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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].
Inclusive hadron production in pA collisions,

p+A→ h+X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2
dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥e
y/
√
s, y and p⊥ the rapidity and transverse momentum for the final state hadron and

s the total center of mass energy square s = (p+ PA)
2, respectively. Schematically, this factorization is illustrated in

Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.
At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the

elementary and adjoint representations for the quark and gluon initiated subprocesses [20], respectively. Higher order
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FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively. After subtracting these divergences, we shall obtain the hard factor H.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.

To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon
radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.

Two important variables are introduced to separate different factorizations for the physics involved in this process:
the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution with respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by
the Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be
given by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.

Our calculations, together with NLO DGLAP/BK evolution equations, provide the complete formula for inclusive
hadron production at NLO. In terms of resummation, we will be able to resum αs(αs ln k

2
⊥)

n and αs(αs ln 1/x)
n terms.

The extra factor of αs can either come from the hard factor, which is calculated in this manuscript, or arise from
the NLO DGLAP and BK evolution equations. These calculations should be compared to the similar calculations at
next-to-leading order for the DIS structure functions in the saturation formalism [26–28]. All these calculations are
important steps to demonstrate the factorization for general hard processes in the small-x saturation formalism [29].
The rest of the paper is organized as follows. In Sec. II, we discuss the leading order results for inclusive hadron
production in pA collision, where we also set up the framework for the NLO calculations. Sec. III. is divided into
four subsections, in which we calculate the NLO cross section for the q → q, g → g, q → g and g → q channels . The
summary and further discussions are given in Sec. IV.
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FIG. 2. Typical Feynman diagrams for the leading order quark production qA → q +X.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
inside the nucleus target can be cast into the Wilson line

U(x⊥) = P exp

{
igS

∫ +∞

−∞
dx+ T cA−

c (x
+, x⊥)

}
, (3)

with A−
c (x

+, x⊥) being the gluon field solution of the classical Yang-Mills equation inside the large nucleus target.
Therefore, the leading-order cross section for producing a quark with finite transverse momentum k⊥ at rapidity y

in the channel qA→ qX can be written as:

dσpA→qX
LO

d2k⊥dy
=
∑

f

xqf (x)

∫
d2x⊥d

2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥) 1

Nc

〈
TrU(x⊥)U

†(y⊥)
〉
Y
, (4)

with x = k⊥√
s
ey and xg = k⊥√

s
e−y. The notation 〈. . . 〉Y indicates the CGC average of the color charges over the nuclear

wave function where Y ≃ ln 1/xg and xg is the smallest longitudinal momentum fraction of the probed gluons, and
is determined by the kinematics 1. Normally, we first compute the correlator

〈
TrU(x⊥)U

†(y⊥)
〉
in the McLerran-

Venugopalan model[19] as the initial condition, and then we perform the energy evolution for the correlator which
introduces the rapidity (Y ) dependence. The energy evolution equation at small-x for dense nucleus targets is the BK
equation as we shall demonstrate later when we remove the rapidity divergence. When multiplied by the fragmentation
function, the above result will lead to the differential cross section for hadron production in pA collisions.
It is straightforward to include the gluon initiated channel, and the full leading order hadron production cross

section can be written as

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz

z2



∑

f

xpqf (xp)F(k⊥)Dh/q(z) + xpg(xp)F̃(k⊥)Dh/g(z)


 , (5)

with p⊥ = zk⊥, xp = p⊥

z
√
s
eyh , τ = zxp and xg = p⊥

z
√
s
e−yh . Here we have defined

F(k⊥) =

∫
d2x⊥d

2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)S
(2)
Y (x⊥, y⊥), (6)

with S
(2)
Y (x⊥, y⊥) =

1
Nc

〈
TrU(x⊥)U

†(y⊥)
〉
Y
. F̃(k⊥) is defined similarly but in the adjoint representation

F̃(k⊥) =

∫
d2x⊥d

2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)S̃
(2)
Y (x⊥, y⊥), (7)

1 Here we are only interested in the inelastic production of the quark in the forward scattering which produces quark with finite
transverse momentum. There is also elastic scattering contribution to the cross section which generates vanishing k⊥, such as∑

f xqf (x)δ
(2)(k⊥)

∫
d2b to the total cross section.
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where S̃
(2)
Y (x⊥, y⊥) =

1
N2

c−1

〈
TrW (x⊥)W

†(y⊥)
〉
Y
andW (x) is a Wilson line in the adjoint representation. It represents

the multiple interaction between the final state gluon and the nucleus target. In general, the adjoint Wilson lines can
be replaced by two fundamental Wilson lines by using the identity

W ab(x⊥) = 2Tr
[
T aU(x⊥)T

bU †(x⊥)
]
, (8)

and the color matrices can be removed using the Fierz identity T a
ijT

a
kl =

1
2δilδjk − 1

2Nc
δijδkl. It is straightforward to

show that

S̃
(2)
Y (x⊥, y⊥) =

1

N2
c − 1

[〈
TrU(x⊥)U

†(y⊥)TrU(y⊥)U
†(x⊥)

〉
Y
− 1
]
, (9)

which, in the large Nc limit, allows us to write

F̃(k⊥) =

∫
d2x⊥d

2y⊥
(2π)2

e−ik⊥·(x⊥−y⊥)S
(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥) . (10)

It is very important to keep in mind that the normalization of the dipole amplitudes S(2)(x⊥, y⊥) is unity when
x⊥ = y⊥. In addition, since normally

〈
TrU(x⊥)U

†(y⊥)
〉
Y

is real, it is easy to see that S(2)(x⊥, y⊥) = S(2)(y⊥, x⊥).

If we further neglect the impact parameter dependence, one will find that S(2)(x⊥, y⊥) = exp
[
−Q2

s(x⊥−y⊥)2

4

]
in the

McLerran-Venugopalan model, where Qs is the saturation momentum which characterizes the density of the target
nucleus. The analytical form of the dipole amplitude can help us to test the properties of dipole amplitudes mentioned
above.
We would like to emphasize that in Eq. (5) we do not include the transverse momentum dependence in the incoming

parton distribution from the nucleon. In the forward pA collisions, the transverse momentum dependence from the
incoming parton distribution of the nucleon is not as important as that from the nucleus target. Therefore, in the
current calculations, we neglect this effect. As a consistent check, the one-loop calculations in the following support
this assumption. In particular, the collinear divergence associated with the incoming parton distribution contains no
transverse momentum dependence.

III. THE NEXT-TO-LEADING ORDER CROSS SECTION

In this section, we will present the detailed calculations for the NLO corrections to the leading order result in
Eq. (5). There are four partonic channels: q → qg, g → gg, q → gq, g → qq̄. We will carry out the calculations for
these channels separately.

A. The quark channel q → q

The quark production contribution contains the real and virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q → qg first. The real diagrams with a quark (with transverse coordinate b⊥) and gluon (with
transverse coordinate x⊥) in the final state, as shown in Fig. 3, have been studied in Ref. [30–32]. We take eq.(78)
of Ref. [32] as our starting point which gives2

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x⊥
(2π)2

d2x′⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′

⊥
)e−ik2⊥·(b⊥−b′

⊥
)
∑

λαβ

ψλ∗
αβ(u

′
⊥)ψ

λ
αβ(u⊥)

×
[
S
(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) + S

(2)
Y (v⊥, v

′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S

(3)
Y (v⊥, x

′
⊥, b

′
⊥)
]
. (11)

2 For convention reasons, we have interchanged the definition of z and 1− z and replaced the variable z by ξ.
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(a) (b)

(d)(c)

FIG. 3. The real diagrams for the next-to-leading order quark production qA → q +X.

where u⊥ = x⊥ − b⊥, u
′
⊥ = x′⊥ − b′⊥, v⊥ = (1 − ξ)x⊥ + ξb⊥, v

′
⊥ = (1 − ξ)x′⊥ + ξb′⊥ and

S
(6)
Y (b⊥, x⊥, b

′
⊥, x

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)U

†(b′⊥)T
dT c

) [
W (x⊥)W

†(x′⊥)
]cd〉

Y
, (12)

S
(3)
Y (b⊥, x⊥, v

′
⊥) =

1

CFNc

〈
Tr
(
U(b⊥)T

dU †(v′⊥)T
c
)
W cd(x⊥)

〉
Y
. (13)

For a right-moving massless quark, with initial longitudinal momentum p+ and no transverse momentum, the splitting
wave function in transverse coordinate space is given by[32]

ψλ
αβ(p

+, k+1 , r⊥) = 2πi

√
2

k+1





r⊥·ǫ(1)
⊥

r2
⊥

(δα−δβ− + ξδα+δβ+), λ = 1,

r⊥·ǫ(2)
⊥

r2
⊥

(δα+δβ+ + ξδα−δβ−), λ = 2.
, (14)

where λ is the gluon polarization, α, β are helicities for the incoming and outgoing quarks, and 1 − ξ =
k+
1

p+ is the

momentum fraction of the incoming quark carried by the gluon. The above wave function is calculated in the light-
cone gauge in the infinite momentum frame (p+ = 1√

2
(p0 + p3) → ∞). The Wilson lines which represent the multiple

interactions are constructed accordingly. Since the Wilson lines in the fundamental representation and the adjoint
representation resum the multiple interactions of quarks and gluons with the nucleus target, respectively, one can
easily see that these four terms in the last two lines of the Eq. (11) correspond to those four graphs in Fig. 3. The

S
(6)
Y term which corresponds to Fig. 3 (a) and resums all the multiple interactions between the quark-gluon pair and

the nucleus target, represents the case where interactions take place after the splitting both in the amplitude and in

the conjugate amplitude. The S
(2)
Y term which comes from Fig. 3 (b), resums the interactions before the splitting

only and the S
(3)
Y terms represent the interference terms as shown in Fig. 3 (c) and (d).

There are two contributions for inclusive hadron production at the next-to-leading order, namely, quark productions
associated with Dh/q which is indicated by the cross in Fig. 3 (while the gluon is integrated) and gluon productions
associated with the fragmentation function Dh/g (while the quark is integrated).

Let us study the former case by integrating over the phase space of the final state gluon (k+1 , k1⊥). We can cast
the real contribution into

αs

2π2

∫
dz

z2
Dh/q(z)

∫ 1

τ/z

dξ
1 + ξ2

1− ξ
xq(x)

{
CF

∫
d2kg⊥I(k⊥, kg⊥)

+
Nc

2

∫
d2kg⊥d

2kg1⊥J (k⊥, kg⊥, kg1⊥)

}
, (15)
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(a) (b)

FIG. 4. Typical virtual diagrams for the next-to-leading order quark production qA → q +X. The graph similar to (a) where
the virtual loop comes after the interaction with the target, and all the mirror graphs are not shown here, but included in the
final result.

where x = τ/zξ and CF = (N2
c − 1)/2Nc, and I and J are defined as

I(k⊥, kg⊥) = F(kg⊥)

[
k⊥ − kg⊥

(k⊥ − kg⊥)2
− k⊥ − ξkg⊥

(k⊥ − ξkg⊥)2

]2
,

J (k⊥, kg⊥, kg1⊥) =
[
F(kg⊥)δ

(2) (kg1⊥ − kg⊥)− G(kg⊥, kg1⊥)
] 2(k⊥ − ξkg⊥) · (k⊥ − kg1⊥)

(k⊥ − ξkg⊥)2(k⊥ − kg1⊥)2
,

with G(k⊥, l⊥) =
∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
e−ik⊥·(x⊥−b⊥)−il⊥·(b⊥−y⊥)S

(4)
Y (x⊥, b⊥, y⊥), (16)

and S
(4)
Y (x⊥, b⊥, y⊥) = 1

N2
c
〈Tr[U(x⊥)U

†(b⊥)]Tr[U(b⊥)U
†(y⊥)]〉Y . Several steps are necessary in deriving the above

result from Eq. (11). By integrating over the gluon momentum, we identify x⊥ to x′⊥ which simplifies S
(6)
Y to

S(2)(b⊥, b
′
⊥). This is expected since we know the multiple interactions between the gluon and the nucleus target

should cancel if the gluon is not observed. Furthermore, using the Fierz identity, one can write

S
(3)
Y (b⊥, x⊥, v

′
⊥) =

Nc

2CF

[
S
(4)
Y (b⊥, x⊥, v

′
⊥)−

1

N2
c

S
(2)
Y (b⊥, v

′
⊥)

]
, (17)

which only involves the Wilson lines in the fundamental representation. Then, the final steps, which include the Fourier
transforms, as well as the convolutions of the quark distribution and fragmentation function, are quite straightforward.
Before we proceed to the calculations of the virtual diagrams, we comment on the result shown in Eq. (15). The

major obstacles of evaluating the integrals in Eq. (15) are the divergences. There are three types of singularities
lying in that equation, namely, the rapidity divergence which occurs at ξ = 1 when the rapidity of the radiated
gluon becomes −∞, and the collinear singularities which correspond to the cases that the final state gluon is either
collinear to the initial quark or final state quark. We shall expect that the virtual diagrams cancel some part of the
divergences, while the uncancelled divergences shall be absorbed into the renormalization of the quark distribution

and fragmentation functions as well as the target dipole gluon distribution (S
(2)
Y (x⊥, y⊥)). After these subtractions,

the remainder contributions should be finite and give us the NLO correction to the single inclusive hadron production
cross section.
The evaluation of the virtual graphs as shown in Fig. 4 are quite simple in the dipole picture. Their contributions

are proportional to

−2αsCF

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥
(2π)2

e−ik⊥·(v⊥−v′

⊥
)
∑

λαβ

ψλ∗
αβ(u⊥)ψ

λ
αβ(u⊥)

×
[
S
(2)
Y (v⊥, v

′
⊥)− S

(3)
Y (b⊥, x⊥, v

′
⊥)
]
, (18)

where the factor of 2 takes care of the fact that the mirror diagrams of Fig. 4 give the identical contributions when
the virtual loop is on the right side of the cut. It is straightforward to see that these two terms in the last line of
Eq. (18) correspond to the Fig. 4 (a) and (b), respectively. This eventually leads to

− αs

2π2

∫
dz

z2
Dh/q(z)xpq(xp)

∫ 1

0

dξ
1 + ξ2

1− ξ

×
{
CF

∫
d2q⊥I(q⊥, k⊥) +

Nc

2

∫
d2q⊥d

2kg1⊥J (q⊥, k⊥, kg1⊥)

}
, (19)
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where explicitly one writes

I(q⊥, k⊥) = F(k⊥)

[
q⊥ − k⊥

(q⊥ − k⊥)2
− q⊥ − ξk⊥

(q⊥ − ξk⊥)2

]2
,

J (q⊥, k⊥, kg1⊥) =
[
F(k⊥)δ

(2) (kg1⊥ − k⊥)− G(k⊥, kg1⊥)
] 2(q⊥ − ξk⊥) · (q⊥ − kg1⊥)

(q⊥ − ξk⊥)2(q⊥ − kg1⊥)2
. (20)

It is easy to see that the virtual contributions indeed contain three types of singularities as we mentioned before. There
are two important features that we wish to emphasize here. First, the rapidity divergence term is only proportional
to Nc/2 since I vanishes at ξ → 1 limit. This agrees with the BK equation since there is no 1/N2

c corrections to
the leading order BK equation. Second, when one integrates over the quark transverse momentum k⊥, the rapidity
divergence disappears due to the complete cancellation between the real and virtual contributions.

1. The rapidity divergence

Now we are ready to evaluate NLO contributions by the following procedures. First, we remove the rapidity
divergence terms from the real and virtual contributions by doing the following subtractions

F(k⊥) = F (0)(k⊥)−
αsNc

2π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d

2y⊥d
2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

× (x⊥ − y⊥)
2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S
(2)
Y (x⊥, y⊥)− S

(4)
Y (x⊥, b⊥, y⊥)

]
, (21)

where F (0)(k⊥) is the bare dipole gluon distribution which appears in the leading order cross section as in Eq. (5)
and it is divergent. F(k⊥) is the renormalized dipole gluon distribution and it is assumed to be finite. We can always
decompose the dipole splitting kernel as

(x⊥ − y⊥)
2

(x⊥ − b⊥)2(y⊥ − b⊥)2
=

1

(x⊥ − b⊥)2
+

1

(y⊥ − b⊥)2
− 2(x⊥ − b⊥) · (y⊥ − b⊥)

(x⊥ − b⊥)2(y⊥ − b⊥)2
, (22)

where the first two terms are removed from the virtual contribution while the last term is removed from the real
diagrams. This procedure is similar to that for the collinear factorization, where we modify the bare leading order
parton distributions to the finite parton distribution with the higher order radiation. Using Eqs. (6, 21), we can see

that the differential change of the dipole amplitude S
(2)
Y (x⊥, y⊥) yields the BK equation

∂

∂Y
S
(2)
Y (x⊥, y⊥) = −αsNc

2π2

∫
d2b⊥ (x⊥ − y⊥)

2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S
(2)
Y (x⊥, y⊥)− S

(4)
Y (x⊥, b⊥, y⊥)

]
. (23)

It is important to note that if we conduct the leading order classical calculation, we will not get any energy dependence,
namely the Y dependence, in the scattering amplitudes. It is the BK evolution equation as shown above which gives
the energy dependence to those scattering amplitudes. To derive the BK equation from Eqs. (6, 21), one needs to reset
the upper limit of the dξ integral in Eq. (21) to 1 − e−Y , with Y being the total rapidity gap between the projectile
proton and the target nucleus. Here Y → ∞ as the center of mass energy s → ∞. By doing so, we introduce the

rapidity Y dependence, namely the energy dependence, of the two-point function S
(2)
Y (x⊥, y⊥) from which the BK

equation can be understood and therefore derived. Another way to derive this equation is to slightly move away from
the light cone as in the derivation of the Balitsky equation[23]. The rapidity divergence is an artifact that we put
both the projectile and targets on the light cone in the high energy limit. By slightly tilting away from the light cone,

we can modify the ξ integral and obtain
∫ 1

0
dξ

1−ξ+e−Y . In addition, when one integrates over the transverse momentum

k⊥ as in Eq. (21), one finds that the rapidity divergence disappears as expected [33].
The physical interpretation of the rapidity divergence subtraction is quite interesting. The soft gluon is emitted

from the projectile proton with momentum (1 − ξ)p+, and it is easy to see that the rapidity of this soft gluon goes
to −∞ when ξ → 1 since the radiated gluon is now in the region k−g ≫ k+g . As a matter of fact, this soft gluon can
be regarded as collinear to the target nucleus which is moving on the backward light cone with the rapidity close to
−∞ and P−

A ≫ P+
A . Therefore, it is quite natural to renormalize this soft gluon into the gluon distribution function

of the target nucleus through the BK evolution equation.
After the subtraction of the rapidity divergence, both of the real and virtual contributions become regulated in

terms of the dξ integral which leads to the change of the splitting function into 1+ξ2

(1−ξ)+
. Here we introduce the following
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property of the plus-function

∫ 1

a

dξ (f(ξ))+ g(ξ) =

∫ 1

a

dξf(ξ)[g(ξ) − g(1)]− g(1)

∫ a

0

dξf(ξ), (24)

where g(ξ) can be any non-singular functions, while f(ξ) is singular at ξ = 1 and (f(ξ))+ is regulated.

2. The collinear divergence

The second step is to use the dimensional regularization (D = 4 − 2ǫ) and follow the MS subtraction scheme, in
order to compute and remove the collinear divergence from both real and virtual contributions. For convenience, we
introduce the following integrals,

I1(k⊥) =

∫
d2kg⊥
(2π)2

F(kg⊥)
1

(k⊥ − kg⊥)2
,

I2(k⊥) =

∫
d2kg⊥
(2π)2

F(kg⊥)
(k⊥ − kg⊥) · (k⊥ − ξkg⊥)

(k⊥ − kg⊥)2(k⊥ − ξkg⊥)2
,

I3(k⊥) =

∫
d2kg⊥d

2kg1⊥
(2π)2

G(kg⊥, kg1⊥)
(k⊥ − kg1⊥) · (k⊥ − ξkg⊥)

(k⊥ − kg1⊥)2(k⊥ − ξkg⊥)2
. (25)

Clearly, there is no divergence in I3. Let us take the evaluation of I1(k⊥) as an example. As standard procedure

in the dimensional regularization (D = 4 − 2ǫ) and the MS subtraction scheme, we change the integral
∫ d2kg⊥

(2π)2 into

µ2ǫ
∫ d2−2ǫkg⊥

(2π)2−2ǫ where µ is the scale dependence coming from the strong coupling g. Using Eq. (6) and the identity

∫
d2−2ǫq⊥e

−iq⊥·r⊥ µ
2ǫ

q2⊥
= π

(
µ2r2⊥
4π

)ǫ

Γ(−ǫ), (26)

together with the convention 1
ǫ̂ = 1

ǫ − γE + ln 4π, we can find

I1(k⊥) =
1

4π

∫
d2x⊥d

2y⊥
(2π)2

e−ik⊥·r⊥S
(2)
Y (x⊥, y⊥)

(
−1

ǫ̂
+ ln

c20
µ2r2⊥

)
, (27)

where c0 = 2e−γE , γE is the Euler constant and r⊥ = x⊥ − y⊥.
To evaluate I2(k⊥), we first rewrite it as

I2(k⊥) = − 1

4π
F(k⊥) ln(1− ξ)2 + I21(k⊥) , (28)

where I21 is finite and defined as

I21(k⊥) =

∫
d2kg⊥
(2π)2

[
F(kg⊥)

(k⊥ − kg⊥) · (k⊥ − ξkg⊥)

(k⊥ − kg⊥)2(k⊥ − ξkg⊥)2

− F(k⊥)
(k⊥ − kg⊥) · (ξk⊥ − kg⊥)

(k⊥ − kg⊥)2(ξk⊥ − kg⊥)2
−F(k⊥)

kg⊥ · (k⊥ − kg⊥)

k2g⊥(k⊥ − kg⊥)2

]
. (29)

The basic idea is to subtract a term which is proportional to ln(1 − ξ)2 from I2. It is quite straightforward to show
that the last two terms in the above equation give F(k⊥) ln(1− ξ)2 by using the integral identity

∫
d2kg⊥
(2π)2

[
(k⊥ − kg⊥) · (ξk⊥ − kg⊥)

(k⊥ − kg⊥)2(ξk⊥ − kg⊥)2
− kg⊥ · (kg⊥ − k⊥)

k2g⊥(kg⊥ − k⊥)2

]
=

1

4π
ln

1

(1− ξ)2
. (30)

To compute and remove the collinear divergence in the virtual diagrams, one needs to use the following integral

µ2ǫ

∫
d2−2ǫl⊥
(2π)2−2ǫ

∆2

(l⊥ −∆)2l2⊥
=

1

2π

(
−1

ǫ̂
+ ln

∆2

µ2

)
, (31)
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where the usual Feynman integral trick is used in the derivation. Therefore, setting the quark distribution, the
fragmentation function and the splitting function aside, the virtual contribution can be cast into

Iv(k⊥) = −F(k⊥)

2π

[(
−1

ǫ̂
+ ln

k2⊥
µ2

)
CF +

(
CF − Nc

2

)
ln(1− ξ)2

]
− Nc

2
I3v(k⊥), (32)

where I3v(k⊥) is finite and defined as

I3v(k⊥) = 2

∫
d2q⊥d

2kg1⊥
(2π)2

G(k⊥, kg1⊥)
[
q⊥ · (q⊥ − k⊥)

q2⊥ (q⊥ − k⊥)
2 − (q⊥ − ξk⊥) · (q⊥ − kg1⊥)

(q⊥ − ξk⊥)2(q⊥ − kg1⊥)2

]

=

∫
d2kg1⊥
2π

G(k⊥, kg1⊥) ln
(kg1⊥ − ξk⊥)

2

k2⊥
. (33)

To derive the above expressions, Eq. (30) is used repeatedly. It is also useful to notice that

∫
d2k1⊥e

−ik1⊥·r̄⊥ ln
(k1⊥ − ξ′k⊥)

2

k2⊥
= 4π

[
δ(r̄⊥)

∫
d2r′⊥
r′2⊥

eik⊥·r′
⊥ − 1

r̄2⊥
e−iξ′k⊥·r̄⊥

]
, (34)

which can lead us to the final factorized formula.
By combining the collinear singularities from both real and virtual diagrams, we find the coefficient of the collinear

singularities becomes Pqq(ξ) which is defined as

Pqq(ξ) =

(
1 + ξ2

1− ξ

)

+

=
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ). (35)

Now we are ready to remove the collinear singularities by redefining the quark distribution and the quark fragmentation
function as follows

q(x, µ) = q(0)(x)− 1

ǫ̂

αs(µ)

2π

∫ 1

x

dξ

ξ
CFPqq(ξ)q

(
x

ξ

)
, (36)

Dh/q(z, µ) = D
(0)
h/q(z)−

1

ǫ̂

αs(µ)

2π

∫ 1

z

dξ

ξ
CFPqq(ξ)Dh/q

(
z

ξ

)
, (37)

which is in agreement with the well-known DGLAP equation for the quark channel. We will be able to recover the
full DGLAP equation once we finish the calculation on all channels. Using Eq. (5) and combine it with the NLO real
and virtual contributions, it is almost trivial to show Eq. (36). It is a little bit less trivial to derive Eq. (37). By
combining the relevant terms in the real and virtual contributions, we obtain a term which reads

−1

ǫ̂

αs(µ)

2π

∫ 1

τ

dz

z2
Dh/q(z)

∫ 1

τ/z

dξCFPqq(ξ)xq(x)
1

ξ2
F
(
k⊥
ξ

)
. (38)

By changing variable z′ = zξ, we can rewrite the above term as

−1

ǫ̂

αs(µ)

2π

∫ 1

τ

dz′

z′2
xq(x)F

(p⊥
z′

) ∫ 1

z′

dξ

ξ
CFPqq(ξ)Dh/q

(
z′

ξ

)
, (39)

which allows us to arrive at Eq. (37) easily by combining this term with Eq. (5).
One might worry about the term which is proportional to 1

2πF (k⊥)
(
CF − Nc

2

)
ln(1− ξ)2 since it is logarithmically

divergent when ξ → 1. Let us show that this singularity will also cancel between the real and virtual contributions as
follows

[∫ 1

τ/z

dξ
1 + ξ2

(1− ξ)+
xq(x) ln(1− ξ)2 − xpq(xp)

∫ 1

0

dξ
1 + ξ2

(1− ξ)+
ln(1− ξ)2

]

=

∫ 1

τ/z

dξ

(
(1 + ξ2) ln(1 − ξ)2

1− ξ

)

+

xq(x), (40)

where the first term on the left hand side of the above equation comes from the real diagrams while the second term
comes from the virtual graphs. Here we have used Eq. (24) again.
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3. Finite contributions

Now we have removed all the collinear singularities by renormalizing the quark distribution and the quark fragmen-
tation function. The rest of the contribution should be finite. The last procedure is to assemble all the finite terms
into a factorized formula. For the quark channel contribution: qA → h +X , we find that the factorization formula
can be explicitly written as

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

∫
d2x⊥d

2y⊥

(2π)
2

{
S
(2)
Y (x⊥, y⊥)

[
H(0)

2qq +
αs

2π
H(1)

2qq

]

+

∫
d2b⊥
(2π)2

S
(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq

}
, (41)

up to one-loop order. The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2qq = e−ik⊥·r⊥δ(1 − ξ) , (42)

where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. Our objective here is to compute the hard coefficients H(1)
2qq and H(1)

4qq . It is just

straightforward to show that H(1)
2qq reads as follows

H(1)
2qq = CFPqq(ξ) ln

c20
r2⊥µ

2

(
e−ik⊥·r⊥ +

1

ξ2
e−i

k
⊥

ξ
·r⊥
)
− 3CF δ(1 − ξ)e−ik⊥·r⊥ ln

c20
r2⊥k

2
⊥

− (2CF −Nc) e
−ik⊥·r⊥

[
1 + ξ2

(1− ξ)+
Ĩ21 −

((
1 + ξ2

)
ln (1− ξ)

2

1− ξ

)

+

]
, (43)

where the terms in the first line come from the finite logarithmic terms in I1(k⊥) and Iv(k⊥), and Ĩ21 is calculated
from I21(k⊥) which yields

Ĩ21 =

∫
d2b⊥
π

{
e−i(1−ξ)k⊥·b⊥

[
b⊥ · (ξb⊥ − r⊥)

b2⊥ (ξb⊥ − r⊥)
2 − 1

b2⊥

]
+ e−ik⊥·b⊥ 1

b2⊥

}
. (44)

It is clear that the last term comes from the ln(1 − ξ)2 terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2(k⊥) type term) drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects as we will show in the following sections. Furthermore, by choosing
µ = c0/r⊥ for the factorization scale, we can further simplify the above expressions. In the end, only the last term in
the first line of the Eq. (43) survives. Since r⊥ is of the order 1/Qs in the saturation regime, one can easily see that
the factorization scale µ ≃ Qs in terms of the above choice.

The second hard coefficient H(1)
4qq is related to the non-linear terms such as I3(k⊥) and I3v(k⊥) which give

H(1)
4qq = −4πNce

−ik⊥·r⊥

{
e−i 1−ξ

ξ
k⊥·(x⊥−b⊥) 1 + ξ2

(1− ξ)+

1

ξ

x⊥ − b⊥

(x⊥ − b⊥)
2 · y⊥ − b⊥

(y⊥ − b⊥)
2

−δ(1− ξ)

∫ 1

0

dξ′
1 + ξ′2

(1− ξ′)+

[
e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]}
, (45)

where the first and second term in the curly brackets are calculated from I3(k⊥) and I3v(k⊥), respectively.
To summarize the above results, we have demonstrated the QCD factorization for inclusive hadron production in

the quark channel of pA collisions in the saturation formalism, and we have computed the NLO cross section in this
processes. Clearly, the naive form of the k⊥ factorization formula, which involves the convolution of unintegrated
gluon distributions in the transverse momentum space, does not hold. Other channels can be calculated accordingly
following the same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in the well-known McLerran-Venugopalan (MV) model[19, 34,
35]. In terms of the phenomenological application with additional parametrization of the saturation momentum, it
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is also known as Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV and GBW model, if we neglect the impact
parameter dependence for the sake of simplicity, the dipole scattering amplitude is parametrized as

S
(2)
MV(x⊥, y⊥) = exp

[
− (x⊥ − y⊥)

2Q2
s

4

]
, (46)

which leads to F(q⊥) = S⊥

πQ2
s
exp

(
− q2

⊥

Q2
s

)
, where S⊥ is the transverse area of the target hadron. In addition, if we

further take the large Nc limit, the integral d2x⊥d
2y⊥d

2b⊥ can be performed explicitly, which leads to the differential
cross section depending on p⊥ and Qs,

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/q(z, µ)

[
H̄(0)

2qq +
αs

2π
H̄(1)

2qq +
αs

2π
H̄(1)

4qq

]
, (47)

where

H̄(0)
2qq = δ(1 − ξ)

S⊥
πQ2

s

exp

(
−k

2
⊥
Q2

s

)
, (48)

H̄(1)
2qq =

Nc

2
Pqq(ξ)F(k⊥)

[
ln

Q2
s

µ2eγE
+ exp

(
k2⊥
Q2

s

)
L(1,0)

(
−1,−k

2
⊥
Q2

s

)]

+
1

ξ2
Nc

2
Pqq(ξ)F

(
k⊥
ξ

)[
ln

Q2
s

µ2eγE
+ exp

(
k2⊥
ξ2Q2

s

)
L(1,0)

(
−1,− k2⊥

ξ2Q2
s

)]

−δ(1− ξ)
3Nc

2
F(k⊥)

[
ln

Q2
s

k2⊥e
γE

+ exp

(
k2⊥
Q2

s

)
L(1,0)

(
−1,−k

2
⊥
Q2

s

)]
, (49)

H̄(1)
4qq = −S⊥Nc

π

1 + ξ2

(1 − ξ)+

1

k2⊥

[
1− exp

(
−k

2
⊥
Q2

s

)][
1− exp

(
− k2⊥
ξ2Q2

s

)]

+Ncδ(1− ξ)F(k⊥)

[
3

2
ln

Q2
s

k2⊥e
γE

+

∫ 1

0

dξ′
1 + ξ′2

(1− ξ′)+
exp

(
−ξ

′2k2⊥
Q2

s

)
L(1,0)

(
−1,

ξ′2k2⊥
Q2

s

)]
, (50)

where k⊥ = p⊥/z as above and L(1,0) (−1,−x) = − [γE + Γ (0,−x) + log (−x)] e−x is the Multivariate Laguerre
Polynomial. L(1,0) (−1,−x) is zero at x = 0,∞, and reaches its maximum at x around 2.
An important aspect of the above results is that we can compare with the collinear factorization results in the dilute

limit. For example, the forward quark production in pp collisions is dominated by the t-channel qg → qg subprocess in
the collinear factorization calculation. Because of the t-channel dominance, we find that the differential cross section
can be written as

d3σ(pp→ q + x)

d2k⊥dy
|forward limit =

∫

x′

min

dx′

x′
xq(x)

α2
s

k4⊥
2x′g(x′) , (51)

in the forward limit, where k⊥ and y are the transverse momentum and rapidity of the final state quark, respectively.
The above result was obtained by taking the limit of −t̂≪ ŝ ∼ −û for the Mandelstam variables in the partonic cross
section. Here, q(x) and g(x) are quark and gluon distributions from the incoming two nucleons, respectively.
As a consistency check, we can take the dilute limit which gives k2⊥ ≫ Q2

s, and obtain the leading contribution of
Eq. (47) which reads

d3σp+A→h+X

dyd2p⊥

∣∣∣∣
dilute

=

∫
dz

z2
Dh/q(z, µ)

∫
dξ

1− ξ
xq(x, µ)

αs

2π

2NcS⊥Q
2
s

πk4⊥
. (52)

In arriving at the above result, we have also taken the limit ξ → 1 (note that ξ 6= 1 for real contributions due to
subtraction) which corresponds to the limit −t̂≪ ŝ ∼ −û. We further notice that the quark saturation momentum [34,

37]Q2
s = 4π2αs

Nc

√
R2 − b2ρx′G(x′) with x′G(x′) corresponding to the gluon distribution in a nucleon, ρ being the nuclear

density, R being the size of the target nucleus and b being the impact parameter. In the dilute regime, the gluon
distribution is additive in the target nucleus which allows us to write x′GA(x

′) = 2
√
R2 − b2S⊥ρx

′G(x′) = Ax′G(x′)

with A being the nuclear number.3 At the end of the day, by setting dξ
1−ξ = dx′

x′ which recovers the integration over

3 Rigorously, one should write S⊥ =
∫
d2b and use the relation that ρ

∫
d2b2

√
R2 − b2 = ρ 4π

3
R3 = A.
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(a) (b)

(d)(c)

FIG. 5. The real diagrams for the next-to-leading order gluon production gA → g +X.

the gluon longitudinal momentum fraction, we can obtain

d3σp+A→h+X

dyd2p⊥

∣∣∣∣
dilute

=

∫
dz

z2
Dh/q(z, µ)

∫
dx′

x′
xq(x, µ)

2α2
sx

′GA(x
′)

k4⊥
, (53)

which agrees with the collinear factorization result for the quark channel. The comparison for all other channels shall
follow in the same way. In conlusion, the factorization in Eq. (2) is consistent with the collinear factorization result
in the dilute limit in the forward pA collisions.

B. The gluon channel g → g

The computation for the g → g channel is very similar to the calculation we have done for the q → q channel.
However, there is an additional complication in this calculation. As we will show later in the detailed derivation,
the sextupole, namely the correlation of six fundamental Wilson lines in a single trace, will start to appear in
the cross section. The small-x evolution equation of sextupoles [38] is different from the well-known BK equation
which is derived for dipoles. This is normal since the quadrupoles also follow a different version of small-x evolution
equation[30, 39]. The numerical study of the evolution for sextupoles is not yet available. Fortunately, the contribution
from sextupoles is suppressed by a factor 1

N2
c
as compared to other terms. In addition, in principle, the four-point

function S(4)(x⊥, b⊥, y⊥) can not be factorized into S(2)(x⊥, b⊥)S
(2)(b⊥, y⊥) unless the large Nc limit is taken. By

taking the large Nc limit, not only can we simplify the calculation significantly, but also we can show that all the
relevant S-matrices are dipole amplitude S(2) which is universal at both leading order and NLO. From the universality
point of view, it seems that the large Nc limit is essential to the factorization. Therefore, in our following derivation,
we will take the large Nc limit right away, but we will comment on the property of the Nc corrections.
The real diagrams, as shown in Fig. 5, have been studied in Ref. [32]. Let us first analyze the S-matrices associated

with each graph in Fig. 5. For Fig. 5(a), before we integrate out the phase space of the unobserved gluon, we find that

the multiple scacttering gives
〈
fade

[
W (x⊥)W

†(x′⊥)
]db [

W (b⊥)W
†(b′⊥)

]ec
fabc

〉

Y
, where x⊥ and x′⊥ are the transverse

coordinates of the observed gluon in the amplitude and complex conjugate amplitude, respectively. Here, b⊥ and b′⊥ are
the coordinates of the unobserved gluon. By integrating over the phase space of the unobserved gluon, we identify b⊥ to
b′⊥ which allows us to greatly simplify the above expression and obtain Nc

(〈
TrU †(x⊥)U(x′⊥)TrU

†(x′⊥)U(x⊥)
〉
Y
− 1
)
.

The interaction between the unobserved gluon and the nucleus target is cancelled as expected. By taking the large
Nc limit, we can further drop the second term and factorize the results into NcS

(2)(x⊥, x
′
⊥)S

(2)(x′⊥, x⊥), where a

factor of 1
N2

c
has been attached as the color average 4. Similarly, the Fig. 5(b) yields NcS

(2)(v⊥, v
′
⊥)S

(2)(v′⊥, v⊥) with

4 Strictly speaking, this factor should be 1
N2

c−1
since the number of gluon color is N2

c − 1. In the large Nc limit, we just put it as N2
c .
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(a) (b)

FIG. 6. Typical virtual gluon loop diagrams for the next-to-leading order gluon production gA → g +X. The graph similar
to (a) where the virtual loop comes after the interaction with the target, and all the mirror graphs are not shown here, but
included in the final result.

v⊥ = ξx⊥ + (1− ξ)b⊥ and v′⊥ = ξx′⊥ + (1− ξ)b⊥
5. For Fig. 5(c), we find the scattering matrix is proportional to

〈
fadeW

db(x⊥)W
ec(b⊥)ffbcW

af (v′⊥)
〉
Y

=
〈
TrU †(v′⊥)U(x⊥)TrU

†(x⊥)U(b⊥)TrU
†(b⊥)U(v′⊥)

〉
Y

−
〈
TrU †(x⊥)U(v′⊥)U

†(b⊥)U(x⊥)U
†(v′⊥)U(b⊥)

〉
Y
, (54)

where we have used Eq. (8) and ifabcT c = [T a, T b] in the derivation. In addition, we have assumed that the expectation
value of the Wilson lines is real, which allows us to get, for example,

〈
TrU †(v′⊥)U(x⊥)TrU

†(x⊥)U(b⊥)TrU
†(b⊥)U(v′⊥)

〉
Y

=
〈
TrU †(x⊥)U(v′⊥)TrU

†(v′⊥)U(b⊥)TrU
†(b⊥)U(x⊥)

〉
Y
. (55)

The last term on the right hand side of Eq. (54) is the sextupole that we discussed earlier and it is suppressed by 1
N2

c

as compared to the first term. It is easy to see that the first term is proportional to N3
c since it has three color traces.

Therefore, we obtain that Fig. 5(c) gives NcS
(2)(x⊥, v

′
⊥)S

(2)(v′⊥, b⊥)S
(2)(b⊥, x⊥) in the large Nc limit. Similarly,

following the same procedure, we find that Fig. 5(d) yields NcS
(2)(v⊥, x

′
⊥)S

(2)(x′⊥, b⊥)S
(2)(b⊥, v⊥).

Now we can follow Ref. [32] and write down the cross section of producing a hadron with p⊥ at rapidity y from a
gluon as follows

dσpA→hX
real

d2p⊥dy
= αsNc

∫ 1

τ

dz

z2
Dh/g(z)

∫ 1

τ/z

dξxg(x)

∫
d2x⊥
(2π)2

d2x′⊥
(2π)2

d2b⊥
(2π)2

×e−ik⊥·(x⊥−x′

⊥
)
∑

λαβ

ψλ∗
ggαβ(u

′
⊥)ψ

λ
ggαβ(u⊥)

×
[
S(2)(x⊥, x

′
⊥)S

(2)(x′⊥, x⊥) + S(2)(v⊥, v
′
⊥)S

(2)(v′⊥, v⊥)

−S(2)(x⊥, v
′
⊥)S

(2)(v′⊥, b⊥)S
(2)(b⊥, x⊥)

−S(2)(v⊥, x
′
⊥)S

(2)(x′⊥, b⊥)S
(2)(b⊥, v⊥)

]
, (56)

where the g → gg splitting kernel is found to be 6

∑

λαβ

ψλ∗
ggαβ(ξ, u

′
⊥)ψ

λ
ggαβ(ξ, u⊥) = 4(2π)2

[
ξ

1− ξ
+

1− ξ

ξ
+ ξ(1 − ξ)

]
u′⊥ · u⊥
u′2⊥u

2
⊥
, (57)

with u⊥ = x⊥−b⊥ and u′⊥ = x′⊥−b⊥. In addition, we find that the ξ dependence of the splitting function is symmetric

under the interchange ξ ↔ (1 − ξ), and can be simply written as [1−ξ(1−ξ)]2

ξ(1−ξ) . It is clear that the real contributions

contain the rapidity divergence at ξ → 1 limit.

5 The way that we choose to define v⊥ and v′
⊥

here is to put the rapidity divergence at ξ = 1 according to the convention that the
unobserved gluon’s longitudinal momentum becomes infinitely soft.

6 Here we have included the factor of 1
p+

, which is in the splitting kernel, into the cross section.
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Similar to the quark channel, the virtual gluon diagrams as shown in Fig. 6 can be calculated accordingly, and we
obtain

−2

2
αsNc

∫ 1

τ

dz

z2
Dh/g(z)xpg(xp)

∫ 1

0

dξ

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥
(2π)2

(58)

×e−ik⊥·(v⊥−v′

⊥
)
∑

λαβ

ψλ∗
ggαβ(p

+, ξ, u⊥)ψ
λ
ggαβ(p

+, ξ, u⊥) (59)

×
[
S(2)(v⊥, v

′
⊥)S

(2)(v′⊥, v⊥)− S(2)(b⊥, x⊥)S
(2)(x⊥, v

′
⊥)S

(2)(v′⊥, b⊥)
]
, (60)

where the factor of 2 comes from the fact that the mirror diagrams give the identical contributions when the virtual
loop on the right side of the cut, while the factor of 1

2 is the symmetry factor arising from two identical gluons in the
closed gluon loop. The virtual contribution contains rapidity divergence when ξ approaches 0 and 1. This is easy to
understand since the virtual gluon loop contribution is symmetric under the interchange ξ ↔ (1− ξ). Assuming that
S(2)(x⊥, x

′
⊥) = S(2)(x′⊥, x⊥) and use x⊥ = v⊥+(1−ξ)u⊥ and b⊥ = v⊥−ξu⊥, one can easily show that the last line of is

symmetric under the interchange ξ ↔ (1−ξ). Therefore, we can rewrite the splitting function
[

ξ
1−ξ + 1−ξ

ξ + ξ(1− ξ)
]

as 2
[

ξ
1−ξ + 1

2ξ(1− ξ)
]
for the virtual part. Now the virtual contribution only contains rapidity singularity at ξ = 1.

Following the procedure that we have illustrated above for the quark channel, we remove the rapidity divergence
terms from the real and virtual contributions by doing the following subtractions

F̃(k⊥) = F̃ (0)(k⊥)−
αsNc

π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d

2y⊥d
2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥) (x⊥ − y⊥)

2

(x⊥ − b⊥)2(y⊥ − b⊥)2

×
[
S(2)(x⊥, y⊥)S

(2)(y⊥, x⊥)− S(2)(x⊥, y⊥)S
(2)(y⊥, b⊥)S

(2)(b⊥, x⊥)
]
, (61)

where F̃ (0)(k⊥) is the bare dipole gluon distribution in the adjoint representation which appears in the leading order

cross section as in Eq. (5) and it is divergent. F̃(k⊥) is the renormalized dipole gluon in the adjoint representation
distribution and it is assumed to be finite. To arrive at Eq. (61), we have taken the large Nc limit which allows us to
neglect the sextupole and constant term which are suppressed by 1

N2
c
. the full subtraction should include those terms

as well.

Now we are ready to show that Eq. (61) is equivalent to the adjoint representation of the BK equation. The
non-linear small-x evolution equation for a color dipole in some arbitrary representation R can be found in Eq. (5.18)
in Ref. [40]. This equation reads

∂

∂Y

〈
trRV

†
x⊥
Vy⊥

〉
Y
= −αs

π2

∫
d2z⊥ (x⊥ − y⊥)

2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
[
CR

〈
trRV

†
x⊥
Vy⊥

〉
Y
−
〈
trRV

†
z⊥ t

aVz⊥V
†
x⊥
taVy⊥

〉
Y

]
, (62)

where V is the Wilson line in the R-representation. If one takes the fundamental representation, one can easily recover
the BK equation as shown in Eq. (23). If one sets V = W and uses the adjoint representation for the color matrices
tabc = −ifabc, one can use Eq. (8) to convert everything into the fundamental representation. It is straightforward to
find CR = Nc and

〈
trAW

†
x⊥
Wy⊥

〉
Y
=
〈
TrU †(x⊥)U(y⊥)TrU

†(y⊥)U(x⊥)
〉
Y
− 1

〈
trAW

†
z⊥t

aWz⊥W
†
x⊥
taWy⊥

〉
Y
=
〈
TrU †(x⊥)U(y⊥)TrU

†(z⊥)U(x⊥)TrU
†(y⊥)U(z⊥)

〉
Y

−
〈
TrU †(x⊥)U(y⊥)U

†(z⊥)U(x⊥)U
†(y⊥)U(z⊥)

〉
Y
, (63)

where we have also assumed all the correlation functions on the right hand side of the above equation are real. By
putting above expressions into Eq. (62), we can obtain the adjoint representation of the BK equation which is in
complete agreement with Eq. (61) if one also includes the large Nc corrections in Eq. (61). This version of the BK
equation actually contains the sextupole correlation term and constant term which coincide with Eq. (54) and the
discussion above. One can see that the cancellation of the rapidity divergence is complete, even if one includes all the
large Nc corrections. After the subtraction of the rapidity divergence, the splitting functions become regulated and
we can replace 1

1−ξ by 1
(1−ξ)+

.

Furthermore, before we take care of the collinear singularities, we should also compute the quark loop virtual
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(a) (b)

FIG. 7. Typical virtual quark loop diagrams for the next-to-leading order gluon production gA → g +X. The graph similar
to (b) where the virtual loop comes after the interaction with the target, and all the mirror graphs are not shown here, but
included in the final result.

diagrams as shown in Fig. 7,

−2αsNfTR

∫ 1

τ

dz

z2
Dh/g(z)xpg(xp)

∫ 1

0

dξ

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥
(2π)2

×e−ik⊥·(v⊥−v′

⊥
)
∑

λαβ

ψλ∗
qq̄αβ(p

+, ξ, u⊥)ψ
λ
qq̄αβ(p

+, ξ, u⊥)

×
[
S(2)(v⊥, v

′
⊥)S

(2)(v′⊥, v⊥)− S(2)(x⊥, v
′
⊥)S

(2)(v′⊥, b⊥)
]
, (64)

where TR = 1
2 and the g → qq̄ splitting kernel is found to be

∑

λαβ

ψλ∗
qq̄αβ(p

+, ξ, u⊥)ψ
λ
qq̄αβ(p

+, ξ, u⊥) = 2(2π)2
[
ξ2 + (1− ξ)2

] 1

u2⊥
. (65)

Normally the g → qq̄ channel is suppressed by one factor of 1/Nc as compared to other leading Nc channels. However,
the quark loop gains a factor of Nf since different flavors of quarks can enter the virtual quark loop. Nf is usually
taken to be 3 which is the same as Nc. Therefore, we also compute this channel since this might be as important as
other contributions in terms of the numerical studies. There is no rapidity divergence in the quark loop contribution,
however, it does contain collinear divergence.
To compute and remove the collinear divergence, we define

K(k⊥, l⊥, q⊥) =

∫
d2x⊥d

2b⊥d
2y⊥d

2x′⊥
(2π)6

e−ik⊥·(x⊥−b⊥)−il⊥·(b⊥−y⊥)−iq⊥·(y⊥−x′

⊥
)

×S(2)(x⊥, b⊥)S
(2)(b⊥, y⊥)S

(2)(y⊥, x
′
⊥), (66)

where the variable x′⊥ is redundant and can be integrated out to give the area of the target nucleus, if one neglects
the impact factor dependence. This allows us to transform Eq. (56) into

dσpA→hX
real

d2p⊥dy
=
αsNc

π2

∫ 1

τ

dz

z2
Dh/g(z)

∫ 1

τ/z

dξ
[1− ξ (1− ξ)]

2

ξ (1− ξ)+
xg(x)

∫
d2q1⊥d

2q2⊥d
2q3⊥

×K(q1⊥, q2⊥, q3⊥)

∣∣∣∣
k⊥ − q1⊥ + q3⊥

(k⊥ − q1⊥ + q3⊥)2
− k⊥ − ξq1⊥ + ξq2⊥

(k⊥ − ξq1⊥ + ξq2⊥)2

∣∣∣∣
2

.

It is quite clear that among those three terms in the above equation, 1
(k⊥−q1⊥+q3⊥)2 term gives the collinear singularity

which should be absorbed by the gluon distribution, 1
(k⊥−ξq1⊥+ξq2⊥)2 term yields the collinear singularity which

should be associated to the fragmentation function, while the crossing term is finite. Similarly, the virtual gluon loop
contribution can be transformed into

−αsNc

π2

∫ 1

τ

dz

z2
Dh/g(z)xpg(xp)

∫ 1

0

dξ

[
ξ

(1− ξ)+
+

1

2
ξ(1− ξ)

]

×
∫
d2q1⊥d

2q2⊥K(q1⊥, q2⊥, q2⊥ − k⊥)

∫
d2l⊥

∣∣∣∣
l⊥
l2⊥

− l⊥ − ξk⊥ + q2⊥ − q1⊥
(l⊥ − ξk⊥ + q2⊥ − q1⊥)2

∣∣∣∣
2

, (67)
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and the quark loop term can be turned into

−αsNfTR
2π2

∫ 1

τ

dz

z2
Dh/g(z)xpg(xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

]

×
∫
d2q1⊥G(q1⊥, q1⊥ − k⊥)

∫
d2l⊥

∣∣∣∣
l⊥
l2⊥

− l⊥ − ξk⊥ + q1⊥
(l⊥ − ξk⊥ + q1⊥)2

∣∣∣∣
2

. (68)

It is straightforward then to use Eq. (31) to compute collinear singularity for the virtual contributions.
By combining the collinear singularities from both real and virtual diagrams, we find the coefficient of the collinear

singularities becomes Pgg(ξ) which is defined as

Pgg(ξ) = 2

[
ξ

(1− ξ)+
+

1− ξ

ξ
+ ξ(1− ξ)

]
+

(
11

6
− 2NfTR

3Nc

)
δ(1− ξ), (69)

where the first term comes from the real diagrams, the term which is proportional to 11
6 δ(1−ξ) comes from the virtual

gluon loop diagrams and the term which is suppressed by 1/Nc is the quark loop contribution. Now we are ready to
remove the collinear singularities by redefining the gluon distribution and the gluon fragmentation function as follows

g(x, µ) = g(0)(x) − 1

ǫ̂

αs(µ)

2π

∫ 1

x

dξ

ξ
NcPgg(ξ)g

(
x

ξ

)
, (70)

Dh/g(z, µ) = D(0)h/g(z)− 1

ǫ̂

αs(µ)

2π

∫ 1

z

dξ

ξ
NcPgg(ξ)Dh/g

(
z

ξ

)
, (71)

which is in agreement with the DGLAP equation for the gluon channel.
Now we are ready to assemble all the rest of the finite terms into the hard factors. Let us take the finite terms

left in the virtual contribution as an example. Using Eq. (31) to perform the l⊥ integration, the finite terms are
proportional to

∫
d2q1⊥d

2q2⊥K(q1⊥, q2⊥, q2⊥ − k⊥)

[
ln
k2⊥
µ2

+ ln
(l⊥ − ξk⊥ + q2⊥ − q1⊥)

2

k2⊥

]
. (72)

The evaluation of the first term is trivial since it is independent of ξ, qi⊥. Using Eqs. (34, 66), the second term yields 7

∫
d2x⊥d

2b⊥d
2y⊥

(2π)4
S(2)(x⊥, b⊥)S

(2)(b⊥, y⊥)S
(2)(y⊥, x⊥)e

−ik⊥·(x⊥−y⊥)

×4π

[
δ(2)(b⊥ − x⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥
− e−iξ′k⊥·(b⊥−x⊥)

(b⊥ − x⊥)2

]
. (73)

Summarizing the above calculations, for the gluon channel contribution: gA → h/g +X , we find that the factor-
ization formula can be explicitly written as

d3σp+A→h/g+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxg(x, µ)Dh/g(z, µ)

×
{∫

d2x⊥d
2y⊥

(2π)2
S
(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥)

[
H(0)

2gg +
αs

2π
H(1)

2gg

]

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)
4 S

(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)

αs

2π
H(1)

2qq̄

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)S

(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg

}
. (74)

The leading order results have been calculated as shown in Eq. (5), from which we have

H(0)
2gg = e−ik⊥·r⊥δ(1− ξ) (75)

7 The expression in Eq. (73) looks slightly different from the final results as shown in Eq. (78). Since the S-matrices are symmetrical
among all the transverse coordinates which are all integrated over in the end, one can exchange the definition of variables x⊥ ↔ y⊥ and
reverse the orientation of all the coordinates in Eq. (73). This allows us to show that these two expressions are equivalent.
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where k⊥ = p⊥/z and r⊥ = x⊥ − y⊥. It is straightforward to show that H(1)
2gg and H(1)

6gg read as follows

H(1)
2gg = NcPgg(ξ) ln

c20
r2⊥µ

2

(
e−ik⊥·r⊥ +

1

ξ2
e−i

k
⊥

ξ
·r⊥
)

−
(
11

3
− 4NfTR

3Nc

)
Ncδ(1− ξ)e−ik⊥·r⊥ ln

c20
r2⊥k

2
⊥
, (76)

H(1)
2qq̄ = 8πNfTRe

−ik⊥·(y⊥−b⊥)δ(1− ξ)

∫ 1

0

dξ′
[
ξ′2 + (1 − ξ′)2

]

×
[
e−iξ′k⊥·(x⊥−y⊥)

(x⊥ − y⊥)2
− δ(2)(x⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]
, (77)

and

H(1)
6gg = −16πNce

−ik⊥·r⊥

{
e−i

k
⊥

ξ
·(y−b) [1− ξ(1− ξ)]2

(1− ξ)+

1

ξ2
x⊥ − y⊥

(x⊥ − y⊥)
2 · b⊥ − y⊥

(b⊥ − y⊥)
2

− δ(1− ξ)

∫ 1

0

dξ′
[

ξ′

(1− ξ′)+
+

1

2
ξ′(1− ξ′)

] [
e−iξ′k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′
⊥

r′2⊥

]}
. (78)

Again, by choosing µ = c0/r⊥ for the factorization scale, we can further simplify H(1)
2gg and obtain H(1)

2gg =

−
(

11
3 − 4NfTR

3Nc

)
Ncδ(1− ξ)e−ik⊥·r⊥ ln

c20
r2
⊥
k2
⊥

.

C. The quark to gluon channel q → g

This channel is relatively simpler than the q → q channel for two reasons: first, there is no virtual graphs; second,
there is no rapidity divergence in the real contributions since the lower limit of the gluon longitudinal momentum is
bounded by the hadron longitudinal momentum. It is quite straightforward to write down the cross section for this
process by integrating out the phase space of the final state quark (k+2 , k2⊥) in Eq.(11). Then, we can transform the
cross section into momentum space and take the large Nc limit. In the end, we obtain

dσ
pA→h/g+X
NLO

d2p⊥dy
=
αsNc

4π2

∫ 1

τ

dz

z2
Dh/g(z)

∫ 1

τ/z

dξ

ξ
xq(x)

[
1 + (1− ξ)2

]

×
∫
d2q1⊥d

2q2⊥G(q1⊥, q2⊥)
∣∣∣∣
k⊥ − q1⊥ − q2⊥

(k⊥ − q1⊥ − q2⊥)2
− k⊥ − ξq2⊥

(k⊥ − ξq2⊥)2

∣∣∣∣
2

, (79)

where we have defined ξ to be the longitudinal momentum fraction of the gluon with respect to the initial quark.
The production of small-x gluon in pA collisions has been studied quite some time ago in Ref. [41]. We find com-
plete agreement between our calculation and the partonic results in Eqs (56-58) of Ref. [41] if we remove the gluon

fragmentation function and the quark distribution, and take the limit ξ → 0 with dy = dξ
ξ .

Following the same procedure, we remove the collinear singularities as follows

g(x, µ) = g(0)(x) − 1

ǫ̂

αs(µ)

2π

∫ 1

x

dξ

ξ
CFPgq(ξ)q

(
x

ξ

)
, (80)

Dh/q(z, µ) = D
(0)
h/q(z)−

1

ǫ̂

αs(µ)

2π

∫ 1

z

dξ

ξ
CFPgq(ξ)Dh/g

(
z

ξ

)
, (81)

where we renormalize the gluon distribution and quark fragmentation function in this off-diagonal channel. Here we
have defined Pgq(ξ) =

1
ξ

[
1 + (1− ξ)2

]
and substituted Nc

2 by CF since they are equal in the large Nc limit.

Therefore, we find the factorized cross section in this channel can be written as

d3σp+A→h/g+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxq(x, µ)Dh/g(z, µ)

×αs

2π

{∫
d2x⊥d

2y⊥
(2π)2

S
(2)
Y (x⊥, y⊥)

[
H(1,1)

2gq + S
(2)
Y (y⊥, x⊥)H(1,2)

2gq

]

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(4)
Y (x⊥, b⊥, y⊥) H(1)

4gq

}
. (82)
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By defining W (k1⊥, k2⊥) = e−ik1⊥·(x⊥−y⊥)−ik2⊥·(y⊥−b⊥), we find

H(1,1)
2gq =

Nc

2

1

ξ2
e−i

k
⊥

ξ
·r⊥Pgq (ξ) ln

c20
r2⊥µ

2
, H(1,2)

2gq =
Nc

2
e−ik⊥·r⊥Pgq (ξ) ln

c20
r2⊥µ

2
,

H(1)
4gq = −4πNcW

(
k⊥
ξ
, k⊥

)
Pgq (ξ)

1

ξ

x⊥ − y⊥

(x⊥ − y⊥)
2 · b⊥ − y⊥

(b⊥ − y⊥)
2 . (83)

We can also choose µ = c0/r⊥ for the factorization scale which yields H(1,1)
2gq = H(1,2)

2gq = 0.

D. The gluon channel g → q

To complete the calculation for all the channels, we should compute the g → qq̄, although it is suppressed by a
factor of 1

Nc
. For the gluon channel g → qq̄, we can start from Eq. (88) of Ref. [32], which allows us to obtain

dσ
pA→h/qX
NLO

d2k⊥dy
=

αs

2π2
TR

∫ 1

τ

dz

z2
Dh/q(z)

∫ 1

τ/z

dξxg(x)
[
(1− ξ)

2
+ ξ2

]

×
∫
d2q1⊥d

2q2⊥G(q1⊥, q2⊥)
∣∣∣∣
k⊥ − ξq1⊥ − ξq2⊥

(k⊥ − ξq1⊥ − ξq2⊥)2
− k⊥ − q2⊥

(k⊥ − q2⊥)2

∣∣∣∣
2

. (84)

Following the above procedure, we remove the collinear singularities as follows

q(x, µ) = q(0)(x) − 1

ǫ̂

αs(µ)

2π

∫ 1

x

dξ

ξ
TRPqg(ξ)g

(
x

ξ

)
, (85)

Dh/g(z, µ) = D
(0)
h/g(z)−

1

ǫ̂

αs(µ)

2π

∫ 1

z

dξ

ξ
TRPqg(ξ)Dh/q

(
z

ξ

)
, (86)

where we renormalize the quark distribution and gluon fragmentation function in this off-diagonal channel. Here

Pqg(ξ) =
[
(1− ξ)2 + ξ2

]
. In the end, the factorization formula for the cross section is

d3σp+A→h/q+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξxg(x, µ)Dh/q(z, µ)

×αs

2π

{∫
d2x⊥d

2y⊥
(2π)2

S
(2)
Y (x⊥, y⊥)

[
H(1,1)

2qg + S
(2)
Y (x⊥, y⊥)H(1,2)

2qg

]

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(4)
Y (x⊥, b⊥, y⊥) H(1)

4qg

}
, (87)

with8

H(1,1)
2qg =

1

2
e−ik⊥·r⊥Pqg (ξ)

[
ln

c20
r2⊥µ

2
− 1

]
, H(1,2)

2qg =
1

2

1

ξ2
e−i

k
⊥

ξ
·r⊥Pqg (ξ)

[
ln

c20
r2⊥µ

2
− 1

]
,

H(1)
4qg = −4πW

(
k⊥,

k⊥
ξ

)
Pqg (ξ)

1

ξ

x⊥ − y⊥

(x⊥ − y⊥)
2 · b⊥ − y⊥

(b⊥ − y⊥)
2 . (88)

IV. CONCLUSION

In summary, we have calculated the NLO correction to inclusive hadron production in pA collisions in the small-x
saturation formalism. The collinear divergences are shown to be factorized into the splittings of the parton distribution
from the incoming nucleon and the fragmentation function for the final state hadron. As we have shown above, the

8 In the dimensional regularization, the most common convention for the gluon spin average is to use 1
2(1−ǫ)

= 1
2
(1 + ǫ+ · · · ). The term

which is proportional to ǫ can combine with the 1
ǫ
pole terms and give a finite contribution as seen in the second term in the square

brackets in H(1,1)
2qg and H(1,2)

2qg .
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renormalization of the parton distributions of the proton and fragmentation functions follow the well-known DGLAP
equation

(
q (x, µ)
g (x, µ)

)
=

(
q(0) (x)
g(0) (x)

)
− 1

ǫ̂

α (µ)

2π

∫ 1

x

dξ

ξ

(
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

)(
q (x/ξ)
g (x/ξ)

)
, (89)

and

(
Dh/q (z, µ)
Dh/g (z, µ)

)
=

(
D

(0)
h/q (z)

D
(0)
h/g (z)

)
− 1

ǫ̂

α (µ)

2π

∫ 1

z

dξ

ξ

(
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

)(
Dh/q (z/ξ)
Dh/g (z/ξ)

)
, (90)

respectively. The rapidity divergence at one-loop order is factorized into the BK evolution in either fundamental
representation or adjoint representation for the dipole gluon distribution of the nucleus. The hard coefficients are
calculated up to one-loop order without taking the large Nc limit for the quark q → q channel. For some technical
reasons, especially avoiding the sextupoles, as we have explained during the derivation, we take the large Nc limit
for other channels. In principle, using these hard coefficients together with the NLO parton distributions and frag-
mentation functions as well as the NLO small-x evolution equation[42, 43] for dipole amplitudes, one can obtain the
complete NLO cross section of the inclusive hadron production in pA collisions in the large Nc limit. The corrections
to this NLO order cross section are either of order α2

s or suppressed by 1
N2

c
. As to the running coupling effects [44] in

our hybrid factorization formalism, we have no αs dependence at the leading order (αs has been absorbed into the def-
inition of the saturation momentum), and one power of αs at the NLO, thus we find that the one-loop approximation
for the running coupling should be sufficient.
We have shown that the differential cross section for inclusive hadron productions in pA collisions can be written

in a factorization form in the coordinate space. The factorization scale dependence in the hard coefficients reflects
the DGLAP evolutions for the quark distributions and fragmentation functions. It is interesting to note that similar
coordinate dependence (associated with r⊥) has also been found in the transverse momentum resummation formalism
derived for the Drell-Yan lepton pair production in Ref. [45]. On the other hand, the hard coefficients in our case do
not contain double logarithms, therefore there is no need for the Sudakov resummation for forward inclusive hadron
production in pA collisions.
Adding all the channels together in the large Nc limit gives

d3σp+A→h+X

dyd2p⊥
=

∫
dz

z2
dx

x
ξ [xq(x, µ), xg(x, µ)]

[
Sqq Sqg

Sgq Sgg

] [
Dh/q (z, µ)
Dh/g (z, µ)

]
, (91)

with factorization scale chosen as µ = c0/r⊥ and

Sqq =

∫
d2x⊥d

2y⊥
(2π)2

S
(2)
Y (x⊥, y⊥)e

−ik⊥·r⊥δ(1 − ξ)

[
1− αs

2π
3CF ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq , (92)

Sqg =
αs

2π

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(4)
Y (x⊥, b⊥, y⊥)H(1)

4gq , (93)

Sgq =
αs

2π

∫
d2x⊥d

2y⊥
(2π)2

S
(2)
Y (x⊥, y⊥)

[
H(1,1)

2qg + S
(2)
Y (x⊥, y⊥)H(1,2)

2qg

]

+
αs

2π

∫
d2x⊥d

2y⊥d
2b⊥

(2π)4
S
(4)
Y (x⊥, b⊥, y⊥)H(1)

4qg , (94)

Sgg =

∫
d2x⊥d

2y⊥

(2π)
2 S

(2)
Y (x⊥, y⊥)S

(2)
Y (y⊥, x⊥)e

−ik⊥·r⊥δ(1− ξ)

[
1− αs

2π
Nc

(
11

3
− 4NfTR

3Nc

)
ln

c20
r2⊥k

2
⊥

]

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)
4 S

(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)

αs

2π
H(1)

2qq̄

+

∫
d2x⊥d

2y⊥d
2b⊥

(2π)
4 S

(2)
Y (x⊥, b⊥)S

(2)
Y (b⊥, y⊥)S

(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg , (95)

where all the hard factors are defined in previous section. Since now the factorization scale µ depends on r⊥, the parton
distributions and fragmentations function should change accordingly when we integrate over all the coordinates. In
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other words, the above expression should be understood as if the parton distributions and fragmentation functions
are written inside those coordinate integrals.

In addition, we have also demonstrated that all the hard factors can be calculated easily in the well-known MV and
GBW model and shown that our results agree with the collinear factorization results in the dilute limit.
In the above calculations, we focus on the hadron production in the forward pA collisions, where we can safely neglect

the transverse momentum effects from the incoming parton distributions of the nucleon. The explicit calculations at
one-loop order in the above also support this factorization, i.e., the collinear divergence associated with the incoming
parton distribution from the nucleon does not contain the transverse momentum dependence. The situation may
change if we have both small-x effects from nucleon and nucleus, such as in the mid-rapidity in pA collisions at the
LHC, when the transverse momentum effects from the gluon distribution of nucleon become important. It is in this
region that a naive k⊥-factorization has been derived [2, 4] and has been widely used in the literature. It will be
interesting to extend our calculations to this kinematics too. We leave this for a future publication.
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