
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Possible suppression of resonant signals for split universal
extra dimensions by mixing at the LHC

Thomas G. Rizzo
Phys. Rev. D 86, 055024 — Published 21 September 2012

DOI: 10.1103/PhysRevD.86.055024

http://dx.doi.org/10.1103/PhysRevD.86.055024


DVJ1063

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

SLAC-PUB-14954

Possible Suppression of Resonant Signals for
Split-UED by Mixing at the LHC? ∗ †

Thomas G. Rizzo

SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025

Abstract

The mixing of the imaginary parts of the transition amplitudes of nearby reso-
nances via the breakdown of the Breit-Wigner approximation has been shown to lead
to potentially large modifications in the signal rates for new physics at colliders. In the
case of suppression, this effect may be significant enough to lead to some new physics
signatures being initially missed in searches at, e.g., the LHC. Here we explore the
influence of this ‘width mixing’ on the production of the nearly degenerate, level-2
Kaluza-Klein (KK) neutral gauge bosons present in Split-UED. We demonstrate that
in this particular case large cross section modifications in the resonance region are
necessarily absent and explain why this is so based on the group theoretical structure
of the SM.
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1 Introduction and Background

Models of new physics occasionally allow for the existence of approximately degenerate states
which under reasonable assumptions are likely to share common decay modes leading to
unanticipated effects. Some potential examples of such possibilities include, e.g., t and t′

quarks in fourth generation models[1], the heavy Higgs fields, H and A, in the CP-violating
MSSM[2][3], CP-violating effects in neutrino mixing between nearly degenerate states[4], the
lightest Z ′ and A′ Kaluza-Klein (KK) fields in Higgsless models[6] as well as the level-2 KK
neutral gauge bosons, ∼ W 0

2 and ∼ B0
2 , present in Split-Universal Extra Dimensions (i.e.,

Split-UED). Frequently, as in the later two examples, these are states that can be searched for
as resonances in a particular channel, such as in the Drell-Yan process, i.e., pp → ℓ+ℓ−+X ,
at the LHC. In such searches the mutual effects of these dual resonances upon each other
can play an important role.

In pioneering work, the authors of Refs.[5] and [6] have demonstrated that the necessary
conditions for a breakdown in the usual double Breit-Wigner (BW) description of such
nearly degenerate resonance pairs to occur are: (i) the mass splitting between the resonances
should be comparable to their widths, e.g., on the order of a few per cent, (ii) they share
common decay modes and, more importantly, (iii) the various imaginary entries in their self-
energy ‘matrices’ have somewhat comparable values. When such a breakdown of the B-W
description occurs, the resonances become ‘coupled’ in such a way as to lead to a distortion
in their expected combined lineshapes. This is caused by the additional interference induced
by these off-diagonal terms in the self-energy matrix, which is not captured by the usual
B-W prescription. Such an interference can be either constructive or destructive in nature
depending upon the specifics of the new physics model. These authors showed that, if
destructive, it might be possible that the resonance signature can be sufficiently suppressed
so as to be entirely missed in first-round collider searches. As a specific case in point, in this
paper we consider the production at the LHC of the nearly degenerate level-2 KK neutral
gauge bosons, Z ′(∼ W 0

2 ) and A′(∼ B0
2), present in the Split-UED[7] scenario. As we will

see, such states, though at least superficially seeming to satisfy all of the three conditions
above, do not show any significant, non-BW interference effects and certainly none which
are sufficient to mask their existence. Before a discussion of the specifics of this Split-UED
model, we briefly review the essentials of this mixing formalism in the case of two nearby
neutral spin-1 resonances.

2 Formalism and Analysis

In the discussion presented below we follow the analysis and notations given in Ref.[6] for
two nearby resonances that share common (production and) decay modes. In this case, the
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propagator matrix for these two fields can be written as

i∆µν = −i
(

gµν −
pµpν
p2

)

∆s , (1)

where i∆s is itself the 2× 2 propagator matrix for scalars whose elements are given by

Ds∆s =







p2 −m2
2 + iΣ22 −iΣ12

−iΣ21 p2 −m2
1 + iΣ11





 , (2)

and where
Ds = (p2 −m2

1 + iΣ11)(p
2 −m2

2 + iΣ22) + Σ12Σ21 . (3)

The calculation of the quantities Σij is straightforward from the usual 1-loop vacuum polar-
ization diagrams; in the cases of interest to us, since all the couplings of the two neutral gauge
fields are real, Σ12 = Σ21. These off-diagonal elements will be zero when the two vectors do
not share common decay modes. When that happens the matrix is already diagonal and the
standard B-W description of the two resonances then goes through as usual. Further, we
note that these off-diagonal entries need not be positive.

In the limit where the masses of all the final state objects in the decays of these reso-
nances can be neglected (which will be at least approximately true at LHC energies for the
cases of interest) we obtain the momentum scaling Σ11(22) ≃ p2Γ1(2)/m1(2) where Γi are the
conventionally calculated on-shell widths of these two resonances. Note that in this same
limit, Σ12 will also similarly scale as ∼ p2. The Σij can thus be thought of as generalized
running-widths. In the Split-UED, the final states common to both W 0

2 and B0
2 will consist

of the usual zero-mode (i.e., SM) fermions. Thus Σ12 can be expressed in terms of (weighted)
sums, over the SM fermions, of the set of products of the vector and axial-vector couplings
of the two gauge fields:

∑

f(v1v2, a1a2)f . It is important to remember that the individual
contributions to Σ12 from any given fermion can have either sign so that the overall sign of
Σ12 is a indeterminate; however, we would a priori expect that the size of this element would
be comparable in magnitude to those appearing on the diagonal. In the numerical analysis
below, the Σij will be calculated including all finite mass effects along with the relevant
approximate QCD and QED corrections.

In order to see how this more complicated propagator structure affects resonance cross
sections it is instructive to consider the s-channel exchange of (in general, n) neutral gauge
bosons with real couplings between an initial state (I) and a final state (F ) consisting of
SM fermions. In such a case, in the amplitude in ‘gauge boson space’ can be symbolically
written as

M =
∑

ij

Ii∆ijFj , (4)

which leads to
MM† =

∑

ijkl

Ii∆ijFjF
†
k∆

†
klI

†
l , (5)
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or, by simple rearrangement

MM† =
∑

ijkl

(IiI
†
l ) (FjF

†
k ) Pijkl , (6)

where Pijkl = ∆ij∆
†
kl and, in the limit of massless fermions, IiI

†
l ∼ (vivl, aial)initial and

FjF
†
k ∼ (vjvk, ajak)final by taking traces over the gamma matrices and fermion spinors as

usual. The denominator of the matrix Pijkl is simply |Ds = det∆|2 which in this 2 × 2 case
is explicitly given by

|Ds|2 =
[

(s−m2
1)(s−m2

2) + (Σ2
12 − Σ11Σ22)

]2
+

[

Σ11(s−m2
2) + Σ22(s−m2

1)
]2
, (7)

while the numerator of Pijkl in the 2× 2 case effectively contains only 6 independent terms;
this follows from hermiticity, the initial symmetries of the propagator matrix itself, as well as
the reality of the fermion gauge couplings which also simultaneously enforces the cancellation
of the (potential) imaginary terms in the sums above.

3 Split-UED Basics

The essential details of the properties of Split-UED can be found in Ref.[7] which we sum-
marize here. In minimal UED[8][9][10], SM gauge and matter fields are allowed to propagate
freely in a flat, S1/Z2 orbifolded, 5-D space (of internal radius R). These states have the
usual sine and cosine type wavefunctions, for their KK-modes, depending upon whether they
are even or odd under the Z2 symmetry. One of the effects of orbifolding is to break KK
number conservation down to only KK-parity. Thus while even mode n ≥ 2 gauge fields do
not couple at tree-level to the zero-mode SM fermions, one-loop radiative corrections can
induce such loop-suppressed couplings. However, unlike in minimal UED, in Split-UED the
SM fermions are allowed to have bulk mass terms, µi ∼ R−1 which lead to a distortions in
both the fermion KK spectrum and the associated wavefunctions. In particular, zero-mode
fermions now have wavefunctions which either peak at the center (y = 0) or at the bound-
aries (y = ±L = ±πR/2) of the orbifold depending upon the the sign of µ. One effect of
this, particularly relevant for our discussion here, is to allow for a direct tree-level coupling
of the even n = 2m KK gauge fields to the SM zero-mode fermions.

For a fermion with a bulk mass x = µL the coupling to the (2m)th-mode gauge field for
m > 0 in units of the corresponding SM gauge coupling is given by the function[11]

F002m =
x2 [1− (−1)me2x] [1− coth(x)]√

2 [x2 + (mπ/2)2]
, (8)

which vanishes as x → 0 (corresponding to the usual tree-level minimal UED limit) and
goes to (−1)m

√
2 as x → ∞ as the fermion becomes highly localized at the origin. For

simplicity in the discussion below we will taken a common value for x ∼ 1 for all of the SM
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fermions. Precision electroweak (EWK) constraints indicate that the region of low x <∼ 1 is
somewhat preferred[12][14]. For typical parameter values, the width to mass ratios of both
the W 0

2 and B0
2 are of order a few percent while their loop-induced mass splitting[9] is found

to be comparable, on the order of ∼ 6%. As they certainly share the various SM fermions as
common decay modes these two gauge KK fields seem to meet all of the criteria (i) − (iii)
above for states which may have non-BW interference. We now turn to a numerical study
of these effects at the LHC.

4 Numerical Investigation and Results

Searches for new neutral gauge bosons at both the 7 and 8 TeV LHC in the Drell-Yan channel
have been performed by the ATLAS and CMS collaborations[15, 16, 17, 18] showing no hint
of a signal. These searches have become fairly powerful, already excluding a Z ′ with SM-like
couplings below a mass of ≃ 2.5 TeV. Of course these limits would degrade for somewhat
weaker couplings and/or smaller branching fractions into the dilepton final state. Thus the
first question we should address is whether or not width mixing effects could be hiding Split-
UED in current data and then to address the issue of whether or not future data at higher
energies and luminosities could also hide such a signal.

In our case, once the values of (R, x,Λ), with ΛR = 20 being the cutoff scale, are chosen
all of the couplings and other properties of the new gauge bosons are completely specified.
Recall that due to EWK breaking and radiative corrections the weak eigenstates W 0

2 and B0
2

are only approxomate mass eigenstates[9] and experience a relatively small amount of mass
mixing via a calculable angle, φ which approximately scales as ∼ (vR)2, with v being the
usual Higgs vev. This follows immediately from the calculations of the various KK gauge
boson masses (including the contributions of loop corrections) which are clearly left unaltered
in the current Split-UED scenario[9]. ‡ We make use of the exact expressions for all of the
various masses and mixing angles in the analysis that follows. Since we must fully account
for these small but important mixing effects in our analysis we we will instead refer to the
physical eigenstates as Z ′ ≃ W 0

2 and A′ ≃ B0
2 to avoid any potential confusion. In this basis,

the Z ′ couples to the SM fermions as

F (g/cw) [(ccw + ssw) T3 − ssw Q] , (9)

while A′ couples to these same fermions instead as

F (g/cw) [(scw − csw) T3 + csw Q] , (10)

where F = F002 ∼ 1, T3 is the usual isospin generator, Q is the electric charge, sw(cw) =
sin θw(cos θw) in terms of the usual weak mixing angle and c(s) = cosφ(sinφ). Complete

‡Ref.[13] has more generally shown that such a relation is to be expected in many other extensions of
UED.
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expressions for the relevant mass matrices from Ref.[9] are used in our numerical analysis
below. Note that when φ → θw and F = 1, as will occur for zero-mode gauge fields,
we recover the usual SM gauge couplings for the Z and A. However here we find that
s ∼ (0.5RMZ)

2 << 1 for the n = 2 modes. In order to perform our numerical calculations for
the LHC we will employ CTEQ6.6 parton densities[19] and approximate NNLO K-factors[20].
As we noted above, the various SM fermion partial width calculations will include finite mass
effects as well as approximate NLO QCD and LO QED radiative corrections.

To be specific, we focus on the important process pp → e+e− +X assuming R−1 = 800
GeV and x = 1 at the

√
s = 8 TeV LHC with an integrated luminosity of 20 fb−1. Under

such conditions we would anticipate that the double resonance signal structure would be
quite obvious and this is indeed the case as shown in Fig. 1. Furthermore, at the level of the
statistical fluctuations we see here the rather unanticipated result that there is very little if
any observable difference between the conventional Split-UED signal and the one in which
the width mixing effects are included. We thus conclude that such width mixing effects
would not be able to hide Split-UED signatures in the current LHC data sample.

To see whether or not this is just an effect of limited statistics and to see what the LHC
may be able to do in the future, we increase R−1 to 1 TeV,

√
s to 13 TeV and the luminosity

to 100 fb−1 keeping x = 1 and show the corresponding result in Fig. 2. Again we see that the
double resonance structure is clearly visible with or without the inclusion of width mixing
effects (as is the usual strong destructive interference below the peaks signaling KK gauge
boson production). Clearly this is no longer an issue of statistics but the actual absence of
any visible width mixing effects contrary to our expectations. How can such an outcome
be realized if we seemingly satisfied all of the necessary conditions above? Is it a numerical
accident or something deeper?

What one finds, under closer examination, is that while the above criteria for a strong
width mixing effect would seem to be satisfied, in reality they are not. In the case at hand,
even though the two gauge KK states are close in mass and share many common decay
modes, the size of the total off-diagonal decay width remains quite small in comparison to
the diagonal ones so that the two resonances remain effectively decoupled into ordinary B-W
states. That this can happen is the result of the fact that the contributions from the various
SM fermions to this off-diagonal width can appear with either sign. When these various
contributions are then summed in the present case the total is found to be quite small, in
fact, near zero. Why is this?

To understand what is happening consider for simplicity of discussion the value of Σ12

in the limit where all the SM fermion masses can be neglected relative to those of Z ′ and
A′ (this is an excellent approximation) and where the leading QCD and QED corrections
can also be neglected. (Of course these approximations are introduced only for the ease of
this discussion and are not used in obtaining any of the numerical results that are shown
here.) In such a limit, we can express the value of Σ12 in terms of a trace over products of
the SM generators T3 and Y/2 using the coupling expressions for Z ′ and A′ above and by
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Figure 1: Results on both log (top) or linear (bottom) scales for
√
s = 8 TeV and an

integrated luminosity of 20 fb−1 assuming R−1 = 800 GeV and x = 1. The yellow histogram
is the SM background from conventional Drell-Yan production while the blue (red) histogram
shows the expectations for Split-UED without (with) the effects of width mixing included.
The results have been smeared by the ∼ 1% mass resolution of the ATLAS detector.
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Figure 2: Same as the previous figure but now for
√
s = 13 TeV and an integrated luminosity

of 100 fb−1 assuming R−1 = 1 TeV and x = 1.
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remembering that in the SM Q = T3 + Y/2. One finds that

Σ12 ∼ Trf [sc(c2w T 2
3 − s2w (Y/2)2) + swcw (c2 − s2) (T3Y/2)] , (11)

where the trace is taken over the various SM fermions. Although Trf(T3)
2 = 2 and

Trf(Y/2)
2 = 10/3 for each generation, the first term in the square bracket is highly sup-

pressed due to the very small value of the angle φ, which is of order s ∼ (0.5 MZR)2 << 1. §

The second term has no such suppression factor, however, since here the coefficient c2−s2 ∼ 1
appears. But in this case we remember that Trf T3Y/2 = 0 since all members of any weak
isospin multiplet necessarily have the same value of the weak hypercharge so that this term
must automatically vanish (as for any isomultiplet TrT3 = 0). Thus as long as φ is very
small we can never generate a sufficiently large off-diagonal element in the width matrix
to produce a significant non-B-W effect. This remains true even if new fields are added to
those already occuring in the SM or if one modifies our specific choices of the basic Split-
UED input parameters. There are no significant width mixing effects in the case of gauge
boson KK production in Split-UED as long as the fermionic couplings are given as above
and this result is not significantly modified by the small modifications due to fermion masses
or QED/QCD corrections. The reason for this is that the leading order QCD corrections
are flavor-independent and that the largest fermion mass effect is ∼ (mt/MZ′)2 ∼ s, i.e.,
the same size as the small mixing terms discussed above. Further, note that since the width
mixing takes place solely within the gauge boson propagators and the masses of the incoming
quarks are effectively zero (so that the longitudinal part of the gauge propagators can be
dropped) we will observe the same (lack of) width mixing effect for all other possible final
states such as τ+τ−, bb̄ or tt̄.

5 Discussion and Conclusion

In this paper we have examined the possible influence of non-B-W width mixing effects on
the production of a nearly degenerate pair of level-2 KK gauge bosons, Z ′, A′, at the LHC
within the framework of Split-UED. Although this model seems to satisfy all of the criterion
necessary for such effects to be significant, surprisingly, on closer inspection it does not. One
finds that the total contribution to the width mixing parameter is very highly suppressed
and even vanishes in the limit when small mass mixing between the Z ′ and A′ states goes to
zero. The main suppression of this width mixing effect is due to the orthogonal nature of the
T3 and Y/2 generators in the SM, i.e., the fact that Trf T3Y/2 = 0 identically for any weak
isospin representation. Unfortunately, although the Z ′ and A′ are nearly degenerate and
share common decay modes, when summed over the off-diagonal partial widths essentially
add up to (almost) zero, thus producing an insignificant width mixing effect. Hopefully the
LHC will provide us some other laboratory to study effects of this kind.

§Interestingly, at the conventional GUT scale the corresponding term in parentheses would vanish due to
the GUT normalization condition on the SM generators. At low scales this means that the numerical value
of this quantity is smaller than one might have naively guessed.
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