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Abstract

Extending previous work on 2 – and 3 – point functions, we study the 4 – point function and

its conformal block structure in conformal quantum mechanics CFT1, which realizes the SO(2, 1)

symmetry group. Conformal covariance is preserved even though the operators with which we

work need not be primary and the states are not conformally invariant. We find that only one

conformal block contributes to the four-point function. We describe some further properties of the

states that we use and we construct dynamical evolution generated by the compact generator of

SO(2.1).
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I. INTRODUCTION AND REVIEW

A recent Letter [1] initiated research on the AdSd+1/CFTd correspondence for the special

case d = 1. This dimension corresponds to the lowest “rung”on the dimensional “ladder” of

SO(d+ 1, 1) conformally invariant scalar field theories in d dimensions.

Ld =
1

2
∂µΦ ∂

µ Φ− gΦ
2d

d−2 (1.1)

At d = 1 [Φ (t, r) → q(t))] L1 governs conformal quantum mechanics with a g/q2 potential

[2], and supports an SO(2, 1) symmetry, with generators H,D and K.

Their algebra

i[D,H ] = H, (1.2a)

i[D,K] = −K, (1.2b)

i[K,H ] = 2D, (1.2c)

when presented in Cartan basis,

R ≡
1

2

(
K

a
+ aH

)
, (1.3a)

L± ≡
1

2

(
K

a
− aH

)
± iD, (1.3b)

reads

[R,L±] = ±L±, (1.4a)

[L−, L+] = 2R . (1.4b)

(a is a scaling parameter with dimension of time; frequently we set it to 1.)

In spite of the natural position that d = 1 enjoys, various questions arise about the cor-

respondence. AdS2 calculations allegedly produce boundary N -point correlation functions

in CFT1.

GN (t1, . . . , tN ) ∼ 〈ϕ1(t1) . . . ϕN(tN)〉 (1.5)

where ϕ(t) are primary operators in the boundary conformal theory, and the averaging

state 〈. . .〉 is conformally invariant, i.e. it is annihilated by the conformal generators. How-

ever, in CFT1 normalized states are not invariant and invariant states are not normalizable,

rendering problematic calculation of expectation values. Furthermore, one wonders which
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operators in conformal quantum mechanics realize the primary operators ϕ(t), whose corre-

lation functions arise from the AdS2 calculation.

These puzzles are resolved in the Letter [1]. We focus on the R operator, taken to be

positive (g > 0) and defined on the half-line (q > 0), with integer-spaced eigenvalues rn and

orthonomal eigenstates |n〉.

R |n〉 = rn |n〉 (1.6a)

rn = r0 + n, r0 > 0, n = 0, 1 . . .

〈n|n′〉 = δnn′

L± |n〉 =
√
rn (rn ± 1)− r0 (r0 − 1) |n± 1〉 (1.6b)

We need states that carry a representation of the SO(2, 1) action. To this end we con-

structed the operator O(t),

O(t) = N(t) exp− (ω(t)L+) ,

N(t) =

[
Γ(2r0)

] 1

2

[
ω(t) + 1

2

]2r0
,

ω(t) =
a + i t

a− i t
= eiθ where t = a tan θ/2, (1.7)

and defined “t states” |t〉 by the action of O(t) on the R-vacuum.

|t〉 = O(t) |n = 0〉 (1.8)

R |n = 0〉 = r0 |n = 0〉 (1.9)

From their definition (1.8) it follows that the |t〉 states satisfy [3]

H |t〉 = −i
d

dt
|t〉 , (1.10a)

D |t〉 = −i

(
t
d

dt
+ r0

)
|t〉 , (1.10b)

K |t〉 = −i

(
t2
d

dt
+ 2 r0 t

)
|t〉 . (1.10c)

N -point functions are constructed from the |t〉 states. For GN (t1, . . . , tN), the averaging

state 〈. . .〉 is the R-vacuum |n = 0〉. The first and last operators are taken to be O†(t1)
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and O(tN), while the remaining N − 2 operators are conventional but unspecified primary

operators ϕ, with scale dimension δ.

i[H,ϕ(t)] =
d

dt
ϕ(t) (1.11a)

i[D,ϕ(t)] =

(
t
d

dt
+ δ

)
ϕ(t) (1.11b)

i[K,ϕ(t)] =

(
t2
d

dt
+ 2 δt

)
ϕ(t) (1.11c)

Thus an N -point function involves the |t〉 states.

GN (t1, t2, . . . , tN−1, tN) =

〈n = 0| O†(t1)ϕ2 (t2) . . . ϕN−1 (tN−1) O (tN ) |n = 0〉 (1.12)

= 〈t1|ϕ2(t2) . . . ϕN−1 (tN−1) |tN〉

In spite of the fact that theO(t) operators are not primary, and the averaging state |n = 0〉

is not conformally invariant, the two “defects” cancel and the resultant N -point functions

satisfy conformal covariance conditions. Consequently, in an operator-state correspondence

we may consider the operators O(t), when acting on the states |n = 0〉, as primary with

dimension r0.

In this way one establishes that [4], [5]

G2(t1, t2) = 〈t1|t2〉 =
〈
n = 0| O†(t1)O(t2) |n = 0

〉

=
Γ (2r0) a

2r0

[2i (t1 − t2)]2r0
, (1.13)

G3 (t1, t, t2) = 〈t1|ϕ(t) |t2〉 =
〈
n = 0| O† (t1)ϕ(t)O(t2) |n = 0

〉

= 〈n = 0|ϕ(0) |n = 0〉

(
i

2

)2r0+δ
Γ (2r0) a

2r0

(t1 − t)δ(t− t2)δ(t2 − t1)2r0−δ
. (1.14)

The expressions (1.13), (1.14) also arise from calculations based on a scalar field in AdS2,

at the boundary of the AdS2 bulk.

In Section II, we extend the investigation to the quantum mechanical 4-point function.

G4 (t1, t2, t3, t4) = 〈t1|ϕ(t2)ϕ(t3) |t4〉

=
〈
n = 0| O† (t1)ϕ(t2)ϕ(t3)O(t4) |n = 0

〉
(1.15)
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The two ϕ fields are taken to be identical, with scale dimension δ. We demonstrate that

conformal covariance and block structure are maintained by our unconventional realization

of the conformal symmetry: once again “defects” cancel.

In Section III, we study some further properties of the |t〉 states and of related energy

eigenstates |E〉 of the Hamiltonian H . Also we show how the R operator can replace H as

the evolution generator.

II. CORRELATION FUNCTION AND CONFORMAL BLOCK

II-A. 4-point Function in CFT1

To calculate G4 in (1.15), insert complete sets of |n〉 states between the operators. Also

without loss of generality evaluate the sums at special values: t1 = −ia, t4 = ia. [This

may always be achieved by a complex SO(2, 1) transformation.] One is left with a single

sum. It remains to reduce matrix elements 〈n|ϕ(t) |n′〉 to 〈n = 0|ϕ(0) |n′ = 0〉. This was

accomplished by dAFF [2] with the SO(2, 1) Wigner-Eckart theorem. This procedure leads

to[6]

G4 (t1, t2, t3, t4) = | 〈n = 0|ϕ(0) |n = 0〉 |2
Γ2(1− δ)

22δ+2 r0

×
Γ2(2r0)

(t13 t24)2δ (t14)2r0−2δ

∞∑
n=0

1

Γ(2r0 + n) Γ2 (1− δ − n)

xn−δ

n!
,

tij ≡ ti − tj , x ≡
t12 t34
t13 t24

. (2.1)

(The scaling parameter a is set to unity.)

Remarkably, the sum may be evaluated in terms of the hypergeometric function 2F1. The

final expression for G4 is

G4(t1, t2, t3, t4) = | 〈n = 0|ϕ(0) |n = 0〉 |2
1

22δ+2r0

×
Γ(2r0)

(t13 t24)δ−r0 (t12 t34)δ+r0
xr0 2F1 (δ, δ; 2r0; x) . (2.2)

The polynomial in tij provides conformal covariance, while the x-dependence is conformally

invariant. (In one dimension four points lead to a single invariant, as opposed to two

invariants in higher dimensions.)
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The 4-point function may be presented by a Mellin transform since 2F1 possesses a Mellin-

Barnes representation.

2F1 (δ, δ; 2r0; x) =
Γ(2r0)

Γ2(δ)

i∞∫

−i∞

ds
Γ2(δ + s) Γ(−s)

Γ (2r0 + s)
(−x)s (2.3)

The sum in (2.1) arises from the poles of Γ(−s) in (2.3). A single Mellin integral suffices at

d = 1 because there is only a single invariant.

II-B. Conformal Block in CFT1

In general one expects that the 4-point function G4 may be presented as a superposition

of “conformal blocks.” These quantities are kinematically determined by the eigenfunctions

of the SO(2, 1) Casimir. This is like a partial wave expansion of a scattering amplitude —

indeed “conformal partial waves” is an alternative nomenclature.

Conformal blocks at arbitrary d for SO(d+ 1, 1) have been extensively studied by Dolan

and Osborn. Recently they have constructed the d = 1, SO(2, 1) quantities by passing to

the (somewhat singular) limit d → 1 for a block coming from a single operator and its

descendants [7]. In contrast, from the start we work directly with the SO(2, 1) symmetry

at d = 1.

We present the general 4-point function.

G4 (t1, t2, t3, t4) = 〈ϕ1 (t1)ϕ2(t2)ϕ3(t3)ϕ4(t4)〉

=
1

(t12)∆1+∆2 (t34)∆3+∆4 (t13)∆34 (t14)∆12−∆34 (t24)−∆12

F (x)

= p(t1, t2, t3, t4) F (x) (2.4)

The t-polynomial p carries the conformal transformation property of G4, while F is invariant.

∆i is the dimension of ϕi and ∆ij ≡ ∆i − ∆j . (This expression is more general than the

one we used in our previous discussion, which is specialized to ∆1 = ∆4 = r0, ∆2 = ∆3 =

δ, ϕ1 = O†, ϕ4 = O, ϕ2,3 = ϕ.)

The block decomposition states

F (x) =
∑

i

biBi(x), (2.5)
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where i labels the kinematical variety of blocks Bi. Each Bi is constructed from a specific

primary operator and its descendants. The bi’s contain dynamical data. The blocks are

eigenfunctions of the Casimir.

C =
1

2
(HK +KH)−D2 (2.6)

C (pB) = c (pB) (2.7)

In (2.6), (2.7), the individual generators are sums of the corresponding derivative operators

H = H1 +H2, K = K1 +K2, D = D1 +D2

Hi = i
∂

∂ti
, Di = i

(
ti
∂

∂ti
+∆i

)
, Ki = i

(
t2i

∂

∂ti
+ 2∆iti

)
. (2.8)

c is the eigenvalue. Thus the derivative operator D corresponding to C

D ≡ −t212
∂2

∂t1 ∂t2
+ 2 t12

(
∆2

∂

∂t1
−∆1

∂

∂t2

)
+ (∆1 +∆2)

2 − (∆1 +∆2), (2.9)

acts on pB as

D (pB) = p

(
x2 (1− x)B′′ + (−1 + ∆12 −∆34) x

2B′ +∆12∆34 xB

)
(2.10)

(dash signifies d
dx
). The eigenvalue equation reads

x2 (1− x)B′′ + (−1 + ∆12 −∆34) x
2B′ +∆12∆34 xB = cB, (2.11)

and is solved by

B = x∆ 2F1 (∆−∆12,∆+∆34; 2∆; x). (2.12a)

c = ∆(∆− 1) (2.12b)

In order to match this block to the 4-point function (2.2) where ∆1 = ∆4 = r0,∆2 = ∆3 = δ

we must set ∆ = r0, so that

B = xr0 2F1 (δ, δ; 2 r0; x). (2.13)

Evidently the single block (2.13) reproduces the 4-point function. It is a surprise that one

block suffices.

The usual route to conformal blocks is through the short-distance expansion for ϕ1 (t1)ϕ2 (t2).

In our construction ϕ1 (t1) is replaced by O†(t1), which does not have an evident short dis-

tance expansion with ϕ2(t2). Nevertheless, within our approach we are able to derive a

block representation for the 4-point function. This puts into evidence once again that our

method, with its cancellation of “defects,” preserves conformal covariance.
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III. VARIOUS OBSERVATIONS ON THE FORMALISM

The construction of the states |t〉 in (1.7), (1.8) has found response in the literature [8].

Therefore, we elaborate some of their further properties, which follow from (1.2) and (1.10).

III-A. Energy Eigenstates

Since the action of H on |t〉 is known form (1.10a), it is readily see that [9]

|E〉 = 2r0
E1/2

(aE)r0

∞∫

−∞

dt

2π
e−iEt |t〉 (3.1)

is an orthonomal energy eigenstate. The prefactor ensures normalization.

〈E|E ′〉 = δ(E −E ′) (3.2)

The SO(2, 1) generators act as

H |E〉 = E |E〉 , (3.3a)

D |E〉 = i

(
E

d

dE
+

1

2

)
|E〉 , (3.3b)

K |E〉 =

(
−E

d2

dE2
−

d

dE
+

(r0 − 1/2)2

E

)
|E〉 . (3.3c)

The |E〉 states allow establishing further properties of the |t〉 states, whose overlap with |E〉

is determined from (1.13) and (3.1).

〈t|E〉 = 2−r0
(aE)r0

E1/2
e−iEt (3.4)

III-B. (In)-Completeness of the |t〉 States

Combining (3.1) with (3.4) gives

|E〉 = 22r0
E

(aE)2r0

∞∫

−∞

dt

2π
|t〉 〈t|E〉 , (3.5a)

or

2−2r0
(aH)2r0

H
|E〉 =

∞∫

−∞

dt

2π
|t〉 〈t|E〉 . (3.5b)
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Since the energy eigenstates are complete, we arrive at an (in-)complete relation for the |t〉

states.

1

H

(
aH

2

)2r0

=

∞∫

−∞

dt

2π
|t〉 〈t| (3.6)

III-C. State-Operator Correspondence

In the Letter [1] it is shown that

|ψ〉 ≡ e−Ha |t = 0〉 (3.7)

satisfies R |ψ〉 = r0 |ψ〉; hence |ψ〉 is proportional to |n = 0〉. Naming the proportionality

constant N , we have

|ψ〉 = N |n = 0〉 ,

|N |2 = 〈ψ|ψ〉 =
〈
t = 0| e−2Ha |t = 0

〉
,

=

∫ ∞

0

dE e−2Ea | 〈t = 0|E〉 |2. (3.8a)

The matrix element (with a restored) is given by (3.4). Therefore

|N |2 =

∫ ∞

0

dE e−2Ea 1

E

(
aE

2

)2r0

=
Γ(2r0)

42r0
. (3.8b)

Then (3.7) and (3.8) show that

e−Ha |t = 0〉 =
1

22r0
Γ1/2 (2r0) |n = 0〉 ,

|t = 0〉 =
1

22r0
Γ1/2 (2r0) e

Ha |n = 0〉 . (3.9a)

Since H generates t-evolution, a further consequence is [10]

|t〉 = eiHt |t = 0〉 =
Γ1/2 (2r0)

22r0
e(a+it)H |n = 0〉 . (3.9b)

This is an interesting alternative to (1.7), (1.8).

III-D. Alternative Evolution

In our treatment evolution takes place in t time and is generated by H . This is seen

in (1.10a) and (1.11a), where the action of H is time derivation, i.e. infinitesimal time

translation.
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However, our formalism is based on R, rather than H . Thus recasting evolution so that

it is generated by R becomes an interesting alternative. This is accomplished by redefining

time t.

Observe from (1.10) that

R |t〉 =
1

2

(
aH +

K

a

)
|t〉 = −i

(
1

2
[a+ t2/a]

d

dt
+
r0t

a

)
|t〉 . (3.10)

Upon defining a new “time” τ ,

t = a tan τ/2 (3.11)

[compare (1.7)] the expression in the last parenthesis of (3.10) may be rewritten as

(cos τ/2)2r0
d

dτ

(
(cos τ/2)−2r0 |t = a tan τ/2〉

)
.

Hence if we define new “time”states |τ〉

|τ〉 = (cos τ/2)−2r0 |t = a tan τ/2〉 , (3.12)

it follows that R translates τ infinitesimally.

R |τ〉 = −i
d

dτ
|τ〉 (3.13)

Explicitly the state |τ〉 is given by

|τ〉 = Ñ(τ) exp−(eiτ L+) |n = 0〉 , (3.14a)

Ñ(τ) = (cos τ/2)−2r0 N (t = a tan τ/2),

= [Γ(2r0)]
1/2 e ir0τ . (3.14b)

The spectrum of H is continuous and the conjugate time variable is unrestricted. On the

other hand, the spectrum of R is discrete, equally spaced, and the conjugate τ variable is

periodic.

In terms of the new variable, the 2-point function becomes [10]

G2 (τ
′, τ) =

Γ(2r0)[
2i{sin

[
τ−τ ′

2

]
}
]2r0 . (3.15)

One may also consider evolution generated by
1

2

(
aH −

K

a

)
. This development begins

when the new time τ is defined as t = a tanh τ/2, which leads to similar replacement in

(3.11) – (3.15) of trigonometric functions by hyperbolic ones.
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CONCLUSION

We have studied the 4-point function and its conformal block for CFT1 — conformal

quantum mechanics. We used operators that are not primary [O(t)] and states that are not

invariant [R-vacuum |n = 0〉]. Nevertheless results obey the conformal constraints.

For the 2- and 3- point functions an AdS2 bulk dual can be identified. [1] We have not

accomplished that for the 4-point function. But the simplicity of the block structure — just

one block is needed to reproduce the 4-point function — gives the hope that a dual model

in the AdS2 bulk can be found. It is interesting to observe that the AdS2 bulk propagator

is given by a hypergeometric function, just as G4 and its conformal block
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