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ABSTRACT

We propose homogeneous metrics of Petrov type III that describe gyrating Schrödinger

geometries as duals to some non-relativistic field theories, in which the Schrödinger sym-

metry is broken further so that the phase space has a linear dependence of the momentum

in a selected direction. We show that such solutions can arise in four-dimensional Einstein-

Weyl supergravity as well as higher-dimensional extended gravities with quadratic curvature

terms coupled to a massive vector. In Einstein-Weyl supergravity, the gyrating Schrödinger

solutions can be supersymmetric, preserving 1
4 of the supersymmetry. We obtain the exact

Green function in the phase space associated with a bulk free massive scalar.



1 Introduction

The AdS/CFT correspondence provides a way of relating d-dimensional relativistic con-

formal field theories in the strongly-coupled regime to bulk theories including gravity in

d + 1 dimensions. It is also of considerable interest, in view of the possible applications in

condensed matter and other branches of physics, to study situations where the boundary of

the gravitational theory does not possess the full relativistic symmetries of a d-dimensional

CFT. For this reason, (d + 1)-dimensional gravitational backgrounds that are asymptotic

not to anti-de Sitter spacetime, but rather to so-called or Schrödinger [1, 2] or Lifshitz

spacetimes [3], have been considered. In the Lifshitz case the boundary spacetime exhibits

a scaling behaviour in the time direction, characterised by the Lifshitz exponent z, that

differs from the z = 1 scaling in the spatial directions. Thus when z 6= 1 there is an

anisotropy between the time direction and the spatial directions. In the Schrödinger case

the coordinate identified as time in the boundary theory enters via only a first derivative

when one considers wave equations in the bulk background, thus leading to the expecta-

tion that boundary theory will represent a quantum-mechanical system described by the

non-relativistic Schrödinger equation.

A key ingredient in interpreting the nature of the boundary theory is to study the

symmetry group of the bulk system. In the case of a (d+1)-dimensional AdS bulk solution,

this symmetry will be the full conformal group SO(d, 2). The asymptotic symmetry of a

Lifshitz or Schrödinger type spacetime will be reduced to some subgroup of SO(d, 2).

In this paper, we shall consider situations where the symmetry group exhibits not only

an anisotropy between time and the spatial directions, but in addition an anisotropy within

the spatial directions themselves. Such an anisotropy could arise, for example, if there were

a uniform electric or magnetic field along some particular direction in the dual boundary

system. Our motivation for investigating systems exhibiting a spatial anisotropy arose from

our finding that the associated bulk gravitational backgrounds turn out to arise naturally

in theories of gravity where the usual Einstein-Hilbert action is augmented by higher-order

curvature contributions. The metrics we consider are of dimension D = 4+n, and take the

form

ds2 = ℓ2
[

dr2 − 2dudv + dx2 + dyidyi

r2
+

2c1 dudx

rz+1
− c2 du

2

r2z

]

, (1)

where 1 ≤ i ≤ n and ci are constants. They have 1) shift, 2) rotation, 3) boost and 4)

dilatation symmetries given by

1) : δu = a+ , δv = a− , δx = ax , δyi = ai ;
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2) : δyi = Λij yj , Λij = Λ[ij] ; 3) : δyi = bi u , δv = bi yi ;

4) : δx = wx , δyi = wyi , δr = wr , δu = zwu , δv = (2− z)wv . (2)

The metrics are homogeneous, and all curvature invariants are unchanged from their val-

ues in the AdS metrics that have c1 = c2 = 0. If c1 = 0, the metrics reduce to standard

Schrödinger metrics. In general ci can be functions of all coordinates except the null co-

ordinate v. The corresponding metrics describe gyrating spacetimes. AdS gyratons were

studied in [4].

We have investigated in some detail the case of four-dimensional gravity with a quadratic

curvature addition proportional to the square of the Weyl tensor. This theory, known as

Einstein-Weyl gravity, admits a supersymmetric extension to an off-shell theory of super-

gravity. We find that for suitable choices of parameters our solutions are supersymmetric.

The four-dimensional metrics are in general of Petrov type III, degenerating to Petrov type

N if c1 = 0 or z = 1 or 0.

We also find solutions with spatial anisotropy in arbitrary higher dimensions. We have

studied two different higher-derivative theories in higher dimensions, namely Einstein grav-

ity augmented by the four-dimensional Gauss-Bonnet invariant, and Einstein gravity instead

augmented by the addition of the Weyl-squared invariant.

Having obtained the gravitational backgrounds, we then consider a minimally-coupled

probe scalar field and compute the associated 2-point functions in the boundary field theo-

ries.

2 Einstein-Weyl Supergravity and BPS solutions

The field content of the off-shell N = 1, D = 4 supergravity consists of the vielbein eaµ, a

vector Aµ and a complex scalar S + iP , totalling 12 off-shell degrees of freedom, matching

with that of the off-shell gravitino ψµ. If one just considers the supersymmetric extension

of ordinary Einstein gravity, then the fields Aµ, S and P are auxiliary with purely algebraic

equations of motion [5, 6]. In the supersymmetric extension of Einstein-Weyl gravity [7, 8],

the field Aµ becomes a dynamical massive vector, while S and P are still auxiliary. Adopting

the notation of [8], the bosonic Lagrangian is given by

e−1L = R+ 2
3(A

2
(1) − S2 − P 2) + 4S

√

−Λ/3 + 1
2αC

µνρσCµνρσ − 1
3αF

µνFµν , (3)

3



where Cµνρσ is the Weyl tensor and F = dA. The supersymmetry transformation of the

gravitino is given by

δψµ = −Dµǫ− i
6(2Aµ − ΓµνA

ν)Γ5ǫ− 1
6Γµ(S + iΓ5P )ǫ . (4)

The equations of motion for the scalar fields S and P imply that S = 3
√

−Λ/3 and

P = 0. The vector equation of motion describes a massive Proca field: α∇µFµν +Aν = 0.

The Einstein equation is

Rµν − 1
2Rgµν + Λ gµν − 2αEµν = −2

3(AµAν − 1
2A

2gµν) +
2
3α(F

2
µν − 1

4F
2gµν) ,

where Eµν = (∇ρ∇σ + 1
2R

ρσ)Cµρσν is the Bach tensor. It was shown in [8] that the theory

admits a supersymmetric AdS vacuum with cosmological constant Λ, and the linearised

spectrum of fluctuations around the AdS background was analyzed. The gravity modes are

identical to those in Einstein-Weyl gravity, which was studied in [9]. There is a ghostlike

massive spin-2 mode in additional to the massless graviton. The mass is determined by

the product αΛ. A special case, known as Critical Gravity, in which the massive mode is

replaced by a mode with logarithmic fall-off, arises if αΛ = 3
2 .

We consider a metric of the form (1) in d = 4, with the massive vector Aµ given by

A = qr−zdu, where q is a constant. (The form of the r-dependence here is dictated by

requiring invariance under the dilatation symmetry in (2).) We obtain solutions provided

that

α = − ℓ2

z(z + 1)
, Λ = − 3

ℓ2
, q = ±3

2(z − 1)
√

c21 + 2c2 . (5)

The solutions with c1 = 0 were obtained in [10].

Supersymmetry analysis

Setting the AdS scale parameter ℓ = 1 for convenience, we choose the vielbein basis

e+ = du , e− =
dv

r2
− c1 dx

rz+1
+
c2 du

2r2z
, e2 =

dx

r
, e3 =

dr

r
, (6)

such that ds2 = ηab e
a ⊗ eb with η+− = −1, η22 = η33 = 1. The inverse vielbein is given by

E+ =
∂

∂u
− 1

2c2 r
2−2z ∂

∂v
, E− = r2

∂

∂v
, E2 = r

∂

∂x
+ c1 r

2−z ∂

∂v
, E3 = r

∂

∂r
. (7)

The Lorentz-covariant exterior derivative ∇ = d+ 1
4ω

ab Γab acting on spinors is then given,

in terms of its vielbein components, by

∇+ = E+ − 1
2 Γ+3 − 1

4c1(z − 1)r−z Γ23 − 1
2c2(z − 1)r−2z Γ−3 , ∇− = E− − 1

2 Γ−3 ,

∇2 = E2 − 1
2 Γ23 +

1
4c1(z − 1)r−z Γ−3 , ∇3 = E3 − 1

4c1(z − 1)r−z Γ−2 . (8)
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Requiring that the supersymmetry variation of the gravitino, given by (4), vanish, we

find that the solutions (5) are supersymmetric if any of the following holds:

1) c1 = 0 , q = 0 : ǫ = r−1/2 ǫ− , where Γ3 ǫ− = ǫ− , Γ− ǫ− = 0 , (9)

2) c2 = 0 , q = 3
2c1(z − 1) : ǫ = r−1/2 ǫ+ , where Γ3 ǫ+ = ǫ+ , Γ+ ǫ+ = 0 ,

3) c2 = −4
9c

2
1 , q = −1

2c1(z − 1) : ǫ = r−1/2 ǫ− , where Γ3 ǫ− = ǫ− , Γ− ǫ− = 0 .

In each case the projection conditions imply that the spinor ǫ±, which is constant, is unique

up to scaling.

More general supersymmetric gyraton solutions can also arise. As we have mentioned

earlier, in general the constants ci can be replaced by functions of all coordinates except v

in gyrating geometries, and so one may consider metrics of the form

ds2 =
dr2 − 2dudv + dx2

r2
+ f dudx+ hdu2 , A = φdu (10)

where f , h and φ are functions of u, x and r. Here, we shall restrict our attention to the

case where these functions depend only on r. The general such bosonic solution can easily

be obtained explicitly. Since it is a little complicated to present, we shall not give it here.

If in addition we require supersymmetry, then we find that the Killing spinor must satisfy

the projections Γ3ǫ = ǫ together with either Γ+ǫ = 0 or Γ−ǫ = 0. In these two cases, the

r-dependent functions must satisfy

Γ+ǫ = 0 : φ = −3
2r (f + 1

2r f
′) , h+ 1

2r h
′ = 0 ; Γ−ǫ = 0 : φ = 1

2r (f + 1
2r f

′) . (11)

For generic values of z, related to α by α = −1/(z(z + 1)), imposing these supersymme-

try restrictions on the general bosonic solution, and discarding trivial terms that can be

immediately removed by coordinate transformations, we find:

Γ+ǫ = 0 : f =
a1
r1+z

+ a2 r
z , φ =

3(z − 1) a1
4rz

− 3(z + 2)a2 r
z+1

4
, h = 0 , (12)

Γ−ǫ = 0 : f =
a1
r1+z

+ a2 r
z , φ = −(z − 1) a1

4rz
+

(z + 2)a2 r
z+1

4
,

h =
a21
9r2z

+ 1
9a

2
2 r

2z +
b1
rz+1

+ b2 r
z + b3 r . (13)

A special case arises in the case of critical gravity, where α = −1
2 , i.e. where z = 1 or

z = −2. We find the supersymmetric solutions with logarithmic fall-off

Γ+ǫ = 0 : f =
a1 log r

r2
+ a2 r , φ = −3a1

4r
− 9

4a2 r
2 , h = 0 , (14)

Γ−ǫ = 0 : f =
a1 log r

r2
+ a2 r , φ =

a1
4r

+ 3
4a2 r

2 ,

h =
a21
27r2

(2 + 4 log r + 3 log2 r) + 1
9a

2
2 r

4 +
b1 log r

r2
+ b2 r + b3 r log r . (15)
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3 Generalization to Higher Dimensions

Solutions in higher dimensions d ≥ 5 can also arise. We find that Einstein gravity with ad-

ditional quadratic curvature terms, coupled to a massive vector field, can support solutions

with non-vanishing c1 for general z. We consider the Lagrangian

e−1Ld = R− 2Λ + αR2 + βRµνRµν + γE2
GB − 1

4F
2 − 1

2σ
2A2 . (16)

The equations of motion for the vector Aµ imply that σ = z(z + d− 3)/ℓ2. There are then

three further equations from the variation of gµν , and so with as-yet unspecified coefficients

(α, β γ, σ,Λ) in the theory, solutions must exist.

As an example, consider the case when α = β = 0, corresponding to Gauss-Bonnet, or

Lovelock, gravity. We then find

Λ = −(d− 1)(d − 2)

4ℓ2
, γ =

ℓ2

2(d − 3)(d− 4)
, q2 = −(z − 1)2c21ℓ

2

4ℓ2
. (17)

Note that c2 is arbitrary in this case. The fact that q2 is negative implies that we should

really send Aµ → iAµ, implying that the massive vector is ghostlike.

As another example, we may consider Einstein-Weyl gravity in d dimensions, corre-

sponding to taking

α =
4(d− 3)

d− 2
γ , β = − d(d− 3)

(d− 1)(d − 2)
. (18)

We then find that

Λ = −(d− 1)(d − 2)

2ℓ2
, γ = − (d− 2)ℓ2

4(d− 3)z(z + d− 3)
,

q2 = − ℓ2(z − 1)2

z2(z + d− 3)

(

2(d − 4 + 3z)c2 +
(

3
4z +

(d− 4)2

4(d− 3)

)

c21

)

. (19)

In the next section we shall require that c21 + c2 > 0. For suitable allowed choices of c1 and

c2, q
2 can be real in this case.

4 Boundary Field Theory

We consider a scalar field Φ with mass m0 that is minimally coupled to the background

metric (1). With

Φ = f(r) e−iωt−ip v ei
~k·~y+ikxx , (20)

where u = t is taken to be the time coordinate, the bulk wave equation (� − m2
0)Φ = 0

gives

f ′′ − (n + 2)

r
f ′ +

[

− m2
0

r2
− (c21 + c2)p

2

r2z−2
+

2c1p kx
rz−1

− κ2
]

f = 0 , (21)
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where

κ2 = ~k2 + k2x + 2ω p . (22)

If one assumes that the coordinate v is compactified on a circle, then p will be quantised.

Solutions of the form f ∼ r∆ near the boundary at r = 0 will exist if z ≤ 2, and at the

limiting value z = 2 equation (21) becomes

f ′′ − (n+ 2)

r
f ′ +

[

− m2

r2
+

2c1pkx
r

− κ2
]

f = 0 , (23)

where

m2 = m2
0 + (c21 + c2) p

2 . (24)

It is necessary that c21+ c2 be non-negative in order that m2 be positive for all values of the

(quantised) v-momentum p. The asymptotic forms of the solutions at small r are f ∼ r∆±

with

∆± = 1
2 (n+ 3)± ν , ν = 1

2

√

(n+ 3)2 + 4m2 . (25)

The exact form of the general solution is

f = α1 r
∆+ M(a, b; 2κr) e−κr + α2 r

∆+ U(a, b; 2κr) e−κr , (26)

where M(a, b; 2κr) and U(a, b; 2κr) are the confluent hypergeometric functions of the first

and second kinds, and we have defined

a = ν + 1
2 − c1 p kx

κ
, b = 2ν + 1 . (27)

Demanding normalisability at large r requires that we reject the exponentially diverging

solution involving M(a, b; 2κr), giving

f = r∆+r U(a, b; 2κr) e−κr , (28)

which decays exponentially at infinity. At small r we use the relation

U(a, b; 2κr) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; 2κr) +

Γ(b− 1)

Γ(a)
(2κr)1−bM(a− b+1, 2− b; 2κr) , (29)

which shows, since M(a, b; 2κr) is analytic at small r, that aside from contact terms the

leading-order form for f is

f ∼ (κr)∆−

[

1 +
Γ(a)Γ(1− b)

Γ(a− b+ 1)Γ(b− 1)
r2ν

]

. (30)

Thus, using the prescription [11]

GR(k) = 2F(k, r)|r=rB ∼ √−ggrr ∂r log f (31)
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for the retarded Green function, we find

F(k, r)|r=ǫ ∼ −(ǫκ)2ν

ǫn+3

Γ(1− 2ν)

Γ(2ν)

Γ(ν + 1
2 − c1 p kx/κ)

Γ(−ν − 1
2 + c1 p kx/κ)

. (32)

Unlike the situation in a pure Schrödinger spacetime background, where momentum depen-

dence of the Green function enters only via the (ǫκ)2ν factor, here when c1 6= 0 there is

momentum dependence in the Gamma functions also.

5 Conclusions

In this paper, we have investigated certain four-dimensional generalisations of Schrödinger

metrics that arise naturally as solutions of Einstein-Weyl gravity. Their symmetry group

is smaller than that of the Schrödinger metrics, correspoding to an inisotropy not only

between space and time, but also among the spatial coordinates themselves. The metrics

are of Petrov type III, reducing to type N in the Schrödinger limit. Einstein-Weyl gravity can

be viewed as the bosonic sector of an off-shell N = 1 supergravity theory, and we find that

included amongst the solutions we have obtained are some that are supersymmetric. We

also considered higher-dimensional analogues of the four-dimensional solutions, and showed

that they can also arise in Einstein-Weyl and in Einstein-Lovelock gravity in arbitrary

dimensions d > 4.

The solutions we have obtained provide natural backgrounds for studying the dual

strongly-coupled non-relativistic boundary theories. The spatial anisotropy would corre-

spond to some breaking of rotational symmetry in the boundary theory, such as might arise

from a uniform electric or magnetic field. We calculated the two-point correlation function

for boundary operators dual to a minimally-coupled massive scalar probe field in the bulk

theory.

Higher-order off-shell supergravities have rich structures for constructing geometries not

only for relativistic but also for non-relativistic field theories, in the context of supersym-

metry. It would be also of great interest to investigate whether there exist two-derivative

gravity theories that also gives rise to gyrating Schrödinger geometries.
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