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Studying the substructure of jets has become a powerful tool for event discrimination and for
studying QCD. Typically, jet substructure studies rely on Monte Carlo simulation for vetting their
usefulness; however, when possible, it is also important to compute observables with analytic meth-
ods. Here, we present a global next-to-leading-log resummation of the angular correlation function
which measures the contribution to the mass of a jet from constituents that are within an angle R
with respect to one another. For a scale-invariant jet, the angular correlation function should scale
as a power of R. Deviations from this behavior can be traced to the breaking of scale invariance
in QCD. To do the resummation, we use soft-collinear effective theory relying on the recent proof
of factorization of jet observables at e+e− colliders. Non-trivial requirements of factorization of
the angular correlation function are discussed. The calculation is compared to Monte Carlo parton
shower and next-to-leading order results. The different calculations are important in distinct phase
space regions and exhibit that jets in QCD are, to very good approximation, scale invariant over a
wide dynamical range.
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I. INTRODUCTION

The current success of the Large Hadron Collider (LHC), its high center of mass energies, its significant delivered
integrated luminosity and its high-precision experiments has ushered in a new era of particle physics. Particles and
jets with significant transverse boosts are now being copiously produced. An entire field of studying the substructure
of highly boosted jets has grown up out of the study of these objects and many methods have been proposed to study
QCD. In addition, procedures for discriminating QCD jets from jets initiated by heavy particle decays have been
introduced and new measurements of these methods are being completed [1, 2]. To understand these methods in
detail, most analyses have relied on Monte Carlo simulation as the basis of study. However, Monte Carlo simulations
have limitations, and, where possible, it is vital to also compute the observables to higher orders in QCD so as to
have another handle on their behavior.

An important contribution to this effort of computing jet observables is resummation of large logarithms that arise
in fixed-order perturbation theory. Jets are objects that are typically dominated by soft or collinear emissions and so it
is necessary to resum the logarithms that exist for an accurate prediction of an observable. Very recently, groups have
computed resummed contributions to light jet masses at hadron colliders [3] and N-subjettiness [4, 5] in color-singlet
jets at the LHC [6]. Ref. [6] in particular relied on the factorization of color singlet processes at hadron colliders
to reinterpret results from e+e− colliders. Computing the resummed contribution to generic observables at hadron
colliders is made more difficult by the color flow throughout the collision which can destroy factorization. To avoid
discussion of these issues, here we will only consider jet observables at e+e− colliders. In this paper, we will discuss
the resummation of the angular correlation function introduced in [7] using soft collinear effective theory (SCET)
[8–11].

The angular correlation function G(R) was defined in [7] as

G(R) =
∑

i 6=j

p⊥ip⊥j∆R
2
ijΘ(R−∆Rij) , (1)

for studying the substructure of jets at the LHC. ∆Rij is the boost-invariant angle between particles i and j, the
sum runs over all constituents of a jet and Θ is the Heaviside theta function. The angular correlation function has
distinct properties for scaleless jets versus jets with at least one heavy mass scale. In particular, any structure in the
angular correlation function should be distributed roughly as RD, where D is a constant, for a scaleless jet. It was
shown that by exploiting the different behavior of the angular distribution of hard structure in QCD jets versus jets
initiated by heavy particle decay, an efficient tagging algorithm could be defined.

Ref. [12] continued studying the properties of the angular correlation function, focusing on average properties of
QCD jets. It was shown through simple calculations that, for QCD jets, the angular correlation function averaged
over an ensemble of jets should approximately scale as

〈G(R)〉 ' R2 , (2)

where the angle brackets are defined by

〈G(R)〉 =
1

Njets

Njets∑

i=1

G(R)i . (3)

Deviations from R2 are due to the running coupling and higher order effects. The introduction of an ensemble averaged
angular correlation function allows for a rigorous definition of the dimension of a QCD jet which is also infrared and
collinear (IRC) safe. This dimension is defined to be the average angular structure function 〈∆G〉 and is the power
to which the average angular correlation function scales with R:

〈∆G(R)〉 ≡ d log〈G(R)〉
d logR

. (4)

For QCD jets, 〈∆G〉 ∼ 2. In [12], it was also shown that the scaling of non-perturbative physics in R is distinctly
different, and this was used to determine the average energy density of the underlying event.

Here, we will continue the work of [12] and compute the average angular structure function by resummation within
the context of SCET. Our analysis is only truly appropriate at e+e− colliders, but we expect that the largest effect
in going to hadron colliders is the contribution of the underlying event. For this calculation, we introduce generalized
correlation functions Gα(R) parametrized by an index α:

Gα(R) =
1

2E2
J

∑

i 6=j

EiEj sin θij tanα−1
θij
2

Θ(R− θij) (5)
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The form of the angular correlation function is similar to jet angularity [13, 14] and close in form and spirit to an
event shape introduced in [15]. However, for our purposes here, we choose to index the parameter α such that the
angular correlation function is IRC safe for all α > 0. In the small angle limit, this reduces to Eq. 1 with α = 2 (up to
normalization). The parameter α allows for a study of the behavior of the angular correlation function with angular
scales weighted differently. Analogously to the angular structure function, we define a generalized average angular
structure function

〈∆Gα〉 ≡
d log〈Gα〉
d logR

. (6)

The calculation and interpretation of average angular structure function will be the focus of this paper.
In Sec. II, we discuss the factorization of jet observables in SCET and the computation of the angular correlation

function including global next-to-leading-log (NLL) contributions for jets defined by a kT -type algorithm [16, 17]. The
existence of a factorization theorem for the angular correlation function is non-trivial. We will discuss the consistency
conditions that the angular correlation function satisfies for factorization. We will also briefly discuss how the results
obtained here can be used in a calculation of the angular correlation function at the LHC. In Sec. III we compare the
SCET calculation to a next-to-leading-order (NLO) calculation of the angular correlation function. Resummation and
fixed-order corrections affect different parts of distributions and so the differences between the resummed calculation
and the fixed-order result give some sense as to the importance of these effects. This analysis leads to Sec. IV, were
we present a comparison between the SCET calculation and the output of parton shower Monte Carlo. We observe
significant differences between SCET and Monte Carlo, but higher fixed order effects are substantial. We discuss
some of the uncertainties in the parton shower studying the effect of the evolution variable on the value of the angular
structure function. Finally, we present our conclusions in Sec. V.

II. SCET CALCULATION

SCET is an effective theory of QCD in which all modes of QCD are integrated out except those corresponding to
soft or collinear modes. Collinear and soft modes are defined by their scaling with power counting parameter λ:

collinear ∼ (λ2, 1, λ) ,

soft ∼ (λ2, λ2, λ2) ,

which is the scaling of the +, − and transverse components of the momenta, respectively. λ is a parameter that
is defined for a particular process or observable; for example, for computing the distribution of jet masses, λ ∼
mJ/p⊥J � 1. The fact that λ � 1 allows for a systematic expansion in powers of λ. Higher order terms in λ are
power suppressed (much like the subleading terms in the twist expansion).

For an event shape observable O that factorizes, the cross section can be written in the schematic form:

dσ

dO = H(µ)

[∏

ni

Jni(O;µ)

]
⊗ S(O;µ) , (7)

where H(µ) is the hard function, which matches the full QCD result at a scale µ, J(µ;ni,O) is the jet function for
the contribution to the observable O from ni-collinear modes and S(µ;O) is the soft function for the contribution to
the observable O from the soft modes. ⊗ represents a convolution between the jet and soft functions. All functions
depend on the factorization scale µ.

Factorization of jet observables in SCET was first exhibited in [18, 19]. Ref. [19] computed individual jet angularities
to NLL in e+e− collisions. It was shown that factorization of the cross section for jet observables in e+e− → N jets
has the form

dσ

dO1 · · · dOM
= H(n1, . . . , nN ;µ)

[
M∏

i=1

Jni(Oi;µ)

]
⊗ Sn1···nN (O1, . . . ,OM ;µ)

N∏

j=M+1

J(µ) , (8)

where M ≤ N of the jet observables Oi have been measured. Jet directions are denoted by ni and J(Oi;µ) is the jet
function for a jet in which the observable Oi has been measured and J(µ) is a jet function for a jet which has not been
measured. We will refer to these as the measured and unmeasured jet functions, respectively. A similar nomenclature
will be used for the soft functions. Jet algorithm dependence and jet energies have been suppressed. An important
point from [19] is that factorization requires that the jets be well-separated; namely, that

tij =
tan

ψij
2

tan R0

2

� 1 , (9)
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where ψij the is angle between any pair of jets i, j and R0 is the jet algorithm radius. We will assume that this condition
is met in the following and leave any discussion of subtleties to [19]. A non-trivial requirement of the factorization
is the independence of the cross section on the factorization scale µ. This requirement leads to a constraint that the
sum of the anomalous dimensions of the hard, jet and soft functions is zero. We will show that this holds for the
angular correlation function.

We will use the results of the factorization theorem proven in [18, 19] to compute the distribution of the angular
correlation function from Eq. 5. In particular, we are interested in the ensemble average of the angular structure
function as defined in Eq. 6. Note that this observable is independent of any normalization factor of the angular
correlation function; thus, with the goal of computing the average angular structure function, it is consistent to ignore
factors that are independent of Gα and the angular resolution parameter R. Thus, for the purposes of this paper, we
can ignore the overall factors in the factorized form of the cross section of the hard function and the unmeasured jet
functions. In this case, the factorized form of the cross section becomes

dσ

dGα1 · · · dGαM
= C(µ)

[
M∏

i=1

Jni(Gαi;µ)

]
⊗ Sn1···nN (Gα1, . . . ,GαM ;µ) , (10)

where C(µ) is independent of Gα and the resolution parameter R.
In this section, we present a calculation of the jet and soft functions for the angular correlation function for jets

defined by a kT algorithm. We first argue that the angular correlation function is computable in SCET and relate
its form at NLO to the form of jet angularity at NLO. This comparison will allow us to relate the calculation of the
angular correlation function to the work in [19]. We then present a calculation of the measured jet and soft functions
of the angular correlation function. From these results, we can determine the anomalous dimensions of the jet and
soft functions and will show the consistency of the factorization relies on a non-trivial cancellation of dependence on
the angular resolution R between the jet and soft functions. We can then resum up to the next-to-leading logs of the
jet and soft functions by the renormalization group. Note that we do not attempt to resum non-global logs [20] that
arise due to the non-trivial phase space constraints of the jet algorithm or the angular correlation function. From
the resummed expression of the angular correlation function, we find the ensemble average and compute the average
angular structure function numerically.

It should be stressed that non-global logarithms are ignored in this study. The angular correlation function for a
jet requires several phase space constraints; the jet algorithm, soft jet vetoes, the resolution parameter R, etc. These
provide numerous sources for non-global logarithms which cannot be resummed analytically. The study of non-global
logarithms in QCD cross sections is a subtle and evolving story. For recent work in this direction, especially in the
context of non-global logarithms from jet clustering see, for example, [21–26]. It is outside the scope of this paper to
discuss non-global logarithms further.

A. Factorization of the Angular Correlation Function

Factorization of jet observables requires that soft modes only resolve the entire jet and not individual collinear
modes contributing to the jet. Angularity τa is a one-parameter family of observables defined as [13, 14]

τa =
1

2EJ

∑

i∈J
e−ηi(1−a)p⊥i , (11)

where J is the jet, p⊥i is the momentum of particle i transverse to the jet axis and ηi is the rapidity of particle i with
respect to the jet axis:

ηi = − log tan
θi
2
. (12)

Angularity is IRC safe for a < 2. The separation of soft and collinear modes in angularity is simple to show. To
leading power in λ,

τa =
1

2EJ

∑

C∈J
e−ηC(1−a)p⊥C +

1

2EJ

∑

S∈J
e−ηS(1−a)p⊥S

= τCa + τSa , (13)

where C and S represent the collinear and soft modes, respectively. Note that the soft modes do not affect the
location of the jet center to leading power in λ. Factorization of angularities exists only for a < 1 due to the presence



5

of logarithms of rapidity; however, recently it was shown that these logarithms can be controlled [27, 28]. We will
show that angularity and the angular correlation function have similarities which will allow us to use many of the
results from [19] here.

To justify the use of SCET for computing the angular correlation function, we must first show that the angular
correlation function does not mix soft and collinear modes. This argument was presented in [12] (based on arguments
from [29]), but we present it here for completeness. In terms of soft and collinear modes, the angular correlation
function can be expressed as

Gα(R) =
1

2E2
J

∑

i 6=j

EiEj sin θij tanα−1
θij
2

Θ(R− θij)

=
1

2E2
J

∑

i,j∈C
EiEj sin θij tanα−1

θij
2

Θ(R− θij)

+
1

2E2
J

∑

i,j∈S
EiEj sin θij tanα−1

θij
2

Θ(R− θij)

+
1

2E2
J

∑

C,S

ECES sin θCS tanα−1
θCS

2
Θ(R− θCS) . (14)

Note that, to NLO, there is no soft-soft correlation contribution to the angular correlation function because such a
term would require the radiation of two soft gluons which first occurs at NNLO. To accuracy of the leading power in
λ, we can exchange the collinear modes with the jet itself in the collinear-soft term. Explicitly,

θCS = θJS +O(λ) , (15)

as the angle of the soft modes with respect to the jet center scales as θJS ∼ 1. Appropriate for NLO or NLL, the
angular correlation function can be written as

Gα(R) =
1

2E2
J

∑

i,j∈C
EiEj sin θij tanα−1

θij
2

Θ(R− θij)

+
1

2EJ

∑

S

ES sin θJS tanα−1
θJS
2

Θ(R− θJS) . (16)

Thus, the collinear and soft modes are decoupled to leading power and so the angular correlation function is factor-
izable, and hence computable, in SCET.

To NLO, a jet is composed of at most two particles, so the form of many observables simplifies substantially at this
order. The form of the angular correlation function from Eq. 5 was chosen so as to be similar in form to angularity. The
contribution to the angularity and the angular correlation function from collinear modes is distinct. The measured
jet functions will need to be recomputed for the angular correlation function. However, the contributions to the
angularity and the angular correlation function from soft modes are simply related:

GSα (R) =
ES
2EJ

sin θJS tanα−1
θJS
2

Θ(R− θJS) = τS2−αΘ(R− θJS) . (17)

This observation will allow us to recycle the soft function calculation for angularity for the angular correlation function.
An important point to note here is that the scaling of the angle between collinear modes i and j goes like θij ∼ λ.

Thus, to leading power, the angular correlation function for the collinear-collinear contribution can be written as

GCCα =
1

2E2
J

∑

i,j∈C
EiEj sin θij tanα−1

θij
2

Θ(R− θij)

=
1

E2
J

∑

i,j∈C
EiEj tanα

θij
2

Θ(R− θij) . (18)

We will use this form of the collinear-collinear contribution to the angular correlation function for computing the
measured jet functions.

Throughout this paper, we will only consider jets with a single collinear sector. Small values of the angular
correlation function are not enough to guarantee that the jet has only a single collinear sector, however, we believe
that contributions from multiple collinear sectors is subdominant. Our reasoning is as follows. First, at large values of
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R ∼ R0, the angular correlation function is essentially an angular-weighted jet mass measure. In this case, additional
collinear sectors would be correlated increasing the value of the angular correlation function substantially. At small
R, there are two options: either collinear sectors are still correlated or they are uncorrelated. If the collinear sectors
are still correlated at small R (they are within an angle R of one another), then logarithms of this angle will appear.
However, the logarithms of the angle between the separate collinear modes should be subdominant to the logarithms
of the resolution parameter of the angular correlation function, R. We do not attempt to resum the latter logarithms
in this paper. If the collinear sectors are uncorrelated and separated by an angle larger than R, then the jet effectively
breaks up into several smaller jets each with similar scaling properties as R → 0. In sum, we expect the effect of
additional collinear sectors to be significantly subdominant so as to be consistently ignored in this study. We believe
the absence of fixed-order terms is a more important omission.

B. Measured Jet Functions

The leading power contribution to the measured jet functions at NLO comes from two collinear particles which are
clustered in the jet and can be computed from cutting one-loop SCET diagrams. The phase space integrals can be
extended over the entire range of momentum for the collinear particles in the jet as long as the contribution from the
zero momentum bin is subtracted [30]. In particular, we consider a jet with light cone momentum l = (l+, ω, 0) which
splits to two collinear particles with light cone momenta q = (q+, q−,q⊥) and l − q = (l+ − q+, ω − q−,−q⊥). The
zero-bin subtraction term can be determined from the measured jet function by taking the scaling q ∼ λ2. We will
refer to contribution to the jet function that does not include the zero-bin subtraction as the näıve contribution.

To compute the measured jet function, we will need to enforce phase space cuts from the jet algorithm and the
observable. We will compute the jet function for a kT -type jet algorithm as defined by a jet radius R0. At NLO, all
kT algorithms are the same and two particles are clustered in the jet if their angular separation is less than R0. This
leads to the phase space constraint

ΘkT = Θ

(
cosR0 −

q · (l− q)

|q|
√

(l− q)2

)
= Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)
, (19)

where on the right, the leading scaling behavior was kept. The jet algorithm constraint for the zero-bin subtraction
term is then

Θ
(0)
kT

= Θ

(
tan2 R0

2
− q+

q−

)
. (20)

The phase space constraints for the angular correlation function are more subtle. The δ-function which constrains
a jet to have angular correlation function Gα, δR = δ(Gα − Ĝα), is

δR = δ

(
Gα − ωα−2(ω − q−)1−α(q−)1−α/2(q+)α/2Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

))
, (21)

where R is the resolution parameter of the angular correlation function. For a kT -type jet at NLO, the angular
correlation function vanishes if R > R0; thus, we will assume that R < R0 in the following. This δ-function can be
decomposed depending on the value of Θ-function as

δR = δ

(
Gα − ωα−2(ω − q−)1−α(q−)1−α/2(q+)α/2Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

))

= δ
(
Gα − ωα−2(ω − q−)1−α(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Gα) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)
. (22)

The δ-function for the zero-bin subtraction term is found by taking q ∼ λ2:

δ
(0)
R = δ

(
Gα − ω−1(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+

q−

)
+ δ (Gα) Θ

(
q+

q−
− tan2 R

2

)
. (23)
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(B)(A) (D)(C)(A) (A)

Figure 4: Diagrams contributing to the quark jet function. (A) and (B) Wilson line emission

diagrams; (C) and (D) QCD-like diagrams. The momentum assignments are the same as in Fig. 3.

The zero bin of particle 2 is given by the replacement q ! l � q.

For all the jet algorithms we consider, the zero-bin subtractions of the unmeasured jet

functions are scaleless integrals.12 However, for the measured jet functions, the zero-bin

subtractions give nonzero contributions that are needed for the consistency of the e↵ective

theory.

In the case of a measured jet, in addition to the phase space restrictions we also demand

that the jet contributes to the angularity by an amount ⌧a with the use of the delta function

�R = �(⌧a � ⌧̂a), which is given in terms of q and l by

�R ⌘ �R(q, l+) = �

✓
⌧a �

1

!
(! � q�)a/2(l+ � q+)1�a/2 � 1

!
(q�)a/2(q+)1�a/2

◆
. (4.4)

In the zero-bin subtraction of particle 1, the on-shell conditions can be used to write the

corresponding zero-bin �-function as

�
(0)
R = �

✓
⌧a �

1

!
(q�)a/2(q+)1�a/2

◆
, (4.5)

(and for particle 2 with q ! l � q).

4.2 Quark Jet Function

The diagrams corresponding to the quark jet function are shown in Fig. 4. The fully

inclusive quark jet function is defined as

Z
d4x eil·x h0|�a↵

n,!(x)�̄b�
n,!(0) |0i ⌘ �ab

✓
n/

2

◆↵�
Jq
!(l+) , (4.6)

and has been computed to NLO (see, e.g., [75, 76]) and to NNLO [77]. Below we compute

the quark jet function at NLO with phase space cuts for the jet algorithm for both the

measured jet, Jq
!(⌧a), and the unmeasured jet, Jq

!. As discussed above, we will find that

the only nonzero contributions come from cuts through the loop when both cut particles

are inside the jet.

12Note that algorithms do exist that give nonzero zero-bin contributions to unmeasured jet functions [32].

– 32 –

FIG. 1. SCET Feynman diagrams contributing to the quark jet function.

1. Measured Quark Jet Function

The näıve contribution to the measured quark jet function can be computed in dimensional regularization from the
diagrams shown in Fig. 1:

J̃qω(Gα) = g2µ2εCF

∫
dl+

2π

1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q+
ω − q−

)

×2πδ
(
q+q− − q2⊥

)
Θ(q−)Θ(q+)2πδ

(
l+ − q+ − q2⊥

ω − q−
)

×Θ(ω − q−)Θ(l+ − q+)Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)

×
[
δ
(
Gα − ωα−2(ω − q−)1−α(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Gα) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)]
. (24)

We take d = 4−2ε. The coefficient to the δ(Gα) term can be found by integrating over Gα. The terms that remain are
+-distributions, which integrate to zero. The zero-bin subtraction term follows from taking the scaling limit q ∼ λ2

of the näıve jet function above:

Jq(0)ω (Gα) = 4g2µ2εCF

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

q−
2πδ

(
q+q− − q2⊥

)
Θ(q−)Θ(q+)

×2πδ
(
l+ − q+

)
Θ(l+ − q+)Θ

(
tan2 R0

2
− q+

q−

)

×
[
δ
(
Gα − ω−1(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+

q−

)

+ δ (Gα) Θ

(
q+

q−
− tan2 R

2

)]
. (25)

The term proportional to δ(Gα) is scaleless and integrates to zero in pure dimensional regulation.

Employing a MS scheme, we find the measured quark jet function for kT -type jet algorithms of Gα to be

Jqω(Gα) = J̃qω(Gα)− Jq(0)ω (Gα) =
αsCF

2π

[(
α

α− 1

1

ε2
+

3

2

1

ε
+

α

α− 1

log µ2

ω2

ε
+

1

ε
log

tan2 R
2

tan2 R0

2

)
δ(Gα)

− 2

α− 1

1

ε

(
Θ(Gα)

Gα

)

+

]
+ Jqω(Gα, ε0) , (26)

where Jqω(Gα, ε0) consists of terms that are finite as ε→ 0. These terms are presented in Appendix A. The definition
of the +-distribution is also given in Appendix A. Note that the 1/ε terms for the angular correlation function are the
same as those for angularity from [19] with α→ 2− a plus an additional term of the logarithm of the ratio of scales;
the resolution scale R and the jet radius R0. This term contributes to the anomalous dimension of the jet function.
In principle, these logarithms could be attempted to be resummed. However, note that the resolution scale R can
never practically be parametrically smaller than the jet radius R0, so these logarithms never become large. Thus, we
will not worry about resumming these logarithms.
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Figure 5: Diagrams contributing to the gluon jet function. (A) sunset and (B) tadpole gluon

loops; (C) ghost loop; (D) sunset and (E) tadpole collinear quark loops; (F) and (G) Wilson line

emission loops. Diagrams (F) and (G) each have mirror diagrams (not shown). The momentum

assignments are the same as in Fig. 3.

Without inserting any additional constraints, this integral is scaleless and zero in dimen-

sional regularization. Therefore, in the absence of phase-space restrictions, the näıve inte-

gral Eq. (4.19) gives the standard (inclusive) gluon jet function

Jg
!(l+)

2⇡!
=
↵s

4⇡
µ2✏(!l+)�1�✏


TRNf

✓
4

3
+

20

9
✏

◆
� CA

✓
4

✏
+

11

3
+

✓
67

9
� ⇡2

◆
✏

◆�
, (4.21)

in the MS scheme. The measured and unmeasured jet functions are obtained by inserting

⇥alg�R and ⇥alg, respectively, into Eqs. (4.19) and (4.20).

4.3.1 Measured Gluon Jet

The naive contribution to the measured gluon jet can be written as

J̃g
!(⌧a) =

↵s

2⇡

1

�(1 � ✏)

✓
4⇡µ2

!2

◆✏
1

1 � a
2

✓
1

⌧a

◆1+ 2✏
2�a
Z 1

0
dx (xa�1 + (1 � x)a�1)

2✏
2�a (4.22)

⇥

TRNf

✓
1 � 2

1 � ✏
x(1 � x)

◆
� CA

✓
2 � 1

x(1 � x)
� x(1 � x)

◆�
⇥alg(x) ,

where x ⌘ q�/!. This gives

J̃g
!(⌧a) =

↵s

2⇡

1

�(1 � ✏)

 
4⇡µ2

!2 tan2 R
2

!✏
�(⌧a)

"
CA

✓
1

✏2
+

11

6

1

✏

◆
� 2

3✏
TRNf

#
+
↵s

2⇡
J̃g

alg(⌧a) ,

(4.23)

where, as for the quark jet function, the finite distributions J̃g
alg(⌧a) di↵er among the

algorithms we consider. They are given in Appendix A.

The zero-bin result is

Jg(0)
! (⌧a) =

↵sCA

⇡

1

�(1 � ✏)

 
4⇡µ2 tan2(1�a) R

2

!2

!✏✓
1

⌧a

◆1+2✏ 1

(1 � a)✏
. (4.24)

– 36 –

FIG. 2. SCET Feynman diagrams contributing to the gluon jet function. Diagrams (F) and (G) have mirrored counterparts
which are not shown.

2. Measured Gluon Jet Function

The näıve contribution to the measured gluon jet function can be computed from the diagrams shown in Fig. 2:

J̃gω(Gα) = 2g2µ2ε

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

ω − q− 2πδ
(
q+q− − q2⊥

)
2πδ

(
l+ − q+ − q2⊥

ω − q−
)

×
{
nFTR

(
1− 2

1− ε
q+q−

ωl+

)
− CA

(
2− ω

q−
− ω

ω − q− −
q+q−

ωl+

)}

×Θ(q−)Θ(q+)Θ(ω − q−)Θ(l+ − q+)Θ

(
tan2 R0

2
− q+ω2

q−(ω − q−)2

)

×
[
δ
(
Gα − ωα−2(ω − q−)1−α(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+ω2

q−(ω − q−)2

)

+ δ (Gα) Θ

(
q+ω2

q−(ω − q−)2
− tan2 R

2

)]
. (27)

The coefficient of the δ(Gα) term can be found by integrating over Gα. The terms that remain are +-distributions,
which integrate to zero. The zero-bin subtraction term follows from taking the scaling limit l − q ∼ q ∼ λ2 of the
näıve jet function above:

Jg(0)ω (Gα) = 4g2µ2εCA

∫
dl+

2π

1

l+

∫
ddq

(2π)d
1

q−
2πδ

(
q+q− − q2⊥

)
Θ(q−)Θ(q+)

×2πδ
(
l+ − q+

)
Θ(l+ − q+)Θ

(
tan2 R0

2
− q+

q−

)

×
[
δ
(
Gα − ω−1(q−)1−α/2(q+)α/2

)
Θ

(
tan2 R

2
− q+

q−

)

+ δ (Gα) Θ

(
q+

q−
− tan2 R

2

)]
. (28)

The term proportional to δ(Gα) integrates to zero in pure dimensional regulation. This zero-bin subtraction term is
exactly the same up to color factors as the quark jet function zero-bin subtraction.

Employing a MS scheme, we find the measured gluon jet function for the kT -type jet algorithms of Gα to be

Jgω(Gα) = J̃gω(Gα)− Jg(0)ω (Gα) =
αs
2π

[(
CA

α

α− 1

1

ε2
+
β0
2ε

+ CA
α

α− 1

log µ2

ω2

ε

+
CA
ε

log
tan2 R

2

tan2 R0

2

)
δ(Gα)− 2CA

ε(α− 1)

(
Θ(Gα)

Gα

)

+

]

+ Jgω(Gα, ε0) , (29)

where Jgω(Gα, ε0) consists of terms that are finite as ε → 0. These terms are presented in Appendix A. β0 is the
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coefficient of the one-loop β-function:

β0 =
11

3
CA −

2

3
NF , (30)

with TR = 1
2 . As with the quark jet function, the 1/ε terms are the same as those for angularity from [19] with

α→ 2− a plus an additional term of the logarithm of the ratio of the resolution parameter R to the jet radius R0.

C. Measured Soft Function

As shown above, there is a simple relationship between the form of angularity for soft modes and the angular
correlation for soft modes. This relationship will allow us to use the results from [19] in computing the measured soft
function for the angular correlation function. First, we consider the phase space constraints from the jet algorithm
and the angular correlation function. For the kT jet algorithm, soft radiation must be within the jet radius R0 of the
jet axis to be included:

ΘkT = Θ

(
tan2 R0

2
− k+

k−

)
. (31)

The δ-function that constrains the soft modes to contribute an amount Ga to the angular correlation function is

δR = δ

(
Gα − ω−1(k−)1−α/2(k+)α/2Θ

(
tan2 R

2
− k+

k−

))

= δ
(
Gα − ω−1(k−)1−α/2(k+)α/2

)
Θ

(
tan2 R

2
− k+

k−

)
+ δ (Gα) Θ

(
k+

k−
− tan2 R

2

)
. (32)

The measured soft function of a gluon emitted from lines i and j into a jet is

Smeas
ij (Gα) = −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)ΘkT δR

= −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)Θ

(
tan2 R0

2
− k+

k−

)

×
[
δ
(
Gα − ω−1(k−)1−α/2(k+)α/2

)
Θ

(
tan2 R

2
− k+

k−

)

+ δ (Gα) Θ

(
k+

k−
− tan2 R

2

)]
. (33)

Note that the integral proportional to δ(Gα) is scaleless and so vanishes in pure dimensional regularization. Also, the
integral is only non-zero if R < R0 and so the Θ-function from the jet algorithm is redundant. Thus, we can write
the soft function as

Smeas
ij (Gα) = −g2µ2εTi ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)Θ

(
tan2 R

2
− k+

k−

)

× δ
(
Gα − ω−1(k−)1−α/2(k+)α/2

)
. (34)

This is the same form of the measured soft function as for angularity with a jet radius equal to R which was computed
in [19]. Up to terms that are suppressed by 1/t2 from Eq. 9, the measured soft function for jet i is

Smeas(Giα) = −αs
2π

T2
i

1

α− 1

{[
1

ε2
+

1

ε
log

µ2 tan2(α−1) R
2

ω2
− π2

12
+

1

2
log2 µ

2 tan2(α−1) R
2

ω2

]
δ(Giα)

−2

[(
1

ε
+ log

µ2 tan2(α−1) R
2

G2iαω2

)
Θ(Giα)

Giα

]

+

}
, (35)

where T2
i is the square of the color in the jet.
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D. Anomalous Dimensions and Consistency Conditions

A non-trivial requirement of the factorization is that the physical cross section should be independent of the
factorization scale µ. A consequence of this is that the anomalous dimensions of the hard, jet and soft functions must
sum to 0. The requirement is

0 =

(
γH(µ) + γunmeas

S (µ) +
∑

i/∈meas

γJi(µ)

)
δ(Gα) +

∑

i∈meas

(
γJi(Giα;µ) + γmeas

S (Giα;µ)
)
, (36)

where γH , γS and γJ are the anomalous dimensions of the hard, soft and jet functions. The µ dependence must
be summed over the measured and unmeasured jet and soft functions. The sum of the hard, unmeasured soft and
unmeasured jet anomalous dimensions to NLO is

γH(µ) + γunmeas
S (µ) +

∑

i/∈meas

γJi(µ) = −αs
π

∑

i∈meas

T2
i log

µ2

ω2
i tan2 R0

2

−
∑

i∈meas

γi , (37)

where γi depends on the flavor of the jet:

γq =
3αs
2π

CF , γg =
αs
π

11CA − 2NF
6

=
αs
2π
β0 , (38)

for quark and gluon jets respectively. We will show that the measured jet and soft function anomalous dimensions
for the angular correlation function are exactly what is required to satisfy Eq. 36.

The anomalous dimensions of the measured jet or soft functions are given by the coefficient of the 1/ε terms from
Eqs. 26, 29 and 35. The anomalous dimensions of the quark and gluon jet functions can be written collectively as

γJi(Giα) =

[
αs
π
T2
i

(
α

α− 1
log

µ2

ω2
i

+ log
tan2 R

2

tan2 R0

2

)
+ γi

]
δ(Gα)− 2

αs
π
T2
i

1

α− 1

[
Θ(Gα)

Gα

]

+

, (39)

where γi is defined in Eq. 38. Note the non-trivial dependence of the anomalous dimension on both the jet radius and
the resolution parameter of the angular correlation function. The anomalous dimension of the measured soft function
for a quark or gluon jet is

γmeas
S (Giα) = −αs

π
T2
i

1

α− 1

[
δ(Gα) log

µ2 tan2(α−1) R
2

ω2
i

− 2

(
Θ(Gα)

Gα

)

+

]
. (40)

As mentioned earlier, jet angularity is not factorizable for a = 1 and here we see that the anomalous dimensions of
the angular correlation jet and soft functions become meaningless for α = 1, signaling a breakdown of factorization.
For the angular correlation function, we are most interested in α = 2, so we will not consider this issue further here.

Summing over the measured jet and soft function anomalous dimensions, we find

∑

i∈meas

(
γJi(Giα;µ) + γmeas

S (Giα;µ)
)

=

(
αs
π

∑

i∈meas

T2
i log

µ2

ω2
i tan2 R0

2

+
∑

i∈meas

γi

)
δ(Gα) (41)

Note that there is a non-trivial cancellation of the angular correlation function resolution parameter R between the
jet and soft functions. This contribution exactly cancels that from the hard and unmeasured jet and soft functions in
Eq. 37, consistent with the factorization requirement.

E. Resummation and Averaging

To proceed with the resummation to NLL of the jet and soft functions, we will make a few observations. First,
as mentioned earlier, because we are ultimately interested in the average angular structure function, we can ignore
factors in the resummed cross section that are independent of Gα or the resolution parameter R. Thus, we will not
discuss nor resum the hard function nor the unmeasured jet and soft functions. Also, we will only consider a single
measured jet in an event. This prevents a study of inter-jet correlations of the angular correlation function, but for
this paper we are most interested in the intra-jet dynamics. Anyway, the existence of factorization of jet observables



11

essentially trivializes correlations between jets since it implies that correlations can only come from the soft function.
From these observations, we only need to resum the measured jet and soft functions of a single jet.

With these considerations, we will need to compute the convolution between the measured jet and soft functions:

dσ

dGα
∝
∫
dG′α J(Gα − G′α;µJ , µ)S(G′α;µS , µ) , (42)

where µJ and µS are the jet and soft scales respectively. We refer the reader to [19] for the details of generic NLL-
level resummation. Here, we will use the results collected there appropriate for the angular correlation function. The
resummed differential cross section for the angular correlation function of a single measured jet at NLL is

dσ

dGα
∝
(µJ
ω

)αωJ
(
µS tanα−1 R2

ω

)ωS
[1 + fJ(Gα) + fS(Gα)]

eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)

[
1

G1+ωS+ωJα

]

+

. (43)

ω is the − component of the jet’s momentum and γE is the Euler-Mascheroni constant. The functions ωJ , ωS , KJ ,
KS , fJ and fS are written in detail in Appendix B. They depend on the jet and soft scales and the factorization
scale µ. The jet and soft scales will be in general sensitive to the value of Gα and the resolution parameter R. At very
small values of Gα, the resummed distribution can become negative and in general will need to be matched onto a
non-perturbative shape function in that region. We do not attempt to correct the shape at very small Ga and instead
just set the cross section to zero where it would otherwise be negative.

The average angular correlation function can then be computed from the cross section in Eq. 43 by integrating over
Gα:

〈Gα(R)〉 =

∫ Gmax
α

0

dGα
dσ

dGα
Gα

∝
∫ Gmax

α

0

dGα
(µJ
ω

)αωJ
(
µS tanα−1 R2

ω

)ωS
eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)

[1 + fJ + fS ]

GωS+ωJα

, (44)

where Gmax
α =

tanα R
2

4 is the maximum value of the angular correlation function for a jet with two constituents. We
choose the scales µJ and µS so as to eliminate the logarithms that remain in the resummed distribution. The choice
of these scales can be seen from the form of the fJ and fS terms as given in the appendix. We find

µJ = ωG1/αα , µS =
ωGα

tanα−1 R2
. (45)

With this choice of scales, the average angular correlation function simplifies:

〈Gα(R)〉 ∝
∫ Gmax

α

0

dGα
eKJ+KS+γE(ωJ+ωS)

Γ(−ωJ − ωS)
[1 + fJ + fS ] . (46)

Note, however, that there is non-trivial dependence on Gα in the functions ωJ , ωS , KJ and KS . Finally, to determine
〈∆Gα〉, we compute

〈∆Gα〉 =
d log〈Gα〉
d logR

. (47)

Plots of the average angular structure function as computed in SCET and compared to Monte Carlo and NLO
corrections will be presented in the following sections.

While resummation of the angular correlation function is necessary for an accurate description of the singular
regions of phase space, it is not obvious how important resummation is for the average angular correlation function.
Resummation of the distribution dσ/dGα tames the singularity at small values of Gα and produces a peak. The
resummation contribution to the distribution is most important near the peak while fixed-order contributions are
most important in the tail, at large values of Gα. However, the average angular correlation function is sensitive to
both the resummed and fixed-order contributions. To get a sense of the importance of the resummed contribution,
we can compare the location of the peak in dσ/dGα to the maximum Gα value possible for a jet with two constituents.
If the ratio of the location of the peak to the maximum value of Gα is small, resummation effects are minimal while
if that ratio is large, then the resummed contribution dominates.

The comparison of the location of the peak in dσ
dGα to the maximum value of Gα is shown in Fig. 3. Here, we have set

α = 2 for illustration and the plot shows how the location of the peak relative to the maximum value changes as the
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FIG. 3. Plots of the ratio between the location of the peak in dσ
dGα to the maximum value of Gα over a range in R. For

illustration, α = 2 and the red (blue) curve is quark (gluon) jets. The jet radius is R0 = 1.0 and we have set the hard, jet and
soft scales as in Eq. 45.

resolution parameter R decreases. When R = R0, the angular correlation function is just the jet mass and the ratio
is relatively small for both quark and gluon jets. However, as R is decreased from R0, the ratio increases, reflecting
the greater importance of the resummed contribution with respect to fixed-order corrections. Thus, we expect that
the fixed-order contribution to the average angular correlation and structure functions is largest at R ∼ R0 while
the resummed contribution becomes more important at smaller R. This will be discussed later when comparing the
resummed calculation to Monte Carlo and NLO calculation of the average angular structure function.

1. Lowest-Order Expansion

Before continuing, it is illuminating to expand the angular correlation function to lowest order in the coupling
αs. To do this, we will need to expand Eq. 43 to O(αs). The form of all of the functions in Eq. 43 are given in
Appendix B and, in particular, the expansions of the Gamma, harmonic number and polygamma functions are needed.
The necessary expansions are given in the appendix. To leading order in αs, we find

dσ

dGα
∝ αs(µ)

2π
T2
i

[
4 log tan

R

2
− 4

α
log Gα −

1

α

(
ci + log

tan2 R
2

tan2 R0

2

)]
1

Gα
+O(α2

s) , (48)

where the factor ci depends on the flavor of the jet:

cq =
3

2
, cg =

β0
2CA

. (49)

To compute this, we have set the jet and soft scales so as to minimize the logarithms that appear in the cross section
as defined in Eq. 45. In this expression, note that the non-cusp piece of the anomalous dimension of the measured jet
functions appears in the term in parentheses.

From this expression for the cross section differential in the angular correlation function, we integrate over Gα to
compute the average angular correlation function. To O(αs) we find

〈Gα〉 ≡
∫ tana R

2
4

0

dGα
dσ

dGα
Gα

∝
∫ tanα R

2
4

0

dGα
αs(µ)

2π
T2
i

[
4 log tan

R

2
− 4

α
log Gα −

1

α

(
ci + log

tan2 R
2

tan2 R0

2

)]
1

Gα
Gα

=
αs(µ)

2π
T2
i

tanα R
2

α

(
1 + log 4− ci

4
− 1

4
log

tan2 R
2

tan2 R0

2

)
+O(α2

s) . (50)
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Any overall factor independent of R does not affect the average angular structure function because

〈∆Gα(R)〉 ≡ d log〈Gα〉
d logR

=
R

〈Gα〉
d〈Gα〉
dR

. (51)

To lowest order, the average angular structure function is independent of αs and only dependent on the color of the
jet through the ci term. Eq. 50 results in the average angular structure function of

〈∆Gα(R)〉 =
R

sinR


α−

2

4 + 4 log 4−
(
ci + log

tan2 R
2

tan2 R0
2

)


+O (αs(µ)) . (52)

Eq. 52 contains much of the physics that we expect affects the form of the angular structure function. The näıve
expectation for 〈∆Gα〉 is 〈∆Gα〉 ' α. Eq. 52 contains an O(1) correction to this result that is negative. This was
interpreted in [12] as an effect due to the running coupling. However, here, this is probably not the source of this effect
because even for fixed coupling the negative term exists. This is instead probably due to SCET itself because only
collinear and soft emissions are included with respect to full QCD. Including all terms in the resummed result should
decrease the average angular structure function further due to both the running coupling and because an arbitrary
number of soft and collinear emissions are considered.

Also, note that the term ci is larger for quarks than for gluons with sufficiently many flavors of quarks:

cq =
3

2
≥ 11

6
− Nf

9
= cg , (53)

for Nf ≥ 3. This implies that, for sufficiently many flavors, 〈∆Gα〉g > 〈∆Gα〉q, an observation that was also made in
[12]. There, this was attributed to the fact that gluons have more color than quarks and so radiate more at larger
angles, effectively decreasing the strength of the collinear singularity with respect to quarks. We expect that the
resummation magnifies the distinction between quarks and gluons.

Another interesting observation to be made about the form of the angular structure function is that, to this order,
it is Lorentz invariant. We then expect that all jets, regardless of energy (so long as it is above the hadronization
scale of QCD), have an angular structure function that deviates only slightly from the form in Eq. 52. In particular,
note that Eq. 52 is the infinite jet energy limit of the (all-orders) angular structure function. The contribution of
higher orders to the angular structure function would contain prefactors of αs(µ) which would vanish as µ → ∞. If
we ignore the finite R terms from the expansion of sine and tangent, 〈∆Gα(R)〉 is very flat, signifying very near scale
invariance over a large dynamical range R. Flatness is only broken by a term that goes like 1/ log R

R0
which is only

important at very small R/R0.
It is accurate, then, to represent the angular structure function in the form (again, ignoring the finite R terms from

sine and tangent)

〈∆Gα(R)〉 ' α− γASF , (54)

where γASF might be called the anomalous dimension of a QCD jet and is independent of α. This anomalous dimension
is a robust quantity that is intrinsic to the flavor of the jet and properties of QCD. Measuring this property of the
angular structure function in data would be very interesting. It is important to note, however, for all of the above
comments, O(αs) contributions to the average angular structure function have been ignored. These are expected to
be comparable in size to the second term in Eq. 52. Note in particular that NNLO contributions can be just as,
or even more, important than the contributions from resummation. Indeed, for jets with three constituents, it was
computed in [12] that the effect at this order is to increase the average angular structure function.

F. Non-Perturbative Physics Effects

In addition to the perturbative physics contribution to the angular structure function, we would also like to under-
stand the effects from non-perturbative physics. For jets produced in an e+e− collider, the dominant non-perturbative
effect is from hadronization. A simple physical argument can be used to determine how hadronization affects the
angular structure function. The partons created from the parton shower will be connected to one another by color
strings which stretch across the event. After the termination of the parton shower at an energy scale of about 1 GeV,
these color strings are allowed to break to create a quark-antiquark pair if it is energetically favorable. This string
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breaking continues until all particles are connected by strings with sufficiently low tension and are then associated
into hadrons. In the process of breaking the strings and creating quark pairs, the number of particles that are created
at small angles with respect to one another increases from that which was created in the perturbative parton shower.
Thus, hadronization increases particle production at small angles, effectively increasing the strength of the collinear
singularity and decreasing the value of the average angular structure function.

The effect of hadronization decreasing the average angular structure function can also be quantitatively studied.
Note that the angular correlation function is just the (squared) mass of a jet from constituents that are separated
by angular scale R or less. Dasgupta, Magnea and Salam [31] studied the effect of non-perturbative physics on the
transverse momentum and mass distributions of jets at hadron colliders. For the mass, they found that the leading
correction due to hadronization is

〈δM2〉 ∼ CR0 +O(R3
0) , (55)

where C is independent of R0, the jet radius. For the angular correlation function, we expect that the effect of
hadronization would also result in a correction proportional to R, the resolution parameter of the angular correlation
function. We can write

〈Gα(R)〉 ' CpertR
α + Cnon-pertR , (56)

where Cpert is the perturbative contribution to the angular correlation function and Cnon-pert is the non-perturbative
contribution. The average angular structure function that follows from this is

〈∆Gα(R)〉 =
αCpertR

α + Cnon-pertR

CpertRα + Cnon-pertR
< α , (57)

where the inequality follows when α > 1. Note that the perturbative angular structure function is approximately α
and so, indeed, hadronization effects decrease the value of the angular structure function.

The argument presented here and in [31] relies on the one-gluon approximation to determine the effect of hadroniza-
tion. Universality of the hadronization and power correction effects was argued with the one-gluon approximation in
refs. [32, 33] and demonstrated for event shapes in SCET in refs. [34, 35]. The arguments in refs. [34, 35] relied on the
boost invariance of the soft function for back-to-back jets. How the argument might extend to an arbitrary number
of jets in arbitrary directions is unclear as the boost invariance is, at least näıvely, broken. We will not discuss how
this might be extended, but we note that, because of the qualitative and quantitive arguments from the one-gluon
approximation, we expect that the universality holds in SCET.

G. The Angular Correlation Function at the LHC

Finally, we will discuss how the results obtained here for the SCET resummation might be extended to the LHC,
to processes initiated by pp collisions. For an observable O that factorizes at hadron colliders, the cross section can
be written in the schematic form [36–38]

dσ

dO = H(µ)× CabBa(µ)Bb(µ)⊗
[∏

ni

Jni(O;µ)

]
⊗ S(O;µ) (58)

The beam functions Bi encode the properties of the initial parton i and the matrix Cab weights the colliding partons
by the appropriate cross section. Indices a and b are implicitly summed over. In this case, the flavor of the jet
functions depends on the flavor of the initial colliding partons which affects the admixture of quark and gluon jets
that contribute to O. Note also that the soft function includes contributions from radiation from initial state partons.
Therefore, while not necessarily manifest in Eq. 58, the beam functions implicitly affect the jet and soft functions.

Nevertheless, we expect that the angular correlation function has nice factorization properties at hadron colliders.
With the goal of computing the average angular structure function, we can again ignore anything in the factorization
of the angular correlation function that is independent of Ga or the resolution parameter R:

dσ

dGαi
∝ CabBa(µ)Bb(µ)⊗ Jni(Gαi;µ)⊗ Sna,nb;n1···nN (Gαi;µ) , (59)

where we have chosen to measure Gα in jet i in an event with N jets. Dependence on the beam functions has been
retained, however. This is because, for a given set of jets 1, . . . , N , different initial states contribute to the cross
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(a) SCET vs Pythia8
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(b) Hard scale variation
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(c) Jet scale variation
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(d) Soft scale variation

FIG. 4. Plots of the average angular structure function for quark (red) and gluon (blue) jets. Fig. 4(a) compares the curves
from SCET resummation (solid) to anti-kT jets from Pythia8 (dashed). The Pythia8 curves were computed from 3 jet final
states in which all jets had equal energy. Figs. 4(b), 4(c) and 4(d) compare the Pythia8 curves to SCET bands in which the
hard, jet and soft scales have been varied by a factor of 2. To make these curves, the jet radius has been set to be R0 = 1.0
and the energy of the jets is 300 GeV.

section with different weights. Thus, the beam function contribution to the factorization, CabBa(µ)Bb(µ), is actually
not an overall constant factor and so must be included. Note also that the color of the colliding partons affects the
radiation included in the soft function. The beam functions are universal and so can be computed once and for all.
While this is not a rigorous proof of factorization of the angular correlation function, many of the results obtained in
the e+e− collider context should be able to be recycled for the hadron collider case. This deserves significant future
study.

III. COMPARISON TO FIXED-ORDER CALCULATION

In this and the following section, we will focus most of our attention on the (proper) angular correlation function
with α = 2:

G2(R) ≡ G(R) =
1

2E2
J

∑

i 6=j

EiEj sin θij tan
θij
2

Θ(R− θij) . (60)

To evaluate this jet observable in SCET, we must choose the hard, jet and soft scales. For many of the comparison
plots we choose the following scales:

µH = ω , µJ = ωG1/2 , µS =
ωG

tan R
2

. (61)

These choices of scales minimize logarithms that appear in the resummed distribution. However, it is important to
understand the dependence of the result on the choice of these scales and so we will also present plots in which the
scales are varied by the standard factors of 2 and 1/2. The evaluation of the average angular structure function from
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FIG. 5. Comparison of NLOJet++ calculation of the event-wide average angular structure function in 3 jet final states to NLO
(dotted) to SCET NLL resummation of the average angular structure function for quark jets (solid). Two curves from Pythia8
are shown: the dashed curve is the average angular structure function for quark jets from e+e− → 3 jets and the dot-dashed
curve is the average angular structure function from e+e− → 2 jets.

the SCET cross section is done numerically. Note that for consistency of the factorization the jet scale µJ must be
larger than the soft scale µS which is the requirement that

tan
R

2
� G1/2 . (62)

To maintain this separation, the resolution parameter cannot be too small; we will only consider R & 0.1. For smaller
values of R, logarithms of R become large and must be resummed, which is beyond the scope of this paper.

The average angular structure function as computed in SCET is plotted in Fig. 4 where the curves for quark and
gluon jets are compared to the output of Pythia8. The Pythia8 curves will be discussed in the next section. Fig. 4(a)
compares the quark and gluon curves with the hard, jet and soft scales set to their values in Eq. 61. The observations
from the previous section are apparent with the quark average angular structure function less than the gluon average
angular structure function and both slightly less than 2. The scale variations of these curves are shown in Figs. 4(b),
4(c) and 4(d). Note that in particular there is relatively wide range over which the angular structure function varies
when the jet and soft scales are changed by a factor of 2.

Because the average angular correlation function is defined by integrating over the entire range of Gα, its value and
shape is sensitive to radiation in all regions of phase space. Resummation is necessary for an accurate description
of the physics in the singular regions of phase space while higher fixed-order contributions are necessary for a good
description in the non-singular regions of phase space. A proper treatment of resummation and fixed-order involves
consistently matching the two contributions so that the resulting distribution is accurate order by order in αs over
the entire phase space. This matching is a non-trivial procedure and, instead, we will just focus on the contribution
from higher fixed-order matrix elements. This will give us a sense, at least, for how fixed order and resummation
affect the average angular structure function.

To do this, we use NLOJet++ v. 4.1.3 [39, 40], based on the dipole subtraction method of [41], to compute the
average angular structure function to NLO in e+e− collisions. NLOJet++ can compute matrix elements to NLO for
up to 4 final state partons (and, at tree level, up to 5 final state partons) and so, by demanding jet requirements,
produces jets with very few constituents in them. This results in very inefficient calculation of cross sections. Also,
the public version of NLOJet++ does not record flavor information of partons so the identity of quark and gluon jets
cannot be easily determined. Further, it is not enough that the cross section differential in the angular correlation
function at fixed R is smooth for the average angular structure function to be smooth. The distributions must also be
smooth over R so that the derivative that defines the average angular structure function is well-behaved. To assuage
these issues, in this section, we will define an event-wide angular correlation function, where the sum in Eq. 5 runs
over all particles in the event.

The event-wide angular correlation function is defined over all particles in the event with no jet algorithm cut. In
the limit that there are three final state particles this reduces precisely to the angular correlation function of the
hardest jet, extending up to an R of about the radius of the hardest jet. The angular correlation function will only
include the contribution from the two closest partons because the third parton must be very far away in angle. This
argument doesn’t hold at higher orders, but for those cases we expect that the event-wide definition will be an average
over the angular correlation functions of quark and gluon jets.
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We present the calculation of the average angular structure function from NLOJet++ for three final state partons
to NLO in Fig. 5. The center of mass energy is taken to be 600 GeV in e+e− collisions. At a e+e− collider, most of
the time, the hardest jet will contain a quark and a radiated gluon so we compare the output of NLOJet++ to NLL
resummation results for quark jets. Fig. 5 also contains two curves of quark jets from Pythia8 which will be discussed
in the next section. The NLO calculation of the angular structure function is approximately flat and greater than 2
which we interpret as an effective weakening of the collinear singularity due to the presence of wide-angle radiation.
The fact that the NLO result is slightly larger that 2 was anticipated in [12] where it was shown that a jet with three
constituents should have an average angular structure function larger than 2 by a term proportinal to αs. Matching
the calculations from NLL and NLO would produce a curve that interpolates between the NLL result at small R and
the NLO result at large R.

To generate the NLOJet++ curve, about one trillion events were processed over about 1 CPU year. Even with this
many events, the average angular structure function from NLOJet++ is still quite noisy. However, the noise can be
reduced by averaging the angular structure function over a small range in R at each point. This was done for the
curve in Fig. 5. Computing the average angular structure function in 4 jet final states to NLO was attempted in the
same CPU time as the 3 jet results. However, the resulting curves were much too noisy to be used. To produce curves
at higher orders using NLOJet++ probably requires centuries of CPU time for distributions to converge. However,
other programs such as BlackHat [42] might be better-suited to higher multiplicity final states at NLO. Work in this
direction is ongoing.

IV. PARTON SHOWER MONTE CARLO COMPARISON

In this section, we compare our calculation of the average angular structure function from SCET to the output of
Monte Carlo event generator and parton shower. Through the Sudakov factor which dictates the probability that no
branchings occur between two scales of an evolution variable, the parton shower resums logarithms of the evolution
variable that arise from soft and collinear emissions. Monte Carlo generators create fully exclusive events and so the
process of resummation of the logarithms is distinct from that in SCET, for example, and examining the differences is
interesting. The parameter that defines the evolution in the parton shower is also (relatively) arbitrary and different
choices of the evolution variable lead to different emphases on soft or collinear splittings. In addition, hadronization
and other non-perturbative physics is described by phenomenological models which can be used to understand the
size and effect of power-suppressed contributions to observables. All of these points and their effects will explored in
this section.

For most of the Monte Carlo comparison, we first generated tree-level events for the process e+e− → qq̄g using
MadGraph5 v. 1.4.5 [43] at center-of-mass energy of 900 GeV. These partons are required to each have equal energy
E = 300 GeV so that they are well-separated and factorization-breaking terms in the soft function are minimized.
These events were then showered using the pT -ordered shower of Pythia8 v. 8.162 [44]. All default settings of Pythia8
were used except for turning hadronization on and off to study the difference. In most plots hadronization in Pythia8
has been turned off. To study the effect of using different evolution variables in the parton shower we shower the
MadGraph events with VINCIA v. 1.0.28 [45]. From the showered events, jets were found with the FastJet v. 3.0.2
[46] implementation of the anti-kT algorithm [47]. We choose the jet radius to be R0 = 1.0. The three hardest jets are
required to have energy between 250 and 350 GeV and we identify jets as coming from a quark or gluon by demanding
that the cosine of the angle between the jet axis and the direction of a parton from MadGraph be greater than 0.9.

In Fig. 4, we plot the average angular structure function for quark and gluon jets identified in Pythia8 (with no
hadronization) and the angular structure function as computed in SCET. Note that the average angular structure
function as computed in SCET is significantly smaller than that from Pythia8, especially at larger R. This difference
can be attributed to higher order effects which were shown in the previous section to increase the value of the average
angular structure function. Fig. 4 also illustrates the distinction between quark and gluon jets. For most of the range
of 0 < R < 1, the average angular structure function for gluon jets is greater than that for quark jets, reflecting the
fact that gluons have more color and radiate more at wider angles than do quarks. This effect is present in both the
Pythia8 curves and the resummed calculation. Because the SCET calculation only included effects from jets with at
most two constituents, the curves terminate precisely at the jet radius of R0 = 1.0. For these anti-kT jets in Pythia8,
the edge effects from the jet algorithm are small, extending only over a range of at most R = 0.8 to R = 1.2. Also,
we have not plotted the SCET curves below R = 0.1, where they begin to deviate substantially from their value at
larger R.

Fig. 5 compares the average angular structure function from NLOJet++ to quark jets in SCET and two different
curves from Pythia8. The different Pythia8 curves exhibit the affect of wide angle radiation captured by the jet on
the average angular structure function. In that figure, the dashed curve is the quark jet average angular structure
function from the Pythia8 sample described above. The dot-dashed curve is the the average angular structure function
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(a) Identified gluon jets
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(b) Identified quark jets

FIG. 6. Comparison of the average angular structure function as computed in Pythia8 with (dotted) and without (dashed)
hadronization.

from quark jets from e+e− → qq̄ samples generated and showered in (otherwise default) Pythia8. The center of mass
energy was set to be 600 GeV and the jets were required to have energy within 50 GeV of 300 GeV. Higher order
effects are obvious. The Pythia8 curves agree well with one another at small R up to R ∼ 0.6 and then diverge
at larger R. The jets in the 3 jet sample collect wide-angle radiation from the neighboring jets which increases the
average angular structure function at large R. To fully understand the rise within an analytic calculation requires
matching fixed-order to resummed result. Fixed-order contributions are responsible for the wide-angle emissions that
increase the average angular structure function because SCET factorization effectively decouples the jets.

As discussed in Sec. II F, we expect the effect from non-perturbative physics on the angular structure function to
be small and relatively well-understood. In particular, relying on arguments from the one-gluon approximation, we
expect that hadronization increases the strength of the collinear singularity and that this effect is most prominent at
small values of R. In Fig. 6, we have plotted the average angular structure function for quarks and gluons comparing
the curves with hadronization turned on or off. Indeed, the effect is small but unambiguous: hadronization effectively
increases the strength of the collinear singularity. As discussed earlier, extending the arguments from [34, 35] on the
effect of non-perturbative physics would be greatly desired to fully describe (at least) average behavior of hadronization
for events with multiple jets.

A. Monte Carlo Error Estimates

Finally in this section, we would like to get a handle on the error or uncertainty in the Monte Carlo parton
shower in Pythia. Typically, this is done by studying the output of different tunes of the same Monte Carlo program
or comparing different Monte Carlo programs altogether. In particular, as is relevant for the parton shower, the
evolution variable of the parton shower dictates when and how emissions should occur. Ref. [48] observed differences
in event shape variables as computed in Pythia 6.4 [49] between two tunes; one pT -ordered and the other virtuality
ordered. However, these two tunes had other distinctions as well and so purely the effect of the evolution variable is
obscured. Also, comparing two different Monte Carlos is subtle because the number of differences is typically huge
and so isolating effects of single parameters or choices is very difficult.

Here, we would like to study the effect of different evolution variables in the parton shower. The choice of the
evolution variable is only a change of variables in the Sudakov form factor and so must produce the exact same
leading-log resummation for any (consistent) choice of evolution variable. However, the choice of evolution variable
can lead to higher log-order effects through the scale at which αs is evaluated or by emphasizing soft over collinear
splittings, for example. To study the differences, we use the VINCIA [45] parton shower plug-in for Pythia8 which is
based on 2-to-3 splittings as opposed to the standard 1-to-2 splittings as in Pythia and Herwig [50]. VINCIA includes
a flag which allows the user to change only the evolution variable. For concreteness, we will consider pT -ordering and
virtuality ordering.

In Fig. 7 we have plotted the SCET resummation and Pythia8 output for the average angular structure function as
well as a band which extends over the range between the output of the pT -ordered and the virtuality ordered shower
in VINCIA. The exact same requirements on the jets were made in the VINCIA sample as in the Pythia8 sample as
described earlier. Over most of the range in R, the lower edge of the VINCIA band is set by the pT -ordered shower
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(a) Identified gluon jets
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(b) Identified quark jets

FIG. 7. Comparison of SCET computation (solid) and Pythia8 (dashed) of average angular structure function to the output of
VINCIA Monte Carlo parton shower with two different evolution variables: pT and virtuality. The shaded region lies between
the curves from VINCIA.

and upper edge by the virtuality ordered shower. This is expected as the pT -ordered shower emphasizes collinear
emissions more than the virtuality-ordered shower. Note also that the band is slightly above the output of the pT
ordered shower in Pythia8. Part of this effect could be due to the default matrix element matching in VINCIA: final
states with up to 5 partons are matched to tree-level matrix elements. Regardless of the details, the effect of changing
the evolution variable is large. Understanding if and how parton showers resum higher order logarithms with different
evolution variables, matching schemes, etc., is necessary to understand the source of the differences.

V. CONCLUSIONS

The average angular correlation and structure functions capture the average scaling properties of QCD jets. We
have presented a calculation of the angular correlation function to NLL accuracy in SCET and compared this result
to the Pythia8 Monte Carlo parton shower and to fixed-order results from NLOJet++. Comparing the resummed
SCET result to the fixed-order NLOJet++ result provides a good understanding as to the behavior of the parton
shower result. However, for a full understanding, matching of the resummed and fixed-order distributions is required.
Much like the jet shape [16], the average angular structure function could be used for tuning of the Monte Carlo.
Because it is a two-point correlation function, the angular correlation function captures distinct information from the
jet shape and so this tuning would be non-trivial.

There are several directions for extending the study presented here. First, it would be desirable to compute the
angular correlation function in collisions at the LHC. It remains an outstanding problem to use SCET to resum
logarithms for arbitrary observables in hadron colliders because factorization of the (colored) initial and final states is
highly non-trivial. However, using the observations from Sec. II G, the computation of the average angular structure
function at hadron colliders might only require a reinterpretation of the results presented here. Recently, NLO results
were obtained for pp→ 4j events [51] from which any IRC-safe observable could be computed. In particular, for four
final state partons, the hardest jet can contain up to three constituents which would be beyond the resummed order in
the SCET calculation. Also, at a hadron collider, underlying event or pile-up produce significant background radiation
that can be collected into a jet. A procedure to determine the contribution to a jet from these non-perturbative sources
is necessary to properly determine jet energy scales and to study substructure. The results presented here could be
used to determine the average contribution to a jet using the procedure introduced in [12].

For a more accurate prediction of the angular correlation function, matching of NLL and NLO results must be
done to have good control of the distribution over the entire phase space. Factorization of jet observables allows
for a process-independent computation of the NLL resummed result; however, the fixed-order calculation is process
dependent and must be couched in a particular study. We showed that the average angular structure function
is sensitive to wide-angle radiation so matching is vital for accurate predictions. NLOJet++ or results like those
from [51] are promising in their applicability to generic processes. It is unlikely that QCD jet observables can be
reliably computed to NNLL or beyond analytically because non-global logarithms become important. Nevertheless,
by studying limiting behavior such as in [6] the effect of these non-global logarithms might be reduced.

Finally, as there exist few jet substructure observables that have been (or even can be) computed with analytic
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methods, it is important to compute those that are possible. The calculation of the angular correlation function
provides powerful insight into the behavior of QCD and the dynamic properties of jets. Though scale-invariance is
broken in QCD by a running coupling, jets maintain a fractal, conformal structure to very good approximation over
a wide dynamical range.

Appendix A: Measured Jet Functions

Here, we present the finite pieces of the measured jet functions for quark and gluon jets as defined by a kT -type
algorithm for the angular correlation function. These functions are composed of contributions from δ-functions and
+-distributions. For a function g(x), we define the +-distribution as [52]

[g(x)Θ(x)]+ = g(x)Θ(x)− δ(x)

∫ 1

0

dx′ g(x′) , (A1)

so that
∫ 1

0

dx [g(x)Θ(x)]+ = 0 . (A2)

From this definition, it is straightforward to compute the measured jet functions. The terms that are infinite in four
dimensions were presented in Sec. II B. The terms that are finite in four dimensions are, for a quark jet:
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For a gluon jet, the finite terms are:
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Gmax
α is the largest value that Gα can take for a jet with two constituents:

Gmax
α =

tanα R
2

4
, (A5)

where we have taken the leading λ dependence for the collinear modes.
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Appendix B: Resummed Distribution for Angular Correlation Function

The expression for the resummed cross section is

dσ

dGα
∝
(µJ
ω

)αωJ
(
µS tanα−1 R2

ω

)ωS
[1 + fJ(Gα) + fS(Gα)]

eKJ+KS+γE(ωJ+ωS)
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[
1

G1+ωS+ωJα

]

+

. (B1)

ωJ , ωS , KJ and KS result from the resummation of the individual jet and soft functions [53–57]. The functions ωJ
and ωK are defined by ωJ ≡ ωF (µ, µJ) and ωS ≡ −ωF (µ, µS) where

ωF (µ, µ0) = − 4T2
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β0 is the coefficient of the one-loop β-function as defined in Eq. 30 and β1 is the two-loop coeffcient:

β1 =
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3
C2
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CANf − 2CFNf . (B3)

r is the ratio of the strong coupling at two scales:

r =
αs(µ)

αs(µ0)
, (B4)

and the energy dependence of the strong coupling is given by the two-loop expression
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for αs evaluated at the two scales µ and Q. The terms Γ0
cusp and Γ1

cusp are the one- and two-loop coefficients of the
cusp anomalous dimension. Their ratio is given by [58]
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The function KJ is given by
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with γ0i defined as

γ0i = 4T2
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where ci is defined in Eq. 49. KS is defined similarly
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The functions fJ and fS are generated by the convolution of the jet and soft functions. Accurate to NLL, they are
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and
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π

T2
i

α− 1



(

log
µS tanα−1 R2

ωGα
+H(−1− ωJ − ωS)

)2

+
π2

6
− ψ(1)(−ωJ − ωS)

]
. (B11)

H(x) is the harmonic number function defined by

H(x) =

∫ 1

0

1− tx
1− t dt , (B12)

and ψ(1)(x) is the trigamma function

ψ(1)(x) =

∫ ∞

0

te−xt

1− e−t dt . (B13)

Note that the logarithms in these functions can be minimized by choosing

µJ = ωG1/αα , µS =
ωGα

tanα−1 R2
. (B14)

For expansion of the resummed distribution, the following relations are needed:

H(−1− ε)2 − ψ(1)(−ε) = −π
2

2
+O(ε) , (B15)

H(−1− ε)
Γ(−ε) = −1 + γEε+O(ε2) . (B16)
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