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In two recent papers [1, 2] we introduced “dynamical dark matter” (DDM), a new framework
for dark-matter physics in which the requirement of stability is replaced by a delicate balancing
between lifetimes and cosmological abundances across a vast ensemble of individual dark-matter
components whose collective behavior transcends that normally associated with traditional dark-
matter candidates. We also presented an explicit model involving axions in large extra spacetime
dimensions, and demonstrated that this model has all of the features necessary to constitute a viable
realization of the general DDM framework. In this paper, we complete our study by performing
a general analysis of all phenomenological constraints which are relevant to this bulk-axion DDM
model. Although the analysis in this paper is primarily aimed at our specific DDM model, many of
our findings have important implications for bulk axion theories in general. Our analysis can also
serve as a prototype for phenomenological studies of theories in which there exist large numbers of
interacting and decaying particles.

I. INTRODUCTION

Dynamical dark matter (DDM) [1, 2] is a new framework for dark-matter physics in which the requirement of
stability is replaced by a delicate balancing between lifetimes and cosmological abundances across a vast ensemble of
individual dark-matter components. Due to the range of lifetimes and abundances of these components, their collective
behavior transcends that normally associated with traditional dark-matter candidates. In particular, quantities such
as the total dark-matter relic abundance, the proportional composition of the ensemble in terms of its constituents, and
the effective equation of state for the ensemble possess a non-trivial time dependence beyond that associated with the
expansion of the universe. Indeed, from this perspective, DDM may be viewed as the most general possible framework
for dark-matter physics, and traditional dark-matter models are merely a limiting case of the DDM framework in
which the states which compose the dark sector are taken to be relatively few in number and therefore stable.
In Ref. [1], we laid out the general theoretical features of the DDM framework. By contrast, in Ref. [2], we presented

an explicit realization of the DDM framework: a model in which the particles which constitute the dark-matter
ensemble are the KK excitations of an axion-like field propagating in the bulk of large extra spacetime dimensions.
We demonstrated that this model has all of the features necessary to constitute a viable realization of the general DDM
framework. In this paper, we complete our study by performing a general analysis of all phenomenological constraints
which are relevant to this bulk-axion DDM model. Although the analysis in this paper is primarily aimed at our
specific DDM model, many of our findings have important implications for theories involving large extra dimensions
in general. Furthermore, our analysis can also serve as a prototype for phenomenological studies of theories in which
there exist large numbers of interacting and decaying particles.
It is important to emphasize why a general analysis of this sort is necessary, given the existence of numerous

prior studies of the phenomenological and cosmological constraints on axions and axion-like fields, unstable relics,
and the physical properties of miscellaneous dark-matter candidates. As discussed in Refs. [1, 2], such studies are
typically applicable to dark sectors involving one or only a few fields, and are typically quoted in terms of limits on
the mass, decay width, or couplings of any individual such field. It is not at all obvious how such bounds apply to
a DDM ensemble — a dark-matter candidate which is not characterized by a well-defined single mass, decay width,
or set of couplings. For example, constraints on a cosmological population of unstable particles derived from big-
bang-nucleosynthesis (BBN) considerations or bounds on distortions in the cosmic microwave background (CMB)
are generally derived under the assumption that such a population comprises but a single particle species with a
well-defined lifetime and branching fractions. Such constraints are not directly applicable to a DDM ensemble (in
which lifetimes are balanced against abundances), and must therefore be reexamined in this new context.
In this paper, we shall develop methods for dealing with these issues and for properly characterizing the constraints

on models in which the dark-matter candidate is an ensemble of states rather than a single particle. As we shall find,
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the presence of non-trivial mixings among the KK excitations in our DDM model gives rise to a number of surprising
effects which are ultimately critical for its phenomenological viability. One of these is a so-called “decoherence”
phenomenon [1–3] which helps to explain how the dark matter in this model remains largely invisible to detection.
Another is a suppression, induced by this mixing, of the couplings between the lighter particles in the dark-matter
ensemble and the fields of the Standard Model (SM). As we shall see, these effects assert themselves in a variety of
phenomenological contexts and play a crucial role in loosening a battery of constraints which would otherwise prove
extremely severe.
This paper is organized as follows. In Sect. II, we briefly summarize the physics of axions in extra dimensions

and review the notational conventions established in Ref. [2], which we once again adopt in this work. In Sect. III,
we examine a number of processes, both thermal and non-thermal in nature, which contribute to the generation of
a cosmological population of axions. We calculate the rates associated with these processes and assess the relative
importance of the associated production mechanisms within different regions of model-parameter space. In Sect. IV, we
then discuss the phenomenological, astrophysical, and cosmological constraints relevant for bulk-axion DDM models
and assess how the parameter space of our model is bounded by each of these constraints. In Sect. V, we summarize
the collective consequences of these constraints on the parameter space of our bulk-axion DDM model. Finally, in
Sect. VI, we discuss the implications of our results for future research.

II. GENERALIZED AXIONS IN EXTRA DIMENSIONS: A REVIEW

In this section, we provide a brief review of the physics of generalized axions in extra dimensions. (More detailed
reviews can be found in Refs. [2, 3].) By “generalized axion,” we mean any pseudo-Nambu-Goldstone boson which
receives its mass from instanton effects related to a non-Abelian gauge group G which confines at some scale ΛG.
Note that the ordinary QCD axion [4, 5] is a special case of this, in which G is identified with SU(3) color and ΛG

is identified with ΛQCD ≈ 250 MeV. However, in this paper, we shall leave these scales arbitrary in order to give our
analysis a wider range of applicability. We will also assume the existence of a global Abelian symmetry U(1)X which
plays the role played by the Peccei-Quinn symmetry U(1)PQ in the specific case of a QCD axion.
Our goal in this paper is to study the phenomenological constraints that arise when a generalized axion is allowed

to propagate in the bulk [3] of a theory with extra spacetime dimensions [6, 7]. In particular, we consider the case
in which the axion propagates in a single, large, flat extra dimension compactified on a S1/ZZ2 orbifold of radius R.
The fields of the SM are assumed to be restricted to a brane located at x5 = 0. We also assume that the additional
non-Abelian gauge group G is restricted to the brane at x5 = 0. At temperatures T ≫ ΛG, the effective action for a
bulk axion in five dimensions can be written in the form

Seff =

∫
d4x

∫ 2πR

0

dx5

[
1

2
∂Ma∂

Ma+ δ(x5)
(
Lbrane + Lint

)]
, (2.1)

where ‘a’ denotes our five-dimensional axion field, Lbrane contains the terms involving the brane fields alone, and Lint

contains the interaction terms coupling the brane-localized fields to the five-dimensional axion. The second of these
terms is given by

Lint =
g2Gξ

32π2f
3/2
X

aGa
µν G̃aµν +

∑

i

ci

f
3/2
X

(∂µa)ψiγ
µγ5ψi +

g2sc
2
g

32π2f
3/2
X

aGa
µνG̃

aµν +
e2cγ

32π2f
3/2
X

aFµν F̃
µν + . . . , (2.2)

where Fµν , G
a
µν , and Ga

µν are the field strengths respectively associated with the U(1)EM, SU(3) color, and G gauge

groups; F̃µν , G̃
a
µν , and G̃a

µν are their respective duals; e, gs, and gG are the respective coupling constants for these
groups; fX is the fundamental five-dimensional scale associated with the breaking of the U(1)X symmetry; cγ , cg,
and ci are coefficients which respectively parametrize the coupling strength of the five-dimensional axion field to the
photon, gluon, and fermion fields of the SM; and ξ is an O(1) coefficient which depends on the specifics of the axion
model in question. Note that in Eq. (2.2), we have displayed terms involving only the light fields of the SM (i.e., the
photon, gluon, and light fermion fields), as couplings to the heavier SM fields will not play a significant role in our
phenomenological analysis.
The five-dimensional axion field can be represented as a tower of four-dimensional KK excitations via the decom-

position

a(xµ, x5) =
1√
2πR

∞∑

n=0

rnan(x
µ) cos

(nx5
R

)
, (2.3)
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where the factor

rn ≡
{
1 for n = 0√
2 for n > 0

(2.4)

ensures that the kinetic term for each mode is canonically normalized. Substituting this expression into Eq. (2.2) and
integrating over x5, we obtain

Seff =

∫
d4x

[
∞∑

n=0

(
1

2
∂µan∂

µan +
g2Gξ

32π2f̂X
rnanGa

µν G̃aµν +
∑

i

ci

f̂X
rn(∂µan)ψiγ

µγ5ψi

+
g2scg

32π2f̂X
rnanG

a
µνG̃

aµν +
e2cγ

32π2f̂X
rnanFµν F̃

µν

)
− V (a)

]
, (2.5)

where the axion potential is given by

V (a) =

∞∑

n=0

1

2

n2

R2
a2n , (2.6)

and where the quantity f̂X , defined by the relation

f̂2
X ≡ 2πRf3

X , (2.7)

represents the effective four-dimensional U(1)X-breaking scale. Note that each mode in the KK tower couples to the

SM fields with a strength inversely proportional to f̂X . Also note that at these scales, the axion mass-squared matrix

M2
mn ≡ ∂2V (a)

∂am∂an

∣∣∣∣
〈a〉

(2.8)

is purely diagonal.
At scales T . ΛG, an additional contribution to the effective axion potential arises due to instanton effects. In this

regime, the potential is modified to

V (a) =

∞∑

n=0

1

2

n2

R2
a2n +

g2G
32π2

Λ4
G

[
1− cos

(
ξ

f̂X

∞∑

n=0

rnan +ΘG

)]
, (2.9)

where ΘG is the analogue of the QCD theta-parameter Θ. This results in a modification of the axion mass-squared
matrix to

M2
mn = n2M2

c δmn +
g2Gξ

2

32π2

Λ4
G

f̂2
X

rmrn , (2.10)

where Mc ≡ 1/R is the compactification scale. This matrix above takes the form [3]

M2 = m2
X




1
√
2

√
2

√
2 . . .√

2 2 + y2 2 2 . . .√
2 2 2 + 4y2 2 . . .√
2 2 2 2 + 9y2 . . .
...

...
...

...
. . .




, (2.11)

where

y ≡ Mc

mX
and m2

X ≡ g2Gξ
2

32π2

Λ4
G

f̂2
X

. (2.12)

The eigenvalues λ2 of this mass-squared matrix are the solutions to the transcendental equation

πλmX

y
cot

(
πλ

mXy

)
= λ2 . (2.13)
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The corresponding normalized mass eigenstates aλ are related to the KK-number eigenstates an via

aλ =

∞∑

n=0

Uλnan ≡
∞∑

n=0

(
rnλ̃

2

λ̃2 − n2y2

)
Aλan , (2.14)

where λ̃ ≡ λ/mX . The dimensionless quantity Aλ is given by

Aλ ≡
√
2

λ̃

[
1 + λ̃2 + π2/y2

]−1/2

. (2.15)

and obeys the sum rules [3]

∑

λ

A2
λ = 1 ,

∑

λ

λ̃2A2
λ = 1 . (2.16)

For T ≪ f̂X , rewriting Eq. (2.5) in terms of the aλ and expanding the axion potential given in Eq. (2.9) out to

O(a6λ/f̂
6
X) yields the effective action

Seff =

∫
d4x

[
∑

λ

(
1

2
∂µaλ∂

µaλ − 1

2
λ̃2m2

Xa
2
λ +

e2cγ λ̃
2Aλ

32π2f̂X
aλFµν F̃

µν +
g2scgλ̃

2Aλ

32π2f̂X
aλG

a
µνG̃

µνa

+
∑

i

ciλ̃
2Aλ

f̂X
(∂µaλ)ψiγ

µγ5ψi

)
+
g2Gξ

4Λ4
G

768π2f̂4
X

∑

λi,λj ,λk,λℓ

λ̃2i λ̃
2
j λ̃

2
kλ̃

2
ℓAλi

Aλj
Aλk

Aλℓ
aλi

aλj
aλk

aλℓ

]
. (2.17)

Of course, the interaction term between the aλ and the gluon field is only a useful description of the physics at
temperatures above the quark-hadron phase transition at T ∼ ΛQCD. At temperatures below this threshold, this
interaction term gives rise to an effective Lagrangian containing interactions between the aλ and various hadrons,
including the proton p, the neutron n, and the charged and neutral pions π± and π0. This Lagrangian takes the form

Lhad = λ̃2Aλ
Caπ

fπf̂X
(∂µaλ)

[
(∂µπ+)π−π0 + (∂µπ−)π+π0 − 2(∂µπ0)π+π−

]
+ λ̃2Aλ

Can

f̂X
(∂µaλ)nγ

µγ5n

+ λ̃2Aλ
Cap

f̂X
(∂µaλ)pγ

µγ5p + iλ̃2Aλ
CaπN

fπ f̂X
(∂µaλ)

[
π+pγµn− π−nγµp

]
, (2.18)

where the coefficients Caπ, Can, etc., depend on the details of the theory. For example, for a “hadronic” QCD axion [8]
(i.e., a QCD axion which does not couple directly to the SM quarks), the coefficients Cap and Can, which determine
the strength of the axion-nucleon-nucleon interactions, are

Cap = 0.24

(
z

1 + z

)
+ 0.15

(
z − 2

1 + z

)
+ 0.02 , Can = 0.24

(
z

1 + z

)
+ 0.15

(
1− 2z

1 + z

)
+ 0.02 , (2.19)

where z = mu/md ≈ 0.56 is the ratio of the up-quark and down-quark masses. Likewise, the coefficients CaπN and
Caπ for such an axion are

CaπN =
1− z

2
√
2(1 + z)

, Caπ =
1− z

3(1 + z)
, (2.20)

where fπ ≈ 93 MeV is the pion decay constant and mπ ≈ 135.0 MeV is the neutral pion mass.
Before concluding this review, we note that the effective coupling coefficients cγ , cg, and ci appearing in Eq. (2.2)

are highly model-dependent. They need not be O(1), and in many theories any of them may vanish outright. Indeed
it has been argued [9] that the existence of axions and axion-like fields which couple to electromagnetism but not to
SU(3) color is a generic feature of certain extensions of the SM, including string theory. In assessing the constraints
on our bulk-axion DDM model, we shall therefore focus primarily on a “photonic” axion of this sort — i.e., a general
axion with cg = 0 and cγ 6= 0. However, we shall also discuss how such phenomenological constraints are modified
in the case of a so-called “hadronic” axion with non-vanishing values for both cg and cγ . We note that additional
subtleties arise in this latter case, due to non-trivial mixings between the an and other pseudoscalars present in the

theory which also necessarily couple to Ga
µνG̃

aµν . These include hadrons such as π0 and η, as well as any other axions
in the theory which play a role in addressing the strong-CP problem [4, 5]. In discussing constraints on hadronic
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axions, we shall implicitly assume that the full mass-squared matrix for the theory is such that the relationship
between the an and the mass eigenstates aλ defined in Eq. (2.14) is not significantly disturbed. Indeed, given the
inherently large number of independent scales and couplings that emerge in scenarios involving multiple axions and
other pseudoscalars, this is not an unreasonable assumption; moreover, it is straightforward to show in a general way
that these favorable conditions can always be arranged for certain sets of axion and pseudo-scalar mixings. Such an
assumption thereby enables us to perform our phenomenological analysis in a model-independent way.

III. AXION PRODUCTION IN THE EARLY UNIVERSE

Axions and axion-like fields can be produced via a number of different mechanisms in the early universe. For
example, these particles can be produced thermally, via their interactions with the SM fields in the radiation bath.
In addition, a number of non-thermal mechanisms exist through which a sizable population of axions also may be
generated. These include production via vacuum misalignment, production from the decays of cosmic strings and
other topological defects, and production from the out-of-equilibrium decays of other, heavier fields in the theory.
This last mechanism is particularly relevant in the context of the DDM models, since, by assumption, the dark sector
in such models involves large numbers of unstable fields with long lifetimes. Indeed, in the axion DDM model under
consideration in this paper, a non-thermal population of any aλ may be produced via the decays of both heavier KK
gravitons and other heavier aλ.
In Ref. [2], we focused on misalignment production as the primary mechanism responsible for establishing a cos-

mological population of dark axions. In order for the results for the relic abundances Ωλ of the aλ obtained there
to be valid, the contributions from all of the alternative production mechanisms mentioned above must be subdom-
inant for each aλ. Therefore, in this section, we examine each of the relevant axion-production mechanisms in turn,
beginning with a brief review of the results for misalignment production itself. Since phenomenological constraints
on scenarios involving large, flat extra dimensions prefer that the reheating temperature TR associated with cosmic
inflation be quite low [7], we will hereafter operate within the context of a low-temperature-reheating (LTR) cos-
mology with TR ∼ O(MeV). Within such a cosmological context and within the region of model-parameter space
in which misalignment production yields a total relic abundance Ωtot comparable to the observed dark-matter relic
abundance ΩCDM, we demonstrate that the contributions to each Ωλ from all other production mechanisms are indeed
subdominant.

A. Axion Production from Vacuum Misalignment

We begin our discussion of axion production in the early universe with a brief review of the misalignment mechanism
and its implications for axion DDM models. (A more detailed discussion can be found in Ref. [2].) As we shall see,
this mechanism turns out to be the dominant production mechanism for dark-matter axions in such models.
At temperatures T ≫ ΛG, the only contributions to the axion mass-squared matrix are the contributions from

the KK masses. Since these contributions to M2 are diagonal in the KK eigenbasis, no mixing occurs, and the KK
eigenstates are the mass eigenstates of the theory. The potential for each an with n 6= 0 is therefore non-vanishing, due
to the presence of the KK masses, and is minimized at an = 0. However, the potential for the zero mode a0 vanishes.
In the absence of a potential for a0, there is no preferred vacuum expectation value (VEV) 〈a0〉 which minimizes

V (a0). It therefore follows that immediately following the phase transition at T ∼ f̂X , the universe comprises a set
of domains, each with a different homogeneous background value for the axion field which may be expressed in terms

of a “misalignment angle” θ ≡ 〈a0〉/f̂X . This angle is generically expected to be O(1) in any particular domain,

but could also be smaller. We assume here that HI . 2πf̂X , where HI is the value of the Hubble parameter during
inflation, and therefore that the value of θ is uniform over our present Hubble volume. In this case, we find that

〈a0〉 = θf̂X , 〈an〉 = 0 for n 6= 0 . (3.1)

Note that the above discussion is strictly valid only in the limit in which the Hubble volume is taken to infinity. In
reality, the presence of a finite Hubble volume limits our ability to distinguish fields with wavelengths larger than the
Hubble radius from true background values. Because of this ambiguity, all an for which n/R . HI can also acquire
O(1) background values after U(1)X breaking. In Sect. IVL, we will analyze the phenomenological consequences of
this effect in detail and derive conditions under which it can be safely neglected. As we shall demonstrate, it turns out
that within our preferred region of parameter space, these conditions involve only mild restrictions on the cosmological
context into which our model is embedded. We will therefore assume from this point forward that the 〈an〉 in our
model are given by Eq. (3.1).
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At temperatures down to T ∼ ΛG, the 〈an〉 remain fixed at these initial values. At lower temperatures, however,
the situation changes as instanton effects generate a potential for the axion KK modes. Indeed, in the regime in which
T ≪ ΛG and the brane mass engendered by this potential has attained the constant, low-temperature value mX given
in Eq. (2.12), the time-evolution of each field aλ is governed by an equation of the form

äλ +
κ

t
ȧλ + Γλȧλ + λ2aλ = 0 , (3.2)

where each dot denotes a time derivative, and where

κ ≡
{
3/2 in radiation-dominated (RD) eras

2 in matter-dominated (MD) eras .
(3.3)

When λ . 3H/2, the solution to this equation remains approximately constant. This implies that the energy density
stored in aλ scales approximately like vacuum energy during this epoch. However, at later times, when λ & 3H/2, we
see that aλ oscillates coherently around the minimum of its potential, with oscillations damped by a “friction” term
with coefficient 3H + Γλ. During this latter epoch, the energy density stored in aλ scales like massive matter.
At temperatures T ∼ ΛG, the evolution of aλ depends more sensitively on the explicit time-dependence of the brane

mass mX(t). In what follows, we adopt a “rapid-turn-on” approximation, in which the instanton potential is assumed
to turn on instantaneously at t = tG, where tG is the time at which the confining transition for the gauge group G
occurs. In this approximation, mX(t) takes the form of a Heaviside step function:

mX(t) = mXΘ(t− tG) . (3.4)

In this approximation, the an remain fixed at the initial values given in Eq. (3.1) so long as t < tG. At t = tG, the
brane mass immediately assumes its constant, late-time value mX . Since only a0 is populated immediately prior to
the phase transition at tG, each of the aλ initially acquires a background value proportional to its overlap with a0:

〈aλ(tG)〉 = θf̂XAλ , 〈ȧλ(tG)〉 = 0 . (3.5)

Subsequently, after the aλ have been populated, each begins oscillating at a characteristic time scale

tλ ≡ max
{κλ
2λ
, tG

}
, (3.6)

where κλ is the value of κ corresponding to the epoch during which this oscillation begins. At late times t≫ tλ, when
these oscillations become rapid compared to the rate of change of 〈aλ〉 and the virial approximation is therefore valid,
one finds that the energy density ρλ stored in each mode is given by

ρλ(t) =
1

2
θ2f̂2

Xλ
2A2

λ

(
tλ
t

)κλ

e−Γλ(t−tG) (3.7)

during the epoch in which the oscillation began. Computing ρλ during subsequent epochs is simply a matter of
applying Eq. (3.7) iteratively with the appropriate boundary conditions at each transition point. Consequently, in
the LTR cosmology, we have [2]

ρLTR
λ (t) ≈ 1

2
θ2f̂2

Xλ
2A2

λe
−Γλ(t−tG) ×





(
tλ
t

)2

tλ . t . tRH

(
t2λ

t
1/2
RH t

3/2

)
tRH . t . tMRE

(
t2λ t

1/2
MRE

t2 t
1/2
RH

)
t & tMRE ,

(3.8)

where tRH denotes the reheating time — i.e., the time at which T = TRH, and the universe transitions from an initial
epoch of matter domination by the coherent oscillations of the inflaton field to the usual radiation-dominated era.
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Given the energy-density expression in (3.8), it is straightforward to obtain the relic abundance Ωλ ≡ ρλ/ρcrit for
each aλ, where ρcrit ≡ 3M2

PH
2. For the heavier modes in the tower, for which tλ = tG, one finds

ΩLTR
λ ≈ 3

(
θf̂XmX

MP

)2

t2G

[
1 +

λ2

m2
X

+
π2m2

X

M2
c

]−1

e−Γλ(t−tG) ×





1

4
1/λ . t . tRH

4

9

(
t

tRH

)1/2

tRH . t . tMRE

1

4

(
tMRE

tRH

)1/2

t & tMRE .

(3.9)

For the modes in the tower for which tλ > tG, the corresponding result is

ΩLTR
λ ≈ 3

(
θf̂XmX

MP

)2

λ−2

[
1 +

λ2

m2
X

+
π2m2

X

M2
c

]−1

e−Γλ(t−tG) ×





1

4
1/λ . t . tRH

4

9

(
t

tRH

)1/2

tRH . t . tMRE

1

4

(
tMRE

tRH

)1/2

t & tMRE .

(3.10)

The total contribution Ωtot to the dark-matter relic abundance from the axion tower is simply the sum over these

individual contributions. While the generic behavior of Ωtot as a function of f̂X ,Mc, and ΛG is somewhat complicated,
simple analytical results can be obtained in certain limiting cases of physical importance. For example, let us consider
the limit in which tλ = tG for all modes in the tower and HI is sufficiently large that none of the aλ which would
otherwise contribute significantly to Ωtot begin oscillating before the end of inflation. In this limit, all of the Ωλ take
the form given in Eq. (3.9), and one finds that the present-day value of Ωtot, here denoted Ω∗

tot, is given by the simple
closed-form expression [2]

Ω∗
tot ≈ 3

256π2
(gGξ)

2

(
θΛ2

G

MP

)2

t
3/2
G t

1/2
MRE

(
tG
tRH

)1/2

. (3.11)

In the opposite limit, when all of modes which contribute significantly toward Ω∗
tot begin oscillating at tλ > tG and

have oscillation-onset times which depend on λ and are therefore staggered in time, Ωλ is given by Eq. (3.10) for all
aλ. In this limit, the expression for Ω∗

tot reduces to [2]

Ω∗
tot ≈ 3

8

(
θf̂X
MP

)2(
tMRE

tRH

)1/2

. (3.12)

The preferred region of parameter space from the perspective of dark-matter phenomenology is that within which
Ω∗

tot represents an O(1) fraction of the dark-matter relic abundance inferred from WMAP data [10]:

ΩCDMh
2 = 0.1131± 0.0034 , (3.13)

where h ≈ 0.72 is the Hubble constant. From a dynamical dark-matter perspective, it is also preferable that the
full axion tower contribute meaningfully to Ω∗

tot. For an O(1) value of the misalignment angle θ and a reheating
temperature within the preferred range TR ∼ 4− 30 MeV for theories with large extra dimensions, one finds [2] that

these two conditions are realized for f̂X ∼ 1014 − 1015 GeV and ΛG ∼ 102 − 105 GeV, provided that Mc is small
enough that y . 1. Within this region of parameter space, the tλ of all aλ which contribute meaningfully toward
Ω∗

tot are staggered in time, and therefore the lighter modes yield a proportionally greater contribution to that total
abundance. We will often focus our attention on this particular region of parameter space when discussing constraints
on axion DDM models.

B. Axion Production from Particle Decays

Another mechanism by which a non-thermal population of relic particles may be generated in the early universe
is through the decays of heavier, unstable relics. In scenarios involving extra dimensions, these relics include the
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higher KK modes of any fields which propagate within at least some subspace of the extra-dimensional bulk. For
example, since the graviton field necessarily propagates throughout the entirety of the bulk, a population of unstable
KK gravitons is a generic feature of all such scenarios. In the minimal bulk-axion DDM model under consideration
here, the unstable relics whose decays can serve as a source for any given aλ include these KK gravitons as well as
other, heavier aλ. Moreover, since these fields span a broad range of masses from the sub-eV to multi-TeV scale
and beyond, one would expect the population of axions produced by their collective decays to possess by a highly
non-trivial phase-space distribution. However, as we shall demonstrate below, the total contribution Γ(IE) to the
decay rate of any aλ from intra-ensemble decays (i.e., decays to final states which include one or more dark-sector
fields in addition to any visible-sector fields that might also be present) is far smaller than that from decays to final
states involving visible-sector fields alone. That the total branching fraction for intra-ensemble decays is negligible
suggests that the population of axions produced by such decays will, in general, be quite small. Thus, provided the
initial abundances of the aλ are set by some mechanism such as vacuum misalignment for which the Ωλ of the heavier
aλ are initially similar to or smaller than those of the light fields, it is reasonable to assume that the contributions
from intra-ensemble decays are subleading and may therefore be safely neglected.
One class of processes which contribute to Γ(IE) are those which arise due to the axion self-interactions implied

by the final term in Eq. (2.17). The leading such contribution comes from three-body decay processes of the form
aλ → aλ1

aλ2
aλ3

. An upper bound on the total contribution Γ(aλ → 3a) to the decay width of a given aλ from all
kinematically allowed decays of this form was derived in Ref. [2]:

Γ(aλ → 3a) ≤ g4Gξ
8

45(4π)7
λ4

M3
c

(
ΛG

f̂X

)8

. (3.14)

It was also shown in Ref. [2] that the partial width of the aλ to a pair of photons is given by

Γ(aλ → γγ) = Gγ(λ̃
2Aλ)

2 λ
3

f̂2
X

, (3.15)

with Gγ ≡ c2γα
2/256π3, where α ≡ e2/4π is the fine-structure constant. Within the preferred region of parameter

space discussed above, in which f̂X ∼ 1014− 1015 GeV and ΛG & 102− 105 GeV, we see that Γλ(a→ 3a) is negligible
compared to Γ(aλ → γγ). It then follows that Γλ(a → 3a) represents a vanishingly small contribution to the total
decay width Γλ of any aλ in any theory with an O(1) value of cγ . We therefore conclude that decays of the form
aλ → aλ1

aλ2
aλ3

do not play a significant role in the phenomenology of realistic bulk-axion models of dynamical dark
matter.
In addition to these decays, however, an additional set of decay channels — those involving lighter graviton or

radion fields in the final state — are also open to the aλ. In order to assess whether such decay channels are capable
of yielding a significant contribution to the relic abundance of any of the aλ, we begin by identifying the relevant
interactions among the modes in the KK graviton and axion towers. Since we are considering the case of a flat extra
dimension and assuming fluctuations of the metric to be small, it is justified to work in the regime of linearized gravity.
The relevant term in the five-dimensional action is therefore

S = −
∫
d4x

∫ 2πR

0

dy
1

M
3/2
5

TMNh
MN , (3.16)

where TMN is the stress-energy tensor, and hMN is the metric perturbation defined according to the relation

gMN = ηMN +
2

M
3/2
5

hMN . (3.17)

The piece of the stress-energy tensor which involves the five-dimensional axion field a includes both a bulk contri-
bution and a contribution arising from terms in the interaction Lagrangian which involve interactions of the axion
with the brane-localized fields of the SM. The bulk contribution is given by

T bulk
MN = ∂Ma∂Na−

1

2
ηMN (∂P a∂

Pa) . (3.18)

Upon KK decomposition, this contribution, when coupled to hMN as in Eq. (3.16), gives rise to three-point interactions

between a KK graviton or radion field and a pair of aλ. These interactions lead to decays of the form aλ → G
(m)
µν aλ′ ,

where G
(m)
µν denotes a KK graviton with KK mode number m. In the absence of an instanton-induced brane mass

term mX for the axion field (i.e., in the mX → 0 limit, in which all mixing between the axion KK modes vanishes
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and aλ → an), KK-momentum conservation would imply that only a single, marginal decay channel would exist
for each aλ. Hence the contribution to Γλ from such decays can be neglected. However, the instanton contribution
to the axion mass-squared matrix violates KK-momentum conservation, and therefore, despite the fact that these
axion-axion-graviton interactions are Planck-suppressed, they can still potentially contribute significantly to Γλ, due
to the large number of modes into which each aλ can decay.
By contrast, the brane-localized contribution, which is given by

T brane
MN = δ(y)δµMδ

ν
N

[
1

2

∑

i

ci

f
3/2
X

[
(∂µa)ψiγνγ

5ψi + (∂νa)ψiγµγ
5ψi − 2ηµν(∂ρa)ψiγ

ργ5ψi

]

+
cγe

2

32π2f
3/2
X

a
(
4F̃µρF

ρ
ν − ηµν F̃

ρσFρσ

)
+

ξg2s

32π2f
3/2
X

a
(
4G̃a

µρG
ρa
ν − ηµνG̃

ρσaGa
ρσ

)]
, (3.19)

leads to four-, five-, and six-point interactions between the graviton field, the aλ, and the various SM fields. These
interactions take the same form as the interactions which follow from the action given in Eq. (2.17) involving the
axion and SM fields alone, save that each vertex involves the coupling of an additional KK graviton and is suppressed
by an additional factor ofMP . The rates for such interactions will therefore always be much smaller than the rates for
the corresponding interactions without the additional graviton. Indeed, even the total contribution to the decay rate
of a given aλ from such processes, summed over graviton KK modes, will still be suppressed by a factor of roughly
M5, where M5 denotes the five-dimensional Planck scale, relative to the contribution from decays to SM fields alone.
It is therefore sufficient, at least for our present purposes, to neglect T brane

MN and to focus solely on the interactions
arising from the bulk contribution T bulk

MN .
We begin our analysis of axion-axion-graviton interactions by expanding the five-dimensional axion field, as well as

the various components hµν , hµ5, and h55 of the metric perturbation hMN , in terms of KK modes. The mode expansion
of the axion field for the orbifold compactification considered here was given in Eq. (2.3); the mode expansions of hµν ,
hµ5, and h55 are analogously given by

hµν =
1√
2πR

∞∑

m=0

rmh
(m)
µν cos

(my
R

)

hµ5 =
1√
2πR

∞∑

m=1

rmh
(m)
µ5 sin

(my
R

)

h55 =
1√
2πR

∞∑

m=0

rmh
(m)
55 cos

(my
R

)
. (3.20)

Note in particular that hµ5 must be odd with respect to the parity transformation x5 → −x5. Upon substituting
these KK-mode decompositions into the linearized-gravity action given in Eq. (3.16) and integrating over y, we find
that the terms in the effective, four-dimensional interaction Lagrangian which govern the interactions between the
graviton and axion KK modes consist of the following three contributions:

∫ 2πR

0

hµνT
µν
bulk

M
3/2
5

dy =

∞∑

m,n,p=0

rmrnrp
4MP

h(m)
µν

[(
2∂µa(n)∂νa(p) − ηµν∂ρa(n)∂ρa

(p)
)
∆+

mnp

+ ηµν
( np
R2

)
a(n)a(p)∆−

mnp

]

∫ 2πR

0

h55T
55
bulk

M
3/2
5

dy =

∞∑

m,n,p=0

rmrnrp
4MP

h
(m)
55

[
∂ρa(n)∂ρa

(p)∆+
mnp +

(np
R2

)
a(n)a(p)∆−

mnp

]

∫ 2πR

0

hµ5T
µ5
bulk

M
3/2
5

dy =

∞∑

m=1

∞∑

n,p=0

rmrnrp
2MP

( p
R

)
h
(m)
µ5 (∂µa(n))a(p)∆−

nmp , (3.21)

where

∆±
mnp ≡

[
δm,n−p + δm,p−n

]
±
[
δm,n+p + δm,−n−p

]
. (3.22)

For the purposes of computing Feynman diagrams, it is convenient to work in the unitary gauge, in which the h
(m)
µ5

and h
(m)
55 fields with m > 0 are set to zero by the five-dimensional gauge transformations gMN → gMN+∂MǫN+∂N ǫM ,
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where ǫM is the gauge parameter. In this gauge, the contributions in the second and third line of Eq. (3.21) vanish

(save for the interactions between the axion KK modes and the radion field h
(0)
55 , which will be discussed in due time),

and the physical, gauge-invariant graviton fields

G(m)
µν ≡ h(m)

µν +

(
R

m

)[
∂µh

(m)
ν5 + ∂νh

(m)
µ5

]
−
(
R2

m2

)
∂µ∂νh

(m)
55 (3.23)

reduce to h
(m)
µν for all m > 0. The relevant part of the effective Lagrangian consequently reduces to

L(m>0)
int = −

∞∑

m=1

∞∑

n,p=0

rnrp

2
√
2MP

h(m)
µν

[(
2∂µa(n)∂νa(p) − ηµν∂ρa(n)∂ρa

(p)
)
∆+

mnp + ηµν
(np
R2

)
a(n)a(p)∆−

mnp

]
. (3.24)

The expression in Eq. (3.24) can be rewritten in terms of the mass eigenstates aλ via the mixing matrix Uλn in
Eq. (2.14). The result is

L(m>0)
int = −

∞∑

m=1

∞∑

n,p=0

∑

λ,λ′

rnrp

2
√
2MP

h(m)
µν U

†
nλU

†
pλ′

[(
2∂µaλ∂

νaλ′ − ηµν∂ρaλ∂ρaλ′

)
∆+

mnp + ηµν
(np
R2

)
aλaλ′∆−

mnp

]

= −
∞∑

m=1

∞∑

n=0

∑

λ,λ′

rn

2
√
2MP

h(m)
µν U †

nλ

{(
2∂µaλ∂

νaλ′ − ηµν∂ρaλ∂ρaλ′

)

×
(
rn−mU

†
n−m,λ′ + rn+mU

†
n+m,λ′ + rm−nU

†
m−n,λ′ + r−n−mU

†
−n−m,λ′

)
+ ηµν

n

R2
aλaλ′

×
[
(n−m)

(
rn−mU

†
n−m,λ′ + rm−nU

†
m−n,λ′

)
+ (n+m)

(
rn+mU

†
n+m,λ′ + r−n−mU

†
−n−m,λ′

)]
}
, (3.25)

where in going from the first equality to the second we have exploited the Kronecker deltas in ∆±
mnp to evaluate the

sum over p. It should be noted that in the notation employed in the above expression, U †
nλ = 0 by definition for

n < 0. The sum over n in Eq. (3.25) can also be performed analytically, and the resulting, final expression for the
Lagrangian in terms of the aλ is found to be

L(m>0)
int = −

∞∑

m=1

∑

λ,λ′

1

2
√
2MP

h(m)
µν

[(
2∂µaλ∂

νaλ′ − ηµν∂ρaλ∂ρaλ′

)
C

(1)
mλλ′ + ηµνM2

c aλaλ′C
(2)
mλλ′

]
, (3.26)

where the coefficients C
(1)
mλλ′ and C

(2)
mλλ′ are given by

C
(1)
mλλ′ =

−8m2y2λ̃2λ̃′2AλAλ′

m4y4 − 2m2y2(λ̃2 + λ̃′2) + (λ̃2 − λ̃′2)2

C
(2)
mλλ′ =

4λ̃2λ̃′2[m2y2(λ̃2 + λ̃′2)− (λ̃2 − λ̃′2)2]AλAλ′

y2[m4y4 − 2m2y2(λ̃2 + λ̃′2) + (λ̃2 − λ̃′2)2]
. (3.27)

From the interaction Lagrangian in Eq. (3.26), it is straightforward to obtain the Feynman rule for the graviton-
axion-axion interaction vertex in the unitary gauge:

aλ′

aλ

h
(m)
µν

k2

k1

= − i√
2MP

[
(k1µk2ν + k1νk2µ − ηµνk1 · k2)C(1)

mλλ′ − ηµνM
2
cC

(2)
mλλ′

]
.

Using this vertex rule along with the graviton-polarization sum rule given in Refs. [11, 12], we find

|M(aλ → h(m)
µν aλ′)|2 =

(
C

(1)
mλλ′

)2

12M2
P (mMc)4

[
λ4 + (mMc)

4 + λ′4 − 2(mMc)
2λ2 − 2(mMc)

2λ′2 − 2λ2λ′2
]2

=
16

3

(
m4

X

M2
P

)
(λ̃2Aλ)

2(λ̃′2Aλ′)2 (3.28)



11

for λ′ < λ. Consequently, the partial width of aλ from such a decay is

Γ(aλ → h(m)
µν aλ′) =

m4
X

3πλ3M2
P

(λ̃2Aλ)
2(λ̃′2Aλ′)2

[
λ4 + (mMc)

4 + λ′4 − 2(mMc)
2(λ2 + λ′2)− 2λ2λ′2

]1/2
. (3.29)

Once again, in order to obtain the full contribution Γ(aλ → hµνa) to Γλ from decays of the form aλ → h
(m)
µν aλ′ , it

is necessary to sum over all combinations of final-state graviton and axion modes which are kinematically accessible.
As before, we will approximate the mode sums over both m and λ′ as integrals. This yields the result

Γ(aλ → hµνa) .
4m4

X(λ̃2Aλ)
2

3πλ3McM2
P

∫ λ

λ0

dλ′
∫ (λ−λ′)/Mc

0

dm(λ̃′2Aλ′ )2

×
[
λ4 + (mMc)

4 + λ′4 − 2(mMc)
2(λ2 + λ′2)− 2λ2λ′2)

]1/2

=
8m4

X(λ̃2Aλ)
2

9πλ3M2
cM

2
P

∫ λ

λ0

dλ′(λ̃′2Aλ′)2(λ+ λ′)

[
(λ2 + λ′2)E

(
(λ − λ′)2

(λ + λ′)2

)
− 2λλ′K

(
(λ − λ′)2

(λ + λ′)2

)]
, (3.30)

where K(x) and E(x) denote the complete elliptic integrals of the first and second kind, respectively:

K(x) =

∫ π/2

0

dθ√
1− x2 sin2 θ

, E(x) =

∫ π/2

0

dθ
√
1− x2 sin2 θ . (3.31)

In order to compare Γ(aλ → hµνa) to the rate for aλ decays to SM fields, we numerically integrate Eq. (3.30)
over λ′ and compare the resulting expression to the decay rate Γ(aλ → γγ) to photon pairs. In Fig. 1, we plot the

ratio Γ(aλ → hµνa)/Γ(aλ → γγ) as a function of λ for a variety of different choices of f̂X . In each case, we have

set ΛG = 1 TeV, Mc = 10−11 GeV, and ξ = gG = 1. It is evident from this plot that only for values of f̂X above

the preferred range f̂X ∼ 1014 − 1015 GeV does the decay rate for aλ → hµνaλ′ become similar in magnitude to the

rate for axion decays into brane fields. Indeed, for values f̂X within this preferred range, Γ(aλ → hµνa)/Γ(aλ → γγ)

never exceeds 0.06, even for the lightest modes in the tower. Furthermore, for values of f̂X of this magnitude, the
lifetimes for all aλ light enough to have Γ(aλ → hµνa)/Γ(aλ → γγ) near this maximal value are parametrically larger
than the present age of the universe, even once the additional contribution to Γλ from aλ → hµνaλ′ decays is taken
into account. Consequently, the decays of such fields are not cosmologically relevant, and since the branching fraction
for all other, heavier aλ into final states involving KK gravitons is utterly negligible. We therefore conclude that
intra-ensemble decays are not phenomenologically relevant for bulk-axion models of dynamical dark matter.

f
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FIG. 1: The ratio Γ(aλ → hµνa)/Γ(aλ → γγ), shown as a function of λ for several different values of f̂X . Here we have set
ΛG = 1 TeV and ξ = gG = 1, and we have taken the compactification scale to be Mc = 10−11 GeV. It is clear from this plot
that this ratio is safely below unity for f̂X within our preferred region 1014 − 1015 GeV.
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Up to this point, we have focused chiefly on the effect of the tensor KK modes of the higher-dimensional graviton
field on axion production in the early universe. However, we have yet to address the effect of graviscalars such
as the radion on axion production. Since our minimal DDM model involves only a single extra dimension, only a

single physical graviscalar mode (proportional to h
(0)
55 ) appears in the theory. Furthermore, while the masses of the

h
(m)
µν are dictated by the compactification geometry alone, the mass of this radion field depends on the details of the

mechanism through which the radius of the extra dimension is stabilized, and is consequently highly model-dependent.
In this paper, we assume that the physical radion field is sufficiently heavy so as not to play a significant role in the
decay phenomenology of the light aλ fields which contribute significantly to Ω∗

tot. Nevertheless, we note that in
scenarios which involve multiple extra dimensions of comparable size, or scenarios in which a specific model for radius
stabilization is invoked, graviscalars may play a more significant role in the phenomenology of the dark sector.

C. Axion Production from Cosmic Strings

A population of cold axions can also be generated by the decays of topological defects. In our axion DDM model,
this includes decays of the cosmic strings associated with the breaking of the global U(1)X symmetry. Such decays are

relevant in situations in which this symmetry remains unbroken until after inflation, i.e., HI & 2πf̂X . By contrast,

in situations in which HI . 2πf̂X and the U(1)X is spontaneously broken prior to the inflationary epoch, cosmic
strings and other topological defects are washed out by the rapid expansion of the universe during cosmic inflation.
Consequently, in this latter case, axion production from the decays of cosmic strings can safely be ignored.

In this paper, we are primarily interested in high values of f̂X ∼ 1014 − 1015 GeV, as these values characterize our
preferred region of parameter space. Likewise, we will primarily be interested in relatively low values of HI , which

may be realized naturally in the LTR cosmology. For this reason we shall assume that HI . 2πf̂X in what follows.
We see, then, that no significant population of axions is produced by cosmic-string decay.

D. Axion Production from the Thermal Bath

Another mechanism through which a relic population of axions may be produced in the early universe is a thermal
one: via their interactions with the SM fields in the radiation bath. Unlike the axion population generated by vacuum
misalignment, which is characterized by a highly non-thermal velocity distribution (essentially that of a Bose-Einstein
condensate) and is therefore by nature cold, this population is characterized by a thermal velocity distribution. Indeed,
the properties of a thermal population of axions can differ substantially from that of a population of axions generated
via misalignment production.
A number of processes contribute to thermal axion production in the early universe, and the processes which are the

most relevant for the production of standard axions dominate for each aλ in this scenario as well. Among hadronic
processes, which play an important role in axion production when cg is non-vanishing, qγ → qaλ and qg → qaλ
dominate for T & ΛQCD, while pion-axion conversion off nuclei (including all processes of the form Nπ → N ′aλ,
where N,N ′ = {n, p} and π denotes either a charged or neutral pion) and the purely pionic process ππ → πaλ
dominate at lower temperatures. The rate for the high-temperature process is [13]

Γ(qγ → qaλ) =
g2sT

3λ̃4A2
λ

64π5f̂2
X

ln

[(
T

mg

)2

+ 0.406

]
, (3.32)

where mg is the plasma mass for the gluon, given in terms of the effective number of quark flavors Nf at temperature
T by

mg(T ) =
gsT

3

√
3 +Nf/2. (3.33)

Likewise, the rates for pion-conversion off nuclei and pionic production are well estimated by the expressions [14–16]

Γ(Nπ → N ′aλ) =
T 7/2m

3/2
N λ̃4A2

λe
−mN/T

6ζ(3)(2π)5/2f̂2
Xf

2
π

[
1.64

(
5C2

an + 5C2
ap + 2CanCap

)
+ 6C2

aπN

] ∫ ∞

0

dx1
x1y

3
1

ey1 − 1

Γ(ππ → πaλ) =
3ζ(3)T 5C2

aπλ̃
4A2

λ

1024π7f̂2
Xf

2
π

∫ ∞

0

∫ ∞

0

dx1dx2x
2
1x

2
2

y1y2(ey1 − 1)(ey2 − 1)

∫ 1

−1

dµ
(s−m2

π)
3(5s− 2m2

π)

s2T 4
, (3.34)
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where, once again, ζ(x) denotes the Riemann zeta function, and the effective coupling coefficients Cap, Can, Caπ , and
CaπN are given in Eqs. (2.19) and (2.20). Since these processes are mediated by strong interactions, they tend to
dominate the production rate for a hadronic axion at temperatures T & 100 MeV, at which the number densities of
pions and other hadronic species are unsuppressed.
In addition to these hadronic processes, there are several process involving the interactions between the aλ and the

e± and photon fields which contribute to the axion production rate, and indeed dominate that rate at temperatures
T ≪ ΛQCD. The first of these is the inverse-decay process γγ → aλ, the rate for which is given by

Γ(γγ → aλ) = 2
λ5Gγ(λ̃

2Aλ)
2

ζ(3)f̂2
XT

2
K1

(
λ

T

)
(3.35)

where K1(x) and K2(x) respectively denote the Bessel function of the first and second kind, and Gγ = α2c2γ/256π
2.

Another is the Primakoff process e±γ → e±a. For T,me ≫ λ, the rate for this process is well approximated by [17]

ΓPrim(e
±γ → e±aλ) =

α3c2γne

192ζ(3)f̂2
X

λ̃4A2
λ

[
ln

(
T 2

m2
γ

)
+ 0.8194

]
, (3.36)

where the plasma massmγ of the photon is given bymγ = eT/3. In the approximation of vanishing chemical potential,
the number density of electrons (plus positrons) ne takes the well-known form

ne =






3ζ(3)

π2
T 3, T & me

4

(
Tme

2π

)3/2

e−me/T T . me .

(3.37)

Finally, if ce 6= 0 in Eq. (2.5) and the axion couples directly to the electron field, there can be an additional contribution
to the e±γ → e±a rate from a process akin to Compton scattering, but with an axion replacing the photon in the
final state. The rate for this process can be estimated as [18]:

ΓComp(e
±γ → e±aλ) ∼ 4αc2ene

f̂2
X

(λ̃2Aλ)
2 ×





m2
e

T 2
T & me

1 T . me .

(3.38)

In Fig. 2, we provide a pictorial comparison of the rates for the axion-production processes enumerated above
as functions of temperature. The left panel shows the rates for the production of a single axion species aλ with

λ = 1 MeV in a scenario with f̂X = 1015 GeV, Mc = 10−11 GeV, and ΛG = 1 TeV. As before, we have taken
ξ = 1 and set cg = cγ = ce = 1. The red curve corresponds to the rate Γ(ππ → πaλ) for the pionic process; the
orange curve to the rate ΓPrim(e

±γ → e±aλ) for the Primakoff process; the green curve to the rate Γ(γγ → a) for the
inverse-decay process; the blue curve to the rate Γ(Nπ → N ′aλ) for the pion-conversion process off nuclei; and the
purple curve to the rate Γ(qγ → qaλ) for the quark-gluon process. As the hadron description of the theory is valid
only for T . ΛQCD, and likewise, the quark/gluon description is only valid for T & ΛQCD, the rates Γ(ππ → πaλ),
Γ(Nπ → N ′aλ), and Γ(qγ → qaλ) are only defined on one side or the other of this scale. The yellow curve corresponds
to the rate ΓComp(ππ → πaλ) for the Compton-like process for ce = 1. For purposes of comparison, we also show
the Hubble parameter as a function of T for two different cosmologies: the standard cosmology (black dashed curve),
and an LTR cosmology with a reheating temperature TRH = 5 MeV (black dot-dashed curve). The value of λ we

have chosen here is well within the asymptotic regime for this choice of Mc and f̂X ; hence the rates displayed here
represent take essentially the maximal values possible for any aλ in the scenario. In the right panel of Fig. 2, we show,

for the same choice of Mc and f̂X , the total contribution to the axion-production rate obtained by summing the rates
for all aλ for which λ ≤ T — i.e., those which will be kinematically accessible at a given temperature.
The most salient lesson to draw from of Fig. 2 is that even after the contributions from all kinetically accessible aλ

states are included in the thermal axion-production rate, none of the relevant processes by which a thermal population
of axions might be produced comes close to satisfying the Γ ∼ H criterion. This implies that the aλ, even when taken
together, never attain thermal equilibrium with the plasma after inflation ends. Furthermore, these results also
justify the claims made above, that the electron Primakoff process and inverse decays of the form γγ → a are the
most relevant axion-production processes for T . ΛQCD, while hadronic processes dominate the axion-production
rate for T & ΛQCD.
Let us now estimate the contribution to Ωtot from thermal axion production in the context of an LTR cosmology

with a reheating temperature of TRH = 5 MeV. For concreteness, we focus on the case of a photonic axion with cγ = 1
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FIG. 2: A comparison of the rates associated with different axion-production processes in the early universe. Here we have
taken Mc = 10−11 GeV, f̂X = 1015 GeV, ΛG = 1 TeV, TRH = 5 MeV, and ξ = 1. The left panel shows the production rate
for each process for an individual axion species aλ with λ = 1 MeV (i.e., a value well within the asymptotic, large-λ regime,
where the rates are the least suppressed). The right panel shows the integrated production rate for each process, including
contributions from all modes with λ < T . The most relevant processes for thermal axion production in this scenario are
ππ → πaλ production (red curve), e±γ → e±aλ via the Compton process (yellow curve), e±γ → e±aλ production via the
Primakoff process (orange curve), inverse decays of the form γγ → aλ (green curve), production via the quark-gluon process
qg → qa (blue curve), and pion-production off nuclei (purple curve). It should be noted that the Compton process requires a
non-zero electron-electron-axion coupling ce, and that the curve shown here corresponds to the case in which ce = 1. The value
of the Hubble parameter as a function of T in both the Standard (black dashed curve) and LTR (black dash-dotted curve)
cosmologies are also shown.

and cg = ci = 0 for all i; however, the results for other coupling assignments should not differ drastically from those
obtained here. We begin by noting that any contribution to Ωλ generated at temperatures T & TRH, i.e., during the
reheating phase, will be substantially diluted due to entropy production from inflaton decays. It is therefore legitimate
to restrict our attention to axion production within the subsequent RD era. For a photonic axion, the processes which
contribute to thermal axion production are inverse decays and e±γ → e±a, the latter of which, since we are assuming
ce = 0, is dominated by the Primakoff process. The Boltzmann equation for the number density nλ of each aλ is
therefore effectively given by

ṅλ + (3H + Γλ)nλ = CID
λ (T ) + CPrim

λ (T ) (3.39)

for T . TRH, where C
Prim
λ (T ) and CID

λ (T ) are the contact terms associated with the electron-Primakoff and inverse-
decay rates given in Eqs. (3.36) and (3.35), respectively. For T ≫ λ,me, these contact terms are well-approximated
by the expressions

CPrim
λ (T ) ≈ 2α

3π2
Gγ(λ̃

2Aλ)
2 T

6

f̂2
X

[
ln

(
9

4πα

)
+ 0.8194

]

CID
λ (T ) ≈ 2Gγ(λ̃

2Aλ)
2 λ

5T

π2f̂2
X

K1

(
λ

T

)
, (3.40)

where K1(x) denotes the Bessel function of the first kind. To obtain a rough estimate of the relic abundance in
situations in which either me or λ is comparable to or greater than T , we modify the expression for CPrim

λ (T ) given

in Eq. (3.40) by including an additional exponential factor e−(λ+me)/T to model the effect of Boltzmann suppression.
From Eq. (3.39) we estimate the relic abundance of axions produced by interactions with the SM particles in the

thermal bath. To do so, we neglect the decay term and rewrite the resulting equation in terms of the quantity
Yλ ≡ nλ/s, where s is the entropy density, in order to remove the Hubble term:

sẎλ ≈ CID
λ (T ) + CPrim

λ (T )e−(λ+me)/T . (3.41)
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FIG. 3: Contributions to the individual mode abundances Ωλ for a photonic axion from thermal production (dashed curves)

and misalignment production (solid curves), plotted as functions of λ for f̂X = 1012 GeV (red curves), f̂X = 1013 GeV (orange

curves), f̂X = 1014 GeV (green curves), f̂X = 1015 GeV (blue curves). The left panel displays the results for ΛG = 1 TeV,
while the right panel displays the results for ΛG = 100 TeV. The other model parameters have been set to Mc = 10−11 GeV,
TRH = 5 MeV, ξ = gG = cγ = 1.

By numerically integrating this equation, we obtain an estimate of the thermal contribution Ω
(therm)
λ to the abundance

Ωλ of each aλ at present time:

Ω
(therm)
λ ≈ λT 3

nowtMRE

ρcrit

∫ TRH

Tnow

3

κ(T )

(
TMRE

T

)3/κ(T )
g∗s(Tnow)

g∗s(T )

[
CID

λ (T ) + CPrim
λ (T )e−(λ+me)/T

]
dT , (3.42)

where g∗s(T ) is the number of interacting degrees of freedom present in the thermal bath at temperature T , and
where κ(T ) is defined in Eq. (3.3). The results of this integration are displayed in Fig. 3. In this figure, we compare
the contributions to the relic abundance Ωλ of a given aλ from misalignment production and thermal production for
a variety of different choices of the model parameters.

It is clear from Fig. 3 that for these parameter assignments, Ω
(therm)
λ only becomes comparable with the relic-density

contribution Ω
(mis)
λ from vacuum misalignment for reasonably heavy aλ. Neither Ω

(mis)
λ nor Ω

(therm)
λ for such aλ is non-

negligible compared with the Ω
(mis)
λ contribution from the lighter modes. Indeed, summing over λ to obtain the total

thermal contribution Ω
(therm)
tot to the axion relic abundance at present time yields 3.8× 10−6 . Ω

(therm)
tot . 3.8× 10−4.

We may therefore safely conclude that Ω
(therm)
tot ≪ Ω

(mis)
tot within the preferred region of parameter space for bulk-axion

models of dynamical dark matter, and that the population of aλ generated by the misalignment mechanism dominates
the relic density of the DDM ensemble.
To summarize the results of this section, we have examined the primary mechanisms through which a cosmological

population of DDM axions may be generated, including misalignment production, thermal production, and produc-
tion by decaying relics. We have shown that within the preferred region of parameter space specified in Ref. [2],

the contribution to the total present-day dark-matter relic abundance from misalignment production Ω
(mis)
tot indeed

dominates over the contributions from all other production mechanisms. This justifies the emphasis placed on mis-
alignment production in Ref. [2]. Still, we note that although populations of axions produced via those other channels
collectively represent a negligible fraction of Ωtot, those populations can nevertheless play an important role in con-
straining bulk-axion DDM models. For example, the thermal population of axions discussed above can still leave a

significant imprint on the diffuse X-ray spectrum despite the small size of Ω
(therm)
tot , because Ω

(therm)
λ ≪ Ω

(mis)
λ when

λ is large. We shall return to this point in Sect. IVG, where we will show that this imprint is nevertheless consistent
with current observational limits.
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IV. PHENOMENOLOGICAL CONSTRAINTS ON DARK AXION ENSEMBLES

In the previous section we characterized the various mechanisms which contribute to the generation of a cosmological
population of relic axions in axion DDM models and compared the sizes of their contributions to Ω∗

tot. Given that
this population constitutes the dark-matter ensemble in our axion DDM model, we now turn to examine the relevant
phenomenological, astrophysical, and cosmological constraints on that population of axions. As we shall see, some of
these constraints pertain generically to any theory of dark matter, or to any theory containing late-decaying relics.
Others are particular to models involving light, weakly-coupled fields. Still others pertain to theories with large extra
dimensions in general, regardless of the presence or absence of a bulk axion field.
As we have seen in Refs. [1, 2], the properties of the dark-matter ensemble and its constituent fields in our bulk-

axion DDM model are determined primarily by three parameters: the compactification scale Mc, the U(1)X -breaking

scale f̂X , and the confinement scale ΛG for the gauge group G. Because these parameters play such a central role
in characterizing the dark sector in our model, we shall seek to phrase our phenomenological constraints in terms of

restrictions on Mc, f̂X , and ΛG whenever possible. Of course, in addition to these primary parameters, a number
of other ancillary quantities also have an impact on the phenomenology of our model, and thus are also constrained
by data. These include the scales HI and TRH associated with cosmic inflation, the coupling coefficients cg, cγ ,
and ci, and so forth. Generally speaking, these additional parameters play a subordinate role in determining the
mass spectrum and relic abundances of the aλ, and the values they take are typically far more model-dependent

than Mc, f̂X , and ΛG. Thus, while certain experimental and observational limits serve to constrain the values these
additional parameters may take, it ultimately turns out to be possible to phrase the majority of constraints on our

model as bounds on Mc, f̂X , and ΛG. Indeed, as we shall see in Sect. V, most of the critical bounds can be expressed
conveniently in this manner. We will also be interested in how these bounds constrain certain derived quantities of
physical importance, such as the quantity y defined in Eq. (2.12), which quantifies the amount of mixing that occurs
across our DDM ensemble.

A. Constraints from Background Geometry

The first set of constraints we consider are those which apply generically to theories with extra dimensions, inde-
pendently of the presence or properties of the bulk axion field whose KK excitations constitute the DDM ensemble
in our model. These constraints arise primarily from experimental limits on the physical effects to which the tower
of KK gravitons necessarily present in such theories gives rise. We will primarily focus here on scenarios involving n
flat extra dimensions in which the fields of the SM are localized on a 3-brane, while gravity, as always, necessarily
propagates throughout the entirety of the D = (4 + n)-dimensional bulk.
Perhaps the most significant and direct bound on Mc in theories with extra dimensions arises due to modifications

of Newton’s law at short distances as a consequence of KK-graviton exchange. The lack of evidence for any such effect
at modified-gravity experiments to date implies constraints on the sizes and shapes of those extra dimensions. For
the case of a single large, flat extra dimension, the current limit on the compactification scale from such experiments
is [19]

Mc & 3.9× 10−12 GeV . (4.1)

This lower limit on the compactification scale is robust in the sense that even if there exist additional compact
dimensions with radii ri ≪ 1/Mc, this bound is essentially unaffected. For this reason, Eq. (4.1) turns out to
represent the most significant constraint on the parameter space of bulk-axion DDM models from considerations
which derive solely from the presence of extra dimensions.
There also exist additional constraints on the compactification geometry which arise due the relationship between

this scale, the effective four-dimensional Planck scale MP , and the fundamental scale of quantum gravity MD. These
constraints are generally more sensitive to the details of the compactification scenario. In general, the fundamental
scale MD is related to MP by [6]

M2
P = VnM

2+n
D , (4.2)

where Vn is the volume of the n-dimensional manifold on which the extra dimensions are compactified. For the simple
case in which this manifold is a flat, rectangular n-torus, the volume Vn is simply the product of (2πri) for each cycle
of the torus. Assuming all radii are equal to a common radius r, we then have

r−1 ≥ 2πMmin
D

(
Mmin

D

MP

)2/n

. (4.3)
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Bounds on the scale MD appearing in the literature are frequently predicated on these assumptions. However, we
emphasize that in situations in which the ri are not all equal, or in which the compactification geometry differs from
that of a flat, rectangular n-torus, those bounds can be considerably modified.
Under the assumption that the compactification geometry resembles that on which Eq. (4.3) is predicated, one may

derive constraints on MD, r, or combinations of the two. For example, one class of constraints which arise in theories
with extra dimensions are those implied by the non-observation of effects related to thermal KK graviton production
in astrophysical sources such as stars [20] and supernovae [21, 22]. A brief synopsis of the most relevant bounds in
this class is given in Ref. [20], all of which depend crucially on the fundamental quantum-gravity scaleMD. The most
stringent of these constraints currently derives from limits on photoproduction and stellar heating by gravitationally
trapped KK gravitons in the halos of neutron stars. Indeed, for a theory involving n extra dimensions with equal radii,
one finds that for n = 2, the bound is r−1 ≥ 5.8× 10−7 GeV, while for n = 3, one finds r−1 ≥ 3.8× 10−10 GeV [20].
Collider data also place limits on r and MD in theories with extra dimensions. Searches for evidence of KK-

graviton production in the monojet (i.e., j + /ET ) channel have been performed by the ATLAS [23, 24] and CMS [25]
collaborations. The most recent ATLAS analysis [24], conducted with 1 fb−1 of integrated luminosity, constrains
MD & {3.16, 2.50, 2.15} TeV at 95% C.L. for n = {2, 3, 4} flat extra dimensions with equal radii. The most recent
CMS analysis [25], conducted at a comparable integrated luminosity, yields the slightly more stringent constraint
MD & {4.03, 3.21, 2.80} TeV at 95% C.L. for the corresponding values of n. Limits from searches for KK-graviton
effects in the diphoton [26] and dimuon [27] channels at 36 pb−1 and 39 pb−1 of integrated luminosity, respectively,
have also been derived by the CMS collaboration, but these are currently less stringent than the constraints from the
j + /ET channel.
It is important to realize that the aforementioned bounds on MD as a function of the compactification geometry do

not necessarily translate directly into analogous bounds on fX for a given f̂X . Unlike the graviton field, the bulk axion
field in our DDM model need not necessarily propagate throughout the entirety of the extra-dimensional volume, but
may in principle also be confined to a (4 + na)-dimensional subspace of that volume, where na < n. When this is the

case, f̂X is related to fX by the generalization of Eq. (2.7):

f̂2
X = Vna

f2+na

X . (4.4)

Note that this relationship differs from that which exists between MP and MD because na < n. In this paper,
as in Ref. [2], we focus on the case in which the axion field propagates in a single extra dimension of radius R,
irrespective of the size, shape, or number of extra dimensions which compose the totality of the bulk. Accordingly,
we define Mc = 1/R to be the compactification scale associated with this particular extra dimension, and we shall
use this notation throughout. In this paper, we are not aiming to set MD at or even near the TeV scale, since we
are not attempting to solve the hierarchy problem, but rather to address the dark-matter problem. We will therefore
assume that the structure of any additional bulk dimensions is such that phenomenological constraints on MD and
the associated compactification geometry are satisfied. Note, however, that the Newton’s-law bound in Eq. (4.1) does
apply to Mc, as it applies to the compactification scale associated with any individual extra dimension.
Another class of constraints on scenarios involving large extra dimensions applies to ancillary variables which charac-

terize the cosmological context in which our model is situated. For example, the prediction of the observed abundances
of the light elements via big-bang nucleosynthesis (BBN) is one of the greatest successes of the standard cosmology.
Consistency with these predictions requires that effects stemming from the presence of these extra dimensions not
disrupt BBN. Successful nucleosynthesis requires that the expansion rate of the universe during the BBN epoch, as
quantified by the Hubble parameter H(T ), must not deviate from its usual, four-dimensional value by more than
around 10% [7]. In other words, there exists some temperature T∗ ≥ TBBN ∼ 1 MeV (usually dubbed the “normalcy
temperature” in the literature) below which the radii of all extra dimensions are effectively fixed and the bulk is
effectively empty of energy density. A variety of different considerations constrain T∗, most of which are related to
the potentially observable effects of KK-graviton dynamics in the early universe:

• Interactions between the SM fields on the brane and the bulk graviton field result in a transfer of energy from
the brane to the bulk, and a consequent cooling of the radiation bath on the brane. Substantial energy loss
via this “evaporative cooling” mechanism would result in a modification of the expansion rate of the universe.
At temperatures T . TBBN, such a modification would distort the light-element abundances away from those
predicted by standard BBN. Thus, the strength of the interactions between SM particles and excitations of the
graviton field is constrained.

• If the collective energy density associated with the graviton KK modes is substantial, that energy density could
cause the universe to become matter-dominated too early. In extreme cases, it could even overclose the universe.

• Late decays of KK gravitons could result in distortions of the abundances of light elements away from the values
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predicted by BBN [7], which accord well with the observed values for these abundances. Such decays could also
result in significant entropy production.

• The relationship between the Hubble parameter H and the total energy density ρ of the universe is modified
at early times in higher-dimensional scenarios, even when that energy density is overwhelmingly dominated by
brane-localized states [28–30]. Such a modification could have a substantial effect on BBN as well.

The constraints on T∗ implied by these considerations have been reckoned by a number of authors [7, 31], and while
the precise values of the bounds so derived again depend on the number, size, and shape of the extra dimensions, the
value of MD, etc., the most stringent (which tend to come from limits on the late decays of the excited KK modes)
generally tend to restrict T∗ to within the rough range 4 MeV . T∗ . 20 MeV [7].
One possibility for achieving such conditions is to posit that T∗ be identified with the reheating temperature TRH

associated with a period of cosmic inflation initiated by an inflaton field which is localized on the same 3-brane as
the SM fields. During such an inflationary epoch, any contributions to the energy density of the universe from bulk
states which existed prior to the inflationary epoch (save for those which, like the contributions to ρλ from vacuum
misalignment, scale like vacuum energy) are inflated away. Furthermore, if the inflaton field decays primarily to
other brane-localized states, no substantial population of bulk states is regenerated during the subsequent reheating
phase. Thus, by adopting a LTR cosmology with a reheating temperature 4 MeV . TRH . 20 MeV, we thereby
ensure that the relevant constraints related to KK-graviton production in the early universe are satisfied. We also
note that a reheating temperature of TRH & 4 MeV is sufficient to ensure that the thermal populations of the SM
fields (and, in particular, the three neutrino species) required in standard BBN are generated by the thermal bath
after reheating [32, 33].
For completeness, it is worth noting that enforcing compatibility with an LTR cosmology often constrains other

aspects of the cosmological model unrelated to dark-matter phenomenology. The set of viable mechanisms for baryo-
genesis is particularly impacted by such restrictions. Indeed, since a baryon asymmetry generated prior to the end
of inflation will effectively be erased during the inflationary epoch, many canonical baryogenesis scenarios (including
high-scale leptogenesis) are incompatible with such a cosmology. However, several alternative mechanisms (see, e.g.,
Ref. [34]) exist for generating a baryon asymmetry of the correct magnitude in an LTR context. Furthermore, since
the maximum temperature Tmax attained by the thermal bath after inflation can be much larger than TRH — and
indeed even above the weak scale — in LTR cosmologies, a variety of weak-scale baryogenesis mechanisms (including
electroweak baryogenesis) can still be viable even in scenarios with a reheating temperature TRH ∼ O(MeV). In fact,
for certain baryogenesis mechanisms, an LTR cosmology can even be beneficial [35], since the universe expands more
rapidly during reheating, when the universe is effectively matter-dominated, than during an radiation-dominated era.
As a consequence, sphaleron interactions fall out of equilibrium earlier in an LTR cosmology than in the Standard
cosmology.
In our bulk-axion DDM model, the particular mechanism responsible for generating the baryon asymmetry of

the universe has virtually no impact on the dark-matter phenomenology of the model. Consequently, since viable
baryogeneis mechanisms do exist for reheating temperatures TRH ∼ O(MeV), we will simply assume that some such
mechanism produces a baryon asymmetry of the observed magnitude in what follows.
In summary, while stringent constraints exist on theories with large extra dimensions, these constraints can be

satisfied by adopting an LTR cosmology with 4 MeV . TRH . 20 MeV and a compactification manifold for which
the astrophysical bounds listed above may consistently be satisfied for a given choice of MD and fX . Since Ω∗

tot is
generated via non-thermal means in our bulk-axion model, as discussed in Sect. III, such a low value of TRH is not
an impediment to obtaining a dark-matter relic abundance Ω∗

tot ≈ ΩCDM. In fact, as shown in Ref. [2], adopting an
LTR cosmology is actually an asset in terms of generating a dark-matter relic abundance of the correct magnitude.

Likewise, since the relationship between f̂X and fX need not be identical to the relationship between MP and MD,
constraints which concern the effects of KK gravitons can be satisfied without imposing equally severe restrictions on

the parameters f̂X , Mc, and ΛG which govern the properties of the dark-matter ensemble. Indeed, the only significant
model-independent constraint on these parameters turns out to be the constraint quoted in Eq. (4.1) from tests of
Newton’s law at short distances.

B. Axion Production with Subsequent Detection: Helioscopes and Light Shining Through Walls

We now address the constraints which relate directly to the phenomenological, astrophysical, and cosmological
implications associated with the KK tower of axion fields which constitute the DDM ensemble in our model. We
begin by discussing the limits derived from a wide variety of experiments designed to detect axions and axion-like
particles via their interactions with the photon field. (For extensive reviews of these experiments, see Refs. [36, 37].)
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To date, none of these experiments have seen any conclusive evidence for such particles, and the null results of these
experiments therefore imply constraints on the effective couplings between such axion-like particles and the photon
field.
In order to determine how the results of the experiments listed above serve to constrain the parameter space of

our bulk-axion DDM model, it is useful to divide those experiments into several broad classes, based on the sort
of physical process each probes. One important class of experiments comprises those in which axions are produced
via their interactions with the fields of the SM and then subsequently detected via those same interactions. These
include helioscope experiments such as CAST [38] and “light-shining-through-walls” (LSW) experiments such as BEV,
GammaeV, and ALPS. Searches for coherent conversion of solar axions to X-ray photons in germanium and sodium-
iodide crystals via Bragg diffraction which have been performed at experiments such as DAMA [39], TEXONO [40],
SOLAX [41], and COSME [42] also fall into this category. The characteristic which distinguishes experiments in this
class from others is that these experiments are affected by decoherence phenomena. Indeed, it has been observed [3]
that in theories with bulk axions, such phenomena result in a substantial suppression of the rate for any process
involving the production and subsequent decay of axion modes relative to näıve expectations.
Let us briefly review the origin of this suppression by focusing on the interaction between the photon field and the

axion KK modes given in Eq. (2.5). (The results for the coupling between these modes and the other SM fields are
completely analogous.) We begin by defining a state

a′ ≡ 1√
N

N∑

n

rnan , (4.5)

which represents the particular linear combination of KK eigenstates an that couples to any physics on the brane,

such as Fµν F̃
µν or any pair of SM fields. Here N ∼ fX/Mc denotes the number of modes in the sum. Written in

terms of a′, the relevant term in the interaction Lagrangian becomes

Lint ∋ αcγ
√
N

8π2f̂X
a′Fµν F̃

µν . (4.6)

In other words, a′ couples to the SM fields with a strength proportional to
√
N/f̂X ∼ 1/fX . Consequently, the

cross-section for any physical process which involves axions production via interactions with the SM fields followed
by subsequent detection via the same sorts of interactions will take the form

σ(t) ∝ N2

f̂4
X

× P (t) , (4.7)

where P (t) = |〈a′(t)|a′(t0)〉|2 is the probability for a state a′ created at time t0 to be in the same state a′ at time t.
It can be shown that when N is large, P (t) is given by

P (t) =
1

N2

[
∑

λ

λ̃8A4
λ + 2

∑

λ

∑

λ′<λ

λ̃4λ̃′4A2
λA

2
λ′ cos

(
(λ2 − λ′2)(t− t0)

2p

)]
, (4.8)

where p is the initial momentum of the axion.
At very early times, when t ≈ t0, the cosine factor in P (t) is approximately unity for all values of λ and λ′. At

such times, all of the terms in the sum appearing in the second term on the right side of Eq. (4.8) add coherently.
As a result, this term, combined together with the first term, yields a factor on the order of N2. However, as the
system evolves, the cosine terms will no longer sum coherently, and a random-walk behavior ensues, according to
which the two terms combine to yield a factor of O(N) rather than of O(N2). The time scale τD associated with this
decoherence — or, more precisely, the scale at which P (t) = 0.1P (t0) — is found to be [3]

τD ≈ 10−5

(
2p

m2
PQ

)
y2

N2
≈ 1.32× 10−29

( p

GeV

)( f̂X
GeV

)−2

s , (4.9)

where y is defined in Eq. (2.12). Since τD is clearly quite small for any combination of p and fX values of experimental
relevance, any method of detecting axions which relies on their production and subsequent detection will feel the effect
of this decoherence. By contrast, detection methods which rely on axion production without subsequent detection
(such as missing-energy signals at colliders, energy dissipation from supernovae, etc.) or which probe for evidence of
a cosmic population of relic axions (such as microwave-cavity experiments) will be unaffected by this phenomenon.
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The consequences of axion decoherence for physical processes in the decoherence regime are readily apparent. In
this regime, as discussed above, the term in brackets in P (t) scales like N rather than N2; hence any cross-section
which takes the form given in Eq. (4.7) will scale with N ∼ fX/Mc according to

σ(t > τD) ∝ N

f̂4
X

∼ 1

N

1

f4
X

. (4.10)

In other words, such cross-sections are suppressed by an additional factor of N relative to the näıve expectation

obtained by setting f̂X → fX in Eq. (4.7). Thus, due to the decoherence effect, any experimental bound on the
effective coupling Gaγγ of a single four-dimensional axion to the photon field which takes the form G2

aγγ < (Gmax
aγγ )

2

translates to a bound G2
aγγ < (Gmax

aγγ )
2/
√
N for five-dimensional axion, rather than to G2

aγγ < (Gmax
aγγ )

2/N . Given the

parametrization for Gaγγ given in Eq. (2.5), we can phrase any such constraint as a bound on f̂X :

f̂X &
cγα

2πGmax
aγγ

(
Mc

fX

)1/4

. (4.11)

Using Eq. (2.7), we may rewrite this constraint in the form

f̂X &
1

(2π)13/10

(
cγα

Gmax
aγγ

)6/5
1

M
1/5
c

=
(
2.50× 10−4

)
cγ(G

max
aγγ )

−6/5M−1/5
c . (4.12)

The most stringent limit from the class of experiments categorized above (i.e., those for which the phenomenon of
decoherence is relevant) is currently the Gaγγ . 8.8×10−11 GeV−1 bound obtained by CAST [38]. The most stringent

limit from crystalline detectors is the Gaγγ . 1.7 × 10−9 GeV−1 bound from DAMA [39], and limits on Gaγγ from
LSW experiments are typically roughly three orders of magnitude higher than the CAST limit. The corresponding

bound on f̂X from Eq. (4.12) is

f̂X &
(
2.92× 108

)
c6/5γ

(
Mc

GeV

)−1/5

GeV . (4.13)

Note that even for Mc at the experimental lower limit given in Eq. (4.1), the constraint in Eq. (4.13) is satisfied as

long as f̂X & 5.58× 1010 GeV.

C. Microwave-Cavity Experiments and Direct Detection of Dark-Matter Axions

Another class of experiments which place constraints on the couplings of axions and axion-like fields to SM particles
consists of those which involve the direct detection of a cosmological population of axions. The most sensitive
experiments in this class are those associated with dedicated microwave-cavity detectors such as ADMX [43] and
CARRACK [44]. Detectors of this sort are used to search for the resonant conversion of dark-matter axions with
mass ma to photons with energies Eγ ≈ ma in the presence of a strong magnetic field. As a result, the observation
of a signal at such a detector depends crucially on whether the mass of the axion in question lies within the range
of photon energies probed. The axion mass range currently covered by ADMX spans only from 1.9 × 10−15 GeV to
3.5 × 10−15 GeV [43], and the projected future mass sensitivity extends only as high as 10−13 GeV. Likewise, the
projected sensitivity for CARRACK extends only as high as 3.5× 10−14 GeV.
As discussed in Ref. [2], the region of parameter space which is the most interesting from a DDM perspective is that

within which y . 1 and mixing among the light axion KK modes is substantial, for it is this region within which the
full tower contributes meaningfully to Ω∗

tot. Within this region of parameter space, the lightest mode in the tower has
a mass λ0 ≈Mc/2. Taken in conjunction with the bound onMc from modified-gravity experiments given in Eq. (4.1),
this result implies that λ0 & 1.5 × 10−12 GeV in highly-mixed bulk-axion scenarios. The projected ranges for both
ADMX and CARRACK lie well below this threshold for λ0. We therefore conclude that no meaningful constraints
on bulk-axion DDM models can be derived from the results of these experiments.

D. Axion Production without Subsequent Detection: Stars and Supernovae

We now turn to examine an additional class of constraints on bulk-axion DDM models: those related to astrophysical
processes in which the aλ are produced through their interactions with the SM field, but never directly detected.
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Among the constraints in this class are limits on axions, moduli, and other light scalars derived from the non-
observation of their would-be effects on the lifetimes, energy-loss rates, etc., of various astrophysical sources such as
stars and supernovae. These effects include the following:

• Axions and other light fields whose interactions with the particles of the SM are extremely weak and whose
mean free paths are consequently extremely long can dissipate energy from stars extremely efficiently. Such
dissipation can accelerate stellar cooling and result in observable alterations in stellar life cycles, including the
life cycle of our own sun.

• Similarly, such light fields can carry away a substantial fraction of the energy liberated by supernovae. Limits
may therefore be placed on the strengths of these interactions from the non-observation of such effects for
supernova SN1987A.

• A diffuse population of long-lived axions or KK gravitons initially produced by stars and supernovae could decay
at late times, distorting light-element abundances and producing an observable X-ray or γ-ray signal in the keV
− MeV range or higher. No evidence for such a signal has been seen by EGRET, FERMI, HEAO, Chandra,
COMPTEL, etc.

As is well known, these considerations lead to some of the most stringent constraints on standard, four-dimensional
QCD axions. We now turn to examine how these limits constrain the parameter space of generalized bulk-axion
models.
The primary distinction between processes in which the presence of the aλ is ascertained by direct detection and

those in which it is only inferred from an energy deficit is that in the latter class of processes, the aλ appear as
particles in the asymptotic final state. Thus, the contributions from the individual aλ to the overall event rate for any
such a process add not at the amplitude level, but at the cross-section level. The decoherence phenomena discussed in

Sect. IVB are therefore irrelevant for such processes, and the total cross-section σprod
tot for the production of “missing

energy” in the form of aλ fields by any given physical process is simply the sum of the individual production cross-

sections σprod
λ for each axion species. Since the effective coupling between each aλ and any pair of SM fields includes

a factor λ̃2Aλ/f̂X from mass mixing, as indicated in Eq. (2.17), each of these individual production cross-sections
scales as

σprod
λ ∝ 1

f̂2
X

(λ̃2Aλ)
2 . (4.14)

When it occurs, axion production will have a characteristic energy scale Ech determined by the surrounding envi-
ronment. This energy scale may be associated, for example, with the temperature of a star or supernova core, or with
the center-of-mass energy

√
s of a collider. Provided that Ech ≫ Mc (an assumption valid for all physical contexts

of relevance in bounding the large-extra-dimension scenarios considered here), it follows that λ ≪ Ech for a large
number of aλ. Such aλ can be considered to be effectively massless as far as production kinematics is concerned,

implying that to a very good approximation, σprod
λ depends on λ exclusively through the coupling-modification factor

appearing in Eq. (4.14). (For those modes for which threshold effects are important, such an approximation will

overestimate σprod
λ and result in an overly conservative bound.) By contrast, σprod

λ will be effectively zero for those
aλ with masses λ ≫ Ech in any thermal environment due to Boltzmann suppression, and will vanish outright in a

non-thermal one. Therefore, it is reasonable to evaluate σprod
tot by taking any additional factors in Eq. (4.14) to be

essentially independent of λ and by truncating the sum over modes at λ ∼ Ech. Thus, we find that

σprod
tot ∝ ℵ2(Ech)/f̂

2
X (4.15)

where the “effective” coupling ℵ(Ech) is given by

ℵ(Ech) ≡
[

Ech∑

λ=λ0

(λ̃2Aλ)
2

]1/2
. (4.16)

Since the number of modes contributing to σprod
tot is large by assumption, and since their masses are closely spaced, it

is generally legitimate to approximate ℵ(Ech) by an integral

ℵ(Ech) ≈
[

1

Mc

∫ Ech

λ0

(λ̃2Aλ)
2dλ

]1/2
. (4.17)
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FIG. 4: The dimensionless “effective coupling” factor ℵ(Ech) defined in Eq. (4.16), shown as a function of the relevant scales

Mc, f̂X , and ΛG. In the left panel, we display curves of ℵ(Ech), each corresponding to a particular value of ΛG and normalized

to the value (Ech/Mc)
1/2 taken by ℵ(Ech) in the absence of mixing, as a function of f̂X with fixed Mc = 10−11 GeV. It is

readily apparent that the net effect of mixing within the KK axion tower is to significantly suppress this effective coupling,
thereby loosening the corresponding production-cross-section constraints. In the right panel, we display curves showing the
overall cross-section-suppression factor ℵ2(Ech)/f̂

2

X as a function of f̂X for fixed Λ = 1 TeV, each corresponding to a particular
value of Mc. For each set of curves, we have taken ξ = gG = 1, and have chosen Ech = 30 MeV, which corresponds roughly to
the core temperature TSN of SN1987A.

The quantity ℵ(Ech) clearly plays a crucial role in the phenomenology of bulk-axion scenarios. It is therefore worth

pausing a moment to examine in detail how ℵ(Ech) depends on the physical scales f̂X ,Mc, and ΛG. A straightforward
calculation shows that ℵ(Ech) has the parametric scaling behaviors

ℵ(Ech) ∼






E
3/2
ch M

1/2
c f̂2

X

Λ4
G

f̂X ≪ Λ2
G

Mc

(
Ech

Mc

)1/2

f̂X ≫ Λ2
G

Mc
.

(4.18)

The first case in Eq. (4.18) corresponds to y ≪ 1, signaling a highly-mixed axion KK tower for which λ̃2Aλ ∼
λ̃. By contrast, the second case corresponds to y ≫ 1, signaling a relatively unmixed axion KK tower for which

λ̃2Aλ ∼ constant. These results for ℵ(Ech) are illustrated in the left panel of Fig. 4 for Ech = 30 MeV, a value which
is physically meaningful in that it corresponds roughly to the core temperature of supernova SN1987A. Remarkably,
we observe that ℵ(Ech) experiences a suppression for y ≪ 1. In other words, mixing within the axion KK tower acts to
suppress the magnitude of the total production cross-section for processes in which the aλ appear as missing energy.
This is an important result, for it indicates that constraints on the parameter space of our bulk-axion DDM model
derived from limits on axion production in stars, supernovae, colliders, etc., will be considerably weaker than one
might expect from näıve dimensional analysis. Moreover, this result applies more generally to any theory involving
KK towers of scalar fields whose squared-mass matrix contains both brane-mass and KK-mass terms.
In order to illustrate more explicitly the physical consequences of ℵ(Ech) in our bulk-axion DDM model, we likewise

display the behavior of the overall scaling factor ℵ2(Ech)/f̂
2
X for σprod

tot in the right panel of Fig. 4. The results shown
in this panel further illustrate a significant general property of this scaling factor: namely, that the cross-section is

actually suppressed not only for large f̂X , but also for small f̂X , due to the parametric behavior of ℵ(Ech) described

in Eq. (4.18). Thus, for any given choice of ΛG and Mc, there exists a maximum possible value for σprod
tot , which is

only attained at some particular value of f̂X . These results again illustrate the dramatic effect that ℵ(Ech) can have

in suppressing σprod
tot in our bulk-axion DDM model.
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Within the class of constraints from processes in which axions are produced but not subsequently detected, use of
ℵ(Ech) allows us to translate experimental bounds on four-dimensional axion models into bounds on theories including
towers of bulk scalars. The leading such bound is obtained from energy-loss limits from SN1987A. For a standard
four-dimensional QCD axion, this bound is roughly [45]

fa & 4× 108 GeV . (4.19)

By contrast, in the bulk-axion scenario under consideration here, each aλ light enough to be produced within the
thermal environment of SN1987A can contribute to the overall energy-dissipation rate. Since the temperature TSN
associated with the supernova core is roughly 30 MeV, the appropriate modification of Eq. (4.19) for a general axion
which couples to hadrons with a coupling coefficient comparable in magnitude to that of a QCD axion is

f̂X &
(
4× 108 GeV

)
ℵ(TSN) . (4.20)

It then follows that in highly-mixed scenarios, this constraint can be significantly weaker than the corresponding
constraint on KK-graviton production derived in Ref. [7], due to suppression by ℵ(TSN). Indeed, the corresponding

constraint on KK-graviton production is directly obtained by replacing f̂X →MP and ℵ(TSN) → TSN/Mc in Eq. (4.20).
While the SN1987A bound is indeed one of the most stringent constraints on the QCD axion, it is not necessarily

applicable for all general axions. This is because the bound quoted in Eq. (4.19) is predicated on the assumption that
nucleon bremsstrahlung (N +N → N + N + a) and other hadronic processes dominate the rate for the production
of the light scalar in question in the supernova core. This presupposes that the light scalar couples to nuclei with a
strength comparable to that of a QCD axion. If this is not the case, however, the constraints obtained from SN1987A
energy-loss limits can differ considerably from the standard QCD-axion bound. For example, if from among the SM
particles, the general axion couples only to the photon field, the dominant production processes will be e−γ → eaλ,
p+γ → p+aλ, and p

+n→ p+nγaλ. In this case, the considerably weaker bound [46]

f̂X &
(
2.32× 106 GeV

)
cγ (4.21)

is obtained for a four-dimensional field. Translating this result to the case of a KK tower of axions, as above, we find
that

f̂X &
(
2.32× 106 GeV

)
cγ ℵ(TSN) . (4.22)

Furthermore, in general axion models, cγ may not necessarily be of O(1). In other words, the SN1987A constraint is
sensitive to the U(1)X and SU(2)× U(1)Y charges of the fields in the model, and is thus highly model-dependent.

An analogous limit on f̂X can be derived from observations of the lifetimes of globular-cluster (GC) stars. The
ambient temperatures TGC of such objects are only O(10 keV), so axion production primarily proceeds through the
Primakoff processes γ+e− → a+e− and γ+nZ → a+nZ, where nZ denotes a nucleus with atomic number Z. (Note
that the dominant processes in this environment differ from the axion-nucleon-nucleon bremsstrahlung processes which
dominate the axion-production rate in supernovae.) Such a bound will therefore arise for any general axion for which
cγ 6= 1, regardless of whether or not it couples to the gluon field. The observation limit on axion production in GC
stars is commonly phrased as an upper bound on the effective coupling Gaγγ between a standard, four-dimensional

axion (or any other similar particle) and a pair of photons, and the current bound is Gaγγ . 1 × 10−10 GeV−1 [47].

Since TGC ≈ 10 keV, the corresponding bound on f̂X is

f̂X &
(
1.16× 107 GeV

)
cγ ℵ(TGC) . (4.23)

Note that this constraint is independent of the SN1987A bounds, as it differs from the latter in two significant
ways. First, because the relevant production process involves the coupling of the axion modes to photons rather than
to nuclei, it depends on cγ alone and not on cg. Second, since TGC ≪ TSN, far fewer of the aλ will be produced with
any significant frequency in GC stars. Consequently, the enhancement factor from the sum over kinetically-accessible
axion modes for GC stars is far smaller.
Finally, bounds similar to those from SN1987A and GC stars can also be derived from the non-observation of effects

related to axion production in other astrophysical sources, such as our own sun [48]. However, these bounds are found
to be subleading in comparison with the SN1987A and GC-star constraints, essentially because they take place in far
cooler environments, where the number of kinematically accessible modes is even further suppressed by the cutoff at
Ech inherent in ℵ(Ech).
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E. Axion Production at Colliders

We now consider the collider constraints applicable to our bulk-axion DDM model. Due to the highly suppressed
couplings between the axion and the SM fields in standard four-dimensional axion models, collider data have virtually
no relevance in constraining the parameter space of such models. Nevertheless, because of the huge multiplicity of
light modes that arises in theories with light bulk fields in large extra dimensions, the net contribution to the event
rates for certain processes from all of these modes taken together can potentially yield observable signals. For example,
modes which are stable on collider time scales all appear as missing energy, and can lead to signals in channels such
as pp → j + /ET and pp → γ + /ET . In addition, the heavier, more unstable modes which decay before exiting the
detector can potentially give rise to additional signature patterns which may include displaced vertices. Indeed, we
have already discussed in Sect. IVA how current limits from LHC data constrain the parameter space of one such
bulk field — the higher-dimensional graviton — for which the monojet and monophoton channels mentioned above
are of particular importance. Since the aλ in our bulk-axion model couple to the fields of the SM in much the same
manner as KK gravitons, it is no surprise that the collider phenomenology of the aλ turns out to be quite similar to
that of KK gravitons.
We begin by discussing those signals which arise due to the combined effect of the aλ which are sufficiently long-lived

so as to manifest themselves in a collider detector as missing energy. Collider processes in which the aλ appear as
/ET are yet further examples of the class of processes discussed in the previous section in which axions are produced
but not subsequently detected. The net cross-section for any such process is therefore likewise suppressed by axion
mixing in the manner described in Eq. (4.15), with Ech given by the center-of-mass energy

√
s of the collider.

Which specific channels are relevant for the discovery of a bulk axion at hadron colliders depends crucially on how
the five-dimensional axion couples to the SM fields, and in particular on whether or not it couples appreciably to either
light quarks or gluons. For a field with an O(1) value of either cg or cq (where q = {u, d, s, c}), the principal discovery
channel at both the Tevatron and the LHC is pp → j + /ET , a channel which is also one of the principal discovery
channels for KK gravitons. Thus, in order to obtain a rough estimate of the constraints on the parameter space of
our bulk-axion model from the null results of monojet searches, we translate the bound on the fundamental scale MD

established by such searches into a bound on f̂X . The cross-section for KK-graviton production in association with
a single jet at a hadron collider in a theory with n large, flat extra dimensions of equal length compactified on an
n-torus, including contributions from all kinematically accessible modes, is roughly proportional to [7]

σprod(pp→ j +G) ∝
(√

s

2π

)n
1

Mn+2
D

. (4.24)

This implies that a bound of the form MD > Mmin
D can be translated into a rough bound on the parameter space of

our bulk-axion model of the form

ℵ2(
√
s)

f̂2
X

.

(√
s

2π

)n
1

(Mmin
D )n+2

, (4.25)

where ℵ(Ech) is defined in Eq. (4.16). While this approximate bound does not take into account the differences in
coupling structure between KK graviton and axion fields or the sum over polarizations for a massive graviton, it is

sufficient to obtain parametric estimates of the resulting constraints on our three fundamental parameters f̂X , Mc,
and ΛG.
In Fig. 5, we indicate the rough bounds on the parameter space of our bulk-axion DDM model which can be derived

in this manner, given a chosen value ofMmin
D . The contours shown in this figure correspond to constraints of the form

MD > Mmin
D for the illustrative values Mmin

D = {1, 10, 100} TeV.
We now compare these results to actual constraints on MD from current experimental data and examine the

projected LHC reach for our bulk-axion DDM model. The most stringent constraints from LHC data (which indeed
come from the pp→ j + /ET channel) were given in Sect. IVA. Estimates of the future LHC reach for a theory with
a single extra dimension are Mmin

D ≈ {14, 17} TeV at integrated luminosities Lint = {10, 100} fb−1, respectively [49].
Likewise, Tevatron data imply a limit Mmin

D ≈ 2.4 TeV for a theory with a single extra dimension [49]. Comparing
these results to those in Fig. 5, we see that current collider constraints, while quite stringent, do not significantly
impact the preferred region of parameter space for our bulk-axion DDM model, even in cases in which the axion
couples to one or more strongly-interacting SM fields with an O(1) coupling coefficient. In such cases, since the most
stringent current LHC limits imply a bound of roughlyMmin

D ≈ 1 TeV, the region of the parameter space of our model
excluded by these limits roughly corresponds to the green shaded regions shown in Fig. 5. Since the green exclusion
regions in this figure embody the most stringent such limits applicable to our DDM model, we shall take these to
represent our collider constraints throughout the rest of this paper. However, we note that for photonic axions and
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FIG. 5: Excluded regions of the (f̂X ,Mc) parameter space of our DDM model in which the collider constraint in Eq. (4.25) is
violated for Mmin

D = 1 TeV (green); Mmin

D = 10 TeV (green and blue); and Mmin

D = 100 TeV (green, blue, and purple). As ΛG

increases, we see that satisfying the collider constraints becomes increasingly easy, particularly for small f̂X . In each case, we
have taken ξ = gc = 1 and assumed that the axion couples to at least one light, strongly-interacting SM particle with an O(1)
coupling coefficient cg or cq.

other axion species which do not couple directly to quarks or gluons, the corresponding collider constraints (which
arise from channels such as pp→ γ + /ET ) are somewhat weaker.
Before concluding this section, there is one important point which deserves emphasis. The collider processes we have

been discussing thus far are those whose event rates receive their contributions from the low-lying modes in the tower
— i.e., those aλ with lifetimes τλ & 10−12 s. By contrast, those heavy aλ with lifetimes τλ . 10−12 s tend to decay
to pairs of SM fields within the detector volume. The decays of such states can in principle give rise to an entirely
different set of signature patterns. For example, a promptly decaying aλ which couples to light quarks or gluons as
well as photons would in principle contribute to event rates in the pp → jjj and pp → γγ + j channels. However,
since the total event rate in these channels receives contributions from a broad spectrum of aλ with different λ, many
event-selection techniques which are particularly useful in standard searches for new physics in these channels cannot
be applied to a tower of decaying bulk axions. For example, since the set of decaying axions cannot characterized
by a single, well-defined mass or cross-section, no identifiable peak can be expected to appear in the invariant-mass
distribution for the decay products of the heavy axions. Such considerations render the results of standard searches
for new physics in these channels inapplicable to our bulk-axion model — and indeed to DDM models in general.
Moreover, they also likely render the identification of a conclusive signal of non-standard dark-matter physics in these
channels particularly challenging. Nevertheless, the information that could potentially be revealed about the nature
of the dark sector via such an identification is of sufficient magnitude and importance that an analysis of the discovery
potential in these channels is an interesting topic for future study.

F. Axion Decays and Distortions of the Cosmic Microwave Background Spectrum

Up to this point, we have considered those phenomenological constraints on our DDM model which are related to
the production of particles which compose our bulk-axion ensemble, both with and without their subsequent detection.
By contrast, we now turn to discuss an entirely different set of phenomenological constraints, namely those which
arise due to the potential decays of a pre-existing cosmological population of such particles. Indeed, such constraints
emerge generically in all dark-matter scenarios in which the dark sector contains unstable, long-lived particles, and
can be derived from observational limits on the physical consequences of the late decays of those particles.
There are many considerations which can be used to place such limits on scenarios involving decaying dark-matter

particles. For example, photons produced via the decays of such particles can yield observable distortions in the CMB
spectrum; contribute to the diffuse extragalactic X-ray and gamma-ray backgrounds; upset BBN predictions for the
primordial abundances of light elements; and result in unacceptably large entropy production during critical epochs in
the history of the universe. Constraints on dark-matter candidates from considerations of this sort depend not only on
the decay rate of the particle species in question, but also on the relic abundance of that species. For this reason, the
constraints applicable to single-particle models of dark-matter are generally not directly applicable to models within
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the DDM framework. It is therefore necessary to revisit the observational limits on dark-matter decays within the
context of our bulk-axion model of dynamical dark matter and assess how these limits constrain the parameter space
of this model.
In this section, we begin our analysis of the constraints on the late decays of the aλ in our bulk-axion DDM

model by examining observational limits on the distortions of the CMB which such decays can induce. The type of
CMB distortion to which a late-decaying particle contributes depends on the time at which that particle decays. In
the very early universe, photons produced by particle decays are brought into thermal and kinetic equilibrium with
CMB photons via a number of processes. The dominant processes by which newly-produced photons can equilibrate
thermally with CMB photons are double-Compton scattering (e−γ → e−γγ) and bremsstrahlung (e−X± → e−X±γ,
where X± is an ion). However, once these processes freeze out, photons produced from aλ decays are unable to
thermally equilibrate with the radiation bath, resulting in the generation of a non-zero value for the pseudo-degeneracy
parameter µ. The interaction rates for these processes are given by [50]

ΓDC ≈ 5.73× 10−39

(
1− Yp

2

)
(ΩBh

2)

(
Tnow
2.7 K

)3/2 (
tMRE

t

)9/4

GeV

ΓBR ≈ 1.57× 10−36

(
1− Yp

2

)
(ΩBh

2)3/2
(
Tnow
2.7 K

)−5/4(
tMRE

t

)13/8

GeV , (4.26)

where Tnow ≈ 2.725 K is the present-day CMB temperature, Yp ≈ 0.23 is the helium mass fraction, ΩB ≈ 0.044 is
the baryon density of the universe, and h ≈ 0.72 is the Hubble constant. (Note that since z is quite large during
the entirety of the relevant time frame, we have here approximated 1 + z ≈ z.) Once these processes freeze out, in
the sense that the rates given in Eq. (4.26) drop below the expansion rate H of the universe, photons produced by
aλ decay will no longer be able to attain thermal equilibrium with the CMB photons. Even after double-Compton
scattering and bremsstrahlung effectively shut off, a number of photon-number-conserving interactions still serve to
bring photons produced at even later times into kinetic equilibrium with the radiation bath. Dominant among these
processes is elastic Compton scattering (e−γ → e−γ), which efficiently serves to bring photons produced by aλ decays
into kinetic equilibrium until a much later time tEC ∼ 9× 109 s, at which point this process too effectively freezes out.
However, since elastic Compton scattering conserves photon number, it cannot similarly suffice to bring those photons
into thermal equilibrium. As a result, CMB distortions in the form of a non-zero value for the pseudo-degeneracy
parameter µ can be generated by aλ decays during this epoch. In addition, after elastic Compton scattering freezes
out, photons produced by aλ decay achieve neither kinetic nor thermal equilibrium with the radiation bath. As a
result, these photons no longer contribute the generation of µ, but instead contribute to the generation of a Compton
y parameter (here denoted yC , so as to distinguish it from the ratio y = Mc/mX). Finally, at t ∼ 1013 s, matter
and radiation decouple, and any aλ decays occurring after this point not affect the CMB, but instead simply persist
as a contribution to the diffuse photon background. This last sort of contribution will be dealt with separately, in
Sect. IVG.
We thus see that axion decays have the potential to generate both a non-zero µ and a non-zero yC . We can therefore

establish constraints on our bulk-axion DDM model by calculating the theoretical predictions for these quantities in
our model and comparing these predictions to observational data.
We begin our analysis of CMB distortions from aλ decays by addressing those decays which result in the generation

of the pseudo-degeneracy parameter µ. In general, provided that the additional contribution δργ to the photon energy
density ργ from the decay of the aλ fields is small compared to the total ργ , the time-evolution of µ can be described
by the equation [50, 51]

dµ

dt
=

dµa

dt
− µ (ΓDC + ΓBR) . (4.27)

Here ΓDC and ΓBR are the interaction rates for double-Compton scattering and bremsstrahlung, respectively, and
dµa/dt denotes the differential contribution to µ from axion decay. For an arbitrary dµa/dt, the solution to this
differential equation takes the form

µ(t) = exp

[
4

5

(
2CBRt

−5/8 + CDCt
−5/4

)] ∫ t

te

[
dµa

dt
(t′)

]
exp

[
−4

5

(
2CBRt

′−5/8 + CDCt
′−5/4

)]
dt′, (4.28)

where te ≈ 1.69×103 s is the time scale associated with electron-positron annihilation in the early universe, and where
the quantities CDC and CBR are constants related to the double-Compton-scattering and bremsstrahlung rates ΓDC

and ΓBR in Eq. (4.26) by ΓDC ≡ CDCt
−9/4 and ΓBR ≡ CBRt

−13/8. Moreover, the differential contribution dµa/dt to
µ from axion decays is given by the standard expression for contributions due to the late injection of photons from a
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generic source:

dµa

dt
=

1

2.143

(
3

ργ

dργ
dt

− 4

nγ

dnγ

dt

)
. (4.29)

In general, the rate of change in the photon energy density is given by the Boltzmann equation for the evolution of
ργ . In our bulk-axion DDM model, this equation includes a source term from each decaying state in the dark-matter
ensemble. Thus, at late times, after all of the aλ have already begun oscillating coherently and the contribution to
ργ from inflaton decays can safely be neglected, we find that

dργ
dt

= − 4Hργ +
∑

λ

BR
(2γ)
λ Γλρλ , (4.30)

where BR
(2γ)
λ is the branching fraction of aλ into a pair of photons. Note that the source term in the Boltzmann

equation for ργ is simply a sum of the contributions from the various aλ fields. Using Eq. (4.30), along with the
relations

1

(R4ργ)

d(R4ργ)

dt
=

1

ργ

(
dργ
dt

+ 4Hργ

)
,

1

(R3nγ)

d(R3nγ)

dt
=

1

nγ

(
dnγ

dt
+ 3Hnγ

)
, (4.31)

we can rewrite Eq. (4.27) in the form

dµa

dt
=

1

2.143

[
3

ργ

∑

λ

BR
(2γ)
λ Γλρλ − 8

nγ

∑

λ

BR
(2γ)
λ Γλ

ρλ
λ

]
. (4.32)

For the purpose of establishing a conservative bound, we focus here on the case of a purely photonic axion. As we
saw in Sect. III B, the contribution to Γλ from intra-ensemble decays is negligible for any aλ which decays on time
scales relevant for the generation of CMB distortions. It is therefore justifiable to approximate Γλ by the expression

for Γ(a → γγ) given in Eq. (3.15) and thus to take BR
(2γ)
λ ≈ 1. Since the energy density ρλ associated with each aλ

is given in Eq. (3.7), we find that in this approximation, the first source term on the right side of Eq. (4.32) takes the
form

∑

λ

BR
(2γ)
λ Γλρλ ≈ 1

2
θ2Gγm

4
X

∑

λ

λ

(
t2λ

t
1/2
RH

)
(λ̃2Aλ)

4e
−

Gγλ3

f̂2
X

(λ̃2Aλ)
2(t−tG) ×





t
1/2
RHt

−2 t . tRH

t−3/2 tRH . t . tMRE

t
1/2
MREt

−2 t & tMRE ,

(4.33)

where we have defined Gγ is defined below Eq. (3.15). The second term takes the same form, but with one factor of
λ fewer in the summand.
In principle, one could evaluate this sum numerically at each moment in time, and then use these results to

numerically solve Eq. (4.32). However, we find that by making a few additional well-motivated approximations, we
can obtain a closed-form, analytical result for dµa/dt. We begin by dividing the tower into sections, based on the two
criteria which determine the dependence of Γλ and ρλ on λ. The first of these is whether the oscillation-onset time
for a given aλ is within the staggered regime (i.e., tλ > tG), or the simultaneous turn-on regime (i.e., tλ = tG). In the
former case, tλ depends on λ according to Eq. (3.6); in the latter case, tλ is independent of λ. The second pertinent
criterion concerns the relationship between λ and the quantity

λtrans ≡ πm2
X/Mc , (4.34)

introduced in Ref. [2]. This quantity corresponds roughly to the transition point between the small-λ regime, in
which the aλ are highly mixed, the large-λ regime, in which mixing is negligible. Indeed, for λ ≪ λtrans, we find

that λ̃2Aλ ≈
√
2 λ̃/(1 + π2/y2)1/2, while for λ ≫ λtrans, we find that λ̃2Aλ ≈

√
2. Given these criteria, our first

approximation will be to replace λ̃2Aλ with its asymptotic large-λ form for all λ > λtrans, and with its asymptotic
small-λ form for all λ < λtrans. Our second will be to approximate the sum over λ by a set of source-term integrals
Ii(m,n, α, β, λmin, λmax), each corresponding to a different regime in the tower of modes characterized by a particular
dependence of the integrand on λ. These source-term integrals may be evaluated analytically by making use of the
identity

Ii(m,n, α, β, λmin, λmax) ≡ α

∫ λmax

λmin

λme−βλn

dλ

= α
1

n
β−(m+1)/n

[
Γ

(
m+ 1

n
, βλnmin

)
− Γ

(
m+ 1

n
, βλnmax

)]
, (4.35)
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i Oscillation regime Mixing regime mi ni αi βi

1
tλ > tG

λ < λtrans 3 5 4t
−1/2
RH

[1 + π2/y2]−2 2Gγ t(f̂XmX)−2[1 + π2/y2]−1

2 λ ≥ λtrans −1 3 4m4

Xt
−1/2
RH

2Gγtf̂
−2

X

3
tλ = tG

λ < λtrans 5 5 tκG
G t

3/2−κG

RH
[1 + π2/y2]−2 2Gγ t(f̂XmX)−2[1 + π2/y2]−1

4 λ ≥ λtrans 1 3 m4

XtκG
G t

3/2−κG

RH
2Gγtf̂

−2

X

TABLE I: Values of mi, ni, αi, and βi which correspond to different regimes, labeled by the index i, in a generic axion tower,
for use in Eqs. (4.38) and (4.49). The symbol κG denotes the specific value of κ, as defined in Eq. (3.3), which corresponds to
tG.

which is valid for n > 0 and any real values of m, α, and β. Here Γ(s, x) denotes the incomplete gamma function:

Γ(s, x) ≡
∫ ∞

x

ts−1e−tdt . (4.36)

Employing the approximations discussed above, we find that the first source term on the right side of Eq. (4.32)
reduces to

∑

λ

BR
(2γ)
λ Γλρλ =

2Gγθ
2

Mc

4∑

i=1

Ii
(
mi, ni, αi, βi, λ

CMB
i−1 , λCMB

i

)
×





t
1/2
RHt

−2 t . tRH

t−3/2 tRH . t . tMRE

t
1/2
MREt

−2 t & tMRE .

(4.37)

Inserting this result (and the analogous result for the second source term) into Eq. (4.29) and using the fact that
µ-type distortions are generated by decays occurring within the RD era, we obtain the result

dµa

dt
≈ 0.935× Gγθ

2

Mct3/2

[
3

ρeqγ

4∑

i=1

Ii(mi, ni, αi, βi, λ
CMB
i−1 , λCMB

i )− 8

neq
γ

4∑

i=1

Ii(mi − 1, ni, αi, βi, λ
CMB
i−1 , λCMB

i )

]
, (4.38)

where the expressions for αi, βi, mi, and ni valid in each aλ regime are listed in Table I. Note that in obtaining this
expression, we have assumed that the additional contributions to nγ and ργ due to the injection of photons from aλ
are sufficiently small that these quantities can be approximated by the equilibrium expressions neq

γ = 2ζ(3)T 3/π2 and

ρeqγ = π2T 4/15. Furthermore, we have used the fact that the time frame during which CMB distortions to µ can
arise lies entirely within the RD era. Obtaining a final result for the magnitude of µ-type distortions to the CMB
engendered by the presence of a tower of decaying DDM axions is then simply a matter of substituting the result for
dµa/dt in Eq. (4.38) into Eq. (4.28) and numerically evaluating the integral for a given choice of input parameters.
The contribution to yC from the late decays of the aλ may be evaluated in much the same way as the corresponding

contribution to µ. The decays which contribute to yC are those which occur during the window 9 × 109 . t .
1.2 × 1013 s, during which the rate ΓEC ∼ H associated with elastic Compton scattering can no longer bring the
photons from aλ decay into kinetic equilibrium even though radiation has yet to decouple from matter. The evolution
of yC is governed by the relation [52]

dyC
dt

=
1

4ργ

dργ
dt

. (4.39)

Proceeding with the mode sum as above and adopting the same approximations as above, we find that

dyC
dt

≈ 2Gγθ
2

Mcρ
eq
γ

4∑

i=1

Ii
(
mi, ni, αi, βi, λ

CMB
i−1 , λCMB

i

)
×





t−3/2 t . tMRE

t
1/2
MREt

−2 tMRE . t . tLS

0 t & tLS ,

(4.40)

where tLS ∼ 1.19× 1013 s is the time of last scattering and Ii(m,n, α, β, λmin, λmax) is once again given by Eq. (4.35).
Note that since matter-radiation equality occurs prior to last scattering, at around tMRE ∼ 1011 s, the epoch during
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FIG. 6: Contours of the CMB Compton-y-parameter distortion yC (black lines) produced as a result of axion decays in a
bulk-axion DDM model with ΛG = 1 GeV (left panel) and ΛG = 1 TeV (right panel). In each case, we have assumed a
photonic axion with cγ = 1 and have taken ξ = gG = θ = 1, with HI = 1 GeV and TRH = 5 MeV. Contours corresponding
to y ≡ Mc/mX = 1 (solid red line) and to y = {0.01, 0.1, 10, 100} (dashed red lines) are also shown. For each panel, it is

evident that our bulk-axion DDM model amply satisfies the CMB constraints in Eq. (4.41) for all relevant values of f̂X and
Mc, regardless of the value of y.

which aλ decays can affect yC straddles both the RD and MD eras. Numerically evaluating the expression in Eq. (4.40)
from tEC to tLS, we obtain our final results for yC distortions due to late aλ decay.
In order to assess the CMB constraints on the parameter space of our bulk-axion DDM model, we now compare

the results obtained by numerically integrating Eqs. (4.28) and (4.40) with observational limits on µ and yC . The
current limits on these quantities are [47]

|µ| < 9× 10−5 , yC < 1.2× 10−5 . (4.41)

The bound on yC for a photonic axion with cγ = 1 yields the constraints on f̂X , Mc, and ΛG shown in Fig. 6. In this

figure, we display contours of the values of yC in (f̂X ,Mc) space which arise in a bulk-axion model with ΛG = 1 GeV
(left panel) and with ΛG = 1 TeV (right panel). In each case, we have taken ξ = gG = θ = 1, HI = 1 GeV, and
TRH = 5 MeV. Contours indicating y ≡ Mc/mX = 1 (solid red line) and y = {0.01, 0.1, 10, 100} (dashed red lines)
have also been superimposed. For each panel, it is evident that our bulk-axion DDM model amply satisfies the CMB

constraints for all relevant values of f̂X and Mc, regardless of the value of y.
It turns out that the constraints from the corresponding bound on µ in Eq. (4.41) are even less stringent than those

from the bound on yC . Thus, we conclude that both the yC -type and µ-type distortions which result from aλ decays
in our bulk-axion DDM model are well below present experimental sensitivities. Indeed, no meaningful constraint
arises for our bulk-axion DDM model from present limits on distortions in the CMB.
As we have discussed, neither µ nor yC can be affected by any photons which are produced by aλ decays at times

t & tLS, after radiation and matter decouple. Such photons do, however, contribute to the diffuse photon background.
In the next section, we will discuss the physical effects of this diffuse photon background in detail.

G. Axion Decays and Contributions to the Diffuse X-Ray and Gamma-Ray Backgrounds

As mentioned above, the potentially observable effects of late photoproduction from axion decays include not only
distortions of the CMB, but also imprints on the diffuse X-ray and gamma-ray backgrounds. Observational limits
on such imprints from instruments such as HEAO [53], COMPTEL [54], XMM, and Chandra [55] therefore impose
additional constraints on the parameter space of our bulk-axion DDM model. As discussed in Sect. III, there are
two cosmological populations of decaying aλ whose decays to photons can potentially leave observable imprints on
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the diffuse X-ray and gamma-ray backgrounds. The first is the population of cold axions produced by vacuum
misalignment, which collectively compose the DDM ensemble. The second is the far smaller population of axions
produced by interactions among the SM fields in the thermal bath after inflation. While the former population
provides a far greater contribution to Ωtot, the latter population contains a far larger proportion of heavier, more
unstable aλ, as indicated in Fig. 3. It is not clear a priori which population yields the more stringent constraint.
Thus, it is necessary to examine the contribution to the diffuse photon background from each of these populations in
turn.
A photon produced at time t with initial energy Eγ(t) will only contribute to the diffuse photon background if

the universe remains transparent to electromagnetic radiation over the entire range of energies through which that
photon redshifts as the universe evolves from t to tnow. A detailed analysis of the time scales and photon-energy
ranges for which this transparency condition is attained is presented in Ref. [56]. Roughly speaking, the transparency
window spans an energy range 1 keV . Eγ . 10 TeV and a time range 1012 − 1014 s . t . tnow, with the lower limit
depending on the particular value of Eγ . Motivated by these results, we approximate the universe to be transparent
to all photons with energies which fall within this range at all times t > tLS and opaque to all photons otherwise.
This approximation yields a conservative bound. Moreover, we emphasize that since the dominant contribution to
the diffuse X-ray and gamma-ray flux in our model is due to modes which decay at much later times t ≫ tLS, our
results are essentially insensitive to the precise contours chosen for the transparency window.
The calculation of the photon flux due to late aλ decays proceeds in a manner similar to the calculation of the flux

from KK-graviton decays outlined in Ref. [31]. The Boltzmann equation for the number density nγ of photons in the
presence of a tower of decaying aλ takes the form

ṅγ + 3Hnγ = 2
∑

λ

BR
(2γ)
λ Γλ

ρλ
λ
, (4.42)

where once again ρλ is given by Eq. (3.8). Solving this equation for nγ as a function of time, we obtain

nγ(t) = 2
s(t)

sLS

∑

λ

BR
(2γ)
λ

ρλ(tLS)

λ

[
1− e−Γλ(t−tLS)

]
, (4.43)

where s(t) is the entropy density of the universe at time t, and sLS is the entropy density of the universe at the time
of last scattering. The present-day differential energy spectrum dnγ/dEγ of these photons may readily be computed
from the relation

dnγ

dEγ
=

dnγ

dt

dt

dz

dz

dEγ
, (4.44)

where z is the cosmological redshift and Eγ is the photon energy at redshift z. The first of these factors may be
obtained by explicitly differentiating Eq. (4.43) with fixed s = snow, which yields a series of terms of the form

[
dnγ

dt

]

λ

= 2

(
snow
sLS

)
BR

(2γ)
λ Γλ

ρλ(tLS)

λ
e−Γλ(tnow−tLS) , (4.45)

one for each different value of λ. The second factor in Eq. (4.44) may be obtained by noting that the relationship
between time and redshift during the present, matter-dominated era is well-approximated by t = tnow(1 + z)−3/2.
Consequently, for each value of λ we have

[
dt

dz

]

λ

= − 3

2
tnow

(
2Eγ

λ

)5/2

(4.46)

during the epoch of interest. The third factor in Eq. (4.44) may be obtained by noting that each of the photons
produced by an axion tower state aλ which decays at redshift z will be monochromatic, with energy λ/2, at the
moment of decay. This implies that the present-day energies of such photons are given by Eγ(1+ z) = λ/2, and hence
that for each value of λ, we have

[
dz

dEγ

]

λ

= − λ

2E2
γ

. (4.47)

Combining these expressions and summing over λ, we arrive at a general formula for the contribution to the diffuse
photon flux produced by the tower of decaying aλ:

dnγ

dEγ

∣∣∣∣
now

= 6tnow
√
2Eγ

(
snow
sLS

)∑

λ

BR
(2γ)
λ Γλ

ρλ(tLS)

λ5/2
e−Γλ(tnow−tLS) . (4.48)
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Calculating the contribution to the diffuse X-ray and gamma-ray backgrounds in our bulk-axion DDM model is then
simply a matter of applying Eq. (4.48) to the contribution from the two relevant populations of decaying axions
discussed above.
We begin by addressing the contribution from the population of axions produced by vacuummisalignment — i.e., the

DDM ensemble itself. Once again, we focus our attention on the case of a photonic axion, for which Γλ ≈ Γ(a → γγ)

and BR
(2γ)
λ ≈ 1. In this case, we find that the contribution to the present-day diffuse photon background from the

collective decays of the aλ fields is given by

dnγ

dEγ

∣∣∣∣
now

= 3
√
2EγGγθ

2m4
X

(
snow
sLS

)∑

λ

(
t2λt

1/2
MRE

t2LSt
1/2
RH

)
λ−3/2(λ̃2Aλ)

4e
Gγλ3

f̂2
G

(λ̃2Aλ)
2(tnow−tG)

. (4.49)

Just as for the contributions to µ and yC in Sect. IVF, we approximate the sum over axion modes appearing in
Eq. (4.49) as an integral over λ. The lower limit of integration is determined by the requirement that in order for a
photon with redshifted energy Eγ to have been produced by the decay of the axion species aλ before present day, we
must have λ ≥ 2Eγ . Likewise, photons which decay before the processes which equilibrate them with the radiation
bath freeze out will not contribute to features in the diffuse photon background. Thus, the upper limit of integration
is set by the condition λ . 2Eγ(tnow/tLS)

2/3. Furthermore, we must also require that λ not exceed the cutoff scale
fG, or be smaller than the lightest mode in the tower. Once again, we find that the resulting integral expressions can
be written in terms of the functions Ii(m,n, α, β, λmin, λmax) defined in Eq. (4.35):

dnγ

dEγ

∣∣∣∣
now

≈ 12Gγθ
2

√
2Eγtnow

Mc

(
snow
sLS

)(
t
1/2
MRE

t2LS

)
4∑

i=1

Ii
(
mi − 5/2, ni, αi, βi, λ

XRB
i−1 , λ

XRB
i

)
, (4.50)

where the λXRB
i are analogous to the λCMB

i appearing in Eq. (4.38). Determining the net contribution to the differential
photon flux from decays of the aλ for any particular choice of model parameters is thus simply a matter of numerically
evaluating Eq. (4.50).
We now turn to consider the observational limits on dnγ/dEγ . The diffuse extragalactic X-ray and gamma-ray

background spectra have been probed by a number of experiments. In the keV − MeV region, the most current data
are those from HEAO, COMPTEL, XMM, and Chandra; at energies above this, the most current data are those
from EGRET and FERMI. Over this entire energy range, the diffuse photon spectrum is well-modeled by a set of
power-law fits, and the non-observation of any discernible, sharp features in this spectrum imposes constraints on
late relic-particle decays to photons. For the data from the COMPTEL instrument, the best power-law fit is found
to be [54]

dnγ

dEγ
= 10.5× 10−4

(
Eγ

5 MeV

)−2.4

MeV−1cm−1s−1str−1 800 keV . Eγ . 30 MeV , (4.51)

while the best fit to the HEAO data is found to be [53]

dnγ

dEγ
=





7.88× 103
(
Eγ
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)−1.29

e−(Eγ/41.13 keV) MeV−1cm−1s−1str−1 0.1 keV . Eγ . 60 keV
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(
Eγ
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)−6.5

+ 8.4

(
Eγ

60 keV

)−2.58

+ 0.38

(
Eγ

60 keV

)−2.05

MeV−1cm−1s−1str−1 60 keV . Eγ . 160 keV

3.8× 105 ×
(
Eγ

keV

)−2.6

MeV−1cm−1s−1str−1 160 keV . Eγ . 350 keV

2.0× 103
(
Eγ

keV

)−1.7

MeV−1cm−1s−1str−1 350 keV . Eγ . 2 MeV .

(4.52)

The Chandra satellite has improved upon these diffuse X-ray background constraints in the 1 keV . Eγ . 8 keV
range by resolving a large fraction (∼ 80%) of this background into point sources. The residual spectrum in this
region is well represented by the power law [59]

dnγ

dEγ
= 2.6× 103

(
Eγ

keV

)−1.5

MeV−1cm−1s−1str−1 1 keV . Eγ . 8 keV . (4.53)
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In the gamma-ray region, the most stringent current limits are those from EGRET and FERMI. Data on the diffuse
extragalactic gamma-ray background from the former instrument [57] are reliable for photon energies within the range
30 MeV . Eγ . 1.41 GeV, for which we find the best fit

dnγ

dEγ
= 7.35× 10−3

(
Eγ

MeV

)−2.35

MeV−1cm−1s−1str−1 30 MeV . Eγ . 1.41 GeV . (4.54)

Note that data exist for higher photon energies as well, but given that EGRET’s energy resolution is not as good at
such high energies, and given that these data have been superseded by data from FERMI, we do not use them in
computing this power-law fit. As for the FERMI data, they are well modeled by the power law [58]

dnγ

dEγ
= 9.59× 10−3

(
Eγ

MeV

)−2.41

MeV−1cm−1s−1str−1 274 MeV . Eγ . 70.7 GeV . (4.55)

In Fig. 7, we show a set of curves (solid colored lines) depicting the total contribution to the diffuse gamma-ray

background from the decaying aλ fields, as given in Eq. (4.50), for several different values of f̂X within the range
106 − 1016 GeV. Results are shown for ΛG = 1 GeV (upper left panel), ΛG = 1 TeV (upper right panel), and
ΛG = 100 TeV (lower panel). In each case, we have taken Mc = 10−11 GeV, TRH = 5 MeV, and ξ = gG = θ = 1.
In addition, we have chosen a value for HI sufficiently large that none of the curves shown is significantly affected
by the “inflating away” of heavy modes which begin oscillating before inflation ends. In addition to these curves,
we also display contours corresponding to the upper limits on the diffuse X-ray and gamma-ray fluxes (black dashed
lines) given in Eqs. (4.51) through (4.55). Any choice of model parameters for which the differential photon flux
dnγ/dEγ exceeds any one of these observational-limit contours for any value of Eγ is excluded. The results shown
in Fig. 7 indicate that while it is not trivial to satisfy these observational limits in our bulk-axion DDM model, the
contributions to the diffuse X-ray and gamma-ray fluxes from aλ decay are indeed sufficiently small that these limits
are satisfied when ΛG is large.
We now consider the contribution to dnγ/dEγ from the population of axions generated by their interactions with

SM fields in the thermal bath after inflation. The contribution to the diffuse photon flux spectrum dnγ/dEγ generated
by such a population of axions is once again given by Eq. (4.48), but with ρλ(tLS) in Eq. (3.8) now replaced by

ρλ(tLS) ≈ λT 3
LStLS

∫ TRH

TMRE

3

κ(T )

(
TLS
T

)3/κ(T )
g∗s(TLS)

g∗s(T )

[
CID

λ (T ) + CPrim
λ (T )e−(λ+me)/T

]
dT , (4.56)

as follows from Eq. (3.42). To derive an estimate for the expected contribution to dnγ/dEγ from the resulting equation,
we proceed in essentially the same way as we did in calculating the contribution from axions produced via vacuum
misalignment. The results of this calculation are shown in Fig. 8 for parameter values within or near the preferred
region of parameter space for our bulk-axion DDM model. Specifically, we have takenMc = 10−11 GeV, ΛG = 1 TeV,

TRH = 5 MeV, and ξ = gG = 1. The solid colored curves shown correspond to several different choices of f̂X ranging

from f̂X = 1012 GeV to f̂X = 1015 GeV. Once again, the dashed black lines indicate the observational limits on
additional contributions to dnγ/dEγ . It is clear from Fig. 8 that while the contribution to the diffuse X-ray flux from
thermal axions within our preferred region of parameter space is certainly not negligible, it is also consistent with
current observational limits. We therefore conclude that even after the contribution from thermal axions is included,
our bulk-axion DDM model is consistent with X-ray and gamma-ray data.

H. Axion Decays and Big-Bang Nucleosynthesis

The accord between the primordial abundances of light nuclei inferred from observation and the predictions for those
abundances within the framework of standard BBN has been one of the greatest triumphs of theoretical cosmology.
However, these predictions depend sensitively on the cosmological parameters during the nucleosynthesis epoch. For
example, the presence of additional relativistic degrees of freedom in the thermal bath during BBN can substantially
distort the abundances of the light elements away from their observed values. In addition, the decays of unstable
particles during or after the BBN epoch can also alter these abundances via the injection of both entropy and energy
into the thermal bath. We must therefore ensure that the collective effects of aλ decays in our model are sufficiently
small so as not to disrupt the successful generation of light-element abundances via standard BBN.
Limits on the abundance of a single unstable relic particle χ from BBN are typically phrased as bounds on the

number density n̂∗
χ that χ would have at present time if it were absolutely stable. In general, the BBN bound on
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n̂∗
χ for any given relic particle depends on the lifetime τχ of that particle. The most stringent limits are obtained for

lifetimes τχ ∼ O(109 − 1010 s), for which the corresponding constraint is roughly [60, 61]

mχ

n̂∗
χ

n∗
γ

. 10−13 GeV , (4.57)

where n∗
γ ≈ 410.5 cm−3 denotes the present-day number density of photons. This limit can also be written in the

form

Ω̂∗
χ . 1.7× 10−5 , (4.58)

where Ω̂∗
χ is the relic abundance that χ would have at present time if it were absolutely stable.
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FIG. 7: The diffuse photon-flux spectrum dnγ/dEγ produced from axion decays in our bulk-axion DDMmodel with ΛG = 1 GeV
(upper left panel), ΛG = 1 TeV (upper right panel), and ΛG = 100 TeV (lower panel). Each solid colored curve corresponds

to a different choice of f̂X , within the range 106 − 1016 GeV. In all panels, we have taken Mc = 10−11 GeV, HI = 1 GeV,
TRH = 5 MeV, and ξ = gG = θ = 1. By contrast, the dashed black contours represent the upper bounds on dnγ/dEγ derived
from observational limits on the diffuse photon flux using a number of instruments sensitive in the X-ray and gamma-ray
regions. As evident from these plots, the diffuse-photon-background contribution arising from axion decay in our bulk-axion
DDM model is consistent with all observational limits when ΛG is large.
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FIG. 8: The diffuse photon flux spectrum dnγ/dEγ produced from the decays of a population of aλ produced by interactions
among the SM particles in the thermal bath after inflation. The left panel shows the results for ΛG = 1 TeV, while the right
panel shows the results for ΛG = 100 TeV. In each case, we have taken Mc = 10−11 GeV, TRH = 5 MeV, and ξ = gG = 1.
The solid colored curves indicate the diffuse-photon-flux contributions corresponding to different choices of f̂X . As in Fig. 7,
the dashed black contours indicate the upper bounds on dnγ/dEγ derived from observational limits on the diffuse X-ray and
gamma-ray fluxes, and we see that our model is consistent with these bounds.

Once again, however, as with other constraints on traditional models of decaying dark matter (such as those from
the CMB and the diffuse X-ray and gamma-ray backgrounds), these constraints are not readily applicable to models
within the DDM paradigm, since the dark-matter candidate in these models is an ensemble with no single, well-defined
mass or lifetime. Thus, we must reexamine the derivation of the BBN constraints on decaying relic particles in order
to determine what restrictions these considerations place on the parameter space of our bulk-axion DDM model.
While a detailed calculation of the precise limits BBN considerations impose on DDM scenarios in general is beyond
the scope of this paper, it is straightforward to demonstrate that BBN constraints do not significantly restrict the
parameter space of the particular model which concerns us here.
We begin by noting that in traditional, single-particle dark-matter scenarios, an unstable dark-matter candidate

χ with a relic abundance Ωχ ∼ ΩCDM is generally consistent with all astrophysical and cosmological limits on dark-
matter decays, provided that τχ & τmin

χ ∼ 1026 s [56]. It therefore follows that any aλ in the DDM ensemble with

a lifetime τλ & τmin
χ will have no impact on BBN within regions of parameter space in which the WMAP constraint

Ωtot ≤ ΩCDM on the total dark-matter relic abundance is satisfied. Thus, we may safely conclude that our bulk-axion
model of dynamical dark matter is consistent with BBN constraints within such regions of parameter space, provided
that

Ω̂∗
tot . 1.7× 10−5 , (4.59)

where Ω̂∗
tot denotes the collective contribution which the set of aλ with lifetimes τλ < τmin

χ would have made to the
dark-matter relic abundance at present time if they were absolutely stable. In other words, the BBN constraint we are
imposing in Eq. (4.59) effectively rests upon the extremely conservative approach of treating all states in the DDM
ensemble whose lifetimes are less than τmin

χ as if they had lifetimes τλ which are in the range which is most dangerous

for BBN, namely τλ ∼ 109 − 1010 s. We emphasize that while this criterion is a sufficient condition for successful
BBN, it does not represent the true BBN constraint, which is always far less stringent.

In Fig. 9, we display contours of Ω̂∗
tot for a DDM ensemble of photonic axions with cγ = 1, as a function of f̂X , Mc,

and ΛG. The left panel shows the results for ΛG = 1 GeV, the center panel for ΛG = 1 TeV, and the right panel for
ΛG = 100 TeV. In each case, we have taken TRH = 5 MeV, HI = 100 TeV, and ξ = gG = θ = 1. In each panel of
Fig. 9, we see that the criterion in Eq. (4.59) is amply satisfied throughout essentially the entire region of parameter
space shown. It therefore follows that our bulk axion model is consistent with successful BBN throughout this region
of parameter space.
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I. Axion Decays and Late Entropy Production

One additional physical consequence of the late decays of unstable relic particles is the generation of entropy as those
particles “dump” their energy density into the radiation bath. Indeed, a number of considerations place constraints
on late entropy production from decaying particles. For example, late entropy generation can upset the light-element
predictions from standard BBN and produce observable features in the CMB. In this section, we examine the effect
of the late decays of the aλ on the entropy density of the universe in our bulk-axion DDM model as a function of time
in order to verify that no perceptible effects can arise which might serve to exclude our model.
During any given epoch, the entropy density of the universe is dominated by the contribution from radiation and

therefore well approximated by

s ≈
∑

i

4ρi(Ti)

3Ti
=

π2

30
g∗s(T )T

3 , (4.60)

where the index i runs over all relativistic particle species, Ti is the temperature associated with any particular such
species, and g∗s is the number of interacting degrees of freedom at temperature T . During the early stages of the
history of the universe (prior to neutrino decoupling), all such species are characterized by a common temperature
Ti ≈ T . During such epochs, g∗s(T ) ≈ g∗(T ), and the entropy density is therefore directly proportional to the total
energy density ρrad of radiation. Indeed, even during subsequent epochs, g∗s and g∗ remain roughly similar, and ρrad
remains a good indicator of the entropy density. Thus, by evaluating the contribution to ρrad from aλ decays in our
bulk axion DDM model, we can assess the effect of these decays on both the energy and entropy densities of the
universe.
In the LTR cosmology, as in the standard cosmology, ρrad evolves according to an equation similar to Eq. (4.30):

dρrad
dt

= − 4Hρrad + Γφρφ +
∑

λ

BR
(rad)
λ Γλρλ . (4.61)

This equation assumes the presence of a tower of decaying aλ, where BR
(rad)
λ is the total branching fraction of aλ

into relativistic particles. Note, however, that since we are working within the context of LTR cosmology, the effects
of inflaton decays on the energy and entropy densities of the universe remain relevant until very late times t ∼ tRH.
Thus we have explicitly included an additional source term Γφρφ in Eq. (4.61) to account for the effect of such inflaton
decays, where Γφ and ρφ respectively denote the decay rate and energy density of the inflaton field φ.
The contribution to ρrad from inflaton decays can readily be calculated from standard results pertaining to the LTR

cosmology (for a review, see, e.g., Ref. [16]). As the universe exits the inflationary epoch at a time tI ≈ 2/(3HI), the

Ω̂
∗

tot
10-33 10-30 10-27 10-24 10-21 10-18 10-15 10-12 10-9 10-6 10-3

FIG. 9: Contours of the collective contribution to Ω̂∗
tot from the set of aλ with lifetimes τλ < τmin

χ for a DDM ensemble
of photonic axions with cγ = 1. The left, center, and right panels display the results for ΛG = 1 GeV, ΛG = 1 TeV, and
ΛG = 100 TeV, respectively. In each case, we have taken TRH = 5 MeV, HI = 100 TeV, and ξ = gG = θ = 1. In each panel,
we see that BBN constraints are amply satisfied throughout essentially the entire region of parameter space shown.
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energy density stored in the inflaton field is initially ρφ = ρcrit = 3H2
IM

2
P . During subsequent epochs, the inflaton

source term for radiation is approximately given by

Γφρφ ≈ 3H2
IM

2
P

2tRH

(
tI
t

)κ

e−t/2tRH , (4.62)

where κ is defined as in Eq. (3.3), and we have used the fact that the inflaton-decay rate is related to the reheating
time by Γφ ≈ 1/(2tRH). Note that this source term is negligible at times t≫ tRH, when by definition ρφ ≪ ρrad, and
hence can safely be neglected at such times. By contrast, at early times t . tRH, the inflaton source term is expected
to dominate in Eq. (4.61), in the sense that

Γφρφ ≫
∑

λ

BR
(rad)
λ Γλρλ . (4.63)

Whenever this condition is satisfied, the contribution to ρrad from aλ decays is inconsequential compared to that from
inflaton decays, and the axion source term can therefore safely be neglected.
In assessing the contribution from aλ decay, we once again choose to focus on the case of a photonic axion with

cγ = 1; this implies that the decay mode aλ → γγ dominates the contribution to ρrad. In this case, the source term
for radiation due to aλ decay is just the source term for photons given in Eq. (4.37). In this case, solving Eq. (4.61)
for ρrad, we find that

ρrad(t) = ρrad(t) +

∫ t

tG

(
t′

t

)4κ/3∑

λ

BR
(2γ)
λ Γλρλ(t

′)dt′ , (4.64)

where ρrad(t) is the solution for ρrad(t) in the absence of any additional contribution from aλ decays. Once again
making use of the integral functions Ii

(
m,n, α, β, λmin, λmax

)
defined in Eq. (4.35) to approximate the sum over

modes, we obtain

ρrad(t) = ρrad(t) +
2Gγθ

2

Mc

∫ t

tG

dt′
t′κ/3

t4κ/3

4∑

i=1

Ii
(
mi, ni, αi, βi, λ

CMB
i−1 , λCMB

i

)
×





t
1/2
RH t . tRH

1 tRH . t . tMRE

t
1/2
MRE t & tMRE .

(4.65)

In Fig. 10, we show how the contribution to ρrad from aλ decays in our bulk-axion DDM model evolves with time
for a variety of different choices of model parameters. The left panel shows results for ΛG = 1 GeV, the center panel
for ΛG = 1 TeV, and the right panel for ΛG = 100 TeV. The solid colored curves in each panel correspond to different

choices of f̂X within the range 1010− 1016 GeV. For all curves shown, we have assumed a photonic axion with cγ = 1,
and we have taken Mc = 10−11 GeV, TRH = 5 MeV, HI = 100 TeV, and ξ = gG = θ = 1. The black dashed curve
represents the total value of ρrad, which includes the standard contribution from inflaton decays during the reheating
epoch. Since such inflaton decays constitute the dominant source for radiation prior to the end of reheating, the
range of times shown in each panel extends from tRH to present time. The value of HI has been chosen here to be
sufficiently large that the effect of heavier aλ with λ & 3HI/2 being inflated away is unimportant. Note, however,
that for significantly smaller values of HI , the contribution to ρrad from axion decays can be further suppressed by
this effect.
The differences among the curves shown in Fig. 10 for different choices of f̂X and ΛG ultimately stem from the

effects of axion mixing on the abundances ρλ and decay widths Γλ of the individual axion modes. The results shown

in the left panel correspond to the case in which ΛG is sufficiently small that y ≫ 1 for all choices of f̂X shown.
In this small-mixing regime, λ & λtrans for all but the lowest-lying mode in the axion KK tower, and Eqs. (2.12)

and (3.8) imply that ρλ ∝ f̂−2
X and Γλ ∝ f̂−2

X . It therefore follows that the photon source term BR
(2γ)
λ Γλρλ associated

with each aλ within this regime decreases uniformly and substantially with increasing f̂X , as indicated. By contrast,
as ΛG is increased, several competing effects play an increasingly important role in determining the magnitude of

BR
(2γ)
λ Γλρλ for certain λ. This is because λtrans increases with increasing ΛG; hence for large ΛG a greater number of

the aλ are brought into the λ . λtrans regime, in which ρλ ∝ f̂2
X and Γλ ∝ f̂2

X . Increasing f̂X therefore has the effect
of increasing the initial magnitude of the photon source terms associated with the aλ in this regime. However, the

lifetimes of these modes also increase with increasing f̂X , and hence the transfer of their energy density to radiation is
deferred until later times, when ρrad is smaller and the contribution from aλ decays can have a proportionally greater
impact. The interplay between these effects results in the behavior shown in the right two panels of Fig. 10.
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Note that the curves for the total energy density shown in Fig. 10, which are dominated by the contribution from
inflaton dynamics, drop more rapidly as a function of time than the contributions from axion dynamics. This reflects
the continuing generation of new radiation energy density from the ongoing decays of the individual aλ within our
DDM ensemble. In all cases, however, the collective contribution to ρrad from aλ decays at all times t < tnow remains
negligible compared to the primordial contribution generated via inflaton decays during reheating. Thus our bulk-
axion DDM model does not lead to overproduction of either radiation-energy density or entropy during any prior
cosmological epoch.

J. Vacuum Energy and Overclosure

In traditional dark-matter scenarios involving a single, stable dark-matter candidate χ, the dark-matter relic abun-
dance Ωχ increases monotonically up to and beyond the present time. As a result, verifying that Ωχ satisfies WMAP
constraints at the present time is sufficient to guarantee that χ does not overclose (or prematurely matter-dominate)
the universe at all previous times as well. However, one of the hallmarks of the DDM scenario is that this is no
longer true: although Ωtot likewise experiences a Hubble-driven growth during the earliest phases of the evolution of
the universe, this quantity can nevertheless drop during later epochs. This is possible within the DDM framework
because the single, stable dark-matter candidate χ characteristic of most traditional dark-matter scenarios is replaced
by a complex, multi-component dark-matter ensemble whose constituents can have a broad spectrum of lifetimes and
abundances. As a result, the decays of certain dark-matter components within the ensemble can cause Ωtot to decline
— even prior to the present day. Indeed, such behavior for Ωtot can be quite dramatic, and is illustrated in Fig. 6
of Ref. [1] for the special case in which the DDM ensemble consists of a KK tower of decaying dark fields. Thus,
within the DDM framework, it is no longer sufficient to verify that Ωtot satisfies overclosure constraints at the present
time; we must also verify that it has satisfied such overclosure constraints (and constraints from premature matter-
or vacuum-energy domination) at all prior moments during the history of the universe.
It turns out, however, that this is not a problem in our bulk-axion DDM model. Since our model already satisfies

WMAP constraints at present time within our preferred region of parameter space [2], it can run afoul of overclosure
constraints in the past only if the negative rate of change of Ωtot is sufficiently great that Ωtot might have exceeded
unity within the past history of the universe. However, as discussed in Refs. [1, 2], this rate of change is described
by an effective equation-of-state parameter weff , and two things are already known about the value of this parameter
in our model: first, it is extremely small at the present day, i.e., 10−23 . weff . 10−12 [2], and second, it was even
smaller in the past. Indeed, this latter assertion follows from the generic behavior of weff shown in Fig. 8 of Ref. [1]:
for a generic KK tower, weff reaches its maximum at the present day and is exponentially smaller prior to this time.
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FIG. 10: The total contribution to the radiation energy density ρrad from photonic aλ decays in our bulk-axion DDM model
(solid lines), plotted as functions of time for a variety of different choices of f̂X . The left panel shows the results for ΛG = 1 GeV,
the center panel for ΛG = 1 TeV, and the right panel for ΛG = 100 TeV. In each case, we have assumed a photonic axion
with ξ = gG = θ = 1, and we have taken Mc = 10−11 GeV, TRH = 5 MeV, and HI = 100 TeV. Also shown in each panel is
the total value of ρrad as a function of time in the LTR cosmology (black dashed line), which includes the contribution from
inflaton decay. In all cases, the collective contribution to ρrad from aλ decays at all times t < tnow remains negligible compared
to the primordial contribution generated via inflaton decays during reheating. Thus our bulk-axion DDM model does not lead
to overproduction of either radiation-energy density or entropy during any prior cosmological epoch.



38

Thus, working backwards from the present epoch, and given the finite age of the universe, we see that it is not possible
for Ωtot to have violated overclosure bounds at any point during the history of the universe.
One related concern which arises in our bulk-axion DDM model, due to our reliance on the misalignment mechanism

for the generation of the primordial relic abundances of the aλ is the risk of premature vacuum domination. Indeed,
any aλ for which tλ > tG will contribute to the total dark-energy abundance Ωvac during the period when tG . t . tλ,
within which its energy density ρλ is non-vanishing but before which it begins oscillating. Since ρλ remains constant
during this period, the contribution to Ωvac scales like Ωλ ∝ t2 during any MD or RD epoch. Since this represents a
rate of increase far faster than that associated with matter or radiation, the threat of premature vacuum domination
from fields which remain as vacuum energy for a long duration is of particular concern. Indeed, in extreme cases,
such fields could potentially give rise to an additional period of inflation, leading to gross inconsistencies with the
predictions of BBN, CMB data, and so forth.
In our bulk-axion model, however, it is straightforward to demonstrate that no such inconsistencies with obser-

vational data arise. The masses of all of the aλ, with the sole exception of the zero mode a0, are bounded from
below by the Newton’s-law-modification constraint in Eq. (4.1), since λi ≥ Mc/2 for i > 0. For all such modes with
tλ > tG, this constraint on λ implies a bound tλ > 6.75 × 10−14 s on the oscillation-onset time of the mode. (The
remaining modes, for which tG = tλ, never contribute to Ωvac.) This time scale is sufficiently early that the collective
vacuum-energy contribution from these aλ poses no threat of overclosure or premature vacuum-domination. The Ωλ

contributions from these fields simply do not have time to grow to a problematic size.
This leaves only the contribution from a0,whose oscillation time scale can be substantially longer than the upper

limit quoted above for the higher modes in situations in which y ≫ 1. Since Aλ0
≈ 1 in this limit, Eq. (3.8) implies

that prior to the time tλ0
at which it begins oscillating, the relic abundance of a0 is given by

Ωλ0
≈ 3

2

m2
X f̂

2
X

M2
P

(
t

κ

)2

. (4.66)

Therefore, one finds that by the time of oscillation, which is given by tλ0
≈ κλ0

/2mX in this limit, Ωλ0
will have

grown to

Ωλ0
(tλ0

) ≈ 3

8

f̂2
X

M2
P

. (4.67)

This result is independent ofmX , and implies that the contribution of the a0 to Ωvac is not a cause for concern for sub-

Planckian values of f̂X . Indeed, this is to be expected: in this regime, a0 functions effectively like a four-dimensional
axion. Early vacuum-energy domination is known not to be a problem for light axions and axion-like particles (see
Ref. [37] and references therein) in purely four-dimensional theories.

K. Misalignment Production and Isocurvature Perturbations

In an inflationary cosmology, fluctuations in the energy density of any population of particles produced thermally —
i.e., via rapid interactions in the radiation bath during the reheating phase — stem from the primordial perturbations
in the energy density of the inflaton field. Consequently, such fluctuations represent spatial variations in the total
energy density, but not in the relative contributions of individual particle species to that total density. Such variations,
in turn, imply fluctuations in the local spacetime curvature and are therefore sometimes also referred to as curvature
perturbations. By contrast, fluctuations in the energy density of any population of particles produced via means
uncorrelated with the inflaton field (and therefore non-thermal) can also give rise to fluctuations of the isocurvature
type — i.e., perturbations in the relative contributions of different species to the total energy density, with that total
energy density held fixed. Recent WMAP observations of the CMB power spectrum, taken in combination with baryon
acoustic oscillation (BAO) measurements and supernova data, place a stringent bound [10] on any deviations from
adiabaticity in primordial energy-density fluctuations. This bound is typically expressed in terms of the fractional
contribution α0 to the CMB power spectrum from axion isocurvature perturbations:

α0 ≡ 〈(δT/T )2iso〉
〈(δT/T )2tot〉

< 0.072 , (4.68)

where 〈(δT/T )2tot〉 and 〈(δT/T )2iso〉 respectively denote the total average root-mean-squared fluctuation in the CMB
temperature, and the average root-mean-squared temperature fluctuation due to isocurvature perturbations alone.
Since the aλ fields which compose our dynamical dark-matter ensemble are presumed to be produced non-thermally,
via the misalignment mechanism, it is necessary to investigate the implications of this bound for our model.
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Our discussion of isocurvature perturbations in our bulk-axion DDM model in large part parallels the discussion
of such perturbations in traditional QCD axion models presented in Ref. [62], to which we refer the reader for a
more complete introduction and discussion of the formalism and methodologies used. It turns out to be convenient
to express the fluctuations of any given aλ in terms of the fractional change Sλ in the ratio of its number density nλ

to the entropy density s of the universe. This quantity can be written in the form

Sλ ≡ δ(nλ/s)

(nλ/s)
=

δnλ

nλ
− 3

δT

T
. (4.69)

We assume that the production of all other particle species ψi (i.e., the SM fields) ultimately results from inflaton
decay, and that the density fluctuations for these species are purely adiabatic, with Si = 0. Since, by definition, the
fluctuation δρ in the total energy density vanishes for isocurvature fluctuations, it therefore follows that the sum of
the fluctuations in the energy densities of the various particle species obeys a constraint which may be written in the
form

∑

λ

ρλ

(
Sλ + 3

δT

T

)
+ 3

∑

i

ρi
δT

T
+ 4ρrad

δT

T
= 0 , (4.70)

where the ρi denote the energy densities associated with massive species other than the aλ, and ρrad once again
denotes the total energy density of radiation. In our bulk-axion DDM model, the abundances of all of the aλ are
determined by a single misalignment angle θ. As discussed in Ref. [1], this reflects the ultimate five-dimensional
nature of the axion field. This in turn implies that the density fluctuations δnλ for all of these fields are determined
by the fluctuations δθ in this misalignment angle generated by quantum fluctuations during inflation. The fact that
the fluctuations δnλ are all determined by δθ implies that the Sλ ≡ S are essentially equal for all aλ; hence Eq. (4.70)
simplifies to

ΩtotS = − 3

(
Ωmat +

4

3
Ωrad

)
δT

T
, (4.71)

where Ωmat denotes the total abundance of matter in the universe, including the contributions from baryonic matter,
the ensemble of dark axions, and any other particles which might contribute to the dark-matter relic abundance,
and Ωrad is the relic-abundance contribution from radiation. This expression is identical to that which describes the
isocurvature perturbations associated with a single, four-dimensional axion. Therefore, assuming that the fluctuations
in θ are Gaussian, it follows that in our axion DDM model, α0 is given by the standard expression [62]

α0 =
8

25

(
Ω∗

tot

Ω∗
mat

)2
1

〈(δT/T )2tot〉
σ2
θ(2θ

2 + σ2
θ)

(θ2 + σ2
θ)

2
, (4.72)

where Ω∗
mat denotes the present-day value of Ωmat, and where σ2

θ ≡ 〈(δθ)2〉 denotes the variance associated with
fluctuations in θ.
This result makes intuitive sense. Although our DDM model has essentially partitioned the total dark-matter

abundance amongst a large number of different KK axion fields, the underlying five-dimensional nature of the KK
tower has correlated the individual fluctuations of these fields so that they are governed by the fluctuation of a single
misalignment angle θ. It is therefore not a surprise that the expected magnitude for isocurvature fluctuations in our
model turns out to be no greater than it is standard, four-dimensional axion models.
All that remains, then, for us to do in order to determine the value of α0 in our bulk-axion DDM model, is to assess

the magnitude of σ2
θ . Assuming again that the fluctuations in θ are Gaussian, this quantity is given by

σ2
θ =

H2
I

4π2f̂2
X

. (4.73)

Since we are operating within the context of an LTR cosmology with TRH ∼ O(MeV), as discussed above, it is by no

means problematic (and in fact quite natural) for HI ≪ f̂X . Therefore, as long as θ ∼ O(1), as might be expected
from naturalness considerations, it can safely be assumed that θ ≫ σθ. Substituting into Eq. (4.72) the experimentally
observed [10] values 〈(δT/T )2tot〉 ≈ (1.1× 10−5)2 and Ω∗

mat ≈ 0.262 we find that α0 is well approximated by

α0 ≈ 1.95× 109
(
HIΩ

∗
tot

f̂Xθ

)2

(4.74)
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in our bulk-axion model. Combining this result with the upper bound on α0 quoted in Eq. (4.68) yields the constraint

HI . 6.07× 10−6

(
θf̂X
Ω∗

tot

)
. (4.75)

We consider the case in which Ω∗
tot ≈ ΩCDM and in which the axion ensemble is responsible for essentially the entirety

of the observed dark-matter relic abundance. This ocrresponds to f̂X ≈ 1014 − 1015 GeV. We then find that for
θ ∼ O(1), the resulting constraint HI . 109 − 1010 GeV on the Hubble parameter during inflation is relatively mild.
Indeed, there is no difficulty in satisfying this constraint in either the standard or the LTR cosmology. We thus
conclude that isocurvature perturbations do not present any problem for our bulk-axion model of dynamical dark
matter. Moreover, a low scale for HI can be regarded as natural in the context of an LTR cosmology.
It is worth remarking, however, that the above results have implications for the detection of primordial gravitational

waves. Limits on primordial gravitational waves from observations of the CMB can be conveniently parametrized in
terms of the scalar-to-tensor ratio r. For example, consider single-field models of inflation, in which r = 16ǫ, where
ǫ = M2

P (V
′/V )2/(4π) is the inflaton slow-roll parameter, with V and V ′ denoting the inflaton potential and its first

derivative with respect to the inflaton field, respectively [63]. In the context of our bulk-axion DDM model, the
standard relation (see, e.g., Ref. [10]) between r and α0 takes the form

r =
2θ2f̂2

X

M2
P

(
ΩCDM

Ω∗
tot

)2
α0

1− α0
. (4.76)

As discussed above, consistency with the bounds in Eqs. (4.68) and (4.75) requires that HI ≪ 2πfXθ and α0 ≪ 1. In
this regime, one finds that the expected tensor-to-scalar ratio is essentially independent of Ω∗

tot and well approximated
by

r ≈ 2.7× 108
(
HI

MP

)2

. (4.77)

Current WMAP observations, again in conjunction from BAO and supernova data, place an upper bound r < 0.22
on the tensor-to-scalar ratio [10]. Thus, Eq. (4.77) results in a constraint HI . 6.7 × 1013 GeV on the Hubble scale
during inflation — a constraint which Eq. (4.75) implies is already automatically satisfied, even for O(1) values of the
misalignment angle θ. The upshot is therefore that while there is no conflict between current limits on isocurvature
perturbations and the predictions of our bulk-axion DDM model, the requirement that HI be relatively small in this
model suggests that r should likewise be quite small — at least in the simplest of inflationary scenarios. Constraints
on the spectral index ns from WMAP [10] can simultaneously be satisfied for small r without difficulty, for example
in negative-curvature models of inflation, which tend to predict small r [64].
In summary, we conclude that current constraints on isocurvature perturbations can be satisfied in our bulk-axion

DDM model without too much difficulty. However, we note that any conclusive measurement of r within the sensitivity
range of the Planck satellite would have severe ramifications for this model.

L. Axion Abundances and Quantum Fluctuations During Inflation

Thus far in this paper, we have disregarded the effects of the quantum fluctuations that naturally arise for any
massless or nearly massless field during the inflationary epoch. In particular, the low-momentum modes of any aλ
in our model with a mass λ . HI have wavelengths which exceed the Hubble length during inflation; excitations of
such low-momentum modes are therefore indistinguishable from a VEV and consequently do not inflate away. These
excitations necessarily yield a primordial energy-density contribution in our bulk-axion DDM model which cannot
be avoided in any inflationary cosmology. Consistency with the relic-abundance predictions discussed in Sect. III A
therefore requires that this primordial energy density be small compared to that which results from misalignment
production.
In particular, it is possible to formulate a condition that ensures that these quantum fluctuations not invalidate

our previous analysis. Clearly, one criterion that any such condition must enforce is that such fluctuations not have a
significant effect on the total relic abundance of the ensemble. We may formulate this constraint as a requirement that

the difference between the full present-day relic abundance Ω̃∗
tot, which incorporates the effect of these fluctuations,

and the result Ω∗
tot obtained in the absence of such corrections be negligible — i.e., that

∣∣ Ω̃∗
tot − Ω∗

tot

∣∣ ≪ Ω∗
tot . (4.78)
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While the condition in Eq. (4.78) is certainly a necessary one, it is not by itself sufficient to ensure that vacuum
fluctuations during inflation do not lead to phenomenological difficulties for our model. This is because within DDM
framework, dark-matter stability is not a requirement, and consistency with observational constraints is arranged by
balancing decay widths against abundances across the entire dark-matter ensemble. Indeed, as we have demonstrated,
misalignment production provides precisely the right relationship between the Ωλ and Γλ to mitigate the deleterious
effects of the heavier, more unstable states in our ensemble and render our model phenomenologically viable. We
must therefore ensure that this delicate balance is not disrupted by the effects of vacuum fluctuations during inflation.
Within the preferred region of parameter space of our bulk-axion DDM model, as discussed in Sect. III A, the

oscillation-onset times for the lighter aλ in the tower are staggered in time. As a result, these lighter modes collectively
dominate in Ωtot. It therefore follows that whether or not the total-relic-abundance constraint in Eq. (4.78) is satisfied
depends primarily on how vacuum fluctuations affect the abundances of these most abundant modes alone. By
contrast, the balancing of lifetimes against abundances depends on the properties of the full KK tower, and not
merely on the attributes of the lighter modes which dominate Ωtot. The corresponding condition we impose on our
model therefore represents an even stronger constraint than the one appearing in Eq. (4.78) and indeed subsumes it.

To wit, we require that the full relic abundance Ω̃λ of each axion mode not differ significantly from the corresponding
abundance Ωλ obtained in the absence of corrections due to vacuum fluctuations during inflation — i.e., that

∣∣ Ω̃λ − Ωλ

∣∣ ≪ Ωλ for all λ . (4.79)

We emphasize that this is an overly conservative constraint, and that consistency with observational data is certainly
possible even if vacuum fluctuations do have a significant effect on the abundances of certain aλ. However, as we shall
demonstrate, the restriction that this overly conservative constraint imposes on our model (which primarily turns out

to take the form of an upper bound on HI for any allowed choice of f̂X , Mc, and ΛG) is not terribly severe.
In order to determine how this condition restricts the parameter space of our model, we must first assess what

effect vacuum fluctuations during inflation have on the individual energy densities ρλ and relic abundances Ωλ of the
constituent fields in our dark-matter ensemble. We begin by noting a generic result in inflationary cosmologies (for
a review, see Ref. [65]), namely that the variance 〈φ2〉 in the amplitude of any light scalar φ with a mass mφ . HI

induced by vacuum fluctuations during inflation is given by

〈φ2〉 ∼ H3
I δtI
4π2

, (4.80)

where δtI denotes the duration of inflation. A fluctuation of this order will therefore be induced in the amplitude
of any axion in our dark-matter ensemble with a mass smaller than HI . Moreover, we note that the relationship
between δtI and HI is constrained by the fact that successful resolution of the smoothness and flatness problems
requires Ne ≈ HIδtI & 60, where Ne denotes the number of e-foldings of inflation. In typical scenarios, Ne lies only
slightly above this lower bound; hence δtI is typically expected to be such that HIδtI ∼ O(100). We will frequently
express our results in terms of Ne in what follows.
We begin our discussion the effect of these fluctuations on the abundances of the constituent particles in our dark-

matter ensemble by examining the simple case in which tG . tI . In this case, the axion mass-squared matrix attains
its asymptotic, late-time form before inflation ends, and the aλ are consequently already the axion mass eigenstates
during the inflationary epoch. Thus, we find that the total energy density associated with each aλ with λ . HI at
the end of inflation is given by

ρλ(tI) ≈ 1

2
λ2
(
θAλf̂X + ηλ

HI

√
Ne

2π

)2

, (4.81)

where

ηλ ∼
{
O(1) λ . HI

0 λ & HI

(4.82)

is a random coefficient of which parametrizes the fluctuation in the field aλ.
Before proceeding further, we remark that the above results depend critically on the assumption that tG . tI . In

other words, we have assumed that the instanton dynamics associated with the gauge group G has already occurred
and made its contributions to the KK masses prior to the onset of the quantum fluctuations that arise due to inflation.
By contrast, if tG & tI , the quantum fluctuations will occur first, when the axion mass matrix is still diagonal and
when the KK momentum modes and mass eigenstates coincide. In such cases, these are the modes which develop
quantum fluctuations, and the mode-mixing induced by the instanton dynamics occurs only later.
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This distinction is important, because the resulting energy density for each aλ takes a somewhat different form
when tG & tI :

ρλ =
1

2
λ2

[
∞∑

n=0

Uλn

(
θf̂Xδn,0 + ηn

HI

√
Ne

2π

)]2
. (4.83)

In this expression, Uλn is the mixing matrix in Eq. (2.14) and ηn is the analogue of ηλ discussed above, with ηn taking
non-zero values only when n . HI/Mc.
A priori , this expression results in a different value for ρλ than that in Eq. (4.81). However, it turns out that the

eventual constraints associated with Eq. (4.83) are no more stringent than those which we shall eventually calculate
for Eq. (4.81). In order to understand why this is the case, let us consider an even more dramatic situation in which
ηn actually takes a fixed, positive value η for all n — even values of n beyond the inflationary cutoff HI/Mc. In this
case, we can make use of the identity

∞∑

n=0

Uλn = f(λ̃)Aλ , (4.84)

where f(λ̃) ≡ (λ̃2 +
√
2− 1)/

√
2, in order to rewrite Eq. (4.83) in the form

ρλ =
1

2
λ2
[
θAλf̂X + f(λ̃) η

HI

√
Ne

2π

]2
. (4.85)

Remarkably, this is essentially the same expression as we would have obtained from Eq. (4.81) when ηλ = η for all

λ, except that the fluctuation contribution now comes multiplied by an extra “scaling” factor f(λ̃). It is easy to

verify that f(λ̃) → 1 as λ̃ → ∞, whereas for small λ̃ we find that f(λ̃) ≪ 1. This indicates that the effects of the
inflation-related quantum fluctuations are actually suppressed for the lighter modes, relative to what occurs in the
case with tG . tI . The magnitude of this suppression depends on y, and is more severe when y ≪ 1 (i.e., when the
axion modes are more fully mixed). We thus conclude that the contributions from the quantum fluctuations that arise
during inflation are greater when they occur after the instanton dynamics turns on (and after the KK mode-mixing),

rather than before. We shall therefore concentrate on the tG <∼ tI case in what follows.
Given the result in Eq. (4.81), we see that the effect of vacuum fluctuations on the ρλ will be small for values of λ

which satisfy the condition

θAλf̂X &
HI

√
Ne

2π
. (4.86)

Since Aλ is a monotonically decreasing function of λ, it follows that within any given tower of aλ, there exists a
critical mass value

λfluc ≡ mX√
2




√(

1 +
π2

y2

)2

+
32π2θ2f̂2

X

NeH2
I

−
(
1 +

π2

y2

)


1/2

(4.87)

below which the effect of vacuum fluctuations on the corresponding energy density ρλ is negligible. These ρλ are

therefore well approximated by Eq. (3.8), and the corresponding abundances Ω̃λ are given by Eq. (3.9) or Eq. (3.10),
depending on the value of tλ. By contrast, for λfluc . λ . HI , the effect of vacuum fluctuations overwhelms the effect
of vacuum misalignment. The initial energy density of each aλ in this regime is therefore effectively set at tI and is
approximately given by

ρλ(tI) ≈ Ne

8π2
λ2H2

I . (4.88)

Since the Newton’s-law-modification bound on Mc in Eq. (4.1) implies that tλ . tRH for each such field, it therefore
follows that at all subsequent times, the corresponding relic abundance is given by

Ω̃λ ≈ 3NeH
2
I

4π2M2
P

e−Γλ(t−tI) ×





1

4
1/λ . t . tRH

4

9

(
t

tRH

)1/2

tRH . t . tMRE

1

4

(
tMRE

tRH

)1/2

t & tMRE .

(4.89)



43

H
crit

I
10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

FIG. 11: Contours of the critical value Hcrit

I in (f̂X ,Mc) parameter space. As discussed in the text, choosing HI ≪ Hcrit

I

guarantees that misalignment production dominates over vacuum fluctuations in determining the relic abundance Ω̃λ of all aλ

in our DDM ensemble, as desired. Here, we have taken TRH = 5 MeV, Ne = 100, and ξ = gG = θ = 1 and assumed a photonic
axion with cγ = 1. The left, center, and right panels display the results for ΛG = 1 GeV, ΛG = 1 TeV, and ΛG = 100 TeV,
respectively.

To summarize, we see that the axion KK tower separates into three distinct regimes within each of which different

physics plays a principal role in determining Ω̃λ. In the λ . λfluc regime, the effect of vacuum fluctuations on Ω̃λ

is negligible and the results in Sect. III A continue to hold. In the λfluc . λ . HI regime, the opposite is true:
vacuum fluctuations dominate and the abundances of the aλ are given by Eq. (4.89). Finally, in the λ & HI regime,
the wavelengths of even the lowest-lying momentum modes of each aλ fall short of the Hubble length during the
inflationary epoch. Such modes therefore behave unambiguously like particles, and are consequently inflated away.

We are now ready to address the constraint we have imposed on the individual abundances Ω̃λ in Eq. (4.79). Since
the effect of vacuum fluctuations is negligible both for λ & HI and for λ . λfluc, it follows that this constraint
will be satisfied whenever HI ≪ λfluc. Moreover, since λfluc itself decreases with increasing HI , as indicated in
Eq. (4.87), we find that our constraint may be expressed in the form HI ≪ Hcrit

I , where Hcrit
I is the value of the

Hubble parameter during inflation for which HI = λfluc. In Fig. 11, we display contours of Hcrit
I as a function of the

model parameters f̂X , Mc, and ΛG. For the large values of ΛG characteristic of our preferred region of parameter
space, we observe that the constraint in Eq. (4.79) is satisfied for HI ≪ Hcrit

I ∼ O(10− 100 GeV). For smaller values
of ΛG, although the constraint is certainly more severe, we nevertheless observe that the bound can be satisfied for
HI ≪ Hcrit

I ∼ O(10 − 100 keV). This condition on HI has non-trivial implications for the construction of explicit
inflationary models, since values of HI of this magnitude tend to be rather non-generic [67] among typical classes
of inflationary potentials. However, as discussed in Ref. [2], such a scale for HI is certainly not excluded (see, e.g.,
Refs. [16, 66]). Moreover, a small value for HI fits naturally within the context of the LTR cosmology.

M. Other Astrophysical Constraints on Light Axions

In addition to the constraints we have discussed above, there exist a number of additional astrophysical and
cosmological bounds on theories involving light axions and axion-like particles. Indeed, particles of this sort can give
rise to a number of potentially observable effects [9], such as a rotation of the CMB polarization, modifications of
the matter power spectrum, and the enhanced spindown of rotating black holes. However, in order to give rise to
observable effects of this sort, the particle in question must be exceedingly light, with a mass m . 10−10 eV. In the
extra-dimensional scenario we are discussing here, the Newton’s-law-modification constraint on the compactification
scale Mc stated in Eq. (4.1) implies that all aλ in the tower have masses λ & 10−3 eV in any scenario in which
y . 1, i.e., in which the full tower of aλ contributes significantly to Ωtot. Consequently, the additional constraints on
ultra-light axions and axion-like fields discussed in Ref. [9] are not relevant for our bulk-axion DDM model.
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V. SYNTHESIS: COMBINED PHENOMENOLOGICAL CONSTRAINTS ON AXION MODELS OF

DYNAMICAL DARK MATTER

In the previous section, we enumerated the individual astrophysical, phenomenological, and cosmological consider-
ations which potentially constrain our bulk-axion DDM model, and we evaluated the restrictions that each placed on
the parameter space of this model. In this section, we summarize how these individual results, taken together, serve
to constrain that parameter space. Our particular interest concerns the preferred region of parameter space outlined

in Ref. [2], namely f̂X ∼ 1014 − 1015 GeV, ΛG ∼ 102 − 105 GeV, and Mc chosen sufficiently small that y . 1. Indeed,
this is the region within which the full KK tower contributes non-trivially to the total dark-matter relic abundance.
In Fig. 12, we show the combined exclusion regions for a purely photonic axion with cγ = 1 for ΛG = 1 GeV (left

panel), ΛG = 1 TeV (center panel), and ΛG = 100 TeV (right panel). The shaded regions displayed in each of the plots
are excluded by the various considerations discussed in Sect. IV. Specifically, the exclusion regions appearing in these
panels are those associated with helioscope limits on solar axion production (red), collider considerations (magenta),

FIG. 12: Exclusion regions associated with all applicable phenomenological constraints discussed in this paper for our bulk-
axion DDM model with ΛG = 1 GeV (left panel), ΛG = 1 TeV (center panel), and ΛG = 100 TeV (right panel). In each
case, we have taken ξ = gG = 1, TRH = 5 MeV, and HI = 10−3 GeV, and we have assumed that the axion only couples
to the photon field with cγ = 1. The shaded regions are respectively excluded by data from helioscope measurements (red),
collider considerations (magenta), tests of Newton’s-law modifications via Eötvös-type experiments (purple), measurements of
the diffuse extragalactic X-ray and gamma-ray spectra (orange), observations of the lifetimes of globular-cluster stars (yellow),
energy-loss limits from supernova SN1987A (cyan), the model-consistency requirement ΛG < fX (gray), overproduction of
thermal axions (green), and the upper bound on the dark-matter relic abundance from WMAP (brown). The dashed black line
corresponds to y = π; smaller values of y correspond to the region below and to the left of this line.

FIG. 13: Same as Fig. 12, but for a “hadronic” axion — i.e., an axion which couples to both photons and gluons (and hence to
pions, nucleons, and other hadrons), but not directly to SM quarks or leptons. For these panels, we have taken cg = cγ = 1.
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tests of Newton’s-law modifications via Eötvös-type experiments (purple), measurements of the diffuse extragalactic
X-ray and gamma-ray spectra (orange), observations of the lifetimes of globular-cluster stars (yellow), energy-loss
limits from supernova SN1987A (cyan), the model-consistency requirement ΛG < fX discussed in Ref. [2] (gray), and
the 3σ upper bound on the dark-matter relic abundance from WMAP (brown). The additional requirement that the
relic abundance be primarily determined by the misalignment mechanism (as envisioned in our DDM model) excludes
the green-shaded region, within which a substantial population of aλ is generated via interactions with SM particles
in the thermal bath. The remaining unshaded regions of parameter space are the regions within which our DDM
model is consistent with all of these constraints. The dashed black line indicates the contour y = π; smaller values of
y correspond to the region below and to the left of this line. As discussed in Ref. [2], we are particularly interested in
the unshaded region of parameter space which falls below and to the left of this line, since this is the region within
which not only are all of the aforementioned constraints satisfied, but also the full tower of aλ contributes non-trivially
to Ωtot.
As we see in Fig. 12, for small ΛG the most stringent constraint on the parameter space of our model is the one

derived from energy-loss limits from SN1987A. The constraint from globular-cluster stars is also reasonably stringent,
and the constraint derived from missing-energy processes such as pp→ γ+ /ET at the LHC is estimated to be of roughly
the same order. However, as the y = π contour superimposed over each panel in Fig. 12 indicates, the full tower of
aλ contributes significantly to Ωtot for all ΛG & 100 GeV. Indeed, this is precisely the ΛG regime associated with the
preferred region of parameter space for our model. We therefore conclude that within this region of parameter space,
a photonic bulk-axion DDM ensemble constitutes a viable dark-matter candidate.
In Fig. 13, we consider all of the same constraints as in Fig. 12, but for the case of a hadronic axion with cg = cγ = 1.

In this case, since the aλ couple to hadrons, the constraints from SN1987A and from axion production via interactions
among the SM particles in the radiation bath both become even more stringent. Again, as in the photonic-axion
case, we find that the leading constraint for small ΛG is that from SN1987A, and that as ΛG increases, the model-
consistency constraint becomes increasingly stringent. However, as in the photonic-axion case, we see that within the
preferred region of parameter space for our model, a hadronic bulk axion is also consistent with experimental and
observational limits. Thus a hadronic bulk-axion DDM ensemble is a viable dark-matter candidate as well.
We also observe that the exclusion contours in Figs. 12 and 13 associated with SN1987A energy-loss limits, globular-

cluster-star evolution, collider constraints, and axion overproduction from SM particles in the radiation bath have the
same slope. This is because all of these constraints involve the production of light axions which are never directly
detected, and thus involve physical processes whose amplitudes include a single coupling factor between the aλ and a
pair of SM fields. By contrast, the slopes of the constraint contours associated with other classes of physical processes
can be quite different. The helioscope-constraint contour, for example, is related to processes in which axions are both
produced and subsequently detected via their interactions with SM fields. Likewise, the contour associated with limits
on features in the diffuse X-ray and gamma-ray backgrounds is due to processes involving the decays of a preexisting
cosmological population of axions, and therefore depends not only on the couplings of the aλ to SM fields, but to their
relative abundances as well. The slopes of these constraint contours consequently differ from those which characterize
the contours associated with SN1987A energy-loss limits, globular-cluster-star evolution, and so forth.
Finally, it is perhaps worth discussing the extent to which the above results would be altered for higher values of

TRH. Of course our primary motivation for adopting such a low value for TRH in the first place is that the constraints
related to the production and decay of KK gravitons discussed in Sect. IVA strongly prefer a reheating temperature
within the range 4 MeV . TRH . 20 MeV [7]. The primary consequence of elevating TRH above this window would
therefore be a conflict with these constraints. However, it is instructive to consider what effect increasing TRH would
have on the the DDM ensemble itself and the physical processes which constrain it, independent of issues related to
KK-graviton cosmology. Therefore, for the purpose of this hypothetical discussion, we shall simply assume that some
method can be found for satisfactorily addressing these issues and proceed to address the impact of increasing TRH

on dark-matter phenomenology.
The principal way in which elevating TRH affects the dark sector is via a modification of the cosmological abundances

of the aλ. In particular, Eqs. (3.9) and (3.10), along with the time-temperature relation

tRH =

√
45

2π2
g
−1/2
∗ (TRH)

MP

T 2
RH

, (5.1)

imply that Ωλ(tnow) ∝ TRH for all aλ which begin oscillating at times tλ . tRH. Thus, as long as the aλ which provide
the dominant contribution to Ω∗

tot begin oscillating at such times, increasing TRH results in a proportional increase in

Ω∗
tot. It therefore follows that our preferred region of parameter space shifts to lower values of f̂X for fixed Mc and

ΛG.
The constraints on our model may also be affected by a change in TRH. However, because a modification of TRH

only affects the cosmological context in which the aλ are produced and not the intrinsic properties of these particles
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themselves, such a modification will only have an impact on constraints which are sensitive to the cosmological
abundances of the aλ. Such constraints include the overclosure bound, as well as limits on features in the diffuse
X-ray and gamma-ray backgrounds, on disturbances in the ratios of light-element abundances, and on distortions in
the CMB. However, modifying TRH has little effect on the leading constraints on the parameter space of our model,
which include collider constraints and energy-loss limits from SN1987A. Indeed, the only leading constraint which is
affected by modifying TRH is the WMAP constraint on Ω∗

tot itself, discussed above.
We therefore conclude that if TRH could be increased without running afoul of the constraints from KK-graviton

cosmology, the primary result would be that the preferred region of parameter space for our bulk-axion DDM model

would shift to lower values of f̂X for fixed Mc and ΛG. However, since the leading constraints on the model are
essentially independent of the reheating temperature, we find that an increase in TRH up to a few orders of magnitude
could easily be accommodated. However, any substantially larger increase in TRH would likely result in severe tensions
between relic-abundance constraints and other phenomenological bounds.

VI. DISCUSSION AND CONCLUSIONS

In Ref. [1], we proposed a new framework for dark-matter physics which we call “dynamical dark matter” (DDM).
The fundamental idea underpinning DDM is that the requirement of stability is replaced by a delicate balancing
between lifetimes and cosmological abundances across a vast ensemble of individual dark-matter components. If
Ref. [1], we developed the general theoretical features of this new framework. By contrast, in Ref. [2], we presented a
“proof of concept,” namely an explicit realization of the DDM framework in which the DDM ensemble is realized as
the infinite tower of KK excitations of an axion-like field propagating in the bulk of large extra spacetime dimensions.
In this paper, we have completed this study by systematically investigating all of the experimental, astrophysical,

and cosmological constraints which apply to this DDM model. Some of these constraints pertain to theories with large
extra dimensions in general, while others pertain specifically to our model. Among the bounds we have considered are
constraints from limits on aλ production by astrophysical sources such as stars and supernovae; constraints related
to the effects of late relic-axion decays on BBN, the CMB, and the diffuse X-ray and gamma-ray backgrounds;
collider constraints on missing-energy processes such as pp → j + /ET and pp → γ + /ET ; constraints on isocurvature
perturbations generated as a consequence of misalignment production; constraints on the production of relativistic
axions due to interactions in the thermal bath after inflation; and constraints on the direct detection of dark axions
by microwave-cavity detectors and other, similar instruments. We have verified that all of these constraints are
satisfied within the preferred region of parameter space for our model — namely, that in which the bulk-axion
DDM ensemble accounts for the observed dark-matter relic abundance, while at the same time the full tower of
axion modes contributes meaningfully to that abundance. We therefore conclude that this bulk-axion DDM model is
indeed phenomenologically viable, and that the overall DDM framework is a self-consistent alternative to traditional
approaches to the dark-matter problem.
While the focus of this paper has been on the specific bulk-axion DDM model presented in Ref. [2], we note that

many of our results, and in many places our entire methodology, have a far wider range of applicability. For example,
much of the formalism developed in Sect. IV for evaluating the cosmological constraints on decaying dark matter in
our bulk-axion DDM model is applicable to any model in which the dark sector comprises a large number of fields.
This is true for issues as diverse as BBN, diffuse photon backgrounds, or stellar cooling. Likewise, irrespective of
issues pertaining to dark-matter physics, many of our results and techniques may have applicability to theories with
large numbers of axions, such as the recently discussed “axiverse” theories [9, 68]. Thus, we believe that the methods
developed and employed in this paper can serve as a prototype for future phenomenological studies of not only the
DDM framework, but also, more generally, any theories in which there exist large numbers of interacting and decaying
particles.
We also note that while we have focused our attention in this work primarily on the preferred region of parameter

space defined below Eq. (3.13), this is not the only region within which our scenario constitutes a phenomenologically
viable model of dark matter. In particular, one of the criteria which defines our preferred region is the property
η ∼ O(1), since this condition implies that the full KK tower plays a non-trivial role in dark-matter phenomenology.
Hence, this is the region which is the most interesting from a DDM perspective. However, there also exist substantial
regions of parameter space which are equally phenomenologically viable (in the sense that Ω∗

tot ≈ ΩCDM and all relevant
constraints are satisfied), but within which η ≈ 0 and the lightest of the aλ contributes essentially the entirety of the
dark-matter relic abundance. In these region, our DDM model reduces to the limiting case of a traditional dark-matter
model in which the lightest axion mode plays the role of a standard dark-matter candidate. Comprehensive reviews
of the phenomenology associated with generalized-axion dark-matter candidates and the bounds on their masses,
couplings, etc., can be found in Refs. [18, 36, 37, 69].
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