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Abstract

The light-front dynamics (LFD) of the scalar field model theory is analyzed to solve the
two-body bound-state problem. The light-front two-body bound-state equation is extended to
the full LFD kernel including the ladder, cross-ladder, stretched-box, and particle-antiparticle
creation/annihilation effects to study the contributions of higher Fock-states. The light-front
two-body equation is also modified by the term corresponding to the self-energy corrections and
counter-terms. Using the variational principle, we obtain the numerical result of the binding
energy B versus the coupling constant α for various mass ratios of the constituent particles
including the cases of non-zero exchange particle mass. We also discuss the correlation between
the mass spectrum and the corresponding bound-state wavefunction.

1 Introduction

For an accurate calculation of the spectra and wavefunctions of hadrons, it is important to include
the fundamental relativistic effects such as the correct relativistic energy-momentum relation, re-
tardation effects, and particle-antiparticle creation and annihilation. Since the quarks and gluons
inside the hadrons have negligible masses and interact very strongly among themselves via quantum
chromodynamics (QCD), the relativistic effects play a significant role in analyzing the mass spectra
and the wavefunction related observables (e.g. form factors, generalized parton distributions, etc.),
in particular, for the low-lying hadrons. Although the ultimate goal is to analyze the bound-state
problem in QCD, prior to getting into the real complicated nature of QCD, we may first investigate
much simpler bound-state system provided by the Wick-Cutkosky model [1, 2] and the similar scalar
field model theories.

C. Savkli et al. [3–5] have already used a powerful numerical approach known as the Feynman-
Schwinger representation approach and investigated the scalar field model theory which they called
χ2φ-theory within the given precision of the numerical computation. The earlier work with the
Feynman-Schwinger representation to scalar-scalar bound states was presented in Ref.[6]. The works
of C. Savkli et al. [3–5] investigated not only the stability of χ2φ-theories but also the cancellation
among the vertex corrections, overlapping self-energy, vacuum polarizations, etc. In order to get
the full result for two-body bound-states up to the second order in the coupling constant α, it has
been discussed that it may already be a good approximation just to include the ladder, cross-ladder,
stretched-box, and the relevant self-energy corrections and counter-terms. This encouraged us to
look into the scalar field model theories with the analytical tools available to us.

An analytically tractable tool for the bound-state problem and also known as the most orthodox
tool for dealing with the relativistic two-body problem in quantum field theory is the Bethe-Salpeter
formalism [7] utilizing the Green’s functions of covariant perturbation theory. In the ladder approx-
imation of the Bethe-Salpeter formalism the bound-state [1, 2] problem has been analyzed for the
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system of two particles interacting with a third scalar particle. However, this approach has funda-
mental difficulties with the relative time dependence and in systematically including higher-order
irreducible kernels such as crossed diagrams and vacuum fluctuations [8].

An alternative approach which can remove these difficulties and restore a systematic perturbative
calculation for obtaining higher accuracy is the reformulation of the covariant Bethe-Salpeter equa-
tion at equal light-front time, τ = t + z/c [9–11]. This is equivalent to expressing the Bethe-Salpeter
equation in the infinite momentum frame [12–17]. The light-front quantization method [18, 19] pro-
vides a relativistic Hamiltonian formalism and a Fock-state representation at equal light-front time
τ , which retains a lot of the simplicity and utility of the Schrödinger nonrelativistic many-body
theory [18]. This method not only suppresses the vacuum fluctuations but also systematically in-
cludes cross diagrams when higher Fock-state contributions are taken into account. The relativistic
Hamiltonian dynamics with equal light-front time τ has been known as the light-front dynamics
(LFD).

Relativistic two-body bound-states have been analyzed with the light-front formalism of the
Bethe-Salpeter approach in the Wick-Cutkosky model [20, 21]. The light-front ladder approxima-
tion in the Wick-Cutkosky model has been extended to the lowest order light-front Tamm-Dancoff
approximation, which includes the self-energy corrections and counter-terms [22]. The cross-ladder
and stretched-box up to second order in the coupling constant α have also been included by V.A. Kar-
manov et al. [23, 24]. However, the higher Fock-state contributions due to the particle-antiparticle
creation/annihilation process have not yet been included in the cross-ladder contributions [25, 26].
Also, the light-front bound-state analyses in the scalar field model theories have largely been limited
to the Wick-Cutkosky model which describes the bound-state system with the equal constituent
mass and the zero mass of the exchange particle. Therefore, we investigate the contributions of
the higher Fock-states due to the particle-antiparticle creation/annihilation process and analyze the
two-body bound-state problem in various combinations of masses for the constituent and exchange
particles: e.g. m1 6= m2 and λ 6= 0, when the two constituent particles φ1 and φ2 have the masses
m1 and m2, respectively, and the exchange particle has the mass λ.

In Section 2, we show the light-front formalism of the Bethe-Salpeter equation with the variational
method and provide our variational wavefunction suitable for the case of non-zero exchange particle
mass λ. In Section 3, we present the numerical results of the spectrum calculation and relate them
to the wavefunction renormalization and the higher Fock-state contribution. The conclusion follows
in Section 4.

2 Formalism

2.1 The Bound-State equation in LFD

For simplicity, we consider the scalar field model theories which describe bound states of two scalar
particles φ1, φ2 with masses m1 and m2 exchanging another scalar particle χ with mass λ. While
m1 6= m2 and λ 6= 0 in general, the model with m1 = m2 and λ = 0 has been known as the
Wick-Cutkosky model [1, 2]. The relevant interaction lagrangian is given by

L = g(φ1φ̄1 + φ2φ̄2)χ , (2.1)

where g is the coupling constant with the dimension of mass and φ̄i (i = 1, 2) is the conjugate field
of φi. The Bethe-Salpeter equation of this type of model has been reformulated in LFD and the
light-front ladder approximation has been extended to the lowest order light-front Tamm-Dancoff
approximation including the self-energy effect [22]. The cross-ladder and stretched-box up to second
order in the coupling constant α have also been included [23, 24].

In this work, we also go beyond the light-front ladder approximation to include the cross-ladder,
stretched-box and the higher Fock-state contributions. In particular, the higher Fock-state con-
tributions (the particle-antiparticle creation/annihilation effect), which has not been numerically
analyzed in the previous literature [24–26], are incorporated. The light-front bound-state equation
for this theory is given by
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{

M2 −
~k2⊥ +m2

1

x
−
~k2⊥ +m2

2

1− x
− g2

16π2
f(x,~k⊥)

}

ψ(x,~k⊥)

=

∫

dy

y(1− y)

d2~l⊥
16π3

K(x,~k⊥; y,~l⊥)ψ(y,~l⊥) , (2.2)

where K(x,~k⊥; y,~l⊥) is the kernel of the bound-state equation, f(x,~k⊥) is the self-energy correction,

ψ(x,~k⊥) is the light-front wavefunction of the bound state, andM is the mass of the bound state. We
denote the light-front longitudinal momentum fraction as x, y, etc. and the transverse momentum
as ~k⊥, ~l⊥, etc. The kernel K(x,~k⊥; y,~l⊥) is provided up to order g4 including the ladder (L),
stretched-box (SB), cross-ladder (CL), and higher-Fock (HF) kernels: i.e.

K(x,~k⊥; y,~l⊥) = g2 V L(x,~k⊥; y,~l⊥)

+ g4
∫

dz
d2~j⊥
16π3

[

V SB(x,~k⊥; y,~l⊥; z,~j⊥) + V CL(x,~k⊥; y,~l⊥; z,~j⊥) + V HF (x,~k⊥; y,~l⊥; z,~j⊥)
]

,

(2.3)

while the self-energy corrections including counter terms [22] are given by

f(x,~k⊥) =
1

x

∫ 1

0

dz log



1 +
x
(

~k2
⊥
+m2

1

x +
~k2
⊥
+m2

2

1−x −M2
)

z(1− z)

λ2z +m2
1(1− z)2





+

(

x↔ (1 − x)

m1 ↔ m2

)

. (2.4)

Our self-energy correction given by Eq. (2.4) provides dynamical mass shifts dependent on x and ~k⊥
in the two-body bound-states and satisfies the renormalization condition that allows the two masses
m1 and m2 to be physically measurable above the scattering threshold. For λ = 0, the z-integration
in Eq. (2.4) can be analytically performed and f(x,~k⊥) is given by

f(x,~k⊥) =

(

M2 − ~k2
⊥
+m2

1

x − ~k2
⊥
+m2

2

1−x

)

m2
1

log
[

x
m2

1

(

~k2
⊥
+m2

1

x +
~k2
⊥
+m2

2

1−x −M2
)]

1− x
m2

1

(

~k2
⊥
+m2

1

x +
~k2
⊥
+m2

2

1−x −M2
)

+

(

x↔ (1 − x)

m1 ↔ m2

)

. (2.5)

As the works of C. Savkli et al. [3–5] indicated the cancellation among the vertex corrections,
overlapping self-energy, vacuum polarizations, etc., we do not include them in the present work
but limit here only up to the four-body Fock states in LFD. We will be content with just taking
into account the kernel K(x,~k⊥; y,~l⊥) in Eq. (2.3) and the self-energy correction term f(x,~k⊥) in
Eq. (2.4). While the ladder kernel (V L) is given by

V L(x,~k⊥, y,~l⊥) =
θ(x − y)

(x− y)

1

M2 − ~l2
⊥
+m2

1

y − (~k⊥−~l⊥)2+λ2

x−y − ~k2
⊥
+m2

2

1−x

+

(

x↔ y
~k⊥ ↔ ~l⊥

)

, (2.6)

the stretched-box (V SB), cross-ladder (V CL), and higher-Fock (V HF ) kernels can be written in the

3



form:

V SB(x,~k⊥; y,~l⊥; z,~j⊥) =
1

z(x− z)(z − y)(1− z)

∑

i=1,2

Vi , (2.7)

V CL(x,~k⊥; y,~l⊥; z,~j⊥) =
1

z(x− z)(z − y)(1− x− y + z)

8
∑

i=3

Vi , (2.8)

V HF (x,~k⊥; y,~l⊥; z,~j⊥) =
1

z(x− z)(z − y)(1 − x− y + z)
[VA + VB ] , (2.9)

where V1, V2, V3, V4, V5, V6, V7, V8, VA, and VB are presented in Appendix A. The corresponding dia-
grams are shown in Figs. 1 – 4. In particular, the particle-antiparticle creation/annihilation process
which was not included in the previous cross-ladder analysis [24] is shown in Fig. 4. We denote this
contribution as V HF .
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Figure 1: Ladder LFD graphs.

x

1−x

x

1−x

y

1−y

y

1−y

z z

y−z z−x

1−z

z−y x−z

1−z

Figure 2: Stretched Box LFD graphs.

4



x

1−x

x

1−x

x

1−x

x

1−x

x

1−x

x

1−x

1−y

z

y−z

y

1−x−y+z

x−z

y

1−y

z

x−z

1−x−y+z

y−z

y

1−y

z

z−x
y−z

1−x−y+z

y

y

y

1−y

1−y

1−y

z

x−z y−z

1−x−y+z

z

z

x−z y−z

1−x−y+z

z−y

x−z

1−x−y+z

Figure 3: Cross Ladder LFD graphs.
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Figure 4: Higher Fock LFD graphs.

2.2 Spectrum Calculation with Variational Method

In order to solve Eq. (2.2) numerically, we utilize a variational principle for a dimensionless cou-
pling constant α given by α = g2/(16πm1m2). Taking the expectation values with a variational
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wavefunction in Eq. (2.2), we get the quadratic equation in terms of α:
〈

M2 −
~k2⊥ +m2

1

x
−
~k2⊥ +m2

2

1− x

〉

= α
〈

V L
〉

+ α
〈m1m2

π
f
〉

+ α2
〈

V SB + V CL + V HF
〉

, (2.10)

where more explicitly each of the expectation values are given by
〈

M2 −
~k2⊥ +m2

1

x
−
~k2⊥ +m2

2

1− x

〉

=

∫

dx

x(1 − x)

d2~k⊥
16π3

ψ†(x,~k⊥)

{

M2 −
~k2⊥ +m2

1

x
−
~k2⊥ +m2

2

1− x

}

ψ(x,~k⊥) ,

(2.11)

〈m1m2

π
f
〉

=

∫

dx

x(1− x)

d2~k⊥
16π3

ψ†(x,~k⊥)
m1m2

π
f(x,~k⊥)ψ(x,~k⊥) , (2.12)

〈

V L
〉

= 16πm1m2

∫

dx

x(1 − x)

d2~k⊥
16π3

dy

y(1− y)

d2~l⊥
16π3

ψ†(x,~k⊥)V
L(x,~k⊥; y,~l⊥)ψ(y,~l⊥) , (2.13)

〈

V SB
〉

= (16πm1m2)
2

∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†(x,~k⊥)

× V SB(x,~k⊥; y,~l⊥; z,~j⊥)ψ(y,~l⊥) , (2.14)

〈

V CL
〉

= (16πm1m2)
2

∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†(x,~k⊥)

× V CL(x,~k⊥; y,~l⊥; z,~j⊥)ψ(y,~l⊥) , (2.15)

〈

V HF
〉

= (16πm1m2)
2

∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†(x,~k⊥)

× V HF (x,~k⊥; y,~l⊥; z,~j⊥)ψ(y,~l⊥) . (2.16)

For fixed binding energy B = m1+m2−M , we solve the quadratic equation of the coupling constant
α and minimize the corresponding expectation values to determine the optimum relation between
the binding energy B and the coupling constant α:

α =
−
〈

V L + m1m2

π f
〉

+

√

〈

V L + m1m2

π f
〉2

+ 4
〈

M2 − ~k2
⊥
+m2

1

x − ~k2
⊥
+m2

2

1−x

〉

〈V CL + V SB + V HF 〉

2 〈V CL + V SB + V HF 〉 .

(2.17)

The minimum of α is found by varying the parameters in the trial wavefunction ψ(x,~k⊥). A judicious
choice of trial wavefunction is important to get the closest result to the true minimum of α. To
achieve this goal, we consider available exact solutions in some limiting cases, e.g. the solution of
the non-relativistic Schrödinger equation for the Coulomb interaction. We also take into account the
relation of the light-front bound-state equation to the covariant Bethe-Salpeter equation, since some
analytic spectral functions for the solution of the Bethe-Salpeter equation are known in both weak
and strong binding limits [27]. For the 1S state, we take the variational wavefunction parameterized
by

ψ(x,~k⊥) =
N1s

[

C2 − ~k2
⊥
+m2

1

x − ~k2
⊥
+m2

2

1−x

]×

1
[

C2 − ~k2
⊥
+m2

1

x − ~k2
⊥
+m2

2

1−x − 4λ

(

λ+
√

2(m2
1 +m2

2)−
(m2

1
−m2

2
)2

(
~k2
⊥

+m2
1

x
+

~k2
⊥

+m2
2

1−x
)
− C2

)]

(1 + |2x− 1|)
,

(2.18)
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where the normalization constantN1s cancels in the ratio given by Eq. (2.17) and C is the variational
parameter. The factor (1 + |2x− 1|) in the denominator of Eq. (2.18) stems from the weak binding
spectral function of the Bethe-Salpeter solution as shown in [28]. Eq. (2.18) is the variational
wavefunction suitable for the case of non-zero exchange particle mass λ. We tried the variational
wavefunction without the λ term in Eq. (2.18) as well as other trial wavefunctions different from
Eq. (2.18), but found that the obtained expectation values of α were all larger than what we get
using Eq. (2.18). This convinced us that the wavefunction given by Eq. (2.18) is an improvement
over any other variational wavefunctions that we have considered. The origin of Eq. (2.18) may
be attributed to the exact solution of the Schrödinger equation with the Hulthen potential [29–31].
Although the Schrödinger equation with the Yukawa potential has not yet been analytically solved,
the Hulthen potential behaves like the Yukawa potential for small values of r and the exact solutions
have been obtained for the Schrödinger equation with the Hulthen potential. With the form of the
variational wavefunction given by Eq. (2.18), we are well equipped to compute mass spectra even
for the case of λ 6= 0.

2.3 Analytic Calculation of Spectrum and Non-Relativistic Limit

A simple analytic relation between the coupling constant α and the binding energy B may be
attained by following the method presented in Refs. [20, 22]. For example, if we take C = M in
Eq. (2.18) for the case of m1 = m2 = m and λ = 0, we get

ψ(x,~k⊥) =
N

[

M2 − ~k2
⊥
+m2

x(1−x)

]2

(1 + |2x− 1|)
. (2.19)

Without the factor (1+ |2x− 1|) in the denominator of Eq. (2.19), this wavefunction corresponds to
the 1S state wavefunction of the Schrödinger equation with the Coulomb potential. Eq. (2.19) was
used to find the analytic expression for the binding energy of the 1S state of the ladder approximation
originally in [20, 21]. Including the self-energy correction, the following formula was obtained [22]:

π

α
= {(u− 2)/(u− 1)1/2}{1

2
π − tan−1((u − 1)−1/2)}+ log(4/u) +

2u

u− 2
log

2

u
, (2.20)

where α = g2/(16πm2) and u = m2/(m2 −M2/4). In the zero-binding limit, u → ∞, Eq. (2.20)
leads to π

α = π
2

√
u, which is the well-known Balmer formula for the 1S state: i.e.

2m−M = mα2/4 . (2.21)

Similarly, following the method presented in [22] as well as in [20], we obtain the following relation
for m1 = m2 = m and λ 6= 0:

π

α
= 8u2

∫ ∞

4

dt

(t− 2)
(

1 + λ
m

√
u
)2

log

{

u
[

4+t(t−4) λ
2

m2

]

4(t−4)+u
[

4+(t−2)(t−4) λ2

m2

]

}

(

λ2

m2u− 2
)

[t(t− 4) + 4u]
[

t(t− 4)
(

1 + λ
m

√
u
)2

+ 4u
] − u

∫ 1

0

dz log



1 +
2z(1− z)

λ2

(m2−M2

4
)
z + u(1− z)2



 .

(2.22)

For λ = 0, Eq. (2.22) can be integrated and reduced to Eq. (2.20). We will discuss these relations
further in the zero-binding energy region when we present our numerical results in Section 3.

2.4 Wavefunction Renormalization and Probabilities of Lowest and Higher

Fock-States

The light-front quantization method provides a description of a bound-state |B〉 in a Fock-state
representation at equal τ :

|B〉 = 〈φφ̄|B〉|φφ̄〉+ 〈φφ̄χ|B〉|φφ̄χ〉+ 〈φφ̄χχ|B〉|φφ̄χχ〉+ · · · , (2.23)
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where the light-front two-body wavefunction ψ(x,~k⊥) corresponds to the lowest Fock-state ampli-
tude 〈φφ̄|B〉. The probability to find the two-body state |φφ̄〉 is given by the integration of the
wavefunction squared:

PLow =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψ(x,~k⊥)|2 , (2.24)

where the subscript “Low” of PLow is introduced because the two-body state is the lowest Fock-
state. The probability to find the higher Fock-states can be obtained by differentiating the kernel
K(x,~k⊥; y,~l⊥) in Eq. (2.3) with respect to M2 as discussed in Refs. [22, 32]: i.e.

PHigh =

〈

− ∂K

∂M2

〉

= −
∫

dx

x(1 − x)

d2~k⊥
16π3

dy

y(1− y)

d2~l⊥
16π3

ψ†(x,~k⊥)

(

∂K

∂M2

)

ψ(y,~l⊥) , (2.25)

where the subscript “High” of PHigh indicates the contributions from the higher Fock-states such as
three and four bodies through V L, V SB, V CL, and V HF . Including the self-energy correction, we
may also renormalize the two-body wavefunction as discussed in Ref. [28]: i.e.

P̃Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃(x,~k⊥)|2 , (2.26)

where ψ̃(x,~k⊥) is the wavefunction including the self-energy correction. The probability to find the
higher Fock-states including the self-energy correction is given by

P̃High =

〈

− ∂K

∂M2

〉

= −
∫

dx

x(1 − x)

d2~k⊥
16π3

dy

y(1− y)

d2~l⊥
16π3

ψ̃†(x,~k⊥)

(

∂K

∂M2

)

ψ̃(y,~l⊥) . (2.27)

Since the kernel K can be decomposed into the contributions from V L, V SB, V CL, and V HF , the
probabilities PLow, P̃Low, PHigh, and P̃High can also be decomposed into the corresponding contribu-
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tions. For example, up to the ladder and cross-ladder, we may define the following probabilities1:

PL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL(x,~k⊥)|2 ,

PL+CL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL+CL(x,~k⊥)|2 ,

P̃L
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L(x,~k⊥)|2 ,

P̃L+CL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L+CL(x,~k⊥)|2 ,

PL
High =

〈

−∂(αV
L)

∂M2

〉

=− g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L(x,

~k⊥)
( ∂V L

∂M2

)

ψL(y,~l⊥) ,

PL+CL
High =

〈

−∂(αV
L + α2V CL)

∂M2

〉

=− g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L+CL(x,

~k⊥)

(

∂V L

∂M2

)

ψL+CL(y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL(x,

~k⊥)

(

∂V CL

∂M2

)

ψL+CL(y,~l⊥) ,

P̃L
High =

〈

−∂(αV
L)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L(x,

~k⊥)

(

∂V L

∂M2

)

ψ̃L(y,~l⊥) ,

P̃L+CL
High =

〈

−∂(αV
L + α2V CL)

∂M2

〉

=− g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L+CL(x,

~k⊥)
( ∂V L

∂M2

)

ψ̃L+CL(y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL(x,

~k⊥)
(∂V CL

∂M2

)

ψ̃L+CL(y,~l⊥) ,

(2.28)

where ψL(x,~k⊥) is the two-body wavefunction obtained by including only the ladder kernel V L

while ψL+CL(x,~k⊥) and ψ̃L(x,~k⊥) are the wavefunctions including the cross-ladder kernel V CL

and the self-energy correction term f(x,~k⊥), respectively, in addition to V L. Likewise, we define
PL+CL+SB
Low , P̃L+CL+SB

Low , PL+CL+SB
High , and P̃L+CL+SB

High by adding the contribution from V SB. By

adding the contribution from V HF to this, we may also define PL+CL+SB+HF
Low , P̃L+CL+SB+HF

Low ,

PL+CL+SB+HF
High , and P̃L+CL+SB+HF

High . Here, the factor 16πm1m2 in the relation between α and g2

has been compensated by the same factor included in the definition of the expectation values given
by Eqs. (2.12) – (2.16). We note that the spectrum of the bound-state is intimately correlated with
the corresponding bound-state wavefunction. Thus, it is interesting to compute the probabilities
PLow, P̃Low, PHigh, and P̃High with the specific contributions from the kernel and/or the self-energy
correction and discuss the correlation of these wavefunction-related observables with the results of
the spectrum. We present the probability ratios such as PL

High/P
L
Low, P

L+CL
High /PL+CL

Low , P̃L
High/P̃

L
Low,

etc. in the following section of Numerical Results.

1see Appendix B for the full expression of PLow, P̃Low, PHigh, and P̃High.
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3 Numerical Results

3.1 Spectrum

We present the results for the binding energy B = m1 + m2 − M as a function of the coupling
constant α = g2/(16πm1m2). Since we consider in general the m1 6= m2 and λ 6= 0 cases as well as
the special cases of m1 = m2 or λ = 0, we present the numerical results of representative examples
(λ/m2 = 0, 0.15, 0.5, 1.0, 2.5) with β ≡ m1/m2 = 1 and 5.446×10−4 in units wherem2 = 1. Whether
the range of the interaction between the two constituents of the bound-state is short or long depends
on the value of λ: e.g. the Yukawa interaction with λ 6= 0 or the Coulomb interaction with λ = 0.
Also, the value of β is linked to the modeling of the bound-state: e.g. positronium or deuteron
system with β = 1, and hydrogen atom with β = 5.446 × 10−4. Throughout the figures that we
present in this section, we use the same line style but different thicknesses to make a correspondence
between with and without self-energy: e.g. L+CL and L+CL+self are depicted by thin and thick
dotted lines, respectively.

Fig. 5 shows the case of β = 1, λ = 0. The numerical results of the ladder, L+CL, L+CL+SB,
and L + CL + SB +HF with and without the self-energy corrections obtained by the variational
principle are presented and compared with the available numerical or analytic results. The non-
relativistic result given by Eq. (2.21) is shown as the Balmer Line (thick grey solid line) in the far
left of this figure, while the analytic result (Analytic L+self) given by Eq. (2.20) is shown as a thin
grey solid line at the bottom of the figure. In the middle between these two curves (Balmer Line
and Analytic L+self), our ladder result (thin black dot-dashed line) is compared with the previous
numerical results (solid circles) provided by M. Mangin-Brinet and J. Carbonell [33]. Although our
method of computation is different from theirs [33], our ladder results are in good agreement with
their ladder results. It lends confidence to our variational calculation. Just next to the ladder result
on the right, the analytic result without the self-energy correction, i.e. without the last term in
Eq. (2.20), is shown as a thin grey dashed line. The analytic result agrees with the numerical result
in the weak binding limit. Similarly, the analytic result including the self-energy effect (Analytic
L+self) shown at the bottom of the figure is comparable to the corresponding numerical results
(L+self) drawn as a thick black dot-dashed line just above the analytic result. Between the Balmer
line and the ladder result, one can see the three curves of L+CL, L+CL+SB and L+CL+SB+HF
from right to left. Also, between the ladder result and the L+self result at the bottom, one can
see the three corresponding curves including the self-energy effect. These results indicate that the
effect of the self-energy term is highly repulsive while the contribution from the cross-ladder shows
a large attractive effect. The difference between the L+self and L + CL+self is more significant
than the difference between the ladder and L+ CL, which indicates that the attractive effect from
the cross-ladder kernel is more significant when the self-energy corrections are included. We note
that the particle-antiparticle creation/annihilation contribution from V HF as well as the stretched-
box contribution from V SB yield attractive effects and become larger as the coupling constant
α increases. Although the effect of the particle-antiparticle creation/annihilation is very small in
this case (β = 1, λ = 0), it appears more noticeable when the self-energy corrections are included
as one can see in the difference between the thick black solid and thick black dashed lines. We
present Table 1 of the variational parameters (C) that are determined by the variational principle
to generate the L+CL+SB+HF+self result depicted by the thick black solid line in Fig. 5. This
table (Table 1) is just exemplary since all other results are also backed up by the corresponding
variational parameters determined by the variational principle.

In Fig. 6, we consider the case of β = 1, λ = 2.5 where we find that the particle-antiparticle
creation/annihilation contribution from V HF becomes quite substantial. The contribution of V HF

is much greater than that of V SB , with or without the self-energy corrections. In particular, with
the self-energy corrections, the V HF contribution becomes large enough to make the curve L +
CL+ SB +HF+self go above the ladder curve. We also note that the bound states can be formed
only with a sufficiently large coupling since it is difficult to exchange a large mass particle with
insufficient coupling strength. Moreover, due to the short range interaction in this case, the effects
of the self-energy and cross-ladder seem to appear quite different when compared to those in the
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Table 1: The variational parameters (C) that are determined by the variational principle for the case
of λ = 0, β = 1.0 to generate the L + CL + SB + HF+self (thick black solid line) in Fig. 5. The
corresponding binding energies (B) are also shown for the representative coupling constants (α).

α(λ = 0, β = 1.0) 0.2 0.5 1.0 4.0 8.0 13.7
B 0.003 0.012 0.037 0.256 0.65 1.828
C 1.99650 1.98791 1.96263 1.74393 1.34632 0.17174

case of λ = 0. Although we did not include the whole curve of L+self, we note that α reaches 57.4
when the binding energy B becomes 2m.

In Fig. 7, the ladder (thin black dot-dashed), L+CL (thin black dotted), and L+CL+SB (thin
black dashed) for the case of β = 1, λ = 0.5 are compared with the corresponding numerical data
(solid circles, squares, and stars, respectively) given by J. Carbonell and V.A. Karmanov [24, 34].
Our numerical results agree well with their results. This indicates that our variational wavefunction
in Eq. (2.18), based on the solution for the Hulthen potential, is reasonable for λ 6= 0 case. The thin
black solid line for L+ CL+ SB +HF is also displayed in this figure to show the V HF effect.

Fig. 8 presents the unequal mass case of β = 5.446 × 10−4, λ = 0. The ladder (thin black
dot-dashed), L + CL (thin black dotted), and L + CL + SB (thin black dashed), and L + CL +
SB +HF (thin black solid line) are shown in this figure. Here, we see that the particle-antiparticle
creation/annihilation contribution from V HF is non-negligible although the exchange particle mass
is zero (λ = 0). All the results including the self-energy effects, such as L+self, L + CL+self,
L+CL+ SB+self, and L+CL+ SB +HF+self, are not shown in the figure because they are all
strongly suppressed in this case.

Fig. 9 shows the case of β = 5.446 × 10−4, λ = 2.5. We find that the particle-antiparticle
creation/annihilation contribution from V HF is enhanced most significantly in this case. We also
note that the attractive effect of the cross-ladder contribution becomes significant when the self-
energy is included as one can see from the L+CL+self, L+CL+SB+self, and L+CL+SB+HF+self

curves. However, the L+self result is away from the other results and we note that α reaches 25.45
as the binding energy B approaches to m.

These results confirm that the self-energy effect is repulsive while the effect of the cross-ladder
contribution is attractive. Comparing the results with and without the self-energy effect, we no-
tice that the attractive effect from the cross-ladder contribution is more significant when the self-
energy is included. Although the effects of the stretched-box and the particle-antiparticle cre-
ation/annihilation are also attractive, their contributions are not as significant as the cross-ladder
contribution. In particular, the effect of the stretched-box is further reduced when β 6= 1 and λ 6= 0.

Although the particle-antiparticle creation/annihilation contribution is not so significant when
β = 1 and λ = 0, it becomes non-negligible as β 6= 1 and/or λ 6= 0. We find that the V HF effect
is the most significant in the case of β 6= 1, λ 6= 0 and also non-negligible for the β = 1, λ 6= 0 and
β 6= 1, λ = 0 cases.

3.2 Zero Binding Limit

It has been indicated in [24, 33, 35, 36] that for the non-zero mass of the exchange particle χ, the
relativistic ladder results in the weak binding limit B → 0 do not coincide with the non-relativistic
result. We confirmed this result as shown in Fig. 10. Our results of ladder (thin black dot-dashed),
L + CL + SB (thin black dashed), and L + CL + SB + HF (thin black solid line) are depicted
for λ = 0.15, 0.5, and 1.0, and compared with the available ladder (solid circles) and L + CL + SB
(stars) results from Ref. [33]. Also our results of the Schrödinger equation with the Yukawa potential
obtained by the variational principle (thick grey solid line) are compared with the corresponding
results (diamonds) from Ref. [33]. Our results are in close agreement with all of the available
results from Ref. [33]. As one can see in Fig. 10, the discrepancy between the non-relativistic
limit and the zero binding limit becomes larger as the exchange particle mass increases. However,
the cross-ladder and stretched-box reduce the discrepancy. We notice that the particle-antiparticle
creation/annihilation contribution from V HF further reduces the discrepancy although it is not as
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Figure 5: β = 1, λ = 0. The numerical results of the ladder, L + CL, L + CL+ SB, and L + CL+
SB + HF with and without the self-energy corrections obtained by the variational principle. The
ladder and L+self are compared with the corresponding analytic results from Eq. (2.20). The Balmer
line is shown as the non-relativistic result from Eq. (2.21). The ladder is also compared with the
previous data from M. Mangin-Brinet et al. 1(M. Mangin-Brinet and J. Carbonell [33].)

0 5 10 15 20 25 30
�

0.0

0.5

1.0

1.5

2.0

B

Ladder
L+CL
L+CL+SB
L+CL+SB+HF
L+self
L+CL+self
L+CL+SB+self
L+CL+SB+HF+self

Figure 6: β = 1, λ = 2.5. The numerical
results of the ladder, L+CL, L+CL+SB,
and L+CL+SB+HF with and without
the self-energy corrections obtained by the
variational principle.
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is compared with the corresponding ana-
lytic results from Eq. (2.22). The ladder,
L + CL, and L + CL + SB are compared
with the previous data. 1(Data from J.
Carbonell and V.A. Karmanov [24] and
personal communication with J. Carbonell
[34].)
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Figure 9: β = 5.446 × 10−4, λ = 2.5. The
numerical results of the ladder, L + CL,
L+CL+SB, and L+CL+SB+HF with
and without the self-energy corrections ob-
tained by the variational principle.

significant as the cross-ladder and stretched-box. To show the more noticeable V HF effect, we
present the λ = 2.5 case in Fig. 11. One may expect that the discrepancy would not be completely
removed unless all the irreducible kernels are included in the relativistic bound-state equation.

3.3 Wavefunction Renormalization and Probabilities of Lowest and Higher

Fock-States

In Subsection 2.4, we defined the probabilities of finding the lowest two-body Fock-state and the
higher Fock-states with and without the self-energy correction. In particular, including the self-
energy correction, we have renormalized the two-body wavefunction and defined the corresponding
probability with the renormalized wavefunction (see Eq. (2.26)). The probability to find the higher
Fock-states with the self-energy effect was also defined by Eq. (2.27).

In this subsection, we present the numerical results of the probability ratios of PHigh/PLow without

the self-energy correction and P̃High/P̃Low with the self-energy correction. In Figs. 12 and 13, we show
the probability ratios for PL

High/P
L
Low (thin black dot-dashed), PL+CL

High /PL+CL
Low (thin black dotted),

PL+CL+SB
High /PL+CL+SB

Low (thin black dashed), and PL+CL+SB+HF
High /PL+CL+SB+HF

Low (thin black solid

line) as well as the probability ratios for P̃L
High/P̃

L
Low (thick black dot-dashed), P̃L+CL

High /P̃L+CL
Low (thick

black dotted), P̃L+CL+SB
High /P̃L+CL+SB

Low (thick black dashed), and P̃L+CL+SB+HF
High /P̃L+CL+SB+HF

Low

(thick black solid line), for λ = 0 and 2.5, respectively, with β = 1.
Whether or not the self-energy corrections are included, we note that the probability ratios

become larger as the coupling constant α increases. This indicates that the sector of the higher
Fock-states becomes more significant as α increases. The probability ratio of the ladder with the
self-energy corrections is constantly lower than that of the ladder without the self-energy corrections
due to the highly repulsive effect from the self-energy term.

In the case of β = 1 and λ = 0, as shown in Fig. 12, the attractive effect from the cross-ladder
term in P̃L+CL

High /P̃L+CL
Low becomes so large that P̃L+CL

High /P̃L+CL
Low even crosses over PL+CL

High /PL+CL
Low

around α = 1.5. This indicates that the attractive effect from the cross-ladder kernel is more
enhanced when the self-energy corrections are included. This behavior of the enhanced attractive
effect from the cross-ladder contribution with the inclusion of the self-energy correction is consistent
with what we have observed in our spectrum calculation (see e.g. Fig. 5 and the corresponding text
in Subsection 3.1). This consistency between the results of the wavefunction related observables
and the mass spectra manifests the correlation between the wavefunction and the corresponding
mass spectrum as the eigenfunction and the corresponding eigenvalue must be correlated in the

13



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
�

0.000

0.002

0.004

0.006

0.008

0.010

B

�=0.15 �=0.5 �=1.0

Schrodinger(Yukawa)
L+CL+SB+HF
L+CL+SB
Ladder
Schrodinger(Yukawa)1

Ladder1

L+CL+SB1

Figure 10: Zero binding energy region of the ladder, LD+CL+SB, and LD+CL+SB+HF results
compared with the non-relativistic ones (Schrödinger equation with Yukawa potential). β = 1, λ =
0.15, 0.5, and 1.0. 1(M. Mangin-Brinet and J. Carbonell [33].)
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compared to the non-relativistic ones (Schrödinger equation with Yukawa potential). β = 1, λ = 2.5.
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Figure 12: β = 1, λ = 0. The numerical results of the probability ratios of PHigh/PLow (without self-

energy corrections) and P̃High/P̃Low (with self-energy corrections) for the ladder, L+CL, L+CL+SB,
and L+ CL+ SB +HF .

bound-state calculation.
Due to the highly repulsive effect from the self-energy, the probability ratio P̃L

High/P̃
L
Low (with self-

energy) is lower than PL
High/P

L
Low (without self-energy) indicating that the probability of finding the

higher Fock-states is lower when the self-energy effect is included without any significant attractive
channel such as the cross-ladder contribution. When the cross-ladder contribution is included,
however, there is a dramatic increase in the probability of finding the higher Fock-states. Without
the self-energy effect, the ratio PL+CL

High /PL+CL
Low is much higher than the ratio PL

High/P
L
Low. With the

self-energy effect, the increment of the ratio P̃L+CL
High /P̃L+CL

Low is more dramatic than that of the ratio

P̃L
High/P̃

L
Low as the coupling constant α becomes larger, even crossing over PL+CL

High /PL+CL
Low around

α = 1.5.
In the case of β = 1 and λ = 2.5, as shown in Fig. 13, we see again that the effect of the

cross-ladder contribution is highly attractive and enhances the probability of finding the higher
Fock-states whether the self-energy corrections are included or not. However, the increment of the
ratio P̃L+CL

High /P̃L+CL
Low is not as dramatic as in the case of λ = 0 and the ratio P̃L+CL

High /P̃L+CL
Low does

not cross over the ratio PL+CL
High /PL+CL

Low . This appears to be consistent with the reasoning that the
probability of finding the higher Fock-states, including the very massive exchange particle of λ = 2.5,
is much less than the corresponding probability involving the massless exchange particle of λ = 0.

4 Conclusion

We have developed a variational method for solving the scalar field model theory (m1 6= m2, λ 6= 0)
up to second order in the coupling constant α. The solutions for the Schrödinger equation with the
Hulthen potential can be taken as a reasonable variational wavefunction for the λ 6= 0 case. We go
beyond the light-front ladder approximation and extend to the full LFD kernel including the ladder,
cross-ladder, stretched-box, and particle-antiparticle creation/annihilation contribution (V HF ). We
also obtain the light-front two-body equation including the self-energy corrections in the case of
m1 6= m2, λ 6= 0. Our numerical results of the light-front formalism agree well with the previous
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Figure 13: β = 1, λ = 2.5. The numerical results of the probability ratios of PHigh/PLow (without self-

energy corrections) and P̃High/P̃Low (with self-energy corrections) for the ladder, L+CL, L+CL+SB,
and L+ CL+ SB +HF .

numerical data [24, 33]. They are also consistent with our analytic result in the weak binding limit.
Our results between the coupling constant α and the binding energy B indicate that the self-

energy effect is repulsive while all other effects that we took into account, such as the ladder, cross-
ladder, stretched-box, and particle-antiparticle creation/annihilation contributions, are attractive.
Besides the ladder, the cross-ladder effect is most significant among the attractive contributions.
The effect of the cross-ladder is more significant when the self-energy is included. This implies that
the conventional ladder approximation alone cannot give a good approximation to the bound-state
problem.

Although the particle-antiparticle creation/annihilation contribution from V HF is not so signif-
icant for β = 1 and λ = 0, it becomes non-negligible as β 6= 1 and/or λ 6= 0. In particular, we find
that the V HF effect is the most significant in the case of β 6= 1, λ 6= 0 and also non-negligible in the
β = 1, λ 6= 0 or β 6= 1, λ = 0 case. In contrast to this behavior of the V HF contribution, the effect
of the stretched-box V SB is more reduced as β 6= 1 and/or λ 6= 0.

We also note that the spectrum of the bound-state is intimately correlated with the correspond-
ing bound-state wavefunction. We see that the attractive effect of the cross-ladder enhances the
probability of finding the higher Fock-states whether the self-energy corrections are included or
not. In the case of λ = 0, without the self-energy effect, the ratio PL+CL

High /PL+CL
Low is much higher

than the ratio PL
High/P

L
Low. Including the self-energy effect, the increment of the probability ratio

P̃L+CL
High /P̃L+CL

Low is more dramatic than that of the ratio P̃L
High/P̃

L
Low as α increases. This seems

consistent with the result of the spectrum calculation exhibiting the more pronounced cross-ladder
effect when the self-energy is included. As the exchange particle mass increases, however, the prob-
ability of finding the higher Fock-states may be reduced as one can understand from the derivative
of energy denominator involving the exchange particle mass. As such, in the case of λ = 2.5, the
increment of the ratio P̃L+CL

High /P̃L+CL
Low is not as dramatic as in the case of λ = 0. The probability of

finding the higher Fock-states with the massive exchange particle of λ = 2.5 is much less than the
corresponding probability involving the massless exchange particle of λ = 0.
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Appendix A: Full Expression of the Kernel

Corresponding to Figs. 2, 3, and 4, respectively, the stretched-box (V SB), cross-ladder (V CL), and
higher-Fock (V HF ) kernels are written in the form:

V SB =
1

z(x− z)(z − y)(1− z)

∑

i=1,2

Vi , (A.1)

V CL =
1

z(x− z)(z − y)(1 − x− y + z)

8
∑

i=3

Vi , (A.2)

V HF =
1

z(x− z)(z − y)(1− x− y + z)
[VA + VB] , (A.3)

where V1, V2, V3, V4, V5, V6, V7, V8, VA, and VB are given by

V1 =(M2 −
~k2⊥ +m2

1

x
− (~j⊥ − ~k⊥)

2 + λ2

z − x
−
~j2⊥ +m2

2

1− z
)−1

×(M2 −
~k2⊥ +m2

1

x
− (~j⊥ − ~k⊥)

2 + λ2

z − x
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1 , (A.4)

V2 =(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
−
~k2⊥ +m2

2

1− x
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~j⊥ −~l⊥)2 + λ2

z − y
−
~j2⊥ +m2

2

1− z
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ −~l⊥)2 + λ2

z − y
−
~k2⊥ +m2

2

1− x
)−1 , (A.5)
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V3 = −(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
−
~k2⊥ +m2

2

1− x
)−1 , (A.6)

V4 = −(M2 −
~k2⊥ +m2

1

x
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1 , (A.7)

V5 = −(M2 −
~k2⊥ +m2

1

x
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1 , (A.8)

V6 = −(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
−
~k2⊥ +m2

2

1− x
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ − ~k⊥)

2 +m2
2

1− x− y + z
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1 , (A.9)

V7 =(M2 −
~k2⊥ +m2

1

x
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~k2⊥ +m2

1

x
− (~j⊥ − ~k⊥)

2 + λ2

z − x
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1 , (A.10)

V8 =(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
−
~k2⊥ +m2

2

1− x
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ −~l⊥)2 + λ2

z − y
−
~k2⊥ +m2

2

1− x
)−1

×(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1 , (A.11)
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VA =(M2 −
~l2⊥ +m2

1

y
− (~k⊥ −~j⊥)2 + λ2

x− z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~k2⊥ +m2

1

x
−
~j2⊥ +m2

1

z
−
~l2⊥ +m2

1

y
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~k2⊥ +m2

1

x
− (~l⊥ −~j⊥)2 + λ2

y − z
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1 , (A.12)

VB =(M2 −
~j2⊥ +m2

1

z
− (~k⊥ −~j⊥)2 + λ2

x− z
−
~k2⊥ +m2

2

1− x
)−1

×(M2 −
~j2⊥ +m2

1

z
−
~k2⊥ +m2

2

1− x
−
~l2⊥ +m2

2

1− y
− (~j⊥ − ~k⊥ −~l⊥)2 +m2

2

1− x− y + z
)−1

×(M2 −
~j2⊥ +m2

1

z
− (~l⊥ −~j⊥)2 + λ2

y − z
−
~l2⊥ +m2

2

1− y
)−1 . (A.13)

Appendix B: Full Expressions of PLow and PHigh

The full expressions of PLow and PHigh without the self-energy can be given by the following
integrations:

PL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL(x,~k⊥)|2 , (B.1)

PL+CL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL+CL(x,~k⊥)|2 , (B.2)

PL+CL+SB
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL+CL+SB(x,~k⊥)|2 , (B.3)

PL+CL+SB+HF
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

|ψL+CL+SB+HF (x,~k⊥)|2 , (B.4)

PL
High =

〈

−∂(αV
L)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L(x,

~k⊥)

(

∂V L

∂M2

)

ψL(y,~l⊥) ,

(B.5)

PL+CL
High =

〈

−∂(αV
L + α2V CL)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L+CL(x,

~k⊥)

(

∂V L

∂M2

)

ψL+CL(y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL(x,

~k⊥)

(

∂V CL

∂M2

)

ψL+CL(y,~l⊥) , (B.6)

PL+CL+SB
High =

〈

−∂(αV
L + α2V CL + α2V SB)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L+CL+SB(x,

~k⊥)

(

∂V L

∂M2

)

ψL+CL+SB(y,~l⊥)

− g4
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL+SB(x,

~k⊥)

(

∂V CL

∂M2

)

ψL+CL+SB(y,~l⊥)

− g4
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL+SB(x,

~k⊥)

(

∂V SB

∂M2

)

ψL+CL+SB(y,~l⊥) ,

(B.7)
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PL+CL+SB+HF
High =

〈

−∂(αV
L + α2V CL + α2V SB + α2V HF )

∂M2

〉

= −g2
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ†
L+CL+SB+HF (x,

~k⊥)

(

∂V L

∂M2

)

ψL+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL+SB+HF (x,

~k⊥)

(

∂V CL

∂M2

)

ψL+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL+SB+HF (x,

~k⊥)

(

∂V SB

∂M2

)

ψL+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ†
L+CL+SB+HF (x,

~k⊥)

(

∂V HF

∂M2

)

ψL+CL+SB+HF (y,~l⊥) ,

(B.8)

where ψ(x,~k⊥) is the two-body wavefunction optimized by the variational parameter for the corre-
sponding kernel and coupling constant α. Likewise, the full expressions of P̃Low and P̃High with the
self-energy can be given by the following integrations:

P̃L
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L(x,~k⊥)|2 , (B.9)

P̃L+CL
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L+CL(x,~k⊥)|2 , (B.10)

P̃L+CL+SB
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L+CL+SB(x,~k⊥)|2 , (B.11)

P̃L+CL+SB+HF
Low =

∫

dx

x(1 − x)

d2~k⊥
16π3

[

1− (
αm1m2

π
)
∂f(x,~k⊥)

∂M2

]

|ψ̃L+CL+SB+HF (x,~k⊥)|2 , (B.12)

P̃L
High =

〈

−∂(αV
L)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L(x,

~k⊥)

(

∂V L

∂M2

)

ψ̃L(y,~l⊥) , (B.13)

P̃L+CL
High =

〈

−∂(αV
L + α2V CL)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L+CL(x,

~k⊥)

(

∂V L

∂M2

)

ψ̃L+CL(y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL(x,

~k⊥)

(

∂V CL

∂M2

)

ψ̃L+CL(y,~l⊥) ,

(B.14)
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P̃L+CL+SB
High =

〈

−∂(αV
L + α2V CL + α2V SB)

∂M2

〉

= −g2
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L+CL+SB(x,

~k⊥)

(

∂V L

∂M2

)

ψ̃L+CL+SB(y,~l⊥)

− g4
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL+SB(x,

~k⊥)

(

∂V CL

∂M2

)

ψ̃L+CL+SB(y,~l⊥)

− g4
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL+SB(x,

~k⊥)

(

∂V SB

∂M2

)

ψ̃L+CL+SB(y,~l⊥) ,

(B.15)

P̃L+CL+SB+HF
High =

〈

−∂(αV
L + α2V CL + α2V SB + α2V HF )

∂M2

〉

= −g2
∫

dx

x(1− x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

ψ̃†
L+CL+SB+HF (x,

~k⊥)

(

∂V L

∂M2

)

ψ̃L+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL+SB+HF (x,

~k⊥)

(

∂V CL

∂M2

)

ψ̃L+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL+SB+HF (x,

~k⊥)

(

∂V SB

∂M2

)

ψ̃L+CL+SB+HF (y,~l⊥)

− g4
∫

dx

x(1 − x)

d2~k⊥
16π3

∫

dy

y(1− y)

d2~l⊥
16π3

∫

dz
d2~j⊥
16π3

ψ̃†
L+CL+SB+HF (x,

~k⊥)

(

∂V HF

∂M2

)

ψ̃L+CL+SB+HF (y,~l⊥) .

(B.16)
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