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AdS/CFT Energy Loss in
Time-Dependent String Configurations
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We analyze spacetime momentum currents on a classical string worldsheet, study their generic
connection via AdS/CFT correspondence to the instantaneous energy loss of the dual field theory
degrees of freedom and suggest a general formula for computing energy loss in a time-dependent
string configuration. Applying this formula to the case of falling strings, generally dual to light
quarks, reveals that the energy loss does not display a well-pronounced Bragg peak at late times,
as previously believed. Finally, we comment on the possible implications of this result to the jet
quenching phenomena in heavy ion collisions.

PACS numbers: 11.25.Tq, 12.38.Mh

I. INTRODUCTION

Gauge/gravity duality has been a very insightful tool
used to study many properties of strongly-coupled non-
Abelian plasmas, especially after many indications that
the quark-gluon plasma created in heavy ion collisions
at the RHIC collider is a strongly-coupled system [1].
The AdS/CFT correspondence [2–4] is a duality be-
tween a (3+1)-dimensional N = 4 SU(Nc) super-Yang-
Mills (SYM) gauge theory and type IIB string theory on
AdS5×S5 spacetime. Using this conjecture and by taking
the limit Nc � λ � 1, one can study this gauge theory
at strong coupling by studying classical, two-derivative
(super)gravity. Due to phenomenological differences be-
twen thermal N = 4 SYM plasma and finite-temperature
QCD, it is important to consider gravity duals to non-
conformal gauge theories [5–12]. However, since the in-
formation about the medium (on the field theory side)
is fully encoded in the spacetime metric (on the string
side), in this work we will keep our results as general as
possible by considering a general metric Gµν and only
use the AdS5 metric for final numerical evaluations.

In recent years, an important application of the
AdS/CFT correspondence has been to study the phe-
nomenon of jet quenching [13–17] in strongly-coupled sys-
tems, especially after the pioneering work of [18] and [19],
who studied energy loss of heavy quarks in a strongly
coupled N = 4 SYM plasma. To study the plasma at
a finite temperature T , one introduces a black hole in
the AdS5 geometry with an event horizon at some ra-
dial coordinate rh, proportional to 1/T [3]. Then, one
introduces degrees of freedom in the fundamental repre-
sentation (’quarks’) in SYM by introducing a D7-brane in
the AdS-BH geometry, which spans from r = 0 (bound-
ary) to some r = rm [20]; on the field theory side, this
procedure corresponds to the introduction of an N = 2
hypermultiplet whose mass mQ is proportional to 1/rm.
Dressed quarks are then dual to strings in the bulk with
one or both endpoints on the D7-brane and the physics
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of the quark energy loss (on the field theory side) will be
directly related to the dynamics of these strings. In the
large Nc and large λ limit, one can neglect the backreac-
tion of the metric due to the introduction of the string
(the probe approximation) and neglect the quantum cor-
rections to the motion of the strings. This means that we
need to study the motion of classical strings in the back-
ground given by a spacetime metric Gµν . For a review
of AdS/CFT correspondence and especially its applica-
tions to heavy ion phenomenology, the reader is referred
to [21–23].

Recently, in the light of RHIC results, as well as the
new LHC results [24, 25] on the suppression of light
hadrons in AA collisions, a more consistent grasp on the
energy loss of light quarks in gauge/gravity duality has
become necessary, in order to be able to compute jet
energy loss observables such as the nuclear modification
factor RAA and the elliptic flow parameter v2 and directly
compare them to the experimental results [26]. If we wish
to describe a strongly coupled medium with light quarks,
the D7-brane will fill the entire AdS-BH geometry. On
this D7-brane we can then study open strings whose end-
points source a D7 gauge field which in turn ’induces’ (in
the sense of the field/operator correspondence) an im-
age baryon density current in the field theory. In other
words, these open strings will represent dressed qq̄ pairs
on the field theory side. Then the main idea, advocated
in [27], is that by studying the free motion of these falling
strings, we can study the energy loss of light quarks.

This application is just one example of the need
to understand the details of energy loss in (explicitly)
time-dependent string configurations, such as the falling
strings. The hope is that, by examining such configu-
rations, we can model phenomena associated with the
energy loss more realistically, since in the quark gluon
plasma formed in heavy ion collisions, quarks slow down
and phenomena such as the instantaneous energy loss are
expected to depend on the details of this non-stationary
motion. Heavy quarks in such non-stationary situations
have already been studied in [28, 29].

The authors of [27] have elegantly obtained one of the
first results for light quark energy loss in gauge/gravity
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duality. They have shown, by analyzing null geodesics in
the AdS-BH spacetime and relating them to the energy
of the falling string, that the maximum stopping distance
of light quarks scales with energy as ∆xmax ∼ E1/3. A
similar result was obtained in [30] for energy loss of ad-
joint degrees of freedom (’gluons’) inN = 4 SYM plasma.
However, we emphasize that this maximum stopping dis-
tance is not a typical stopping distance of light quarks.
It is, as such, a rather crude quantity, that can be used
as a phenomenological guideline, but cannot be used to
extract the instantaneous energy loss that enters in, for
example, calculations of RAA or v2 observables. To study
the instantaneous energy loss, one needs to analyze the
spacetime momentum currents on the string worldsheet,
which, as demonstrated in [27], in case of falling strings
become non-trivial, time-dependent quantities. In this
paper we will extend the analysis of the worldsheet cur-
rents from [27] and suggest a perhaps more appropriate
definition of the energy loss (in the sense of its identi-
fication with particular current components), in which
the details of the geometry on the worldsheet become
important. This small, but crucial detail will lead to po-
tentially important phenomenological consequences: as
we will see, in particular, the instantaneous energy loss
will not exhibit a well-pronounced late-time Bragg-like
peak, as previously believed.

II. DYNAMICS OF CLASSICAL STRINGS

Let us start by considering a classical string propagat-
ing in a 5-dimensional spacetime described by the metric
Gµν . The dynamics of the string is described by the
Polyakov action:

SP = − 1

4πα′

∫
d2σ
√
−hhab(∂aXµ)(∂bX

ν)Gµν , (2.1)

where α′ = l2s , squared fundamental string length,
σa = (σ, τ) are the coordinates on the string worldsheet,
Xµ(σ, τ) are the spacetime coordinates of the string (the
embedding functions) and hab is the worldsheet metric,
which is considered as a dynamical variable in this action
(here h ≡ det(hab)). If we vary this action with respect
to hab, we get:

γab =
1

2
hab(h

cdγcd) , (2.2)

where γab = Gµν∂aX
µ∂bX

ν is the induced worldsheet
metric. Plugging this equation of motion in the Polyakov
action (2.1), we obtain the usual Nambu-Goto string ac-
tion, which means that these two actions are classically
equivalent.

The Polyakov action can thus be viewed as a classical
field theory action of 5 scalar fields Xµ on a curved two-
dimensional manifold described by the metric hab. This
is the reason why we will be using that action instead of
the much more common Nambu-Goto action, since in the

derivation of the energy loss formula it will be necessary
to consider coordinate transformations on the worldsheet
and see how the worldsheet vectors and tensors change
under them. In practice, this action will also be use-
ful for numerical evaluations, since a clever choice of the
worldsheet metric will greatly improve the stability of the
numerics [27], as we will see later.

The equations of motion for the Xµ fields from the
Polyakov action are:

∂a

[√
−hhabGµν∂bXν

]
=

1

2

√
−hhab(∂µGνρ)∂aXν∂bX

ρ .

(2.3)
The expression in the brackets on the LHS are just the
canonical momentum densities:

Πa
µ ≡

1√
−h

δSP
δ(∂aXµ)

= − 1

2πα′
hab(∂bX

ν)Gµν . (2.4)

This definition can differ by a factor of
√
−h from the

usual definition of these momenta found in the literature,
which is here just to ensure that the quantity in (2.4) is a
proper worldsheet vector. From now on, we will assume
that the spacetime metric is diagonal and we will consider
only µ’s such that the metric does not depend on Xµ. In
that case, equations of motion (2.3) are in fact just the
covariant conservation law for the momentum densities:

∂a

[√
−hΠa

µ

]
=
√
−h∇aΠa

µ = 0 . (2.5)

In this case, the momentum densities are just the con-
served Noether currents on the worldsheet, associated
with the invariance of the action to the constant space-
time translationsXµ → Xµ+εµ. Due to this origin, these
worldsheet currents describe the flow of the µ component
of the spacetime momentum of the string along the a di-
rection on the worldsheet [31, 32] and that is the reason
why they are important in the study of energy loss in the
field theory dual [33]. Because of that it is also necessary
to understand how do these currents transform under a
generic change of coordinates on the worldsheet.

A general coordinate transformation on the worldsheet
(σ, τ)→ (σ̃, τ̃) can be defined by the following matrix:

M̃a
b ≡

∂σ̃a

∂σb
, Ma

b ≡
∂σa

∂σ̃b
= (M̃−1)ab . (2.6)

The worldsheet currents (2.4) and the worldsheet metric
then transform as proper worldsheet tensors:

h̃ab = M c
aM

d
bhcd , (2.7)

Π̃a
µ = M̃a

bΠ
b
µ . (2.8)

In practice, one solves the equations of motion (2.3) with
constraints (2.2) and an appropriate set of boundary con-
ditions in some parametrization where the numerics are
well behaved (by choosing a convenient hab at the begin-
ning of the calculation) and then, using formulas (2.7)
and (2.8), transforms to some more ’physical’ coordinate
system on the worldsheet (for example σ = r, the radial
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AdS coordinate). From now on, we assume that, through
this procedure, a specific parametrization (σ, t) has been
chosen, where t is the physical time (i.e. we are in the
static gauge τ = t) and that σ ∈ [0, π] for all t, i.e. the σ
coordinate parametrizes the string at some fixed time t.

III. WORLDSHEET CURRENTS

In general, whenever we have a covariant conservation
law on a differentiable manifold, such as (2.5), one defines
the charge (whose flow is described by Πa

µ) that passes
through some hypersurface γ as (following conventions in
[34]):

pγµ = −
∫
γ

?Πµ = −
∫
γ

dε naΠa
µ , (3.1)

where the second equation is written in terms of the one-
form Πµa = habΠ

b
µ and in the second equation, dε is

the induced volume element on the hypersurface γ and
na is the unit vector field normal to the hypersurface.
In our case, we have a two-dimensional manifold, and
γ represents an (open) curve on the worldsheet and pγµ
is the µ component of the spacetime momentum that
flows through this curve. Here one should think of µ as
merely an index that denotes different kinds of conserved
currents on the worldsheet. Therefore, in our case, we
can simply write:

pγµ = −
∫
γ

ds nbΠa
µhab , (3.2)

where ds is the line element of the curve γ.

In our choice of coordinates on the worldsheet (σ, t),
we can now ask what is the total µ component of the mo-
mentum of the string at some fixed time t. This means
that we need to take the curve γ to be the curve of con-
stant t, which means that its tangent vector ta is in the
σ-direction, i.e. ta = (1, 0), where the first entry is the
σ-coordinate and the second the t-coordinate. The nor-
mal vector na = (nσ, nτ ) can then be found by requiring
its orthogonality to the tangent vector and the usual nor-
malization condition:

t · n = 0, n · n = −1 , (3.3)

where the dot products are taken with the worldsheet
metric hab. Using these two equations, we can solve for
the components of the normal vector:

na =

(
− 1√
−h

hστ√
hσσ

,

√
hσσ√
−h

)
. (3.4)

Finally, since for this particular curve we have dτ = 0,
we can express the line element ds as:

ds2
γ = habdσ

adσb = hσσdσ
2 . (3.5)

Using (3.4) and (3.5) in (3.2), we have:

pµ(t) =

∫
dσ
√
−hΠτ

µ(σ, t) . (3.6)

Note that this is true no matter what the parametrization
of the string is. The only requirement here is that we are
dealing with a constant-t curve. Similarly, we can repeat
the same procedure for a constant-σ curve, integrating
over some period of time:

pµ(σ,∆t) =

∫
∆t

dt
√
−hΠσ

µ(σ, t) , (3.7)

which then gives the momentum that has flown down the
string (i.e. in the direction of increasing σ) at position
σ during the time ∆t. Both (3.6) and (3.7) are the well-
known formulas that can be found in e.g. [18] and [19].

Now consider an open string with free endpoint bound-
ary conditions:

Πσ
µ(0, t) = Πσ

µ(π, t) = 0 . (3.8)

Then, take a closed loop γ on the string worldsheet, com-
posed of two constant-t curves at times t1 and t2, going
from σ = 0 to some chosen σ = σκ, connected by the
two corresponding constant-σ curves. Since the world-
sheet currents are conserved, we have, again following
conventions in [34]:∮
γ

?Πµ = 0 (3.9)

= −
t2∫
t1

dt
√
−hΠσ

µ(σκ, t) +

0∫
σκ

dσ
√
−hΠτ

µ(σ, t2)

−
t1∫
t2

dt
√
−hΠσ

µ(0, t) +

σκ∫
0

dσ
√
−hΠτ

µ(σ, t1) .

Due to the free endpoint boundary condition (3.8), the
third term on the RHS is zero, while the integrals over
time, according to (3.6), represent the spacetime momen-
tum of the part of the string between σ = 0 and σ = σκ
at times t1 and t2:

pσκµ (t2)− pσκµ (t1) = −
t2∫
t1

dt
√
−hΠσ

µ(σκ, t) . (3.10)

This equation clearly shows how the momentum of some
part of the string can change only if the Πσ

µ component
of the worldsheet current carries it away. The negative
sign on the RHS indicates that, for a positive Πσ

µ, the mo-
mentum of that part of the string will decrease, consistent
with the fact that this current component describes the
flow of the momentum in the direction of increasing σ,
i.e. away from the part of the string. Incidentally, if we
take a string configuration which is symmetric around
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σκ = π/2, then, due to this symmetry, Πσ
µ(π/2, t) must

vanish. In that case pσκµ (t) represents the momentum of
half of the string and, from (3.10), we see that this mo-
mentum for such a symmetric string configuration does
not change with time.

IV. ENERGY LOSS

To obtain the usual expression for the instantaneous
energy loss, we can let t1 → t2 in (3.10):

dpµ
dt

(σ, t) = −
√
−hΠσ

µ(σ, t) . (4.1)

This quantity gives the flow of the µ component of the
momentum along the string at a position σ at time t.
We note again that this is the well-known expression for
energy loss from [18] and [19], but the previous analysis
gave us insight into its validity; namely, it pointed out
that (4.1) is valid only for constant-σ curves.

Now, let us do the following coordinate transformation
on the worldsheet:

(σ, t)→ (σ̃(σ, t), t) , (4.2)

i.e. we stay in the static gauge and only change the
string parametrization using some well-defined function
σ̃(σ, t). We can then repeat the analysis from the pre-
vious paragraph and see that in this coordinate system,
for a constant-σ̃ curve, we also have:

dp̃µ
dt

(σ̃, t) = −
√
−h̃Π̃σ

µ(σ̃, t) . (4.3)

We can relate these to the corresponding quantities in the
(σ, t) coordinate system by using (2.7) and (2.8), which
for this particular transformation are given by:√

−h̃ =

√
−h
|σ̃′|

, (4.4)

Π̃σ
µ = σ̃′Πσ

µ + ˙̃σΠt
µ , (4.5)

where σ̃′ ≡ ∂σ̃/∂σ and ˙̃σ ≡ ∂σ̃/∂t. Plugging this in (4.3)
we have:

dp̃µ
dt

(σ̃, t) = sgn(σ̃′)

[
dpµ
dt
−
√
−h

˙̃σ

σ̃′
Πt
µ

]
(σ(σ̃,t),t)

. (4.6)

If we want to evaluate the energy loss at different times,
we have to make a choice of what points on the string
(at different times) we are going to evaluate the currents
in (4.6) on. We choose that these points on the string
have a constant σ̃-coordinate at all times (i.e. this is
how we define the, so far, arbitrary σ̃-parametrization),
while in the σ-parametrization, these points are defined
by a function σκ(t). The physical motivation behind such
a choice is to say that, at some time t, the jet is defined
as the part of the string between the endpoint σ = 0 and
σ = σκ(t). In [27], for falling strings in AdS5, this choice

was such that the spatial distance (i.e. the x-coordinate
in AdS5, assuming that the string is moving in the x− r
plane) between the string endpoint and those points was
of the order ∼ 1/(πT ). Now, since σ̃(σκ(t), t) is constant
at all times, we have:

dσ̃

dt
= 0 =

[
σ̃′
dσκ(t)

dt
+ ˙̃σ

]
σ=σκ(t)

. (4.7)

Plugging this in (4.6) we arrive at:

dp̃µ
dt

(σ̃, t) = sgn(σ̃′)

[
dpµ
dt

+
√
−hΠt

µ

dσκ
dt

]
(σκ(t),t)

.

(4.8)
This is the central result of this paper. This formula
gives the appropriate expression for energy loss in terms
of quantities expressed in any parametrization (σ, t) in
which the function σκ(t) is known. Here we were making
use of the simple expression for the energy loss in the
special σ̃-parametrization (in which the coordinate of the
points on which we evaluate the currents is constant), but
in using this formula one does not need to know what that
parametrization really is, since the RHS of (4.8) is given
only in terms of quantities in (σ, t) parametrization.

Now, the argument for calling some quantity dE/dt
the energy loss comes from the idea that, when integrated
over some period of time ∆t, this integral should give the
amount of energy that the jet (that is, some predefined
part of the string) has lost over some period of time ∆t:

∆E(∆t) =

∫
∆t

dt
dE

dt
. (4.9)

By identifying dE/dt with −dp0/dt in the (σ = r, t)
parametrization (essentially just the Πr

t component of
the worldsheet current), as implied in [27], means that
this amount of energy lost should be given by:

∆Eapp(∆t) = −
∫
∆t

dt
dp0

dt
(rκ(t), t) , (4.10)

where the subscript app stands for apparent and where
rκ(t) corresponds to the points at a fixed spatial distance
∼ 1/(πT ) from the string endpoint at all times. However,
this formula (i.e. that the energy loss is given only by the
σ-component of the worldsheet current), as we showed
before, is valid only if one uses a constant-σ curve, which
is not the case in this parametrization. Then, in order to
be able to use that simple expression, we need to find a
parametrization σ̃ in which the coordinates of the points
given by rκ(t) are constant. In this case, the energy lost
would indeed be:

∆E(∆t) = −
∫
∆t

dt
dp̃0

dt
(σ̃, t) . (4.11)

The difference between this and the apparent energy loss
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is then explicitly given by (4.8):

∆E(∆t) = ∆Eapp(∆t)−
∫
∆t

dt

[√
−hΠt

0

drκ
dt

]
(rκ(t),t)

.

(4.12)
In the following section we will numerically examine the
effect of this correction in the case of falling strings in
AdS5 spacetime, dual to N = 4 SYM.

V. NUMERICAL EVALUATION

In this section we will largely follow the procedure de-
scribed in [27], but for consistency we will review it here.
We will work in the AdS5-BH geometry with the confor-
mal boundary located at r = 0:

ds2 = Gµνdx
µdxν =

L2

r2

[
−f(r)dt2 + dx2 +

dr2

f(r)

]
,

(5.1)
where f(r) = 1 − r4/r4

h, with rh being the radial po-
sition of the horizon of the black hole. We choose the
worldsheet metric hab to have the following form:

hab = diag(−s(σ, τ)︸ ︷︷ ︸
ττ

, 1/s(σ, τ)︸ ︷︷ ︸
σσ

) . (5.2)

Here s(σ, τ) is the ’stretching function’, which is cho-
sen in such a way that the numerical computation is
well-behaved. Choosing the worldsheet metric in this
way represents merely a choice of parametrization on the
worldsheet (i.e. a ’choice of gauge’) and the constraint
equations (2.2) are there to ensure that the embedding
functions change accordingly. Explicitly, the constraint
equations are:

Ẋ ·X ′ = 0 , (5.3)

Ẋ2 + s2(X ′)2 = 0 , (5.4)

where Ẋµ ≡ ∂τX
µ, (Xµ)′ ≡ ∂σX

µ and, in general,
A ·B ≡ GµνAµBν . We assume that the string is moving
in the x−r plane and choose the ’pointlike’ initial condi-
tions, where the string is initially a point at some radial
coordinate rc:

t(σ, 0) = 0, x(σ, 0) = 0, r(σ, 0) = rc . (5.5)

Then (Xµ)′(σ, 0) = 0, which automatically satisfies the
first constraint equation (5.3) and now we have to choose

an initial velocity profile (i.e. functions Ẋµ(σ, 0)) such

that the second constraint equation Ẋ2 = 0 and the free
string endpoint boundary conditions (3.8) are satisfied.
Following [27], we choose:

ẋ(σ, 0) = Arc cos(σ) , (5.6)

ṙ(σ, 0) = rc
√
f(rc)(1− cos(2σ)) , (5.7)

where A is a constant determining the ’amplitude’ of the
velocity profile. Then ṫ(σ, 0) is determined by the con-
straint equation (5.4):

ṫ(σ, 0) =
rc√
f(rc)

√
A2 cos2(σ) + (1− cos(2σ))2 . (5.8)

For this set of initial conditions we choose the following
stretching function:

s(σ, τ) = s(r) =
1− r/rh
1− rc/rh

(rc
r

)2

. (5.9)

In particular, its most important feature is that it
matches the singularity of the Gtt metric component near
the horizon rh, so that the embedding functions can re-
main well-behaved as parts of the string approach the
horizon.

Initial conditions (5.5), (5.6) and (5.7) have been cho-
sen as in [27] (and in [19]), in order to be able to ex-
actly compare the effect of the correction on the results
from that work. As discussed in [27] and [19], the phys-
ical motivation behind the choice of initial conditions
(5.5) is that they should resemble a quark-antiquark pair
produced by some local current, with the quarks hav-
ing enough energy to move away in the opposite direc-
tions. The velocity profiles (5.6) and (5.7) are one of the
simplest profiles that satisfy the open string endpoint
boundary conditions and uniformly evolve the string to-
wards the black hole (which should resemble the process
of thermalization of the interaction energy described by
the body of the string) with the endpoints moving away
in the opposite directions. Energy density profile in the
boundary theory dual to such a string evolution will have
two peaks concentrated around the endpoints, and the
smooth U-shaped profile between the peaks will slowly
decrease in magnitude.

With this choice of initial and boundary conditions,
we can solve the equations of motion (2.3) numerically,
obtain the embedding functions Xµ(σ, τ) and then eval-
uate the energy loss in the radial σ = r parametrization
with and without the correction in (4.8). To obtain the
actual energy loss, we simply use the formula (4.8) with
the worldsheet fluxes expressed in the static gauge (σ, t)
using (2.7) and (2.8):

dE

dt
=

L2

2πα′

[
f

r2

1

|ṫ|

(
st′ − dσκ

dt

(
s (t′)

2 − ṫ2

s

))]
(σκ(t),t)

.

(5.10)
The apparent energy loss is given by (4.1) in the (r, t)
parametrization, so we need to use formulas (2.7) and
(2.8) again, giving:(

dE

dt

)
app

=
L2

2πα′

[
f

r2

sr′t′ − 1
s ṙṫ∣∣r′ṫ− ṙt′∣∣
]

(σκ(t),t)

. (5.11)

The results are shown in Figure 1. One can clearly see
that the correction, derived in (4.8), becomes especially
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FIG. 1. Comparison of the (normalized) instantaneous energy
loss as a function of time with and without the correction in
(4.8). The dashed red curve shows the apparent energy loss
(dE/dt)app in the radial σ = r parametrization (Eq. (5.11)),
while the solid blue curve is the actual energy loss dE/dt,
as given by (5.10). The energy loss was evaluated at points
at a fixed spatial distance from the string endpoint, chosen
in such a way that the correction in (4.8) appears clearly.
The normalization constant E0 is the energy of half of the
string and T = 1/(πrh) is the temperature. The numerical
parameters used are A = 50 and rc = 0.1rh.

important at late times, when drκ/dt grows, as the rel-
evant parts of the string start falling towards the black
hole faster and faster.

We should note that the energy of the part of the string
between σ = 0 and σ = σκ(tth) at the thermalization
time tth (when the string endpoint stops moving in the
x-direction), is generally non-zero. This means that the
area under the solid blue curve in Figure 1 is always less
than 1, and represents the relative amount of energy lost
from the part of the string defined by σκ(t), as evident
from (3.10). On the other hand, area under the dashed
red curve is not known a priori, and could be < 1 or > 1,
depending on the magnitude of the correction in (4.8).
Specifically, if we decrease the spatial distance from the
endpoint at which we evaluate the energy loss (keeping
the same initial conditions), the area under the red curve
increases and eventually becomes > 1 (in the Figure it is
already slightly higher than 1).

Also note that the ’jet definition’ we are using here
is taken from [27], where the jet is the defined as the
part of the string within a certain ∆x distance from the
endpoint. As discussed in [27], the physical motivation
behind this is that the baryon density in the boundary
theory should be well localized on scales of order ∆x ∼
1/πT . There are also other physically well-motivated
jet definitions [35], exploration of which is left for future
work.

VI. DISCUSSION

We have derived, by analyzing transformations of
spacetime momentum fluxes on the classical string world-
sheet, a general expression (4.8) for calculating the in-
stantaneous energy loss for time-dependent string config-
urations valid in any choice of worldsheet parametriza-
tion. This formula shows that the energy loss in time-
dependent string configurations receives a correction to
the simple Πσ

µ expression. This correction comes from
the fact that the points on the string at which we want
to evaluate the energy loss at different times do not nec-
essarily have constant coordinates in the chosen world-
sheet parametrization. The importance of the correction
depends on how fast do the coordinates of these points
change in time in that parametrization, i.e. on the mag-
nitude of the dσκ(t)/dt function. In the example of falling
strings, we have seen that this correction becomes espe-
cially important at late times and substantially decreases
the magnitude of the Bragg-like peak (Figure 1).

One should point out that this correction does not af-
fect the results of [27] for the maximum stopping dis-
tance (∆x)max ∼ E1/3, since this expression was derived
from purely kinematical considerations, by analyzing the
equations of motion and relating the total energy of the
string to the approximate endpoint motion described by
the null geodesics. In other words, the worldsheet cur-
rents (actually, their identification with the energy loss)
were not used in that derivation.

We should also point out that this correction does not
affect the well-established drag force results of [18] and
[19], since the trailing string is a stationary string config-
uration where dσκ/dt = 0.

One is tempted to speculate about the implications of
the results shown in Figure 1 to the jet quenching phe-
nomena. Our preliminary numerical studies suggest that,
although the early time behavior of the energy loss is sus-
ceptible to the initial conditions (as noted in [27]), the
linearity of it seems to be a remarkably robust feature.
Of course, a more thorough numerical analysis is needed
to confirm such a claim (and is left for future work), but
if this indeed remains to be true and dE/dt scales like
∼ t1, then taking into account that (∆x)max ∼ E1/3, it
can be shown that this is similar to the typical qualitative
behavior of energy loss of light quarks in pQCD in the
strong LPM regime [26]. This suggests a tempting idea
that the phenomenon of light quark jet quenching may
have a roughly universal qualitative character, regardless
of whether we are dealing with a strongly or a weakly
coupled medium.

However, as emphasized before, a more thorough quan-
titative analysis and estimate of the relative magnitude
of energy loss and stopping distances are necessary. It
would be also interesting to more thoroughly examine
the effects of varying the string initial conditions, as well
as choosing a different σκ(t) function (i.e. a different jet
definition), on the shape of the instantaneous energy loss.
By choosing some set of these, one can then compute the
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RAA in a dynamical, expanding medium with a realistic
set of nuclear initial conditions, and, finally, inspect the
robustness of that result by varying the string initial con-
ditions and the σκ(t) choice and seeing how much would
RAA be affected.
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