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We present a next-to-next-to-leading order (NNLO) realization of a general quark

mass scheme (S-ACOT-χ) in deep inelastic scattering and explore the impact of

NNLO terms on heavy-quark structure functions F c
2,L(x,Q). An amended QCD fac-

torization theorem for DIS is discussed that validates the S-ACOT-χ scheme to all

orders in the QCD coupling strength. As a new feature, kinematical constraints on

collinear production of heavy quarks that are crucial near the heavy-quark thresh-

old are included in the amended factorization theorem. An algorithmic procedure

is outlined for implementing this scheme at NNLO by using mass-dependent and

massless results from literature. At two loops in QCD cut diagrams, the S-ACOT-χ

scheme reduces scale dependence of heavy-quark DIS cross sections as compared to

the fixed-flavor number scheme.

I. INTRODUCTION

In a modern global QCD analysis of parton distribution functions (PDFs), several factors

are comparable in magnitude to next-to-next-to-leading order (NNLO) radiative contribu-

tions in the QCD coupling strength αs. Among these factors, dependence of QCD cross
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sections on masses of heavy quarks, mc and mb, can be significant. Global fits are sensitive

to two types of mass effects, kinematical suppression of production of c and b quarks near

respective mass thresholds in deep inelastic scattering (DIS), and large radiative contribu-

tions to collinear production of cc̄ or bb̄ pairs at large collider energy. The first effect –

suppression of DIS charm production near the threshold – must be carefully estimated when

obtaining PDF parametrizations in order to accurately predict key scattering rates at the

Large Hadron Collider [1]. The second effect is tied to an observation that c and b quarks

behave as practically massless and indistinguishable from other massless flavors in typical

Tevatron and LHC observables. It is therefore natural to evaluate all fitted cross sections

in a “general-mass” (GM) factorization scheme, which assumes that the number of (nearly)

massless quark flavors varies with energy, and at the same time includes dependence on

heavy-quark masses in relevant kinematical regions.

In this paper, we study NNLO quark mass terms in the default GM scheme of CTEQ

PDF analyses called “S-ACOT-χ”. Here and in the following, the order of the calculation is

defined by the number of QCD loops in Feynman cut diagrams, so that “NNLO” refers to

the two-loop accuracy, or O(α2
s), in the DIS coefficient functions. Since its inception in 1993

[2], the ACOT scheme has undergone evolution based on the work in [3–5]. The S-ACOT-χ

version of the ACOT scheme is employed successfully to compute heavy-quark cross sections

in recent NLO CTEQ6.6, CT09, and CT10 global fits [6–8].

The S-ACOT-χ scheme is motivated by the QCD factorization theorem for DIS with

massive quarks [3], which provides the scheme’s organizational backbone and key methods.

In Sec. II, we demonstrate how to amend the QCD factorization theorem in order to val-

idate the S-ACOT-χ scheme to all orders of αs. We then apply this scheme at NNLO to

neutral-current DIS production, which provides the bulk of the DIS data, and for which all

components of the calculation are readily available.1

Compared to other heavy-quark schemes available at NNLO [12–18], our implementation

aims to achieve more explicit analogy to the computation of NNLO cross sections in the zero-

mass (ZM) scheme [19–21]. As another distinction, the S-ACOT-χ scheme quickly converges

to the fixed-flavor number scheme near the heavy-quark threshold as a consequence of the

1 For charged-current DIS, only massless [9, 10] and some massive [11] NNLO coefficient functions have

been computed.
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amended factorization theorem, without requiring supplemental matching conditions that

are present in other general-mass schemes.

In Sec. II, the S-ACOT-χ cross sections are presented in the form that is reminiscent

of counterpart ZM cross sections, up to replacement of some massless components by their

mass-dependent expressions available in literature. This representation is based on a few

compact formulas that include the desirable features existing in other heavy-quark NNLO

calculations. In Sec. III, numerical predictions are illustrated on the example of NNLO

charm production cross sections. They show that inclusion of the NNLO terms reduces

theoretical uncertainties compared to NLO.

Recent studies [1, 22–24] show that, at NLO, the LHC electroweak cross sections depend

considerably on the mass scheme and parametric input for the charm mass mc in the PDF

analysis, even though the combined HERA-1 data set [25] itself has a small total uncertainty.

Yet, the upcoming combination of HERA-1 heavy-quark cross sections is expected to improve

constraints on mc. The S-ACOT-χ implementation brings theoretical predictions up to

matching accuracy by including the NNLO terms.

II. S-ACOT-χ SCHEME: THEORETICAL FRAMEWORK

Consider neutral-current DIS at energy that is sufficient to produce Nl light flavors (such

as l = u, d and s) and one heavy flavor h (“charm”) with mass mh. The extension to

production of several heavy flavors will be postponed until Sec. IID.

The GM scheme is designed so as to enable quick convergence of perturbative QCD series

involving heavy quarks at any momentum transferQ. Perturbative QCD cross sections in the

GM scheme must converge reliably near the heavy-quark production threshold (Q2 ≈ m2
h),

as well as far above it (Q2 ≫ m2
h), and smoothly interpolate between the limits. When Q

is of order mh, it is most natural to include all Feynman subgraphs with heavy-quark lines

into the hard-scattering function (Wilson coefficient function). Such approach is called a

“fixed-flavor number” (FFN) factorization scheme. O(α2
s) coefficient functions for massive

quark DIS production in this scheme have been computed in [26–28]. At this Q, the NNLO

coefficient functions in the GM scheme with Nl + 1 flavors are expected to reduce to the

FFN massive cross sections in the FFN scheme with Nl flavors. On the other hand, at high

virtualities (Q2 ≫ m2
h), the NNLO GM cross sections should be indistinguishable from the
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NNLO ZM cross sections [19–21]. In this limit, the heavy-quark contributions are dominated

by asymptotic collinear contributions that are also fully known to O(α2
s) [12, 29–31]. Mellin

moments for some structure functions and operator matrix elements [32–37] and dominant

logarithmic contributions [38, 39] have been computed to O(α3
s).

A realization of such scheme called “ACOT” was developed in Refs. [2, 40] and proven

for inclusive DIS to all orders in Ref. [3]. A non-zero PDF is assigned in this scheme to each

quark flavor that can be produced in the final state at the given Q value. S-ACOT-χ is the

most recent variant of the ACOT scheme that adds two beneficial features. First, coefficient

functions derived from Feynman graphs with initial-state heavy quarks are simplified by

neglecting non-critical mc dependence [3, 4]. Second, threshold suppression is introduced

by evaluating these coefficient functions as a function of χ ≡ x (1 + 4m2
c/Q

2) instead of

Bjorken x [5]. Both modifications follow from the factorization theorem for inclusive DIS [3]

and produce predictions that are simpler, yet numerically accurate. They are included as a

part of the NNLO implementation that is now presented.

A. Overview of QCD factorization

A DIS structure function F (x,Q), such as F2 or FL, is written in a factorized form as

F (x,Q) =

Nfs
f∑

i=1

e2i

Nf∑

a=0

∫ 1

x

dξ

ξ
Cia

(
x

ξ
,
Q

µ
,
mh

µ
, αs(µ)

)
Φa/p(ξ, µ)

≡
Nfs

f∑

i=1

e2i

Nf∑

a=0

[
Cia ⊗ Φa/p

]
(x,Q), (1)

where Φa/p(ξ, µ) is a parton distribution function (PDF) for a parton type a, light-cone

momentum fraction ξ, and factorization scale µ. Ci,a(x̂, Q/µ,mh/µ, αs(µ)) are Wilson coef-

ficient functions evaluated at x̂ = x/ξ. Convolution integrals over ξ are indicated by “⊗”.

Two sums appear on the right-hand side of Eq. (1), over all quark flavors i = 1, ..., Nfs
f

that couple to the virtual photon with fractional electric charges ei = 2/3 or −1/3, and

over parton flavors a in the PDF Φa/p. The index a runs over quark flavors (a = 1, ...Nf

for u, d, s, ...) and the gluon (a = 0). Perturbative coefficients of neutral-current DIS are

the same for quarks and antiquarks up to NNLO. For each combination of flavors i and a,

summation of quark and antiquark contributions of these flavors is always implied, but not

shown for brevity.
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Eq. (1) distinguishes between Nfs
f , the number of quark flavors produced in the final

state (fs), and Nf , the number of active quark flavors in αs and PDFs. The distinction is

important for the ensuing discussion, as generally Nfs
f is different from Nf [1]. Nfs

f is equal

to the number of final-state flavors that can be produced at the given γ∗p center-of-mass

energy W = Q
√

1/x− 1. All produced quark states can couple to the photon, so that the

outer summation in Eq. (1) runs up to i = Nfs
f .

On the other hand, Nf is a parameter of the renormalization and factorization schemes.

It is commonly set equal to the number of quark flavors with the masses that are lighter

than Q. Only flavors with a ≤ Nf have non-zero PDFs in the inner summation, but their

actual number depends on the factorization scheme.

To determine Ci,a, we calculate auxiliary structure functions for scattering on an initial-

state parton b, F (e+ b→ e+X) ≡
∑Nfs

f

i=1 e
2
iFi,b. The coefficient functions Ci,a are infrared-

safe parts of Fi,b. They enter convolutions together with parton-level PDFs Φa/b(ξ, µ) for

splittings b→ a, as

Fi,b(x̂, Q) =

Nf∑

a=1

[
Ci,a ⊗ Φa/b

]
(x̂, Q). (2)

In the MS scheme, the parton-level PDFs are given by matrix elements of bilocal field

operators that can be computed in perturbation theory. For example, the PDF for finding

a quark q in a massless parton b, in the light-like gauge, is

Φq/b(ξ) =

∫
dy−

2π
e−ξp+y−〈b(p)|ψ(0, y−,~0T )γ+ψ(0)|b(p)〉, (3)

where the light-cone momentum components of the partons b and q are pµ =
{
p+, 0,~0T

}

and kµ =
{
ξp+, m2

q/(2ξp
+),~0T

}
, respectively, and p± ≡ (p0 ± p3)/

√
2.

The functions Fi,b, Ci,a, and Φa/b can be expanded as a series of as ≡ αs(µ,Nf)/(4π):

Fi,b(x) = F
(0)
i,b (x) + as F

(1)
i,b (x) + a2s F

(2)
i,b (x) + . . . , (4)

Ci,a(x̂) = C
(0)
i,a (x̂) + asC

(1)
i,a (x̂) + a2sC

(2)
i,a (x̂) + . . . , (5)

Φa/b(ξ) = δabδ(1− ξ) + asA
(1)
ab (ξ) + a2sA

(2)
ab (ξ) + . . . . (6)

In the last equation, A
(k)
ab (k = 0, 1, 2, . . . ) are perturbative coefficients composed of DGLAP

splitting functions P
(k)
ab , such as A

(1)
hg (ξ) = 2 P

(1)
hg (ξ) ln (µ

2/m2
h) for the g → hh̄ splitting.
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By equating coefficients on both sides of Eq. (2), order by order in as, we obtain

C
(0)
i,b (x̂) = F

(0)
i,b (x̂),

C
(1)
i,b (x̂) = F

(1)
i,b (x̂)−

[
C

(0)
i,a ⊗ A

(1)
ab

]
(x̂),

C
(2)
i,b (x̂) = F

(2)
i,b (x̂)−

[
C

(0)
i,a ⊗ A

(2)
ab

]
(x̂)−

[
C

(1)
i,a ⊗A

(1)
ab

]
(x̂). (7)

Perturbative terms C
(k)
i,a in the coefficient functions are thus derived from the perturbative

expansions for Fi,b and Φa/b upon implied summation over the repeating index a.

The coefficients A
(k)
ab in Φa/b consist of large or singular terms arising in F

(k)
i,b when the

momenta of a and b are collinear. Subtraction of convolutions of the A
(k)
ab terms from F

(k)
i,b

on the right-hand side of Eqs. (7) produces finite (infrared-safe) results for C
(k)
i,b .

Depending on the masses of a and b, two forms of A
(k)
ab in these equations are possible.

If both a and b are massless, A
(k)
ab contains a singular part, given in n = 4 − ǫ dimensions

by
∑k

p=0(1/ǫ)
psp,ab, where sp,ab contains a DGLAP splitting function; and a finite part

(logs+finite terms) of the form
∑k

p=0 ln
p(µ2/µ2

IR)s
′

p,ab, where µ is the factorization scale, and

µIR is the parameter of the dimensional regularization in the infrared limit.

When these “mass singularities” are subtracted as in Eqs. (7), one obtains infrared-safe

parts F̂
(k)
i,b of F

(k)
i,b , denoted by a caret:

F̂
(k)
i.b

(
x̂,
Q2

µ2

)
= F

(k)
i,b

(
x̂,

Q2

µ2
IR

,
1

ǫ

)
−

k∑

p=0

[
C

(p)
i,a ⊗A

(k−p)
ab

](
x̂,

µ2

µ2
IR

,
1

ǫ

)
. (8)

The difference F̂
(k)
i,b is finite, even though both the “bare” functions F

(k)
i,b and the PDF coef-

ficients A
(k)
ab contain the singular 1/ǫp terms, where p is a positive integer.

If a massive parton a is produced from a massless parton b (as in g → cc̄ or u→ g → cc̄),

the coefficients A
(k)
ab consist solely of logarithms and finite terms involving mass ma,

A
(k)
ab

(
ξ,
µ2

m2
a

)
=

k∑

p=0

lnp(µ2/m2
a)s

′

p,ab(ξ). (9)

The coefficient A
(k)
ab is finite for ma 6= 0, but A

(k)
ab → ∞ when µ2 ≫ m2

a. For such massive

quarks, the coefficients A
(k)
ab appear as subtractions from the massive F

(k)
ib in the expressions

for C
(k)
i,a . In accordance with the S-ACOT scheme, the mass-dependent A

(k)
ab only appear in

explicit heavy-particle production, i.e., when the transitions are of the type b(mb = 0) →
a(ma 6= 0). All other subprocesses use massless expressions, constructed from renormalized

parts F̂
(k)
i.b

(
x, Q

µ

)
given by Eq. (8).
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B. Heavy-quark component Fh of inclusive F (x,Q)

To construct the Wilson coefficient functions explicitly, we decompose F (x,Q) according

to the (anti-)quark couplings to the photon [18]. Terms in which the photon couples to the

light (l) or heavy (h) quark are designated as Fl and Fh, respectively:

F =

Nl∑

l=1

Fl + Fh, (10)

with

Fl(x,Q) = e2l
∑

a

[
Cl,a ⊗ Φa/p

]
(x,Q), (11)

and

Fh(x,Q) = e2h
∑

a

[
Ch,a ⊗ Φa/p

]
(x,Q). (12)

Note that this separation is purely theoretical: Fl and Fh cannot be measured separately or

distinguished in some other way. Furthermore, the heavy-quark component Fh is not the

same as the semi-inclusive heavy-quark structure function Fh,SI measured in experiments.

The relation between Fh,SI and Fh is clarified in Sec. II E, with the explicit formula given

by Eq. (42).

Focusing first on the contribution Fh with the photon coupled to h, we obtain its Wilson

coefficients Ch,a(x̂) from the parton-level functions Fh,b via Eqs. (7):

C
(0)
h,a(x̂) = δhaδ(1− x̂);

C
(1)
h,g = F

(1)
h,g − C

(0)
h,h ⊗A

(1)
hg ; C

(1)
h,l = C

(1)
l,h = 0; C

(1)
h,h = F

(1)
h,h − C

(0)
h,h ⊗A

(1)
hh ;

C
(2)
h,g = F

(2)
h,g − C

(0)
h,h ⊗A

(2)
hg − C

(1)
h,h ⊗A

(1)
hg − C

(1)
h,g ⊗ A(1)

gg ;

C
(2)
h,l = F

PS,(2)
h,l − C

(0)
h,h ⊗A

PS,(2)
hl − C

(1)
h,g ⊗A

(1)
gl ;

C
(2)
h,h = F

(2)
h,h − C

(0)
h,h ⊗ A

(2)
hh − C

(1)
h,h ⊗ A

(1)
hh − C

(1)
h,g ⊗A

(1)
gh . (13)

In these expressions, the coefficient C
(2)
h,l with the initial-state light quark depends on flavor-

non-diagonal, or pure-singlet (PS), components of F
(2)
i,j and A

(2)
ij , defined by

Gi,j ≡ GPS
i,j + δijG

NS
i,j , for Gi,j = C

(2)
i,j , F

(2)
i,j , and A

(2)
i,j . (14)

On the other hand, the coefficient C
(2)
h,h with the initial-state heavy quark depends both on

the pure singlet (PS) and non-singlet (NS) components, as will be shown below.
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Subtractions

c F(0) (1)
h,h h,g

Structure Functions

c
h,h
(1)

A(1)
h,g * c

h,h
(1)

A
(2)
h,g ch,h

(0)
* A

(2)
* c(0)

h,hh,l
PSPS

h,l
(2)FFh,g

(2)

u,d,s,c

c(2)
h,h

A(1)
h,g c(0)

h,h*

FIG. 1: Representative scattering contributions to Fh(x,Q).

Representative diagrams for heavy-quark contributions in Eqs. (13) are shown in Fig. 1.

The reader may consult this figure frequently to identify various terms in the ensuing discus-

sion. Propagators and external legs for quarks that are indicated by thick lines (thin lines)

will eventually be computed with full mass dependence (in the massless approximation) .

The heavy-quark diagrams fall into two categories, those that do not involve a collinear

approximation for scattering of heavy quarks (often called “flavor-creation”, or FC, terms),

and those that do (flavor-excitation, or FE, terms). While FC contributions must be evalu-

ated exactly, the approximate nature of the FE terms allows some useful simplifications.

At O(α2
s), the flavor-creation contributions include the coefficients F

(1)
h,g , F

(2)
h,g , and F

PS,(2)
h,l .

The heavy quarks appear in these terms inside the O(αs) Feynman subgraph for γ∗g →
hh̄, connected by a gluon propagator to an initial-state gluon or a light quark. These

contributions are evaluated with the exact kinematical dependence on mh, and hence are

defined unambiguously.

The FE cross sections are proportional to the heavy-quark PDF that approximates
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collinear production of heavy-quark pairs from light partons in the high-energy limit. Struc-

ture functions and coefficient functions with an initial-state heavy quark, such as F
(k)
h,h and

C
(k)
h,h, fall into this class. The FE coefficient functions reduce to unique MS expressions

when mh is negligible [3], but, near the threshold, they may differ by non-unique powerlike

contributions (m2
h/Q

2)
p

with p > 0. Within the ACOT scheme, several conventions have

been proposed to include the powerlike contributions in a way compatible with the QCD

factorization theorem.2

Among these conventions, the “full ACOT scheme” [2] evaluates the FE coefficient func-

tions (C
(k)
h,h, etc.) with their complete mass dependence. The simplified ACOT (S-ACOT)

scheme [3, 4] neglects all mass terms in C
(k)
h,h and thereupon reduces tedious computations

typical for the full ACOT scheme. The S-ACOT-χ scheme [5] adopted in our computation

includes the most important mass dependence in C
(k)
h,h and uses simpler zero-mass expres-

sions everywhere else. It generalizes the slow-rescaling prescription for single heavy quark

production in neutrino DIS at leading order [41] to other heavy final states and higher QCD

orders.

If we use uppercase and lowercase letters to denote mass-dependent and massless quan-

tities, and a caret to indicate renormalized ZM functions, the S-ACOT-χ convention for

functions with initial-state heavy quarks can be summarized as

C
(k)
h,h

(
x

ξ
,
Q

µ
,
mh

Q

)
= c

(k)
h,h

(
χ

ξ
,
Q

µ
,mh = 0

)
θ(χ ≤ ξ ≤ 1), (15)

and

F
(k)
h,h

(
x

ξ
,
Q

µ
,
mh

Q

)
= f̂

(k)
h,h

(
χ

ξ
,
Q

µ
,mh = 0

)
θ(χ ≤ ξ ≤ 1), (16)

where

χ = x

(
1 +

(
∑

fsmh)
2

Q2

)
, (17)

and
∑

fsmh is the net mass of all heavy particles produced in the final state. With the

exception of a few very rare subprocesses identified below, at most one heavy-quark pair

is produced in all cases that we consider. Without losing accuracy, we therefore assume

χ = x
(
1 +

4m2
h

Q2

)
throughout the computation.

2 The differences between these conventions are formally of a higher order in αs, but some conventions lead

to faster perturbative convergence.
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This form is motivated by an observation that the largest powerlike terms are associated

with the constraint imposed on the convolution by energy conservation in production of

heavy final states [42]. The ZM functions here depend on the variable χ instead of Bjorken

x as an input parameter, and the momentum fraction in their convolutions is integrated over

the range χ ≤ ξ ≤ 1. The χ convention is justified in the context of the QCD factorization

theorem in Sec. II F. Its numerical impact is discussed in Sec. IIID.

When the S-ACOT-χ scheme is adopted, Eqs. (13) become

c
(0)
h,a = δhaδ(1− χ̂); c

(1)
h,h = f̂

(1)
h,h; (18)

C
(1)
h,g = F

(1)
h,g −A

(1)
hg ; (19)

C
(2)
h,g = F̂

(2)
h,g −A

(2)
hg − c

(1)
h,h ⊗A

(1)
hg ; (20)

c
(2)
h,h = f̂

(2)
h,h; C

(2)
h,l = F̂

PS,(2)
h,l −A

PS,(2)
hl . (21)

Lowercase functions on the right-hand side of these equations are given by ZM expressions.

Among all terms, only the structure functions F
(1)
h,g , F̂

(2)
h,g , and F̂

PS,(2)
h,l are calculated with the

exact mass dependence. The carets above F̂
(2)
h,g and F̂

PS,(2)
h,l indicate that the massless 1/ǫ

pole terms, C
(1)
h,g ⊗A

(1)
gg and C

(1)
h,g ⊗ A

(1)
gl , have been subtracted from them.

In the rest of the terms, the input longitudinal variable is set to be χ̂ = χ/ξ. The

convolution of such term f(χ̂) with the PDF Φ(ξ) is

[f ⊗ Φ] (ζ) ≡
∫ 1

ζ

dξ

ξ
f

(
ζ

ξ

)
Φ(ξ), (22)

where ζ = χ. [The naive massless approximation is ζ = x.]

The one-loop expressions f̂
(k)
h,h, F

(1)
h,g , and A

(1)
h,g can be found in [2, 12, 43]. F̂

(2)
h,g and F̂

PS,(2)
h,l

coincide with the massive structure functions with initial-state gluons and pure-singlet light

quarks in [26, 27]. They are independent of Nl. The expressions for A
(2)
hg and A

(2)
hl are

computed as A
(2)
Hg and A

(2)
Hq in [12].

The O(α2
s) contribution c

(2)
h,h = f̂

(2)
h,h corresponds to radiation of up to Nl + 1 flavors of qq̄

pairs off an incoming quark h. It can be found as a sum of the pure-singlet and non-singlet

ZM coefficient functions from Refs. [19–21, 44, 45]:

c
(2)
h,h = c

PS,(2)
h,h + c

NS,(2)
h,h = f̂

(2)
h,h = f̂

PS,(2)
h,h + f̂

NS,(2)
h,h . (23)

In this equation, both pure-singlet and non-singlet parts of f̂
(2)
h,h are taken to be massless,

which is one of the choices possible within the S-ACOT scheme. Note that the c
(2)
h,h functions
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l

h

(a) (b)

l

h

(c) (d)

l

h
h

l

FIG. 2: Disconnected heavy-quark contributions to F
NS,(2)
l,l (a,b,c) and A

NS,(2)
l,l (d).

with three indicated final-state h (anti-)quarks and an unobserved fourth h (anti-)quark

among the target remnants could justifiably use a more restrictive rescaling variable, χ =

x
(
1 +

16m2
h

Q2

)
, as their parameter. Since their respective contributions are vanishingly small,

it suffices to evaluate them with the same variable χ = x
(
1 +

4m2
h

Q2

)
as in the rest of the

terms to simplify the implementation.

It is equally acceptable to evaluate the pure-singlet F
PS,(2)
h,h with a massive γ∗g → hh̄

subgraph, so that the corresponding coefficient function is given by the massive C
(2)
h,l in

Eq. (21). In this case, F
PS,(2)
h,h can be combined with the pure-singlet contribution with

initial-state light quarks, also given by C
(2)
h,l . The complete O(α2

s) part of Fh(x,Q) then

takes a simple form

F
(2)
h = e2h

{
c
NS,(2)
h,h ⊗ (Φh/p + Φh̄/p) + C

(2)
h,l ⊗ Σ + C

(2)
h,g ⊗ Φg/p

}
, (24)

where Σ(x, µ) is the singlet quark PDF summed over Nf = Nl + 1 flavors:

Σ(x, µ) =

Nf∑

i=1

[
Φi/p(x, µ) + Φī/p(x, µ)

]
. (25)

We use Eq. (24) for practical implementation of Fh, with the coefficient functions computed

as in Eqs. (20) and (21).
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C. Light-quark component of F (x,Q)

By a similar argument, Eq. (7) serves as a starting point for finding coefficient functions

for the light-quark component Fl(x,Q). The corresponding Wilson coefficients are

c
(0)
l,a = δlaδ(1− x);

C
(1)
l,l = F

(1)
l,l − C

(0)
l,l ⊗A

(1)
ll ; C

(1)
l,g = F

(1)
l,g − C

(0)
l,l ⊗A

(1)
lg ; C

(1)
l,h = C

(1)
l,l′ = 0;

C
(2)
l,l = F

PS,(2)
l,l + F

NS,(2)
l,l − C

(0)
l,l ⊗

[
A

PS,(2)
ll + A

NS,(2)
ll

]
− C

(1)
l,l ⊗ A

(1)
ll − C

(1)
l,g ⊗ A

(1)
gl ;

C
(2)
l,l′ = F

PS,(2)
l,l′ − C

(0)
l,l ⊗ A

PS,(2)
ll′ − C

(1)
l,g ⊗A

(1)
gl′ ;

C
(2)
l,h = F

PS,(2)
l,h − C

(0)
l,l ⊗ A

PS,(2)
lh − C

(1)
l,g ⊗A

(1)
gh ;

C
(2)
l,g = F

(2)
l,g − C

(0)
l,l ⊗A

(2)
lg − C

(1)
l,l ⊗A

(1)
lg − C

(1)
l,g ⊗ A(1)

gg . (26)

The quark-to-quark Wilson coefficients C
(2)
l,l , Cl,h, and C

(2)
l,l′ (for l′ 6= l) are decomposed into

their PS and NS components as in Eq. (14). Non-singlet contributions F
NS,(2)
l,l and A

NS,(2)
ll

contain squared matrix elements with heavy-quark lines that are disconnected from the

initial-state proton, as in Fig. 2. These diagrams must be evaluated with full dependence on

mh. The rest of the coefficients in Eqs. (26) do not contain disconnected heavy-quark lines.

They are computed according to ZM formulas.

Explicitly, the non-singlet functions with mass dependence consist of two parts, arising

either from Feynman diagrams with light partons only (designated as glight), or with a heavy

quark in the final-state emission or virtual loop (denoted by Gheavy(mh)):

G = glight +Gheavy(mh),

where G = F
NS,(2)
l,l or A

NS,(2)
l,l . The function Gheavy(mh), provided by the graphs of the type

shown in Fig. 2, retains complete mh dependence. The function glight, obtained from the

same graphs as in Fig. 2, but with the heavy quark h replaced by one of the light quarks

(u, d, ...), is evaluated in the ZM approximation.

Masses can be neglected in the rest of Eqs. (26), so we get

c
(0)
l,a = δlaδ(1− x); (27)

c
(1)
l,l = f̂

(1)
l,l ; c

(1)
l,g = f̂

(1)
l,g ; c

(1)
l,h = c

(1)
l,l′ = 0; (28)

C
(2)
l,l = C

NS,(2)
l,l + cPS,(2), where (29)

C
(2),NS
l,l = f̂

NS,(2)
l,l,light + F

NS,(2)
l,l,heavy − A

NS,(2)
ll,heavy; (30)

c
(2)
l,h = c

(2)
l,l′ = cPS,(2); c

(2)
l,g = f̂

(2)
l,g . (31)
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The 1-loop coefficients c
(1)
l,a have been known for a long time [46–48]. The 2-loop massless

contributions in Eqs. (30) and (31) can be derived from the published ZM results according

to the following procedure. Using the decomposition Eq. (14) for ci,j in the ZM scheme,

ci,j ≡ cPS + δijc
NS,(2), (32)

where cPS and cNS are independent of the quark flavors i or j given that the masses are

neglected, we write

F (x,Q) =
∑

i,a e
2
i

[
ci,a ⊗ Φa/p

]
=
∑

i e
2
i

{∑
j

(
cPS + δijc

NS
)
⊗ Φj/p + cg ⊗ Φg/p

}

=
[
cNS ⊗ Σ+,NS

]
+

(
∑

i e
2
i )

Nf

{[
cS ⊗ Σ

]
+Nf

[
cg ⊗ Φg/p

]}
, (33)

with

cS ≡ cNS +Nfc
PS.

The singlet PDF Σ(x, µ) is given by Eq. (25), and the non-singlet sum of (anti-)quark PDFs

is

Σ+,NS(x, µ) =

Nf∑

i=1

e2i

(
Φi/p(x, µ) + Φī/p(x, µ)−

1

Nf
Σ(x, µ)

)
.

Eq. (33) expresses F (x,Q) in the same representation as Eq. (4.1) in the N3LO calculation

of DIS cross sections [45]. Comparing Eqs. (30) and (31) with ZM coefficient functions in

Section 4 of that reference (which are indicated here by an asterisk ” ∗ ”), we find that

cPS,(2) = c
(2,∗)
I,ps /Nf , (34)

f̂
(2)
i,g = c

(2,∗)
I,g /Nf , (35)

and

f̂
NS,(2)
l,l,light = c

(2,∗)
I,ns (nf = Nl), (36)

with I = 2 or L for F2(x,Q) and FL(x,Q), respectively.

The non-singlet heavy-quark coefficient function,

F
NS,(2)
l,l,heavy(x,Q

2/m2
h) =

(
L
NS,(2)
I,q (x,Q2/m2

h)
)
+
+

2

3
ln

(
Q2

m2
h

)
c
(1)
l,l (x), (37)

is composed of contributions of several classes shown in Figs. 2(a)-(c). Diagrams with

real emission of a heavy-quark pair (as in Fig. 2(a)) in FI(x,Q) contribute a function

L
NS,(2)
I,q (x,Q2/m2

h) in Eqs. (A.1) and (A.2) of Ref. [49]. This contribution is combined with
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the virtual two-loop diagrams, cf. Fig. 2(b), to produce the first term on the right-hand side

of Eq. (37), in which L
NS,(2)
I,q (x,Q2/m2

h) is regularized by the plus prescription at x → 1.

Contributions with a heavy-quark polarization graph inserted into a one-loop γ∗q scattering

diagram, of the kind shown in Fig. 2(c), produce the second term in Eq. (37), where c
(1)
l,l is

available from Refs. [46–48].

In this derivation, we do not explicitly compute the virtual loop contribution in Fig. 2(b),

but deduce it from the Adler sum rule [50–53]. The sum rule states that the sum of the real

and virtual contributions to F
NS,(2)
l,l,heavy(x,Q

2/m2
h) satisfies

∫ 1

0

F
NS,(2)
l,l,heavy(x,Q

2/m2
h) dx = 0. (38)

With this rule, it can be demonstrated that the virtual contribution amounts to imposing

the plus prescription on L
NS,(2)
I,q (x,Q2/m2

h) as in Eq. (37).

In the asymptotic limit Q2 ≫ m2
h, F

NS,(2)
l,l,heavy for the inclusive F2 contains large terms

proportional to ln(Q2/m2
h). Those coincide with the O(α2

s) non-singlet part A
NS,(2)
l,l,heavy of

the light-quark PDF that includes radiation of a heavy-quark pair as shown in Fig. 2(d).

A
NS,(2)
l,l,heavy is computed as A

NS,(2)
qq,H (z,m2

h/µ
2) in Eq. (B.4) of Ref. [12], which we evaluate as a

function of z = χ/ξ in accord with the S-ACOT-χ scheme.

When A
NS,(2)
l,l,heavy is subtracted from F

NS,(2)
l,l,heavy as in Eq. (30), the difference is free of the

collinear logs. After the difference is combined with the light-quark-only contributions

f̂
NS,(2)
l,l,light, we obtain the full non-singlet coefficient function C

(2),NS
l,l , which coincides in the

limit m2
h/Q

2 → 0 with its zero-mass MS expression in Eq. (8) of Ref. [20]. For the longitudi-

nal function FL, the heavy-quark subtraction A
NS,(2)
l,l,heavy is zero. Putting everything together,

we obtain the final expression for the NNLO light-quark component,

F
(2)
l = e2l

{
C

NS,(2)
l,l ⊗ (Φl/p + Φl̄/p) + cPS,(2) ⊗ Σ+ c

(2)
l,g ⊗ Φg/p

}
, (39)

where the Wilson coefficients are listed in Eqs. (29)-(31) and (34)-(37).

D. Several heavy flavors

The structure functions Fl and Fh in Eqs. (39) and (24) are all that is needed to compute

inclusive F (x,Q). Our expressions can be readily extended to include two or more heavy-
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FIG. 3: Examples of α2
s and α3

s contributions with heavy-quark lines of different flavors.

quark flavors:

F =

Nl∑

l=1

Fl +

Nfs
f∑

h=Nl+1

Fh, (40)

where the sum runs over all quark flavors satisfying 4m2
h ≤W 2 (i.e., up to the number Nfs

f

of the kinematically allowed final-state flavors).

Beginning at O(α2
s), some contributions to Fh include heavy quarks of two different fla-

vors, say, c and b. For instance, Fig. 3(a) shows a two-loop diagram in Fb in which an

incoming bottom quark radiates a cc̄ pair before or after the scattering on the photon. This

flavor-excitation contribution, relevant at Q large enough, is evaluated by a massless expres-

sion, c
(2)
b,b (mc = mb = 0)⊗ Φb/p(χ, µ), in accord with the main rule of the S-ACOT scheme.

We take the rescaling variable to be χ = x (1 + 4m2
b/Q

2)), given the numerical smallness

of the cross section, even though a more restrictive choice χ = x (1 + (2mb + 2mc)
2/Q2))

conforms better with the exact momentum conservation in production of a bb̄ + cc̄ pair.

The above contribution resums the large-Q logarithmic behavior of a three-loop function

F
(3)
b,g for the process γ∗g → bb̄cc̄. A representative Feynman diagram is shown in Fig. 3(b),

with the rest of the diagrams in the class related to the shown diagram by re-attaching the

g → cc̄ branch to one of the external legs (g, b, or b̄).

In the Q2 → ∞ limit, F
(3)
b,g simultaneously contains logarithms ln(Q2/m2

c) and ln(Q2/m2
b)

that must be subtracted in order to obtain an infrared-safe coefficient function C
(3)
b,g . The

subtraction is realized by applying the perturbative expansion procedure discussed in Sec-

tion IIB to the three-loop level. We get

C
(3)
b,g = F

(3)
b,g − c

(2)
b,b ⊗A

(1)
bg − c

(0)
b,b ⊗ A

(3)
bg , (41)

where the last two terms on the right-hand side are the subtractions associated with the

diagrams of the type shown in Figs. 3(c) and (d). The functions F
(3)
b,g , A

(1)
bg , and A

(3)
bg are
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evaluated with full dependence on mc and mb. [The coefficient A
(3)
bg has been recently

computed in Ref. [37].] The coefficient functions c
(0)
b,b and c

(2)
b,b are massless.

Based on the general structure of the S-ACOT scheme, we expect the first and third term

in Fig. 3 to cancel when Q2 ≈ m2
b , and the fourth term to cancel the O(α3

s) contribution to

the c
(0)
b,b ⊗Φb/p term in the same limit. The third and fourth terms cancel the ln(Q2/m2

c) and

ln(Q2/m2
b) contributions to the second term, F

(3)
b,g , in the limit Q2 ≫ m2

b . The numerical

realization of these cancellations at three loops is still in the future, pending on the calcula-

tion of the unknown massive three-loop coefficients. The factorization theorem is indicative

of the structure of the S-ACOT-χ subtraction terms that will arise at that order.

E. Semi-inclusive heavy quark production

A clarification is needed that the heavy-quark component Fh of inclusive F (x,Q) (de-

fined as the part proportional to the heavy-quark electric charge e2h) is not directly measur-

able. Rather, experiments publish the semi-inclusive (SI) heavy-quark structure function

Fh,SI(x,Q) that is determined from the cross section with at least one registered heavy me-

son. In the case of F2 at NNLO, Fh,SI(x,Q) with h = c essentially coincides with the charm

structure function F
(c)
2 that is commonly measured by HERA experiments.

While Fh,SI must be defined with care to obtain infrared-safe results at all Q [13], for

a global fit it is sufficient to approximate Fh,SI in the following way [18]. At moderate Q

values accessible at HERA, we define it as

Fh,SI(x,Q) = Fh(x,Q) +

Nl∑

l=1

e2lL
NS,(2)
I,q ⊗ (Φl/p + Φl̄/p). (42)

Here Fh(x,Q) is the component with the heavy quark struck by the photon, cf. Eqs. (12)

and (24). L
NS,(2)
I,q is the non-singlet part of the light-quark component Fl(x,Q) that contains

radiation of a hh̄ pair in the final state, as shown in Fig. 2(a). This is the same function

that was discussed in the previous subsection and computed expressly in Ref. [49]. However,

since the virtual diagram in Fig. 2(b) does not contribute to Fh,SI , the plus prescription is

not imposed on L
NS,(2)
I,q in this case.

The Fh,SI(x,Q) function that is thus defined is numerically stable in comparisons to

the existing data [18]. Our numerical analysis shows that the contribution associated with
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L
NS,(2)
I,q provides between 0 and 3% of the semi-inclusive charm cross sections at Q < 10

GeV, which is insignificant compared to typical experimental errors.

F. Factorization and χ convention

In the remainder of this section, we show that the S-ACOT-χ scheme is fully compatible

with the QCD factorization theorem for DIS.

To see why the χ convention is needed, consider again the heavy-quark contribution to

F (x,Q) on the proton from Eq. (12),

Fh(x,Q) = e2h

Nl∑

l=1

∫ 1

χ

dξ

ξ
Ch,l

(
ξp,mh,

Q

µ0

)
Φl/p(ξ, µ0). (43)

This expression is for the same Q value as in Eq. (12), but the factorization scale µ0 ≈ 1

GeV is taken to be below the switching-point scale for Nl + 1 flavors, so that only PDFs for

light parton flavors (l = 0, ...Nl) are present. For this scale choice, the PDFs Φl/p(ξ, µ0) do

not include subgraphs with the heavy-quark lines: those are contained solely in the Wilson

coefficient functions Ch,l

(
ξp,mh,

Q
µ0

)
. The right-hand side is non-zero when the light parton

l carries enough energy to produce at least one hh̄ pair in the final state. This condition

is reflected in the integration limits χ ≤ ξ ≤ 1 that are imposed on the convolution by the

energy conservation constraints inside the coefficient functions Ch,l.

If µ is gradually increased above µ0, a coefficient function Ch,h with an initial-state heavy

quark is introduced when µ crosses the switching point from Nl to Nl + 1 active flavors.

This function does not automatically vanish outside of the physical range χ ≤ ξ ≤ 1. If Ch,h

is defined so as to contribute in a wider range ξmin ≤ ξ ≤ 1 at the switching point, with

x ≤ ξmin < χ, then the DGLAP evolution preserves the same wider range at all µ above the

switching point.

If Ŵ is the center-of-mass energy of the photon scattering on a light parton a,

Ŵ 2 ≡ (pa + q)2 = Q2 (ξ/x− 1) , (44)

a final state with several heavy particles of the net mass
∑
mh is produced when

(∑
mh

)2
≤ Ŵ 2 ≤W 2 = Q2(1/x− 1). (45)
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According to this condition, the momentum fraction ξ must be in the range

χ ≤ ξ ≤ 1, (46)

for production to occur, where χ = x
(
1 + (

∑
mh)

2/Q2
)
≥ x.

If collinear approximations for flavor-excitation (FE) and subtraction terms in Ch,a violate

this fundamental requirement, large spurious contributions from the unphysical kinematical

region cancel to each order of αs, but survive as higher-order logarithmic terms. They can

be eliminated by a supplemental condition that the correct integration limits are always to

be preserved, as in Eq. (46).3

We will now show how to apply this condition at any order by including it into the

QCD factorization theorem. For this purpose, we examine the projection operator Z that

encapsulates the main rules of each factorization scheme [3]. It applies a set of approxima-

tions to the Feynman graphs with leading momentum regions in order to enable all-order

factorization.

We will closely follow the derivation and notations in Ref. [3]. In this approach, the

Feynman graphs containing the leading DIS contributions are composed of two-particle

irreducible subgraphs H and T , joined by one parton line on each side of the unitarity cut.

Each leading graph H · T involves integration over the momentum kµ of the intermediate

parton and summation over its spin components,

H · T ≡
∑

a=g,u,ū,d,d̄,...

∫
d4k

(2π)4

∑

spins

Ha(q, k)Ta(k, p). (47)

Virtualities of all momenta are of order Q in the hard subgraph Ha(q, k), and they are

much smaller than Q in the target subgraph Ta(k, p). H eventually contributes to the

Wilson coefficient functions, and T to the PDFs. qµ and pµ are the photon’s and proton’s

4-momenta. The nearly massless proton moves in the +z direction in the Breit reference

frame.

The purpose of the Z operator is to approximate the leading-power (logarithmically

3 Even in the Q2 ≫ m2
h

limit, convolutions with FE terms and subtractions could be in principle extended

to include contributions from 0 ≤ ξ ≤ x. This would not violate QCD factorization order by order, but

will destabilize higher-order terms. This is avoided by an implicit assumption that the FE convolutions

in the ZM limit are restricted to the physical range x ≤ ξ ≤ 1.
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divergent) part of H ·T by a simpler expression, denoted by H ·Z ·T , and to recast H ·T as

H · T =
∑

a

∫
d4k

(2π)4

∫
d4l

(2π)4

∑

spins

Ha(q, l)Za(l, k; l̂) Ta(k, p) + non-leading power term.

(48)

The leading-power approximation H · Z · T provides the bulk of H · T . The non-leading

power part is suppressed by terms of order
(

highest virtuality in T

lowest virtuality in H

)r

, with r > 0.

When it is recursively applied to all leading subgraphs, the Z projection generates the

factorized expression for the structure function, F =
∑

a [Ca ⊗ fa] +O(ΛQCD/Q). [3]

The Z operation simplifies integration over the momentum and summation over the

spin components of the intermediate parton, and it also simplifies the hard graph H . The

momentum lµ of the parton a that enters H is replaced by a simpler momentum l̂µ, e.g.,

l̂µ = ξpµ if a is massless (where 0 ≤ ξ ≤ 1). The Z operation discards power-suppressed

terms in H , such as the masses of the light quarks that are always negligible compared to

Q. It also specifies when the heavy-quark mass terms are to be retained in H , depending

on the type of the factorization scheme and the partonic scattering subprocess.

In all variants of the ACOT scheme, the Z operator is the same in all partonic channels

except for the H subgraphs with an incoming heavy-quark line. The target parts Ta, oper-

ators Zl and Zg for the H subgraphs with initial light-quark and gluon lines are identical

in all variants, while the operator Zh for the H subgraphs with incoming heavy quarks is

not. The PDFs in Ta are defined by the operator matrix elements as in Eq. (3) and retain

dependence on quark masses of all contributing flavors.

The Zh operator is of the form

Zh(l, k; l̂) =
1

4
(2π)4 SH(l̂)ST δ(l

+ − l̂+)δ(l− − l̂−)δ2(~lT ),

where SH(l̂) and ST = γ+ are projectors on the leading spin components in H and T ,

respectively. The incoming heavy quark in Hh has an approximate momentum l̂µ, where

the light-cone components of l̂µ in the Breit frame are l̂± ≡
(
l̂0 ± l̂3

)
/
√
2 and ~lT = 0. With

this representation, the Hh · Zh · Th integral assumes the form of a convolution over ξ,

Hh · Zh · Th =

∫
dξ

ξ
tr

[
Hh(q, l̂)

SH(l̂)

2

] ∫
dk−d2 ~kT
(2π)4

tr

[
γ+

2
Th(k, p)

]
, (49)
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Scheme l̂µ in Zh SH mh in Hh(q, l̂) ξ range in Hh · Th

ACOT
(
ξp+,

m2
h

2ξp+
,~0T

)
l̂·γ+mh

ξp+
mh 6= 0 x

2

(
1 +

√
1 +

4m2
h

Q2

)
≤ ξ ≤ 1

S-ACOT
(
ξp+, 0,~0T

)
γ− mh = 0 x ≤ ξ ≤ 1

S-ACOT-χ
(
ξ p+

1+4m2/Q2 , 0,~0T

)
γ− mh = 0 x

(
1 + 4m2

h/Q
2
)
≤ ξ ≤ 1

TABLE I: Components of the projection operator Zh(l, k; l̂) in three versions of the ACOT scheme.

where ξ = l̂+/p+ is the ratio of the large “+” momentum components.

Table I collects expressions for l̂µ and SH(l̂) in the ACOT, S-ACOT, and S-ACOT-χ

schemes. It also lists the integration ranges in the Hh · Th convolutions and indicates if mh

is set to zero in the Hh subgraphs. We re-emphasize that the three schemes listed in the

table are distinguished only by the hard subgraphs, or Wilson coefficients, with initial-state

heavy quarks, i.e., in the flavor-excitation channel. The differences arise solely in the terms

proportional to powers of m2
h/Q

2 in Hh(q, l). One could simplify the FE hard-scattering

contributions by setting mh = 0 as in the S-ACOT scheme. In the full ACOT scheme, the

lower limit of integration in Hh · Zh · Th is set by the kinematics of scattering of a massive

quark into a massive quark, which violates the momentum conservation condition of Eq. (43)

for pair production of massive quarks from light-quark scattering. In the S-ACOT scheme,

one is tempted to set the integration range to x ≤ ξ ≤ 1, which is also incompatible with

momentum conservation. One cannot just restrict the integration range to χ ≤ ξ ≤ 1, as

this disallows the lowest-order FE contribution c
(0)
h,h ⊗ h that contributes at ξ = x.

A better way is provided by the rescaling ξ → ξ̃ = κξ, p+ → p̃+ = p+/κ, which leaves

H(q, l̂) invariant, as it does not change l̂µ, x̂ = Q2/(2l̂ · q), or other kinematical variables in

H(q, l̂). At the same time, rescaling changes the integration range for ξ in the convolution.

Choosing κ = 1 + (
∑
mh)

2/Q2, we obtain the S-ACOT-χ scheme that has all desirable

features:

1. The proof of QCD factorization for the S-ACOT scheme in [3] also applies to the S-

ACOT-χ scheme, since the S-ACOT and S-ACOT-χ schemes have the same H(q, l̂).

The Z operation of the S-ACOT-χ scheme upholds all expected properties that are

listed in Sec. 9C of [3].
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FIG. 4: Integrands of convolution integrals F
(1)
h,g⊗g and A

(1)
h,g⊗g with and without the χ prescription,

plotted as a function of the momentum fraction ξ.
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2. The integration over ξ proceeds over the physical range χ ≤ ξ ≤ 1 in all channels. It

includes all physically possible scattering channels for ξ ≥ χ, but excludes kinemat-

ically prohibited values for ξ < χ. Since the form of χ is associated with a specific

coefficient function, the same form is to be used in convolutions of this coefficient

function in subtraction terms at higher orders.

3. The S-ACOT-χ coefficient functions Hh in the flavor-excitation channels are given by

ZM expressions evaluated at x̂ = χ/ξ. Kinematical prefactors outside of the coefficient

functions are independent of ξ and not affected by the rescaling.

4. The target subgraphs Ta, corresponding to the PDFs, are given by universal operator

matrix elements that are the same in all ACOT-like schemes.

5. The same value Nf is used in the evolution of αs(µ), PDFs, and hard graphs in each

Q range.

6. When Q is much larger than mh, the coefficient functions of the S-ACOT-χ scheme

reduce to those of the zero-mass MS scheme, without additional finite renormalizations.

7. When Q is of order mh, the S-ACOT-χ scheme is generally closer to the FFN scheme

than the S-ACOT scheme as a consequence of its Z operation that satisfies energy

conservation. In this scheme, matching on the FFN scheme does not rely on propo-

sitions beyond the factorization theorem with energy conservation, such as conditions

for derivatives of F (x,Q) [15] or damping factors [18].

An illustration for the χ convention

The advantages of χ rescaling can be demonstrated on the example of the O(αs) γ
∗g

contribution, consisting of the gluon-initiated box graph and corresponding subtraction,

and shown by the second and third graphs on the upper row of Fig. 1:

[C
(1)
h,g ⊗ g](x,Q) =

∫ 1

χ

dξ

ξ
g(ξ, Q)F

(1)
h,g

(
χ

ξ

)
−
∫ 1

ζ

dξ

ξ
g(ξ, Q)A

(1)
h,g

(
ζ

ξ

)
. (50)

The integrands of the convolution integrals on the right-hand side, g(ξ, Q) F
(1)
h,g (χ/ξ) and

g(ξ, Q) A
(1)
h,g(ζ/ξ), where ζ = x or χ, are plotted in Fig. 4(a-c) as a function of ξ. The

computation follows the numerical setup described in the next section. The scale on the
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ξ axis is logarithmic: the convolution integrals are proportional to the areas under the

respective integrand curves. For definiteness, we choose x = 0.01 and Q2 =10, 100, and

10000 GeV2, but the same features are observed for other x and Q values.

In the charm creation contribution, g⊗F (1)
hg , the integrand (red solid line) vanishes outside

of the physical range χ ≤ ξ ≤ 1, where χ ≈ 0.018, 0.0108, and 0.010008 for Q2 =10, 100,

and 10000 GeV2. On the other hand, the naive choice ζ = x of the S-ACOT scheme allows

the integrand g(ξ, Q) A
(1)
h,g(ζ/ξ) (green dashed curve) in the second term on the right-hand

side of Eq. (50) to contribute in the unphysical region x ≤ ζ ≤ χ. Its spurious contribution

is comparatively large at the smallest Q. It is not fully canceled by the counterpart FE

term
[
c
(0)
h,h ⊗ c

]
(x,Q) in the first upper graph of Fig. 1, leading to a bloated higher-order

uncertainty.

The S-ACOT-χ integrand g(ξ, Q) A
(1)
h,g(χ/ξ) vanishes below ξ = χ (cf. the blue dash-

dotted line). It is numerically moderate at physical ξ values, ξ > χ, and its integral cancels

well with
[
c
(0)
h,h ⊗ c

]
(χ,Q), as will be further demonstrated in Sec. IVA. Note also that the

difference between the two definitions for the g(ξ, Q)A
(1)
h,g(ζ/ξ) integrand is small in most of

the physical range χ ≤ ξ ≤ 1.

As the virtuality Q increases, the difference between χ and x progressively reduces, and

ξ varies in a wider interval. Finally in (c), for very large Q, the S-ACOT and S-ACOT-χ

subtractions become identical. A
(1)
h,g⊗g approximates well the collinear splitting contribution

that drives much of the shape of F
(1)
h,g (χ/ξ)g(ξ). When A

(1)
h,g ⊗ g is subtracted from F

(1)
h,g ⊗ g

as in Eq. (50), it produces a moderate negative O(αs) contribution, which is further reduced

at NNLO. These cancellations are further examined in Sec. IVB.

III. NUMERICAL EXAMPLES

In this section, we show representative plots from our validation tests for the NNLO

inclusive structure functions F2(x,Q) and FL(x,Q) computed according to the S-ACOT-

χ method. We focus on the partial contributions in which the photon strikes a charm

quark, given by Fh(x,Q) in Eq. (12) for h = c, and for structure functions F = F2 or FL.

These contributions are referred to as F2c(x,Q) and FLc(x,Q) in the figures. The same

comparisons have been repeated for the bottom-quark functions F2b and FLb, as well as for

the full inclusive functions F =
∑Nl

l=1 Fl +
∑Nfs

f

h=Nl+1 Fh and alternative values of Bjorken x.
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The results of other tests show similar patterns and can be viewed at [54].

NNLO coefficient functions F
(2)
h (x,Q) for massive quarks are computed using a program

available from [27]. This program tabulates two-loop heavy-quark coefficient functions in

a form that allows fast evaluation of convolution integrals in the Q range covered by the

experimental data.

The PDFs in all comparisons are obtained by using the Les Houches Accord toy

parametrization [55, 56] at the starting scale Q0 = mc =
√
2 GeV. Other input param-

eters are αs(Q0) = 0.36 and the pole mass mc.
4 The switching between 3 and 4 flavors

happens at Q = mc. The αs and PDFs are evolved to higher Q values by the HOPPET

computer code [57].5

A. Q dependence

Fig. 5 examines Q dependence of charm structure functions F2c (left panel) and FLc

(right panel). They are computed to order α2
s in all schemes, referred to as “NNLO” by the

counting convention for the inclusive structure functions considered here. [In predictions

for semi-inclusive charm production, the O(α2
s) cross section in the FFN scheme is often

counted as NLO, since the O(α0
s) flavor-excitation cross section is absent in this scheme.]

The upper insets in both panels show predictions at x = 10−2 in the S-ACOT-χ scheme,

FFN scheme with Nf = 3, and ZM scheme with Nf = 4. The lower insets show ratios of

the FFN and ZM predictions to the S-ACOT-χ prediction.

The left panel shows that the S-ACOT-χ theory prediction for F2c(x,Q) (blue solid line)

is numerically close to the FFN prediction (red short-dashed line) at Q ≈ mc and to the ZM

prediction (magenta long-dashed line) at Q > 10 GeV.

Similarly, in the right panel, the S-ACOT-χ prediction for the longitudinal function

FLc(x,Q) coincides with the corresponding FFN prediction at Q ≈ mc and approaches the

ZM prediction at Q > 30 GeV. [FLc(x,Q) is sensitive to mass-dependent corrections to

4 Our program can alternatively read MS masses as the input. In this case, the MS masses are later

converted into the respective pole masses, because the operator matrix elements A
(k)
ab

are published as

functions of the pole masses.
5 Bottom-quark contributions are omitted in this comparison. The charm PDF is zero at Q < Q0 = mc,

but acquires a non-negligible value immediately above Q0 through an O(α2
s) discontinuity existing at the

switching point.
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scattering off longitudinally polarized photons. Its matching on the ZM prediction happens

at higher Q values than in F2c.] The S-ACOT-χ prediction interpolates between the FFN

and ZM predictions at intermediate Q values, precisely as expected.
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FIG. 5: Comparison of F2c(x,Q) (left) and FLc(x,Q) (right), computed at O(α2
s) in the S-ACOT-χ

(solid), FFN Nf = 3 (short dashed), and ZM Nf = 4 (long dashed) schemes, shown as a function

of Q at x = 10−2.

B. Dependence on the factorization scale

NLO computations leave substantial uncertainty in the DIS charm-quark contributions

due to the choice of the renormalization/factorization scale and differences in the FE terms

in the threshold region. NNLO terms drastically reduce these uncertainties. Factorization

scale dependence, and its reduction from NLO to NNLO, is illustrated by Fig. 6. Reduction

of uncertainties in the modeling of kinematical threshold effects is discussed in Sec. IIID.

In Fig. 6(a)-(c), predictions for F2c(x,Q) in the S-ACOT-χ and FFN (Nf = 3) schemes

are plotted versus Bjorken x at representative Q2 values of 4, 10, and 100 GeV2. The

F2c(x,Q) values on the y axis are multiplied by 103
√
x to better visualize the accessible x

region. Central predictions are computed for µ =
√
Q2 +m2

c , the default scale in heavy-



26

ò

ò

ò

ò

ò

æ

æ

æ æ

æ

Scale dependence
long dash: S-ACOT- Χ NLO

solid: S-ACOT- Χ NNLO

short dash: FFNS NNLO Nf=3

ò MSTW08-NNLO- Χ

æ FONLL-C- Χ

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

10
3
x

0.
5

F
2 

c
Hx

,Q
L

LH PDFs Q=2 GeV, mc=1.41 GeV

ò

ò

ò

ò

ò

æ

æ

æ

æ

æ

Scale dependence
long dash: S-ACOT- Χ NLO

solid: S-ACOT- Χ NNLO

short dash: FFNS NNLO Nf=3

ò MSTW08-NNLO- Χ

æ FONLL-C- Χ

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0

1

2

3

4

5

x

10
3
x

0.
5

F
2 

c
Hx

,Q
L

LH PDFs Q=3.162 GeV, mc=1.41 GeV

(a) (b)

ò

ò

ò

ò

ò

æ

æ

æ
æ

æ

Scale dependence

long dash: S-ACOT- Χ NLO

solid: S-ACOT- Χ NNLO

short dash: FFNS NNLO Nf=3

ò MSTW08-NNLO- Χ

æ FONLL-C- Χ

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0

5

10

15

x

10
3
x

0.
5

F
2 

c
Hx

,Q
L

LH PDFs Q=10 GeV, mc=1.41 GeV

à

à

à à

à

ò

ò

ò

ò

ò

æ

æ

æ æ

æ

ç

ç

ç ç

ç

Scale dependence
long dash: S-ACOT- Χ NLO

short dash: FFNS NLO Nf=3

à MSTW08-NLO

ò MSTW08-NLO- Χ

æ FONLL-A- Χ

ç FONLL-B- Χ

dotted:S-ACOT NLO

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

10
3
x

0.
5

F
2 

c
Hx

,Q
L

LH PDFs Q=2 GeV, mc=1.41 GeV

(c) (d)

FIG. 6: Comparison of predictions for F2c(x,Q) in the S-ACOT-χ scheme and alternative theoretical

approaches at NLO (O(αs)) and NNLO (O(α2
s)). Central predictions are for µ =

√
Q2 +m2

c , and

the error bands are for Q ≤ µ ≤
√

Q2 + 4m2
c .
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quark DIS cross sections in the CT10 global analysis [6]. The error bands are obtained by

varying the scale in the range Q ≤ µ ≤
√
Q2 + 4m2

c .

At Q = 2 GeV in Fig. 6(a), the NNLO S-ACOT-χ central prediction (black solid line

inside a green band) is slightly above the NNLO FFN prediction (short-dashed line inside

a magenta band) and has a smaller scale uncertainty than FFN. At Q below 2 GeV (not

shown), the NNLO S-ACOT-χ and FFN predictions get even closer. In contrast, the NLO

S-ACOT-χ prediction (a long-dashed line inside a blue band) underestimates the NNLO

FFN result and has wider scale dependence.

As Q increases to 10 GeV (Fig. 6(c)), S-ACOT-χ predicts more event rate than the FFN

scheme both at NLO and NNLO. Altogether, the Q dependence in these figures is fully

compatible with the matching of the S-ACOT-χ results on the FFN and ZM results in the

limits Q2 ≈ m2
c and Q2 ≫ m2

c , respectively.

C. NNLO vs. NLO predictions

Improved stability of the NNLO prediction in Fig. 6(a) can be appreciated by comparing

it to the counterpart NLO result shown in Fig. 6(d). Here, we collect a variety of NLO

F2c(x,Q) values at Q = 2 GeV, obtained in FFN, S-ACOT, TR’/MSTW, FONLL-A, and

FONLL-B schemes. The S-ACOT and MSTW predictions are shown with the χ scaling as

well as without it.

The spread in NLO values of F2c(x,Q) observed in the figure is extensive, nominally

suggesting a large uncertainty in the resulting NLO PDF sets. However, when included

in the PDF fits, the most extreme predictions for F2c(x,Q) in this figure are excluded by

the fitted DIS data, which prefer the values that are about the same as the (relatively

unambiguous) NNLO result. In the CT10 NLO fit, the scale µ is set equal to
√
Q2 +m2

c ,

which brings the NLO S-ACOT-χ prediction in agreement with the measured cross sections.

Thus, according to the past global fits, the NLO cross sections can be reconciled with the

heavy-quark data, but at the expense of tuning of the scale parameter, for each value of

mc and rescaling variable. The key benefit of the NNLO calculation for F2c(x,Q) is to

automatically achieve such a good agreement, nearly independently of the factorization

scale.
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D. Threshold effects

à

à

à

à

à

ç

ç

ç
ç

ç

scale+rescaling dependence
blue band: NLO

green band: NNLO

NLO, Μ=Q, Ζ=x:
ç ACOT

à S-ACOT

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0

1

2

3

4

5

x

10
3 x

0.
5

F
2

cH
x,

Q
L

LH PDFs Q=2 GeV S-ACOT

scale+rescaling dependence

blue band: NLO

green band: NNLO

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2
0

5

10

15

x
10

3
x

0.
5

F
2 

c
Hx

,Q
L

LH PDFs Q=10 GeV S-ACOT

(a) (b)

FIG. 7: Dependence on the factorization scale µ and the rescaling variable ζ(λ). Left: Q = 2 GeV;

right: Q = 10 GeV.

In the above discussion, our NNLO structure functions are computed using the optimal

rescaling variable ζ = χ in the FE heavy-quark contributions. The rescaling variable sig-

nificantly improves convergence near the threshold by excluding contributions to the FE

convolution integrals that are kinematically impossible.

Dependence on the rescaling prescription can be explored with the help of the variable ζ

that generalizes the χ variable as proposed in Ref. [42]. The generalized rescaling variable

ζ is implicitly defined by

x =
ζ

1 + ζλ · (4m2
c)/Q

2
, (51)

where λ is a real number. Various choices of positive λ produce a family of GM schemes in

which ζ takes continuous values between x (no rescaling) and χ (full rescaling). Specifically,

λ = 0 produces ζ = χ of the S-ACOT-χ scheme, and λ≫ 1 produces ζ ≈ x that corresponds

to the plain S-ACOT scheme without rescaling. Negative λ values (not shown) strongly

suppress the FE contributions by setting ζ > χ.

Fig. 7 shows the bands of variations in the NLO and NNLO S-ACOT F2c values at

Q = 2 GeV (left panel) and 10 GeV (right panel) when µ and λ are varied in the ranges
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Q ≤ µ ≤
√
Q2 + 4m2

c and 0 ≤ λ ≤ 100, respectively. If λ is naively varied in the full range,

at smallest Q values one obtains a large excursion in the NLO predictions (light blue band),

which is considerably reduced when going to NNLO (green band).

In contrast to the kinematical dependence on the rescaling variable, the “dynamic” mass

terms in the flavor-excitation Wilson coefficients of the “full” ACOT scheme (cf. Section II F)

have little effect [4]. The left panel compares the NLO F2c values in the ACOT and S-ACOT

schemes for µ = Q without rescaling from Ref. [58], as indicated by the circles and squares,

respectively. The discrepancy between the ACOT and S-ACOT values is small already at

NLO. It is likely to further decrease when going to the NNLO as a term of order α3
s.

As Q increases above a few GeV, dependence on λ diminishes practically to nil, as in

the right panel of the figure for Q = 10 GeV. The ACOT and S-ACOT scheme produce

essentially coinciding predictions at such a large Q value [58]. Together with Fig. 6, Fig. 7

indicates that, at NNLO, the physically motivated rescaling variable is more important at

low Q than the factorization scale choice or the difference between the ACOT and S-ACOT

schemes.

E. Alternative mass schemes

1. TR’ and FONLL schemes

Figs. 6(a)-(c) also show NNLO predictions in alternative GM schemes, indicated by scat-

tered symbols: the modified Thorne-Roberts (TR’) scheme [14–16] as implemented by the

MSTW’08 PDF analysis [59]; and FONLL scheme C used by the NNPDF collaboration [18].

Their values are computed in the 2009 Les Houches benchmark study of GM schemes [58]

by assuming the same χ rescaling as the S-ACOT-χ scheme.

The three schemes are seen to be in good overall agreement, apart from minor differences

traced to subtle variations in the NNLO implementations that the schemes provide.

At Q = 2 GeV, the NNLO S-ACOT-χ prediction lies slightly above the FONLL-C pre-

diction and below the MSTW prediction. At Q = 10 GeV, the NNLO S-ACOT-χ prediction

becomes closer to the MSTW prediction and is still above the FONLL-C result. These dif-

ferences can be understood by noticing that the compared schemes may differ in subleading

perturbative terms. For example, the FONLL-C scheme includes a threshold damping fac-
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tor to match on the 3-flavor result near the threshold [18]. The S-ACOT-χ scheme is not

using the damping factor and is expectedly close to the FONLL-C scheme at Q → mc, but

not strictly identical. The TR’/MSTW prediction includes a constant higher-order term (of

order O(α3
s)) to improve smoothness of switching from 3 to 4 flavors at Q = mc. Neither S-

ACOT-χ nor FONLL-C include this artificial constant term, which is why they may predict

smaller F2c values at low Q.

2. The BMSN scheme

Structural similarities between the S-ACOT-χ, TR’, and FONLL schemes reflect their

conceptual origin from the Collins-Wilczek-Zee (CWZ) renormalization method [60]. The

CWZ procedure is applied frequently to renormalize QCD quantities dependent on several

mass scales. It introduces a sequence of renormalization schemes and associated differential

equations with the number Nf of active flavors that changes across particle mass thresholds.

The CWZ procedure is invoked, for example, in the common definition of the QCD running

coupling αs and by the zero-mass VFN scheme.

The family trait of the CWZ renormalization – a hierarchy of fixed-flavor number sub-

schemes with sequentially incrementing Nf values – is also evident in the ACOT-like general

mass schemes. In practical realizations of these schemes, scale dependence of both αs and

PDFs is found by solving renormalization group equations with a shared Nf value in each

mass range. The Nf and Nf + 1 expressions for αs and PDFs are related at the switching

momentum scales through the known matching conditions.

A different path is taken in the approach of Buza, Matiuonine, Smith, and van Neerven

(BMSN [12]), which is adopted, for example, in the fits by the ABM group [17, 61]. In the

BMSN and CSN [13] frameworks, only αs(µ) is found from a renormalization group equation

according to the CWZ procedure. However the 4-flavor PDFs are constructed from the 3-

flavor PDFs at µ ≥ mc by solving the matching equations for each µ value. Only the 3-flavor

PDFs are evolved by the DGLAP equations in this case. Here we see the key difference with

the ACOT approach, which resums higher-order corrections to the heavy-flavor PDFs at

µ ≥ mc with the help of DGLAP equations. The BMSN method does not provide this

resummation, crucial for implementing the precise collider data from Q2 ≫ m2
c , m

2
b into

the global fit. To resum the heavy-quark collinear logs in their published 5-flavor PDFs,
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ABM evolve them from the initial scale mb to higher energies after the fit, starting from the

best-fit parametrization found in the BMSN approach.

In the BMSN framework, the number Nf of active quark flavors in αs is incremented from

3 to 5 according to the usual convention as the energy increases. 4-flavor PDFs fa(4, x, µ
2)

are derived from the 3-flavor PDFs fa(3, x, µ
2) as

fa(4, x, µ
2) =

∑

b

[Aab ⊗ fb] (3, x, µ
2); (52)

The functions Aab(x̂) = δabδ(1−x̂)+asA(1)
ab (x̂)+a

2
sA

(2)
ab (x̂)+... are comprised of the coefficients

A
(k)
ab in the perturbative expansion of the massive parton-level PDFs that were discussed in

Sec. IIA. The BMSN 4-flavor structure function is given by

FBMSN(4, x, Q) = F (3, x, Q,mc 6= 0) + F (4, x, Q,mc = 0)− F asymp(3, x, Q,mc 6= 0), (53)

where F (3, x, Q,mc 6= 0) is obtained for three massless quarks (u, d, s) and one massive quark

(c). F asymp(3, x, Q,mc 6= 0) is the dominant part of F (3, x, Q,mc 6= 0) in the asymptotic

limit Q2 ≫ m2
c , and F (4, x, Q,mc = 0) is computed with 4 massless quarks in the Wilson

coefficients, with the 4-flavor PDFs defined by Eq. (52).

This arrangement provides a nearly ideal matching of the 4-flavor FBMSN(4, x, Q) onto

the 3-flavor F (3, x, Q,mc 6= 0) as µ → mc, which is feasible in the absence of resummation

of collinear logs ln(µ2/m2
c). At O(α2

s), the last two terms in Eq. (53) are related by the

replacement of the 3-flavor QCD coupling by the 4-flavor coupling,

F (4, x, Q,mc = 0) =

(
F asymp(3, x, Q,mc 6= 0)

)

αs(3,µ)→αs(4,µ)−
1
6π

α2
s ln

(
µ2

m2
h

). (54)

Since αs(Nf , µ) is nearly continuous at the switching point between 3 and 4 flavors (apart

from a mild discontinuity that first enters at O(α2
s)), it follows from Eqs. (53) and (54)

that FBMSN(4, x, Q) ≈ F (3, x, Q,mc 6= 0) at Q → mc. In a nutshell, the matching of the

BMSN 4-flavor scheme on the 3-flavor scheme is achieved by dropping the numerical DGLAP

evolution of 4-flavor PDFs.

In deriving these relations, BMSN allow only one parton flavor to be massive in each

µ range. This assumption is untrue at some level for µ comparable to mb, since mc is not

negligible compared to mb. It creates conceptual difficulties in extending the VFN scheme

proposed by BMSN to three loops [36, 37], since both the parton-level structure functions

F
(3)
a,b and operator matrix elements A

(k)
ab may depend on mc and mb at the same time.
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In fact, this assumption is not necessary for proving QCD factorization with heavy quarks

and is not made in the S-ACOT approach. The proof of the general-mass factorization

scheme does not need to assume that all quarks but one are massless. Masses of heavy quarks

that may be comparable to Q are never neglected in the target subgraphs associated with

the PDFs and A
(k)
ab , cf. Ref. [3] and Sec. II F. As an illustration of their role, consider again

the coefficient function C
(3)
b,g with c and b quark lines in Eq. (41) of Sec. IID. This function is

found by subtracting convolutions of massive operator matrix elements A
(k)
bg from a massive

parton-level function F
(3)
b,g . This is expected to produce C

(3)
b,g that is free of the ln(µ2/m2

c)

and ln(µ2/m2
b) terms and coincides with C

(3)
b,g in the effective MS scheme with 5 massless

flavors when Q2 is unequivocally larger than m2
c and m2

b . [Verification of this prediction still

awaits an explicit calculation of the massive function F
(3)
b,g ]. The operator matrix element

A
(3)
bg that depends both on mc and mb, and which caused concern in Refs. [36, 37], therefore

naturally appears in the factorization formula (41) when deriving the infrared-safe C
(3)
b,g with

two quark species. It is not anticipated to pose a problem from the S-ACOT-χ viewpoint.

Numerically, the S-ACOT-χ and BMSN approaches provide close predictions for charm

production at Q ≈ mc [58]. While both approaches are in good agreement with the current

HERA data, they may lead to numerical differences in future precise DIS analyses, both at

scales of order mb, where the resummed ln(Q2/m2
c) terms may already play some role, and

at electroweak scales, where the expected differences of a few percent may be comparable

to the PDF uncertainties. More generally, S-ACOT-χ points out a way to include heavy-

quark mass dependence and resummation of heavy-quark collinear logs in one step, and to

implement three-loop DIS amplitudes with two massive quark flavors along the guidelines

of the CWZ renormalization.

IV. CANCELLATIONS BETWEEN FEYNMAN GRAPHS

A. Cancellations at low Q

In order to match on the FFN and ZM predictions, certain classes of Feynman diagrams

inside the S-ACOT-χ NNLO coefficient functions must cancel in the respective low-Q and

large-Q regions. We will show how these cancellations come about in the case of the charm-

quark function F2c(x,Q), but the pattern holds for the bottom quark and other structure
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functions with suitable modifications.

The cancellations are revealed by plotting differences between various matrix elements

and collinear subtractions discussed in Section IIA, which are established by applying the

factorization formula at the parton level.

In the Q ≈ mc region, all FE contributions in Eqs. (18)-(21) must cancel to a high degree

in order for F2c(x,Q) to reduce to the FFN matrix elements F
(1,2)
h,g and F

(2)
h,l . In the threshold

region, the evolved charm PDF is effectively of order O(as),

lim
Q2→m2

c

c(x,Q) ≈ as(Q)
[
A

(1)
hg ⊗ g

]
(x,Q); (55)

a FE contribution to F2c(x,Q) containing a coefficient c
(k)
h,h is effectively of order O(ak+1

s ) .

Keeping this in mind, at order O(as) the virtual-photon-charm scattering diagram with c
(0)
h,h

in Eq. (18) cancels the gluon-initiated subtraction term with A
(1)
hg in Eq. (19), and only the

γ∗g fusion diagram F
(1)
hg in Eq. (19) survives in the total F2c(x,Q). In this case, the difference

D
(1)

C(0)(x,Q) =
[
c
(0)
h,h ⊗ c

]
(x,Q)− as

[
c
(0)
h,h ⊗ A

(1)
hg ⊗ g

]
(x,Q), (56)

where c(x,Q) and g(x,Q) represent the charm and gluon PDFs, must be close to zero.

As the next order is included, the cancellation present in D
(1)

C(0) must further improve.

Two differences quantify the cancellations to this order:

D
(2)

C(0)(x,Q) = D
(1)

C(0)(x,Q)−a2s
[
c
(0)
h,h ⊗ A

(2)
hg ⊗ g

]
(x,Q)−a2s

[
c
(0)
h,h ⊗ A

PS,(2)
hl ⊗ Σ

]
(x,Q), (57)

in which the convolutions of c
(0)
h,h with O(α2

s) operator matrix elements A
(2)
hg and A

PS,(2)
hl are

subtracted from D
(1)

C(0)(x,Q); and

D
(2)

C(1)(x,Q) = as

[
c
(1)
h,h ⊗ c

]
(x,Q)− a2s

[
c
(1)
h,h ⊗ A

(1)
hg ⊗ g

]
(x,Q), (58)

which probes the cancellation between convolutions involving the coefficient c
(1)
h,h. By com-

paring D
(2)

C(0) with D
(1)

C(0) , we quantify how the O(as) cancellation in D
(1)

C(0) , proportional to

c
(0)
h,h, improves upon the inclusion of the NNLO corrections. The difference D

(2)

C(1) quantifies

yet another O(a2s) cancellation that is independent of D
(1)

C(0) . It has the same structure as

D
(1)

C(0) , but includes the convolutions with c
(1)
h,h instead of c

(0)
h,h.

The left panel of Fig. 8 shows the x dependence of D
(1)

C(0) , D
(2)

C(0) , and D
(2)

C(1) at Q = 2 GeV.

To provide visual guidance, these differences are compared to the FFN Nf = 3 prediction at

O(a2s) (solid black line), which is roughly equal to the total rate at this Q (cf. the previous
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subsection). We also plot the S-ACOT-χ contribution of O(a0s) provided by c
(0)
h,h (dashed blue

line), nominally counted as the lowest-order contribution. While the LO contribution on its

own is substantial comparatively to the FFN result, it is mostly canceled by the subtraction

in Eq. (56), so that the resulting difference D
(1)

C(0) (long-dashed green line) is small.

The cancellation in D
(1)

C(0) is further improved by including the next-order terms in D
(2)

C(0)

as in Eq. (57). The difference D
(2)

C(0) (dot-dashed red line) and especially the counterpart

difference D
(2)

C(1) (dotted purple line) give decreasingly small contributions. They satisfy

∣∣∣D(2)

C(1)

∣∣∣≪
∣∣∣D(2)

C(0)

∣∣∣≪
∣∣∣D(1)

C(0)

∣∣∣ ≤ F2,c(x,Q). (59)

Therefore, as Q→ mc, the S-ACOT-χ scheme exhibits an almost perfect match on the FFN

computation by the virtue of perturbative cancellations that improve with each order of αs.
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FIG. 8: Cancellations in the S-ACOT-χ scheme at Q2 ≈ m2
c (left) and Q2 ≫ m2

c (right).

B. Cancellations at large Q

A different cancellation pattern is observed when mc is negligible compared to Q, when

the large logarithms collected in A
(1)
hg , etc. must be subtracted from the massive contributions

F (k) to obtain the infrared-safe coefficient functions C(k). These cancellations are illustrated

in the right panel of Fig. 8 by D
(1)
g and D

(2)
g . They quantify the collinear subtractions in the
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contributions containing the γ∗g box subgraph. The lowest-order difference D
(1)
g is equal to

the convolution of the coefficient C
(1)
h,g as defined by Eq.(19):

D(1)
g (x,Q) ≡

[
C

(1)
h,g ⊗ g

]
(x,Q) = as

{[
F

(1)
h,g ⊗ g

]
(x,Q)−

[
c
(0)
h,h ⊗ A

(1)
hg ⊗ g

]
(x,Q)

}
. (60)

In this expression the subtraction term matches on the O(as) photon-gluon contribution

represented by F
(1)
h,g . The x dependence of this matching is shown in the right panel of Fig. 8

for Q = 10 GeV. It can be seen that D
(1)
g (blue short-dashed line) is quite small compared

to the O(a2s) FFN result.

The α2
s-order difference can be constructed as

D(2)
g (x,Q) = D(1)

g (x,Q) + a2s

{[
C

(2)
h,g ⊗ g

]
(x,Q) +

[
C

(2)
h,l ⊗ Σ

]
(x,Q)

}
,

which can be cast into the form

D(2)
g = D(1)

g + a2s

{
F̂

(2)
h,g ⊗ g + F̂

PS,(2)
h,l ⊗ Σ− c

(1)
h,h ⊗ A

(1)
hg ⊗ g

−c(0)h,h ⊗A
(2)
hg ⊗ g − c

(0)
h,h ⊗A

PS,(2)
hl ⊗ Σ

}
(61)

by virtue of Eqs. (20) and (21). At this order, the collinear logarithms arising in F̂
(2)
h,g are

canceled by c
(0)
h,h⊗A

(2)
hg and c

(1)
h,h⊗A

(1)
hg , and, similarly, the collinear term in F̂

PS,(2)
h,l is removed

by c
(0)
h,h⊗A

PS,(2)
hl . The net effect of the subtractions is that D

(2)
g (the green long-dashed line)

provides a small correction to D
(1)
g . The perturbative series converge well for D

(k)
g :

∣∣D(2)
g −D(1)

g

∣∣≪
∣∣D(1)

g

∣∣≪ F c
2 (x,Q) . (62)

C. Cancellations without kinematic rescaling

Although the cancellations happen for any rescaling variable ζ , their perturbative con-

vergence is slower for a non-optimal choice, such as ζ = x. The differences D
(1)

C(0) , etc. for

ζ = x are shown in Fig. 9 and, as one can see, they are generally larger than in the case of

ζ = χ. Nonetheless, the differences are reduced by going to NNLO, although not as fast as

for the optimal rescaling choice.
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FIG. 9: Same as Fig. 8, in the S-ACOT scheme without rescaling.

V. CONCLUSIONS

We examined connections between multi-loop calculations for massive quark production

and fundamental concepts behind QCD factorization. An NNLO calculation for neutral-

current DIS with massive quarks is documented in a form that bears structural similarity to

the NNLO computation in the zero-mass scheme [19–21]. This calculation is algorithmic and

utilizes readily available NNLO expressions. The main formulas are presented by Eqs. (40),

(24), and (39). The theoretical derivation presented in Sec. II can be readily extended to two-

loops in charged-current DIS, after all needed heavy-quark matrix elements are computed.

The conceptual foundation for the presented results is provided by the S-ACOT-χ factor-

ization scheme. The discussion emphasized several strong features of this scheme: its direct

origin from the proof of QCD factorization for DIS [3], relative simplicity, and compliance

with phase space constraints on heavy-quark production at all energies.

Throughout this study, we highlighted phenomenological importance of energy conser-

vation in massive particle production. We have shown how the constraints from energy

conservation can be satisfied in all channels as a part of the QCD factorization theorem.

These constraints are included in the definition of the Z operation in the Collins’ proof of

QCD factorization by rescaling the partonic momentum fraction in flavor-excitation Wilson

coefficients. The rescaling variable depends on the mass
∑
mh of heavy particles in the
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final state as χ = x
(
1 + (

∑
mh)

2/Q2
)
, where

∑
mh=2mh and mh at the lowest order in

neutral-current DIS and charged-current DIS, respectively. The S-ACOT-χ scheme thus re-

alizes correct kinematical dependence solely by the means of the QCD factorization theorem

and momentum conservation.

Schemes of the ACOT family differ only in mass-dependent terms in heavy-quark Wilson

coefficient functions. PDFs are given by the same operator matrix elements in all schemes,

such as Eq. (3). Estimates of these PDFs from global fits converge to unique universal

functions as order of the QCD coupling increases. Convergence is the fastest in the S-

ACOT-χ scheme.

At NNLO, dependence of S-ACOT-χ predictions on the factorization scale and other

tunable parameters is reduced compared to NLO. Cancellations between classes of Feynman

diagrams are stabilized once NNLO terms are included.

After the first version of this paper has been submitted, an independent S-ACOT-χ

calculation for NC DIS has been realized in Ref. [62]. In that approach, full mass dependence

is included at O(αs), while approximate matrix elements are used in all heavy-quark channels

at O(α2
s) and O(α3

s). They are obtained from ZM matrix elements evaluated with a rescaling

variable that mimic the dominant kinematic contributions, in an approach that resembles

the “intermediate-mass” scheme proposed in Ref. [42]. In our study, the O(α2
s) contributions

to flavor-creation channels and threshold matching coefficients are computed exactly, so that

it reduces to the FFN scheme at Q ≈ mc. Since the kinematical mass terms dominate over

the dynamical terms in most practical situations [42], the calculation in Ref. [62] is beneficial

for obtaining estimates of yet unknown heavy-quark coefficient functions, notably for heavy-

quark contributions to neutral-current DIS at three loops and charged-current DIS at two

loops.

The derivation of S-ACOT-χ predictions is simpler than in some other GM schemes

[12, 29], as it is carried out by assuming a unique number of active flavors (Nf ) and one

set of universal PDFs in every Q range. It is minimal, in the sense that it does not impose

conditions on the Q derivatives of structure functions [14] or introduce a damping factor

[18]. Yet, after the NNLO terms are included, the S-ACOT-χ predictions result in good

agreement with the other GM schemes. As the default heavy-quark scheme of CTEQ PDF

analyses, the S-ACOT-χ scheme is going to play a crucial role in global fits at NNLO.
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