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Abstract

We derive the maximal, arbitrary D, Galileon field equations’ simplifications for symmetric
configurations. Thus, spherical symmetry reduces the equations from the D− to the two-
dimensional Monge-Ampere equation, axial symmetry to its cubic extension etc. We then
display some classes of explicit solutions as concrete realizations of the (known) general, but
highly implicit, ones.

1 Introduction

Galileons, while popular in the cosmological literature, deserve to be better understood on their
own. The present contribution is the study of their “maximal” forms in arbitrary dimension D,
with a view to finding some interesting simplifications and explicit solutions of their, rather exotic,
field equations. Such searches are usually most successful for systems with symmetry, as turns out
to be especially true here. We will find dramatic reduction both of the effective equations and their
solutions as the degree of symmetry is increased: Thus, spherically symmetric configurations obey
the D = 2 Monge-Ampere equation rather than the D-dimensional Hessian one. This enables us
to display quite general classes of explicit solutions, independent of the models’ dimensionality, as
against the known general but quite implicit ones.

We begin with a summary of the models; in the formulation of [1], the actions for the scalar
field φ are given by

I =

∫

dDxφ
[

ǫµν...α ǫγδ...β φ,µγ φ,νδ . . . φ,αβ

]

=

∫

dDxφ det(φ,αβ). (1)

The field equation states that the D-dimensional determinant of its second derivatives – i.e., the
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Hessian [2] vanishes:
det(φ,αβ) = 0. (2)

As already noted in [2], all φ that are independent of at least one Cartesian space-time coordinate
are trivially solutions: vanishing of any derivative annihilates a complete row and column of the
determinant. This implies a sort of anti-Birkhoff theorem: since all static functions are solutions,
interesting ones must depend on t. It also demonstrates the fact that one can have too much
symmetry, here that of a cyclic coordinate. [Note also that unlike for normal Lorentz invariant
systems, arbitrary constant rescaling of each coordinate separately is allowed because each term in
the determinant expansion contains all derivatives.] We now turn to the reduction of (2) effected
by less drastic symmetries.

2 Spherical Symmetry

We begin with maximal, spherical, symmetry, φ = φ(r, t) and show that φ obeys the (D = 2)
Monge-Ampere equation for all D. [Missing angular dependence is not the same as missing Carte-
sian coordinates–in the former case, all the xi are still present, just in a particularly symmetric
combination.] Note first that

φ,i = xi/r φ
′ φ,ij = δij (φ

′/r) + xi xj/r
3(φ′′ r − φ′) (3)

where prime= d/dr, dot= d/dt. We write φ,µν as the matrix

φ,µν=̇

(

φ̈ φ̇′ xi/r

φ̇′ xi/r δij φ
′/r + xi xj/r

3 [φ′′ r − φ′]

)

. (4)

This implies that the full Hessian matrix (4) is of the form

S ≡
(

φ̈ b
T

b D

)

, (5)

with determinant
det(S) = φ̈ det

[

D− b φ̈−1
b
T
]

, (6)

the standard result for block matrices. Using bi = φ̇′ xi

r
and Dij =

φ′

r
δij + xi xj

φ′′ r−φ′

r3
, the matrix

in (6) is
[

D− b φ̈−1
b
T
]

ij
= δij

φ′

r
+ xi xj

[

φ′′ r − φ′

r3
−

φ̇′2

r2 φ̈

]

. (7)

But Sylvester’s theorem states that

det [α δij + β xi xj] = αD−1

(

1 +
β

α
r2
)

, (8)
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hence

det
[

D− b φ̈−1
b
T
]

=

[

φ′

r

]D−1
(

1 +
r

φ′

(

φ′′ −
φ′

r
−

φ̇′2

φ̈

))

=

[

φ′

r

]D−2
(

φ′′ −
φ̇′2

φ̈

)

.

(9)

By (6), and dropping the overall coefficient, the reduced field equation is

(

φ′′ φ̈− φ̇′2

)

= 0, (10)

independent of D, as promised. In the most degenerate, one-variable case φ = φ[
√
x2 =

√
t2 ± r2],

the equation reduces to φ′′ = 0, whose solution is just φ = a
√
x2 + b; this is of course distinct

from the “pure gauge” φ ∼ aµ x
µ + b, whose second derivatives vanish identically. This solution

exemplifies the result [4] that any function homogeneous of order one in (t, r) is a solution.

It is not difficult to guess some classes of interesting solutions of (10). In particular, there
are traveling solutions, φ(t, r) = Φ(a t + b r). Indeed, superpositions of traveling solutions, φ =
Φ1(a t+ b r) + Φ2(c t + d r) seem to exist, subject “only” to the condition a d = b c; unfortunately,
this condition reveals the superposition to be the initial φ = Φ(a t+ b r) in disguise: recalling the
freedom of rescaling (t, r) by arbitrary constants, we choose to remove a and b from Φ1, which then
makes Φ2 = Φ2(c/a t + d/b r); but since a d = b c, Φ2 is again a function of just t + r, like the
(rescaled) Φ1 and φ = Φ(t+ r). Our traveling wave broadens, in a sense, the homogeneity theorem
of [4]: obviously, any – even independent – rescalings of t and r are permitted for Φ(a t + b r), as
indeed for their lower symmetry extensions studied below.

Actually, the general, if highly implicit, solution of (10) is known and can be correlated to
some of the explicit ones; we follow [3, 4]. The idea is to generate φ(t, r) whose φ̇ and φ′ are related
– then the columns of the Hessian matrix will not be independent, and hence the determinant of
the matrix will vanish. One can accomplish this by setting φ̇(t, r) = f(u), φ′(t, r) = g(u), where f
and g are some functions of the single variable u(t, r). For then

φ̈ = f ′(u) u̇ φ′′ = g′(u)u′ φ̇′ = f ′(u)u′ = g′(u) u̇, (11)

and the combination in (10) vanishes. In order to generate a φ with the appropriate derivative
relations, we take

φ(t, r) = t f(u) + r g(u) + ua, (12)

for an arbitrary constant a. Then

φ̇ = f + u̇ (t f ′ + r g′ + a) φ′ = g + u′ (t f ′ + r g′ + a) (13)

so that φ̇ = f and φ′ = g hold if
t f ′(u) + r g′(u) + a = 0. (14)

The equations (12) and (14) must both be satisfied, and together, implicitly define the most general
solution to (10). The freedom in the choice of f and g can be used to reproduce explicit solutions.
Perhaps the easiest of these is the single-variable one found earlier: taking (f, g) = (cos u, sinu) =
(t, r)/

√
r2 + t2 yields the desired φ =

√
t2 + r2; hyperbolic functions yield φ =

√
t2 − r2.
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3 Lower symmetries

It is rather clear what to expect as the symmetry level decreases. Take first axial symmetry, with
dependence on one axial, z-direction, and the radial variable ρ2 = x2

1
+. . .+x2D−2

, so φ = φ(t, ρ, z) ≡
φ(Yi). We omit the details, but from the spherical discussion, one expects the D = 3 determinant
extension of Monge-Ampere,

det

(

∂2φ

∂Y i ∂Y j

)

= 0. (15)

This is indeed borne out by Sylvester-like decomposition of the full φ,µν into a D = 2 (t, z) times
the “planar” spherically symmetric D − 2.

The solutions are again obtainable in a general, but implicit form. It is perhaps not surprising
that φ = a

√

t2 ± ρ2 ± z2+b, and φ = Φ(a t+b ρ+c z) are also solutions. In surprising contrast to the
spherical result, however, we find here that superposition, φ = Φ1(a t+b ρ+c z)+Φ2(d t+e ρ+f z)
holds: unlike the spherical case, there is no constraint among the constants.

Finally, we derive the effective reduced Hessian equations for arbitrary symmetry configura-
tions, by writing (2) in terms of the appropriate generalized coordinates. Let us call, collectively,
the respective relevant and missing directions “r” and “θ”, boldfaces indicating that there can be
more than one. The number R of r-directions determines the dimension of the reduced, (t, r),
Hessian. Generalized coordinates of course require introduction of covariant derivatives, replacing
∂i ∂j by Di ∂j on our scalar. [The Di commute in flat space, and there is no change in the time
derivatives.] The Hessian equation then becomes

ǫtrθ ǫtrθD∂ φ . . . D ∂ φ = 0. (16)

Its dimension is still D, but effectively contracts after we implement the symmetries: The factors
Di φ̇ reduce to ∂r φ̇. The Dr∂θ or Dθ ∂r ∼ Γθ

rθ
∂θφ vanish: the only non-zero connections have two

θ and one r, while ∂θφ = 0; also, Dr∂r = ∂r ∂r. There remains Dθ ∂θ φ ∼ Γr

θθ ∂rφ ∼ ∂rφ multiplied
by r and an angular coefficient. Further, Dθ ∂θ φ is a common factor to every term of (16): it
provides the (only) non-vanishing contraction of the θ indices in ǫǫ; precisely because it is common
to each term in (16), it may be canceled out of it. So (16) reduces, as predicted, to a determinant
of dimension R + 1, (there are of course D − 2 −R θ), formally like our spherical result (10), but
now the vector r determines the number of φ factors there: quadratic for spherical, cubic for axial,
symmetries, etc. Specifically, in our vector notation, the final equation is just

[

φ̈ ∂r ∂r φ− ∂rφ̇∂r φ̇
]

= 0, (17)

whose (R+ 1) dimension is implicit in our vector notation.

4 Summary

We have been able to tame the general D, maximal Galileons for configurations with arbitrary
degrees of symmetry, thereby gaining some concrete view of their explicit behavior beyond the,
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rather forbidding, implicit general solutions of the full Hessian equation. Similar reductions could
be envisaged in terms of, e.g., light-cone coordinate choices where t becomes mixed with spatial
variables. Ours can hardly pretend to be a detailed analysis, however. We have not attempted
to seek solutions with proper asymptotic behavior, let alone study the necessarily non minimally
coupled Galileon-gravity equations – a qualitatively harder challenge, if perhaps still feasible in the
spherical limit.
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