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Abstract

The differential pT spectrum for vector boson production is computed at next-to-

leading fixed order and including the resummation of threshold logarithms at next-to-

next-to-leading logarithmic accuracy. A comparison is made to atlas data on direct

photon andW production at high transverse momentum pT , finding excellent agreement.

The resummation is achieved by factorizing contributions associated with different scales

using Soft-Collinear Effective Theory. Each part is then calculated pertubatively and

the individual contributions are combined using renormalization group methods. A key

advantage of the effective theory framework is that it indicates a set of natural scale

choices, in contrast to the fixed-order calculation. Resummation of logarithms of ratios

of these scales leads to better agreement with data and reduced theoretical uncertainties.



1 Introduction

Cross sections for vector boson production are relatively clean observables at hadron collid-
ers. The differential pT spectra for photons, W bosons and Z bosons in particular, provide
excellent benchmarks to test the standard model as well as to measure parton-distribution
functions (PDFs). An important application of such measurements is to compare and validate
different precision calculations, performed at fixed order or including resummation. Vector
boson production therefore gives us a rare handle to gauge the importance of higher order
perturbative effects and power corrections. In this paper, we perform such a comparison on
the high pT photon [1] and W boson spectra [2] measured by the atlas collaboration at the
LHC, using around 35 pb−1 data.

Direct (or prompt) photon production is the production of a hard photon in association
with a jet. The cleanest direct photon observable is the inclusive photon pT spectrum, which
can be measured independently of any jet definition. At low pT , there is a large background
from π0 and other hadronic decays, which are often corrected for by demanding that the photon
be isolated. In the atlas study [1], the isolation criteria was that there should be no radiation
with less than 4 GeV of energy in a cone of radius R = 0.4 around the photon. An advantage
of studying the direct photon spectrum at high pT is that there is little background of a hard
photon coming from background processes and isolation becomes unnecessary. Formally, the
backgrounds provide only power corrections in this region.

W and Z production have smaller cross sections than photons, especially after paying
the cost of a branching ratio to leptons, but do not require isolation. The W spectrum is
particularly challenging to measure since it requires an understanding of the missing energy,
which unlike the lepton pT , requires mastery of systematic effects over the entire detector.

The photon, W and Z production rates have been known at the next-to-leading order
(NLO) for some time [3, 4, 5, 6, 7, 8]. In this paper, we take leading-order (LO) to refer to
the leading order in which the vector boson V has non-zero pT . So this is a tree-level 2 → 2
scattering process. NLO is one order beyond this, which includes 1-loop corrections to the
2 → 2 processes as well as 2 → 3 real emission graphs. While the inclusive V production rates
are known at NNLO, the differential pT spectra are only known at NLO. These corrections
are implemented in Monte-Carlo integration programs to provide the NLO distributions, such
as qt [9], mcfm [10], fewz [11, 12] and dynnlo [13].

Beyond NLO, the theoretical calculation of the vector boson spectrum is extremely chal-
lenging, and the NNLO result is not yet known. In the absence of this result, one can improve
on NLO by adding in partial results at higher orders. In some cases, such as at low pT ,
this is absolutely critical. The fixed order calculation diverges at small pT so one needs to
resum logarithms of the form ln(pT/mV ) to get even qualitative agreement with data. The
resummation at low pT has been performed at the next-to-next-to-leading logarithmic level
(NNLL) [14, 15, 16].

Also at very high pT , large logarithms arise, now of the form ln(1 − pT/p
max
T ), where pmax

T

is the maximum kinematically possible transverse momentum for the vector boson at a given
rapidity. For the photon pmax

T = ECM

2 cosh y
, where ECM is the machine center-of-mass energy (7

TeV for the 2010-2011 LHC run) and y is the photon’s rapidity. The approach to improving
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on the fixed-order NLO calculation at high pT discussed in [17, 18, 19] was to expand around
the limit pT = pmax

T . This is the machine threshold limit. When pT = pmax
T , there is only phase

space for the vector boson to be recoiling against a single parton, which also has pT = pmax
T .

If the boson has slightly less pT , then the recoiling hadronic radiation must be jet-like, with
the partons in the jet being either collinear or soft. Thus it is natural to describe the region
near the machine threshold using Soft-Collinear Effective Theory (SCET) [20, 21, 22].

Using traditional methods, the threshold resummation for W/Z production at large pT
was performed at NLL accuracy in [23, 24, 25]. Using SCET, the accuracy was increased
to NNLL in [18, 19]. The effective theory approach simplifies the computations, and having
operator definitions of the various ingredients of the factorization theorem lets us recycle
known results, such as the 2-loop jet function, computed for other applications. This greatly
reduces the amount of new analytical results needed. Nevertheless, also in the traditional
formalism, the results were recently extended to NNLL accuracy [26, 27] (although only the
NNLO fixed order expansion of the resummed result was computed in these papers).

In practice, the threshold logarithms are important well away from the machine threshold
because of the rapid fall off of the PDFs towards larger values of the momentum fraction x
which ensures that most of the cross section comes from a region near the partonic thresh-
old [28, 29]. To what extent this dynamical enhancement of the threshold is effective was
analyzed in detail in [30]. There is a simple phenomenological argument why it should hold:
in events with a 300 GeV gauge boson, there is almost always a jet with pT ∼ 300 GeV
recoiling against it. That this jet is highly collimated and nearly massless indicates that the
phase space region generating the large logarithms relevant for the vector boson pT spectrum
is important. Indeed, in cases such as inclusive Drell-Yan and Higgs production, where the
NNLO corrections are known, it is found that 80 – 90% of the perturbative corrections to the
cross section arise from the threshold terms, even in cases such as Higgs production, where
the fall-off of the PDFs is not very strong. We thus expect our resummed results to provide
a good approximation to the full NNLO result.

2 Effective Field Theory approach

The effective field theory allows us to obtain logarithmic contributions to the vector boson
pT spectrum which supplement the exact NLO distribution, computed in full QCD. These
logarithmic terms arise from the threshold region, where the vector boson has the kinematically
maximal transverse momentum. In this region, the jet recoiling against the vector boson is
nearly massless. The formal derivation of these threshold terms is performed in the machine
threshold limit, where x → 1 for both PDFs. However, once the logarithms are extracted
they can be used as additional information about the cross section in the kinematic region
where x has more reasonable values. That is, the same threshold logarithms are present
for any x, since they come from a perturbative calculation in QCD which factorizes from
the non-perturbative PDFs. The only difference is that away from the machine threshold,
we are no longer guaranteed that the threshold terms dominate the hadronic cross section
parametrically. In practice they still give rise to the bulk of the cross section thanks to the
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dynamical threshold enhancement discussed above. Physically, the threshold logarithms are
associated with collinear radiation in the recoiling jet, or soft radiation coming from the jet or
the incoming partons. A method to sum these logarithms to all orders in perturbation theory
using the renormalization group in SCET was developed in [31, 32]. Its application to direct
photon production was discussed in detail in [18]. Here we will only briefly summarize the
method.

A simple variable to use for the expansion near the machine threshold is MX , the mass
of everything-but-V , where V refers to the vector boson (γ,W or Z). In terms of the proton
momenta P µ

1 and P µ
2 and the vector boson momentum qµ,

M2
X = (P1 + P2 + q)2 . (1)

Since P1 and P2 are fixed, MX is determined completely by the momentum of the vector
boson. As its transverse momentum approaches its maximum allowed value at fixed rapidity,
MX → 0. To understand the relevant degrees of freedom, it is helpful also to consider the
partonic version of MX , called mX . This is defined as

m2
X = (p1 + p2 + q)2 , (2)

where pµ1 = x1P
µ
1 and pµ2 = x2P

µ
2 are the momenta of the partons coming out of the protons

which participate in the hard interaction. Taking mX → 0 is called the partonic threshold

limit. Obviously, MX → 0 implies mX → 0. The partonicmX is likeMX without including the
beam remnants. Away from the machine threshold, the beam remnants make MX large while
mX can remain small. Thus the logarithms we actually expect to be important in affecting
the vector boson pT spectrum beyond NLO can be deduced by considering the theoretically
simpler but less physical partonic threshold limit.

Near the partonic threshold, the vector boson must be recoiling against a jet and there is
only phase space for the jet to be nearly massless. So then we can write

m2
X = (pJ + kS)

2 ≈ p2J + 2EJk , (3)

where pµJ and kµ
S are the collinear and soft momenta in the jet, EJ is the jet energy and

k = pJ · kS/EJ . It is because of this decomposition that the logarithmic terms we will extract
come from either collinear effects (p2J → 0) or soft effects k → 0. Soft-Collinear Effective
Theory implements the structure of the soft and collinear emissions on the Lagrangian level,
using different fields to describe the soft and collinear partons. Via a field redefinition the two
sectors can be decoupled, after which the soft emissions are obtained from soft Wilson lines
running along the directions of large momentum.

The result from SCET is that the partonic cross section in the threshold region for any
particular channel has the form

ŝ
dσ̂

dû dt̂
= σ̂(0)(û, t̂)H(û, t̂,MV , µ)

∫
dk J(m2

X − 2EJk)S(k, µ) , (4)

where the partonic Mandelstam variables are ŝ = (p1 + p2)
2, t̂ = (p1 − q)2 and û = (p2 − q)2,

with q the vector boson momentum, with q2 = M2
V . We have factored out the Born level
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Figure 1: Left: Factorization of the scattering amplitude near the partonic threshold. Right:
Examples of NLO corrections to the hard, jet and soft function (from top to bottom). The
thick blue lines denote partons collinear to the directions of the jet or the incoming hadrons.
Soft emissions are pictured by thin red gluon lines.

cross section σ̂(0)(û, t̂). The hadronic cross section is obtained after convoluting with PDFs
and summing over all partonic channels (see Sec. 2.1 below).

The factorization theorem in Eq. (4) is depicted in Figure 1. The hard function H contains
the virtual corrections to the underlying hard-scattering process. There are two channels
relevant for vector boson production, the Compton (qg → V q) and annihilation (qq̄ → V g)
channels, and the corresponding hard functions are related by crossing symmetry. A sample
NLO contribution to the hard function in the annihilation channel is the top one-loop diagram
on the right-hand side of Figure 1. For the photon case, the one-loop hard function was given
in [18] and in [19] it was outlined how the hard function can be obtained for mV 6= 0. For
completeness, we list the one-loop result for both the Compton and annihilation channel in
the Appendix. The jet function J encodes the collinear emissions inside the final state jet,
while collinear emissions along the initial state partons are absorbed into the PDFs. The jet
function is obtained from the imaginary part of the two-point function of collinear fields (see
the middle Feynman diagram on the right in Figure 1). The two loop results for the inclusive
quark and gluon jet functions relevant here were obtained in [33] and [34]. The last Feynman
diagram in the Figure shows a NLO correction to the soft function, which describes the soft
emissions from the energetic partons in both the initial and final state, which are encoded in
Wilson lines along the corresponding directions. The corresponding soft function was recently
computed to two loops in [35].

In the remainder of this section, we give the resummed result for the cross section and dis-
cuss its numerical implementation. We first set up the integration over the parton momentum
fractions in a form suited for threshold resummation and then give the resummed result, as
well as the matching to fixed-order perturbation theory. Finally, we discuss how subtractions
can be used to improve the convergence of the numerical integrations.
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2.1 Integration variables

The perturbative calculation, whether NLO or including resummation, produces partonic cross
sections. The observable boson pT spectrum is then obtained after convoluting with PDFs,

d2σ

dy dpT
=

∑

ab

∫ 1

0

dx1

∫ 1

0

dx2fa(x1, µ)fb(x2, µ)
d2σ̂ab

dy dpT
, (5)

where the sum is over all partonic channels, a, b ∈ {q, q̄, g}. The partonic cross section can
also be written as

d2σ̂ab

dydp2T
= ŝ

d2σ̂ab

dt̂dû
. (6)

At NLO, in a given channel, it has the general form

ŝ
d2σ̂

dt̂ dû
= σ̂(0)




δ(m2

X) + αs(µ)


δ(m2

X) h
(1) +

[
1

m2
X

][µ]

⋆

h(2) +



 ln
m2

X

µ2

m2
X




[µ]

⋆

h(3) + h(4)








, (7)

where σ(0) and the coefficients hi are functions of the two variables t̂ and û. Because of the rela-
tion ŝ+ t̂+ û = m2

X+M2
V the δ-function parts effectively only depend on a single variable. The

⋆-distributions are generalizations of the usual +-distributions to dimensionful variables [36].
A NnLO computation would give distributions with logarithms up to ln2n−1(mX/µ) in the
numerator. Resummation allows one to predict these singular terms at higher orders, but not
the regular parts, such as h(4).

The leading-order cross sections for the production of a photon are

σ̂
(0)
qq̄ =

2CF π αe.m.αs(µ)

Ncŝ
e2q T0(û, t̂), σ̂(0)

qg = −π αe.m.αs(µ)

Ncŝ
e2q T0(ŝ, t̂) , (8)

where eq is the charge of the quark and

T0(u, t) =
u

t
+

t

u
+

2M2
V (M2

V − t− u)

tu
. (9)

For the photon M2
V = q2 = 0, but we need the same expression also for Z and W bosons.

The amplitude σ̂
(0)
gq is obtained by replacing T0(ŝ, t̂) → T0(ŝ, û) in the expression for σ̂

(0)
qg . To

obtain the amplitude for Z-production one replaces the quark charge in (8) by

e2q →
|gqL|2 + |gqR|2

2
=

(
1− 2|eq| sin2 θW

)2
+ 4e2q sin

4 θW

8 sin2 θW cos2 θW
, (10)

where θW is the weak mixing angle. Since the W bosons have flavor-changing couplings, the
sum over flavors must be replaced by a double sum over individual quark and anti-quark
flavors, q and q′. Only left-handed currents appear in this case. The relevant coupling for a
W− boson produced in the annihilation of an anti-up and a down quark is

|gq′qL |2
2

=
|Vq′q|2

4 sin2 θW
, (11)
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where Vq′q are elements of the quark mixing matrix.
Because of the singular behavior of the partonic cross section at threshold, it is advanta-

geous to introduce m2
X as an integration variable. Following [6], we perform the integrations

in the form

d2σ

dydpT
=

∑

ab

∫ 1

xmin

dx1

x1s+ u−M2
V

∫ m2
max

0

dm2
Xfa/N1

(x1, µ) fb/N2
(x2, µ)

d2σ̂ab

dydpT
, (12)

with

u = (P2 − q)2 = M2
V −

√
s
√
M2

V + p2T e
y ,

m2
max = u+ x1(M

2
X − u) , (13)

xmin =
−u

M2
X − u

.

When performing the resummation, one performs an expansion of the cross section around the
partonic threshold mX = 0. With the choice of variables adopted in Eq. (12), the expansion
is performed at fixed x1 or, equivalently, at fixed t̂ = (p1 − q)2. This is problematic, since the
expansion then induces unphysical rapidity asymmetries. In order to avoid this and obtain a
symmetric form, we integrate twice: first with Eq. (12) in the variables x1 and mX , and then
with the u ↔ t crossed version of Eq. (12) in the variables x2 and mX . By taking the average
of these two results, we obtain a symmetric form of the expansion around threshold. In the
case of direct photon production, a more convenient choice of integration variables is

v = 1 +
t̂

ŝ
, w = − û

ŝ+ t̂
. (14)

In this case, the partonic threshold is at w = 1. Using these variables significantly improves
the numerical integration. The resummed photon cross section in v and w was given in [18].

2.2 Resummation and matching to fixed order

The resummed result for the cross section is obtained by solving the renormalization group
equations for the hard, jet and soft functions. Each function is then evaluated at its natural
scale, where it does not suffer from large logarithmic corrections, and evolved to a common
scale µ, which we identify with the factorization scale. The solution of the RG for the hard
function in the annihilation channel is

σ̂0
qq̄(û, t̂, µ)Hqq̄(û, t̂, µ) = UH

qq̄ (µh, µ) σ̂
0
qq̄(û, t̂, µh)Hqq̄(û, t̂, µh) . (15)

The matching scale µh is chosen to be of the order of pT to avoid large logarithms. The
NLO result for Hqq̄(û, t̂, µh) was given in [19]. We have included the Born cross section which
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µh

µj

µs

µ

HI(û, t̂)

JI(m
2
X)

SI(k)

f1(x1)f2(x2)

Figure 2: Resummation by RG evolution.

depends on the scale via the coupling constant αs(µ). The evolution factor UH
qq̄ (µh, µ) for the

above combination takes the form

lnUH
qq̄ (µh, µ) = 2

(
CF +

CA

2

)[
2S(µh, µ)− Acusp(µh, µ) ln

ŝ

µ2
h

]
− 2AHqq̄

(µh, µ) , (16)

with

S(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, Acusp(ν, µ) = −

∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)
. (17)

Explicit expressions for these functions in RG-improved perturbation theory can be found
in [32]. The function AHqq̄

is the same as Acusp(ν, µ) with

γHqq̄
= 2γq + γg −

CA

2
ln

ŝ2

t̂û
γcusp (18)

replacing γcusp. The quark and gluon anomalous dimensions γq and γg are given to three-loop
order in [37]. The evolution factor UH

qg can be obtained from the above results using the

crossing relation ŝ ↔ −û at fixed t̂ , and UH
gq follows from UH

qg using t̂ → û. The resummed
results for the jet and soft functions can be obtained by solving their RG equations in Laplace
space [31]. For the gluon jet function, for example, the result takes the form

Jg(p
2, µ) = Ujg(µj, µ) j̃g(∂ηjg )

1

p2

(
p2

µ2
j

)ηjg e−γEηjg

Γ(ηjg)
,

where j̃g is the Laplace transform of the momentum-space jet function and

Ujg(µj, µ) = exp[−4CAS(µj, µ) + 2AJg(µj, µ)] , (19)

ηjg = 2CAAcusp(µj, µ) .
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The corresponding results for the quark jet function and the soft functions in the different
channels are all listed in [18], together with the necessary anomalous dimensions. Inserting
the resummed expressions into (4), one obtains

d2σ̂qq̄

dydp2T
= σ

(0)
qq̄ (û, t̂, µh)Hqq̄(û, t̂, µh)UHqq̄

(µh, µ)UJg(µj, µ)USqq̄
(µs, µ)

× j̃g(∂ηj , µj)
1

m2
X

(
m2

X

µ2
j

)ηj

s̃qq̄(∂ηs , µs)

(
m2

X

Ehµs

)ηs e−γE(ηj+ηs)

Γ (ηj + ηs)
,

= σ
(0)
qq̄ (û, t̂, µh)Hqq̄(û, t̂, µh)UHqq̄

(µh, µ)UJg(µj, µ)USqq̄
(µs, µ)

× j̃g(∂ηqq̄ , µj) s̃qq̄

(
∂ηqq + ln

µ2
j

Ehµs
, µs

) 1

m2
X

(
m2

X

µ2
j

)ηqq̄ e−γEηqq

Γ (ηqq)
, (20)

where Eh =
√

t̂û/4ŝ = pT/2 and

ηqq̄ = ηjg + ηsqq̄ = 2CAAcusp(µj, µ) + (4CF − 2CA)Acusp(µs, µ) .

To arrive at this expression, the convolution integral in (4) was explicitly carried out, which
is possible because of the simple form of the RG evolved soft and jet functions.

Using the general expression Eq. (20) for the resummed cross section, we can now explicitly
compute the resummed distribution. We include almost all of the ingredients for N3LL accu-
racy. For N3LL, one needs the cusp anomalous dimension to four-loop order and the regular
anomalous dimensions to three loops, together with the two-loop results for the hard, jet and
soft functions. For the anomalous dimensions, the only missing ingredient is the unknown
four-loop cusp anomalous dimension, which we estimate using the standard Padé approxima-
tion as Γ4 = Γ3/(Γ2)

2. The second ingredient, which we do not include are the non-logarithmic
pieces of the jet, soft, and hard functions. The full two-loop jet functions are known [33, 34]
and also the two-loop soft function has now been computed [35]. The non-logarithmic piece of
the two-loop hard function can be extracted from the results of [38, 39], and we plan to include
the full two-loop matching in the future. To indicate that we only have a partial result, we
denote our highest order by N3LLp.

In order to include all the available perturbative information, we match to the NLO fixed-
order result, which is the highest order available. To perform the matching, we use [30]

(
d2σ

dvdw

)N3LLp+NLO

=

(
d2σ

dvdw

)N3LLp

+

(
d2σ

dvdw

)NLO

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µ

. (21)

The subscript on the last term indicates that all scales must be set equal to the relevant value
of µ. Setting these scales equal switches off the resummation. The NNLL expression includes
the one-loop corrections to the hard, jet and soft functions. Once it is evaluated with all scales
equal, it reduces to the singular threshold terms of the NLO result, which must be subtracted
since they are already included in the resummed result.
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2.3 Subtractions

To compare with data, one needs to perform 4-dimensional integrals, over x1, mX , y and pT .
These numerical integrals are computationally expensive and additionally challenging because
of the singular nature of the partonic cross sections. After resummation the partonic cross
sections are no longer distribution valued at the partonic threshold, but behave as

1

m2
X

(
m2

X

µ2
j

)η

(22)

near the threshold, see (20). For the natural hierarchy µj ≥ µs ≥ µ the quantity η is larger
than zero and the integral over mX converges. To see this one rewrites ηqq̄ in the form

ηqq̄ = 2CAAcusp (µj, µs) + 4CF Acusp(µs, µ) . (23)

However in practice the scale hierarchy is not very large, so that convergence can be quite
slow. Furthermore, we will choose a high value of the factorization scale µ, in which case the
integral is no longer guaranteed to exist since ηqq̄ can become negative.

For some threshold variable m, the integral we need to evaluate has the form

I(M) =

∫ M

0

dmm2η−1f(m) . (24)

To analytically continue the result to negative η values, or to improve convergence, it is useful
to perform subtractions [30, 32]. A single subtraction would use

I(M) =

∫ M

0

dmm2η−1
{
f(0) + [f(m)− f(0)]

}
(25)

=

∫ M

0

dm

{
1

2η
M2η−1f(0) +m2η−1 [f(m)− f(0)]

}
, (26)

where the difference f(m)− f(0) makes the integral more convergent. Indeed, assuming f(m)
is smooth the integral will now converge for η > −1/2. A second subtraction would give

I(M) =

∫ M

0

dm

{
1

2η
M2η−1f(0) +

1

2η + 1
M2ηf ′(0) +m2η−1 [f(m)− f(0)−mf ′(0)]

}
, (27)

which makes the integral converge for η > −1. Analogously, one can perform higher-order
subtractions to make to integral more and more convergent. In practice, performing too many
subtractions slows the code down because the expressions become lengthy and the subtraction
itself can become numerically unstable. Generally, we have found using 2 or 3 subtractions
gives stable results for the N3LL resummed integrand. Note that higher subtractions involve
derivatives of PDFs, which we compute by first interpolating the PDFs.
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3 Scale setting

The resummed distribution obtained using SCET involves four matching scales: the hard scale
µh, the jet scale µj , the soft scale µs and the the factorization scale µ. Each ingredient of
the factorization formula thus can be evaluated at its appropriate scale. This is in contrast
to the fixed order calculation which involves only a single scale, the factorization scale µ. In
addition to the factorization scale, a renormalization scale µr is often introduced by hand in
fixed-order computations, by expressing the coupling constant as αs(µr). Introducing a second
scale µr may be useful as a tool to estimate uncertainties, but there is no physical justification
for having µ 6= µr when working at fixed order. In contrast, the additional scales in SCET
correspond to different physical regions.

If one chooses all the scales equal in the SCET calculation, the resummation is switched off.
Then only a single renormalization group scale remains. In this limit, SCET generates all of the
terms which are singular in the threshold limit at next-to-leading order, as shown in Eq. (7).
Since we include all logarithmic pieces in the two-loop hard, jet and soft functions, we also
obtain all singular terms at NNLO, except for the coefficient of δ(m2

X). In general, the singular
terms amount to a large fraction of the full perturbative correction. For electroweak boson
production at large transverse momentum, they amount to 70-80% of the NLO correction [19].
For inclusive Drell-Yan and Higgs production, also the NNLO correction is known, and it is
found that a similarly large fraction of the perturbative corrections arises from the partonic
threshold region [30, 40].

A perpetual frustration with fixed order calculations is that they provide no insight into
how to choose the factorization scale in problems which involve physics at several scales. For
example, for W production either µ = mW or µ =

√
m2

W + p2T might seem natural. For large
pT , the difference in the prediction between these different parameterizations is larger than
the scale variation within any particular parametrization. See for example Figure 6, to be
discussed more below. If higher order calculations were available, as they might be soon for
direct photon or W production, the scale variation and parametrization dependence would
weaken. Unfortunately, however, there are only a handful of observables which have ever been
computed beyond NLO. For more complicated processes, such as W+4 jet production, NNLO
is a distant hope, and in this case there are many possible natural parameterizations. Thus the
choice of parametrization for the factorization scale can amount to a significant and difficult
to estimate source of uncertainty for a fixed-order computation.

An extremely satisfying feature of the effective field theory approach is that it does indicate
what the appropriate parametrization should be. For some observables, such as e+e− event
shapes [41, 42, 43, 44] the scales are manifest in the resummed distribution. In hadronic
collisions, one needs a somewhat more sophisticated procedure since the scales can depend
on the functional form of the non-perturbative PDFs. A method for determining these scales
without any arbitrary input of what is natural and what is not was proposed in [30] and applied
to direct photon and W production in [18, 19]. The idea is very simple: one supplements the
leading order calculation with just one part of the SCET calculation at a time, for example,
the hard, jet or soft function evaluated at NLO in fixed-order perturbation theory. Doing this,
there should be a single scale 〈p〉 which is the average value of momentum associated with
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
〈p〉

. If µ is chosen either much lower or much higher than 〈p〉, the perturbative
corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine 〈p〉 numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales 〈p〉 which dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number
of different machine center-of-mass energies (we tried 2 TeV, 7 TeV, 14 TeV, and 100 TeV),
pp and p̄p collisions, and various boson masses, we determine a reasonable approximation to
these points is given by the following functional forms
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Figure 4: Natural hard and jet scales. These scales are determined, after integrating over the
PDFs, as typical energies appearing in the logarithms when the hard or jet functions at next-
to-leading order only are included. Dots show extrema for various values of boson masses,
and lines show our approximations. An important qualitative point is that the jet scale is
naturally lower than the hard scale. This is an output from our numerical procedure, not an
input from a formal analysis.

µh =
13pT + 2MV

12
− p2T√

s
, (29)

µj =
7pT + 2MV

12

(
1− 2pT√

s

)
, (30)

A comparison of this fit to the extrema for the hard and jet scales is shown in Figure 4. We
have constrained the jet scale to vanish at the endpoint pT =

√
s/2 since at that point there

is no phase space for collinear emission and the recoiling jet must be massless. An alternative
and slightly simpler hard scale choice that is quantitatively equivalent for LHC energies is

µh =
7pT +MV

6
. (31)

In the comparison to data, we use the scales in Eq. (29), for consistency with [19], which used
these scales in comparison to Tevatron data from run II.

From Figures 3 or 4, it is obvious by eye that the natural jet scale is lower than the
natural hard scale. While the hard scale is actually fairly close to a common scale choice
µ =

√
m2

V + p2T , as shown on the left of Figure 5, the jet scale is significantly lower. Both
scales are higher than the fixed scale µ = mV which was used in comparison to mcfm in the
atlas study of the W spectrum [2].

To further emphasize the importance of scale choices, we show in Figure 6 the relative
difference in the NLO prediction from the different parameterizations for the W spectrum.
The band corresponds to a region 1

2
µ(pT ) < µ < 2µ(pT ) where µ(pT ) is either mW , our hard

scale, or the popular choice
√

m2
W + p2T . For pT ∼ mW , all scales give comparable results while

for large pT , the fixed scale gives a prediction significantly higher than either of the other two
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Figure 5: Comparison of our scale choices (blue) with the traditional choice µ =
√

m2
W + p2T

(red) for photon (dashed) andW boson (solid). For the hard scale, there is not much difference.
On the other hand the natural jet (and soft) scales are lower than the traditional choice, but
higher than the fixed scale µ = mW .

parameterizations. If we used the jet scale instead of the hard scale, the band would be closer
to the µ = mW band. Thus it is important to choose the appropriate scale in the appropriate
place, to get an accurate prediction.

Having determined the default values for the scales in Eq. (29), we can compute the
resummed distribution. As discussed above, we include all ingredients for N3LL accuracy,
except for the two-loop non-logarithmic terms in the hard, jet and soft functions. We match
to NLO fixed order and denote our highest order resummed result by N3LLp+NLO, where
the subscript “p” for stands for partial. Convergence in perturbation theory and the relative
size of various scale variations are shown in Figure 7. To generate the bands in this plot, we
determine the maximum and minimum cross section obtained when varying each scale up and
down by a factor of 2 around its default value. In contrast to the fixed order result, the scale
dependence is not monotonic (cf. Figure 3). To determine the maximum and minimum, we
compute the cross section at 1

2
, 2 and the central value, fit a parabola to those three points

and take the maximum and minimum along the parabola.
Curves in the first four panels of Figure 7 are not matched to fixed order. The relatively

large factorization scale uncertainty comes about because the µ dependence is only canceled
in the resummed distribution near threshold. The full µ dependence at NLO is removed once
the theory is matched to the fixed order distribution, as it is in the bottom two panels. The
combined uncertainty that we use for our final error estimates is the quadratic sum of the
hard, jet, soft and factorization scale uncertainties:

∆σ =
√

(∆hσ)2 + (∆jσ)2 + (∆sσ)2 + (∆fσ)2 (32)

This is a conservative error estimate. We observe that the N2LL and N3LLp scale variation
bands overlap, but the increase in the cross section from NLL to N2LL is larger than the
NLL band. The same behavior is also seen when going from the LO to the NLO fixed order
result. The corresponding bands would overlap had we evaluated the LO and NLL results with
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = mW , as in the

atlas paper. The red northeast stripes show the prediction using µf = µr =
√

m2
W + p2T and

the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(mZ) = 0.1171 [45]. We also use mW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,
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Figure 7: The cross section for W+ production at the LHC 7 TeV for various orders in
perturbation theory, normalized relative to the next-to-leading fixed order curves. In the top
four panels the resummed curves are not matched to fixed order, which shows how including
just the logarithms compares to the full result. Bands come from variations of the hard,
jet, soft and factorization scales by factors of 2 around our default scales are shown and
taking the maxima within that variation region. The fifth panel shows the factorization scale
variation after matching. The sixth panel is the uncertainty from adding the hard, jet, soft
and factorization uncertainties in quadrature.
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µj =
pT
2

(
1− 2

pT√
s

)
. (33)

These are slightly simpler than those in Eq. (29), but equivalent within the uncertainties.
The direct photon spectrum is complicated by the requirement of photon isolation which is

necessary to remove hadronic backgrounds, such as π0 decays. The atlas study [1] required
energy in an cone of R = 0.4 around the photon to have energy less than 4GeV. To include
this effect rather than matching to the inclusive fixed order NLO calculation, we match to
the NLO calculation with isolation and fragmentation contributions using the Monte Carlo
program jetphox [46].

The atlas data in [1] includes 35 pb−1 of data separated into three rapidity regions. The
comparison of the theory prediction at NLO and at N3LLp+NLO order is shown in Figure 8.
The theory and data are in agreement within uncertainties. It will be interesting to update
this comparison to a large data set, particularly if it includes higher pT .

4.2 W boson

The calculation of the W boson pT spectrum at N3LLp+NLO order is significantly more
challenging numerically than direct photon production, despite the identical factorization for-
mulae. The extra scale, the boson mass, complicates the kinematics, which makes the integrals
converge more slowly and the scale choices more complicated. Moreover, experimentally, since
only the charged lepton from the W decay is measured, acceptances have to be included in
comparing the inclusive W spectrum to the measured distribution.

The acceptance cuts used by atlas in [2] were

plT > 20GeV, |ηl| < 2.4, pνT > 25GeV , (34)

and

mW
T ≡

√
(|~plT |+ |~pνT |)2 − | ~pT l + ~pT

ν |2 ≥ 40GeV. (35)

where l is an electron or muon.
To apply these cuts to our inclusive sample, we multiply our inclusive cross sections by

acceptances, given by the ratio of the inclusive W cross section to the W cross section in
the fiducial volume as a function of pT . These acceptances are shown in Figure 9. We
calculate them at leading order and next to leading order for W+ and W− using the program
fewz [12]. We find no significant difference between the leading order and next-to-leading
order acceptances. For the numerical work, we use a smooth function fit to the inclusive NLO
acceptances for W+ +W−, also shown in Figure 9.

The total cross sections we find at the
√
s = 7 TeV LHC, using µf = µr = mW are

σ(pp → W+ → µ+ν)inc = (6204± 0.7) pb , σ(pp → W+ → µ+ν)fid = (3061± 3.0) pb ,

σ(pp → W− → µ−ν̄)inc = (4326± 0.5) pb , σ(pp → W− → µ−ν̄)fid = (2038± 1.9) pb ,
(36)
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Figure 8: Comparison of theory to atlas data for direct photon in various rapidity regions.
The normalization is such that 0 corresponds to the inclusive direct photon spectrum at NLO
without isolation or fragmentation. The NLO cross sections including fragmentation and
isolation are slightly higher, especially at low pT , since the enhancement due to fragmentation
outweighs the reduction due to isolation. Uncertainties on the NLO correspond to factor
of 2 variation of µf = µr around its default value of pT . For the resummed curves, which
also include isolation and fragmentation, uncertainties are hard, jet, soft and factorization
variations by factors of 2 added in quadrature. Uncertainties from fragmentation and isolation
are not included, and may be large.
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Figure 9: Kinematic acceptances according to atlas cuts. There is little difference in the
acceptances for W+ or W− bosons. However, there is about a 2% increase in the efficiency
when going from leading-order to next-to-leading order in perturbation theory (all computed
with fewz). The NLO acceptances are used in our comparison with atlas data.

where “inc” refers to the inclusive cross section and “fid” to the fiducial cross section (with
cuts). Errors are integration errors from fewz. Dividing these by the branching ratio to
muons, BR(W → µν) = 0.1083 gives the total inclusive cross section. To compare to data,
we take our theoretical calculation of the inclusive differential cross section, multiply by the
acceptance curves and then divide by the total cross section in the fiducial volume, 47.04 nb.
This lets us compare directly to the atlas data, which is normalized to the total number of
events in the fiducial volume.

The comparison to the atlas data is shown in Figure 10. The agreement is excellent.
In this plot, results are shown normalized to the NLO prediction with µf = µr = mW . As
we have argued in the previous section this is not a good scale choice in the large pT region.
We use µ = mW as the basis for our comparison since it is the scale choice used by atlas

in [2], and therefore our NLO calculation can be directly compared to their calculation labeled
MCFM in Figure 7 of [2].

There are two important qualitative conclusions that can be drawn from Figure 10. The
first is that scale choices are important. Although the data is within the NLO uncertainty,
comparing the NLO band in this plot, which uses a fixed scale µ = mW with those in Figure 6,
we see that the downward trend in the data indicates a clear preference that µ should increase
with pT . However, as we have argued, there is no natural scale choice at fixed order, since
multiple scales are present. Our procedure of determining these scales numerically is supported
quantitatively by the agreement between the N3LLp+NLO band and the data in this Figure.

The second qualitative conclusion concerns the PDF uncertainties. These are shown as the
blue dashed lines in Figure 10. The PDF uncertainties are smaller than the uncertainties on
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Figure 10: Comparison of theory to atlas data for the W spectra. The red band is the NLO
prediction, using µf = µr = mW , as in [2]. The N3LLp + NLO prediction, in green, is in
excellent agreement with the data. Dashed blue lines indicate PDF uncertainties which are of
order the scale uncertainties at N3LLp + NLO order.

the data and the NLO scale uncertainties, but of the same order as the scale uncertainties of the
resummed distribution. This indicates that PDF fits could be improved using the W spectra,
but only if resummation is included (or perhaps if the NNLO result becomes available).

5 Conclusions

In this paper, we have compared theoretical predictions for the direct photon and W boson
spectra at high pT to measurements performed by the atlas collaboration using LHC data.
The predictions were performed using the exact cross section at next-to-leading order in αs

(the highest order known), supplemented with additional terms to all orders in αs coming
from a threshold expansion. These extra terms correspond to large logarithms associated with
infrared singularities of the recoiling jet. To isolate these terms, the resummed calculation is
performed near the partonic threshold, in which the pT of the vector boson is maximal for the
given value of the partonic center-of-mass energy. In this limit, the cross section factorizes
and the logarithmic terms can then included to all orders in perturbation theory. These
terms usually give the dominant contribution to the the cross section. In the photon case,
the fragmentation cross section and isolation corrections were added also, using the program
jetphox.

A main advantage of the resummed cross section, which was calculated using effective
theory in [18] and [19], is that it has well-defined scales associated with different phase space
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regions. Unlike a fixed order calculation, which merges all the scales into one, the effective
field theory allows one to choose the scales appropriate for the relevant regions. We employed
a numerical procedure to determine which scales are appropriate. This removes a source of
uncertainty from the fixed order calculation, namely, what value of the scale µ should be
adopted. Typical fixed order calculations choose scales like mW , pT or

√
p2T +mW . We find

that a single such parametrization is insufficient: while the hard scale is naturally close to√
p2T +mW , the jet and soft scales are naturally lower.
The results of our comparison with data are shown in Figures 8 and 10. The photon case

is complicated by the requirement of photon isolation, while the W case is complicated by the
missing energy and the necessary acceptance cuts on the lepton. We found good agreement for
the direct photon case, and excellent agreement for the case of the W boson. In the W boson
case, one can clearly see the importance of proper scale choices. Moreover, the reduction of
theoretical uncertainty when resummation is included is enough to make it comparable to the
PDF uncertainty. These comparisons provide a convincing demonstration of the relevance of
resummation for LHC physics.

In the future, it would be useful to compare our prediction to the direct photon data
available from cms [47]. It would also be interesting to compare to Drell-Yan spectra from
intermediate Z bosons at high pT [48, 49], and to direct photon and W data at higher lumi-
nosity. Improvements of the theoretical description could be achieved by including the full
two-loop hard, jet and soft functions and the fixed-order NNLO calculation, once it becomes
available. Furthermore, on top of the QCD effects, one should also include electroweak Su-
dakov logarithms [50, 51], which will have a noticeable effect at high pT . In addition, we hope
to eventually provide a publicly available code to produce the resummed results.
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(SUK/CRUS). MDS is supported by the US Department of Energy under grant DE-SC003916.

A One-loop hard function

In this appendix we give the result for the hard function in both the annihilation and the
Compton channel. The functions are related by crossing symmetry, but the analytic continu-
ation from one channel to the other is not entirely trivial. The hard function is obtained from
the result (A.9) in [7] after performing renormalization.
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For the annihilation channel, we have
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and the Compton channel result reads
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V

+ CA ln2 −u

M2
V

− 2CA ln
(M2

V − s) st

M2
V u

2
ln

−u

s

−2CA ln2 −u

s
− 2CF ln2 −u

s
+

(
−6CF + 2CA ln

t

u
+ 4CF ln

−u

s

)
ln

µ2

s
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− (CA + 2CF ) ln
2 µ

2

s
− 2CA Li2

(
M2

V

s

)
+ 2CA Li2

(
M2

V

M2
V − t

)}

+
αs

4π

2

−T0(s, t)

{
CF

(
u

s+ u
+

s+ u

t
+

u

t + u
+

t + u

s

)

+

(
CA

s

t+ u
+ CF

st + 2su+ 4tu+ 4u2

(t+ u)2

)
ln

s

M2
V

+

(
CA

t

s+ u
+ CF

st+ 4su+ 2tu+ 4u2

(s+ u)2

)
ln

−t

M2
V

+ (−CA + 2CF )

[
−M2

V (s2 + t2)

st (s+ t)
+ 2

(
2u

s+ t
+

u2

(s+ t)2

)
ln

−u

M2
V

]

− (−CA + 2CF )

[
u2 + (t+ u)2

st

(
1

2
ln2 s

M2
V

− 1

2
ln2 M

2
V − u

M2
V

+ ln
s

M2
V

ln
−u

s−M2
V

+Li2

(
M2

V

s

)
− Li2

(
M2

V

M2
V − u

))

+
u2 + (s+ u)2

st

(
−π2

2
− 1

2
ln2 M

2
V − t

M2
V

− 1

2
ln2 M

2
V − u

M2
V

+ ln
−t

M2
V

ln
−u

M2
V

−Li2

(
M2

V

M2
V − t

)
− Li2

(
M2

V

M2
V − u
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