyper-Kähler factor
can be interpreted as certain non-rotating solutions in
the classification of [9, 24, 32]. (One can similarly re-
late non-supersymmetric solutions. The story is more
intriguing and is alluded to in this letter, but we leave
the details, and an explicit solution, for a companion
publication [8].) The main purpose of this letter is to
show that there are other supersymmetric solutions of
the same class of flux compactifications which, when in-
terpreted as black hole microstates in N = 2 supergrav-
ity, do not fall into the classification of supersymmetric
solutions [9, 24, 32]. (We use four-dimensional super-
symmetry conventions. For instance, all N = 2 theories,
regardless of dimension, have 8 supercharges.) Hence,
from the point of view of N = 2 supergravity, these solu-
tions should be non-supersymmetric. However, they are
supersymmetric inside N = 8 supergravity!

As we will explain below, these solutions have the right
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field content to fit into many possible N = 2 truncations,
and hence they will always be solutions of these N = 2
theories. However, the unbroken supercharges are pro-
jected out in all possible N = 2 truncations and hence
from the point of view of N = 2 supergravity none of
these solutions are supersymmetric. A simple way to un-
derstand this is to recall that all N = 2 supersymmetric
solutions in the class [9, 24, 32] have (in our conventions)
anti-self-dual fields on a hyper-Kähler base, while our so-
lutions have both anti-self-dual and self-dual fields.

The fact that a non-supersymmetric solution of an
N = 2 or an N = 4 theory can become supersymmet-
ric when embedded in N = 8 has been know for quite a
while. In particular a large N = 8 BPS black hole is ei-
ther BPS or non-BPS in an N = 2 truncation, depending
on whether the Kähler covariant derivative of the central
charge vanishes or not [4, 18, 19]. However, our solutions
do not fall into these classes. They can have multiple
centers on the four-dimensional hyper-Kähler space and
therefore may depend on four coordinates. If we restrict
to the subset of solutions with a single center, we only
find small black holes, since we have only one electric
charge (and four types of dipole charges).[38] In order
to find four-dimensional single center solutions, we can
choose the hyper-Kähler space to be Taub-NUT. In this
case, the quartic invariant of the charges vanishes so that
the black hole will always have only a small horizon. For
multicenter solutions though the story is more compli-
cated.

Our results have quite a few unexpected implications.
First, it is widely believed that all supersymmetric mi-
crostate geometries of three-charge black holes in five di-
mensions are described by the equations of [9, 24, 32].
Our results indicate that many solutions that are not de-
scribed by these equations are also supersymmetric in the
parent N = 8 theory. This implies that beside the classes
of microstate solutions constructed so far there may ex-
ist many more supersymmetric microstates, which would
contribute to the entropy count.

Second, it has been conjectured [17] and argued that
all multicenter supersymmetric solutions of N = 8 su-
pergravity must live inside an N = 2 truncation [10] or
structure [35], and one may believe that this implies that
the solutions of [2, 13] capture all supersymmetric mul-
ticenter N = 8 solutions. Our results show that this is
not so.
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Third, it is well-known that the supersymmetric black
ring in five dimensions [9, 14, 15, 23] is part of a trun-
cation to N = 2 ungauged supergravity and belongs to
the class of solutions [9, 24, 32]. Our results indicate
that there may exist a new, more general supersymmet-
ric black ring with more dipole charges (coming from the
extra self-dual fluxes). Besides its interest as a new solu-
tion, if this black ring existed, it may also help to account
for the missing entropy between the D1-D5 CFT and the
dual bulk in the moulting black hole phase [5].
In general, the relation between black hole microstates

and flux compactifications that we outline will likely
prove fruitful in both directions. There exists a whole
methodology for constructing flux compactifications by
writing the effective Lagrangian governing these com-
pactifications as a sum of squares of calibrations [33, 34].
Under the guise of “floating branes”, calibrations have
also been used to find non-supersymmetric black hole mi-
crostates [6], and relating the two approaches is likely to
yield novel classes of solutions on both sides. We plan
to report on this relation in an upcoming companion
paper [8] Furthermore, it has been recently discovered
that even some non-extremal cohomogeneity-two black
holes, black rings and microstates are calibrated [7]. If
one could use this to write down a new decomposition
of the effective Lagrangian (similar to the one of non-
extremal cohomogeneity-one solutions [21, 25, 36, 37])
one would obtain a systematic method to construct new
highly-non-trivial and physically-interesting solutions.

I. THE SOLUTION

We focus on a class of solutions to five-dimensional
N = 8 supergravity that arises as the low-energy limit of
a T 6 compactification of eleven-dimensional supergrav-
ity. The spatial part of the five-dimensional spacetime is
given by a hyper-Kähler space M4, and the warp factor
A depends only on the M4 coordinates. The full eleven-
dimensional metric is

ds211 = −e−2Adt2 + eAds2(M4) (1)

+ eA(dx2
5 + dx2

6 + dx2
7 + dx2

8) + e−2A(dx2
9 + dx2

10) ,

with coordinates x5 . . . x10 on T 6. The four-form field
strength is

Fmag
4 = d(e−3A) ∧ dt ∧ dx9 ∧ dx10

+ [Θ+ −Θ−] ∧ dx5 ∧ dx8 + [Θ+ +Θ−] ∧ dx6 ∧ dx7

+ Θ̃+ ∧ (dx6 ∧ dx8 − dx5 ∧ dx7) (2)

where Θ+, Θ̃+ are self-dual two-forms on M4 and Θ−

is an anti-self-dual one. With hindsight, we focus on a
solution whose self-dual forms obey the relation

(Θ+ + i Θ̃+) ∧ (Θ+ + i Θ̃+) = 0 , (3)

which implies that Θ++i Θ̃+ defines a complex structure
on M4 under which it is a holomorphic two-form. As we

see below, this ensures that the solution is supersymmet-
ric. Finally, the warp factor is determined by

∆4e
3A = (Θ2

+ + Θ̃2
+ +Θ2

−) + ρM2 , (4)

where ∆4 is the Laplacian on M4 and ρM2 the M2 brane
density.
This solution has the electric charge of a set of M2

branes extended along the x9 and x10 directions and
smeared on the other compact directions of T 6. The
magnetic component of the four-form can be thought of
as being sourced by four types of M5 branes on the cor-
responding Poincaré dual cycles. We summarize that in
Table I.

0 9 10 5 6 7 8 M4

M2 × × ×

M5 × × × × × γ1

M5 × × × × × γ2

M5 × × × × × γ3

M5 × × × × × γ4

TABLE I: The brane charges for our configurations along the
T 6 directions x5 . . . x10. A brane is localized in directions
marked “×” and smeared in the other ones. The M5 branes
each wrap a 1-cycle γi in the hyper-Kähler space M4, deter-
mined by the (anti)-selfdual fields Θ±, Θ̃+.

We show this solution is a supersymmetric solution of
11-dimensional supergravity. By swapping the roles of
M4 and T 2

9,10 as external and internal spaces, we see the
above solution is actually an eight-dimensional Calabi-
Yau ‘compactification’ of M-theory, of the type discussed
first in [3]. Eleven-dimensional spacetime has the form
M1,10 = M1,2 ×X8, with X8 = M4 × T 4

5,6,7,8. The met-
ric and the gauge field preserve 3-dimensional Poincaré
invariance, as can be seen by rewriting (1), (2) as

ds211 = e−2A(−dt2 + dx2
9 + dx2

10) + eAds2(X8) ,

F4 = d(e−3A vol3) (5)

+ Im [(Θ+ − i Θ̃+) ∧ dz ∧ dw +Θ− ∧ dz ∧ dw̄] ,

where vol3 = dt∧dx9∧dx10 is the volume form of three-
dimensional spacetime and A only depends on the co-
ordinates of the internal manifold X8. Furthermore, we
defined the holomorphic one-forms

dz = dx5 + i dx6 , dw = dx7 + i dx8 . (6)

The supersymmetry conditions require ds2(X8) to be a
Calabi-Yau metric for X8 and the internal components
of F4 to be a primitive (2, 2)-form. The first requirement
is fulfilled since (1) and (2) give a Calabi-Yau metric
ds2(X8) = ds2(M4) + dzdz̄ + dwdw̄. Since the anti-
self-dual two-forms on hyper-Kähler manifolds are (1, 1),
eq. (5) implies that the internal components of F4 indeed

make up a primitive (2, 2)-form if (Θ++i Θ̃+)∧dz∧dw is

the holomorphic four-form of X8 (such that (Θ+ − i Θ̃+)
is antiholomorphic on M4). This in turn can only be
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realized if condition (3) holds. The equation of motion
for the gauge field then determines the warp factor in
general as d ∗8 d A = 1

6F
mag
4 ∧ Fmag

4 , which reduces to

(4) when X8 = M4 × T 4
5,6,7,8. Note that this background

is dual to a supersymmetric flux background of IIB string
theory in the GKP class [26, 29].
Finally, we can interpret our supersymmetric solution

in eleven-dimensional supergravity compactified on a six-
torus (T 6

(5,6,7,8,9,10)) which descends to five-dimensional

N = 8 supergravity. There exists a very large class of
solutions to this theory, that fit inside an N = 2 trun-
cation with two vector multiplets: they describe black
rings, black holes as well as microstate solutions that
have the same charges as these objects but no horizon.
All supersymmetric solutions of this truncation are

known [9, 32], and are given by:

ds211 = −Z−2(dt+ k)2 + Z ds24 + Z

3
∑

I=1

ds2I
ZI

, (7)

F4 = dA(I)
∧ ωI =

3
∑

I=1

(

−d

(

dt+
k

ZI

)

+Θ(I)

)

∧ ωI ,

where Z ≡ (Z1Z2Z3)
1/3, ds2I and ωI are respectively a

unit metric and a unit volume form on the three T 2’s in-
side T 6 and ds24 is a four-dimensional hyper-Kähler met-
ric. When this metric has a translational U(1) isometry
it becomes a Gibbons-Hawking metric; if one then com-
pactifies along the Gibbons-Hawking fiber, one obtains a
solution of the four-dimensional STU model. Note that
we work in a convention in which the three curvature two-
forms of the hyper-Kähler base are self-dual, and hence
the Θ(I) of a supersymmetric solution are anti-self-dual.
The metric and the timelike (electric) components of

the four-form of our solution (1,2) are of the form (7) with
Z1 = Z2 = 1 and k = 0. However, the spacelike (mag-
netic) four-form field strengths have more components,
and only reduce to the N = 2 truncation above when
Θ+ = Θ̃+ = 0. Hence, despite having the right electric
charges, the supersymmetric N = 8 solution we found
does not fit into the standard “STU” N = 2 truncation.
In the next section we discuss the supersymmetry of this
solution, and how it fits into a larger N = 2 truncation.

II. SUPERSYMMETRY IN N = 8 AND N = 2

The solution (1,2) is a Calabi-Yau four-fold flux back-
ground and hence preserves at least four supercharges [3].
We analyze the supersymmetry in detail and then discuss
whether the solution and its supercharges fit inside the
largest N = 2 truncation of the N = 8 theory.
Clearly, the hyper-Kähler background breaks half of

the supersymmetry, as it admits only a covariant spinor
of (say) positive chirality. This corresponds to the pro-
jection Γ1234η = −η, where η is a spinor on the inter-
nal eight-dimensional manifold. Furthermore, the flux
F4 breaks more supersymmetry. Its electric component

(corresponding to an M2-brane charge along the 9, 10 di-
rections) breaks another half of supersymmetry, by the
projection Γ12345678η = η.
To understand how the magnetic components of F4

affect the supersymmetry, it is best to choose an appro-
priate vierbein ei, i = 1, . . . , 4, on the hyper-Kähler space
M4, such that (3) is fulfilled and we can identify the self-
dual two-forms of (2) as

Θ+ = θ+(e
1
∧ e3 + e4 ∧ e2) ,

Θ̃+ = θ+(e
1
∧ e4 + e2 ∧ e3) .

(8)

The supersymmetry conditions /Fη = 0 and /Fmη = 0 [3]
contain an additional projector, which further halves the
amount of supersymmetry. The first condition gives

1
4 [(Θ+)ij Γ

ij58 + (Θ̃+)ij Γ
ij68](1 − Γ5678)(1 − Γ1234)η

−
1
4 (Θ−)ij Γ

ij58(1 + Γ5678)(1 + Γ1234)η = 0 , (9)

where we have inserted the projectors 1
2 (1 ± Γ1234) by

making use of the (anti-)self-duality of Θ∓.
The term containing the anti-self-dual flux Θ− van-

ishes on the Killing spinors annihilated by the two ear-
lier projectors 1

2 (1 + Γ1234) and 1
2 (1 − Γ12345678), and

this agrees with the known structure of BPS three-charge
solutions, in which turning on an anti-self-dual field
strength on the base does not affect supersymmetry.
For arbitrary self-dual forms Θ+, Θ̃+, the first line is

not zero and supersymmetry is broken. However, for the
specific choice (8) this term contains a new projector:

0 = 2θ+Γ
1358(1 + Γ3456)η , (10)

which is compatible with the first two. More generally,
under the condition (3) we always find such a projector
and the solution has four supercharges.
It is not hard to see that the equations /Fmη = 0 do

not impose any extra conditions on the remaining Killing
spinors, essentially because the flux pieces that are self-
dual on the hyper-Kähler manifold always combine into
the projector 1

2 (1+Γ3456), while the anti-self-dual compo-

nents give either 1
2 (1+Γ1234) or 1

2 (1+Γ5678), depending
on the index m. Therefore, the solution is 1/8 BPS. Its
4 Killing spinors are annihilated by the projectors:

1
2 (1 + Γ1234) ,

1
2 (1 + Γ3456) and

1
2 (1 + Γ5678) . (11)

The 1/8 BPS solution we gave in (1,2) has not been
found in the literature. Moreover, its magnetic field
strength (2) has both self-dual and anti-self-dual com-
ponents on the hyper-Kähler space. This is surprising
since all 1/2 BPS solutions in N = 2 supergravity in five
dimensions have only anti-self-dual fluxes on the hyper-
Kähler space, as shown in [24, 32]. This indicates that
our solution cannot be a 1/2 BPS solution of N = 2
supergravity. In the following we want to discuss what
happens to the 1/8 BPS solution (1,2) when mapped to
the maximal N = 2 truncation of N = 8 supergravity.
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In order to find a supergravity with eight supercharges
in five dimensions, we have to perform a truncation of
N = 8 supergravity. The field content of these truncated
theories (also called ‘magical supergravities’) has been
discussed for instance in [30, 31]. The N = 2 truncation
with the maximal field content (and only vector multi-
plets) is the magical supergravity related to the Jordan
algebra over the quaternions and it admits the global
symmetry group SU∗(6). It has the same bosonic field
content as five-dimensional N = 6 supergravity. As we
show in a more detailed work [8], the projection to this
N = 2 supergravity in five dimensions corresponds to fix-
ing a complex structure I on T 6 and projecting out some
representations of the related SL(3,C). The surviving
vector fields of the N = 2 projection contain all gauge
fields coming from the eleven-dimensional three-form po-
tential with two legs on T 6 that are (1, 1) with respect to
I. Note that I does not have to be related to the com-
plex structure under which dz and dw are holomorphic,
as long as the metric given in (1) respects it. If we choose
a complex structure I on T 6 such that dz1 = dx8+idx5,
dz2 = dx6+idx7 and dz3 = dx9+i dx10 are holomorphic
one-forms under I, then the flux given in (2) is (1, 1) on
T 6, and we see that our solution indeed gives a solution
to N = 2 supergravity.
Now let us understand the amount of supersymmetry

of the solution in N = 2 supergravity. The complex
structure above is different from the complex structure
chosen in (6), and under the new complex structure the

flux F4 (5) has a piece that is (3, 1)⊕ (1, 3) and therefore
the configuration is not supersymmetric in N = 2 super-
gravity. More precisely, the projection to N = 2 breaks
theN = 8 R-symmetry groupUSp(8) to USp(6)×SU(2),
where the latter factor is the R-symmetry of the N = 2
theory. The action of USp(6) on the spinors defines the
projection to N = 2. The generator C ≡

1
2 (Γ

85 − Γ67)
commutes with the complex structure I, the Cartan gen-
erator of SU(2), and hence is a generator of USp(6). In
particular, the requirement Cη = 0 implies

1
2 (1− Γ5678)η = 0 . (12)

This projects out all four Killing spinors of the 1/8 BPS
solution, cf. (11). Hence, when we projected to the N = 2
SU∗(6) supergravity, we projected out all supercharges
which remain unbroken in the solution (1, 2). Therefore,
the solution is non-BPS in N = 2 supergravity.
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