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Information Content of Spontaneous Symmetry Breaking

Marcelo Gleiser∗ and Nikitas Stamatopoulos†

Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA

We propose a measure of order in the context of nonequilibrium field theory and argue that this
measure, which we call relative configurational entropy (RCE), may be used to quantify the emer-
gence of coherent low-entropy configurations, such as time-dependent or time-independent topologi-
cal and nontopological spatially-extended structures. As an illustration, we investigate the nonequi-
librium dynamics of spontaneous symmetry-breaking in three spatial dimensions. In particular,
we focus on a model where a real scalar field, prepared initially in a symmetric thermal state,
is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially-
localized, long-lived structures known as oscillons emerge in synchrony and remain until the field
reaches equilibrium again. We show that the RCE correlates with the number-density of oscillons,
thus offering a quantitative measure of the emergence of nonperturbative spatiotemporal patterns
that can be generalized to a variety of physical systems.

PACS numbers: 11.27.+d, 05.70.Ce, 89.70.Cf

I. INTRODUCTION

Spatially-localized solutions to partial differential equations [1] play a central role in many current models of
particle physics [2] and condensed-matter physics [3]. Some of the most studied of these solutions are topological and
nontopological defects that may appear during spontaneous symmetry breaking [4]. As is well-known, topological
defects owe their stability to the nontrivial topology of the vacuum manifold [5], while nontopological defects owe
theirs to the conservation of a global charge [6]. In both cases, solutions involve one or more interacting fields and
are either time-independent or have a simple harmonic time-dependence ∼ exp[iωt], as is the case of Q-balls [7] and
other nontopological solutions [8].

Another class of localized-energy solutions, known as oscillons, exhibits nontrivial time dependence [9, 10]. During
the past decade or so [11], oscillons were shown to exist in models with a single self-interacting scalar field in dimensions
d ≤ 6 [12] and in many models with gauge fields, Abelian [13] and nonAbelian [14, 15], including the Standard
Model [16]. They can be exceedingly long-lived, self-supported by their nontrivial interactions due to feedback from
parametric resonance [15, 17]. Oscillons can also play an important role in cosmology, as reported in recent work
[18–20].

Both topological and nontopological defects and oscillons can be thought of as attractors in field configuration
space [21]: given that certain dynamical constraints are satisfied, for a broad range of initial conditions the system
will evolve toward these solutions. This is not necessarily surprising, since these configurations are solutions to the
equations of motion. Semi-classically, we expect them to dominate the path integral.

We may, however, ask whether there is another way to quantify the existence of nontrivial spatially-localized
solutions in field configuration space. Can we think of spatially-coherent field configurations as ordered states in an
informational sense, in analogy with the Shannon entropy of information theory [22, 23]? That is, given the set of
field modes that are allowed by the constraints of the model (i.e. initial and boundary conditions), do they carry a
special informational signature that can be quantified?

To this end, we recently proposed a measure of configurational entropy, based on the Fourier transform φ(k) of
square-integrable, bound functions φ(x) [24]. Leaving the details for Section III, here it suffices to say that with this
configurational entropy, we can establish a correlation between the energy of a localized-field configuration and its
associated configurational entropy. In particular, we can show that departures from the solution of the eom will have
correspondingly larger relative configurational entropies.

In the present work, we take this approach one step further, applying it to nonequilibrium fields. Our recent
treatment of Ref. [24] was for static solutions to the field equations, such as 1d kinks and 3d bounces. Here, we will
add time dependence, computing the relative configurational entropy during spontaneous symmetry breaking in the
context of a 3d scalar field model. “Relative” refers to a comparison between the entropy of the field at some time and

∗Electronic address: mgleiser@dartmouth.edu
†Electronic address: nstamato@dartmouth.edu



2

the entropy of the initial state, which we take to be a thermal state at temperature T . We will compute the change
in relative configurational entropy as the field is tossed out of equilibrium during the symmetry-breaking process.
Previous work has shown how, for certain types of quench, oscillons naturally emerge during symmetry breaking
[15, 17]. Our results show quantitatively that the emergence of these localized coherent structures coincide with the
largest departures from equilibrium and that they carry the most information content, in the sense defined in Section
III. We are thus proposing a measure of order in field configuration space. Furthermore, we are able to establish a
direct correlation between the emergence of ordered spatiotemporal structures, in effect the number density of such
structures, and the relative configurational entropy.

The work is organized as follows. In Section II we describe the model and its lattice implementation. In Section III we
define the relative configurational entropy (RCE) and apply it to spontaneous symmetry breaking. We describe how the
RCE provides a measure of ordering in the system as compared to the maximally-disordered initial thermal state and
how this order correlates with the existence of spatially-coherent structures. In Section IV we present our conclusions
and plans for future work. In the Appendix, we provide some technical details of the lattice implementation.

II. THE MODEL

We consider a (3+1)-dimensional scalar field theory with Lagrangian density

L =
1

2
(∂µφ)2 − V (φ), (1)

and the tree level potential given by

V (φ) =
m2

2
φ2 − α

3
φ3 +

λ

8
φ4, (2)

where the parameters m, α, λ are positive-definite and temperature independent. We use ~ = c = kB = 1 and rescaled
variables φ′ = φ

√
λ/m, x′µ = xµm, α′ = α/(m

√
λ) to write the potential as V (φ) = (m4/λ)V (φ′), with

V (φ′) =
φ′2

2
− α′φ

′3

3
+
φ′4

8
. (3)

We henceforth drop the primes and work with the rescaled variables. In this work we only consider the values α = 0
and α = 3/2. The first case corresponds to a potential with a single minimum at φ = 0 and the second describes a
double-well potential with degenerate minima at φ = 0 and φ = 2. For α = 0 the potential is Z2-symmetric. For any
other value of α this symmetry is broken.

In the context of 2d [17] and 3d [15] models, it has been shown that when quenching a thermalized field from
the symmetric to the double-well potential (here, from α = 0 to α = 3/2), large-amplitude fluctuations about the
vacuum state give rise to oscillon formation as the system evolves towards thermal equilibrium in the new potential.
In other words, coherent, spatially-extended configurations develop spontaneously when an initially featureless system
is tossed out of equilibrium. The mechanism behind this process is well understood: coherent oscillations of the field’s
zero mode parametrically amplify higher k-modes and the resulting energy transfer triggers the formation of oscillons
[15, 17]. This remains true when the expansion of the universe is incorporated into the dynamics [18, 19]. In Fig. 1 we
show the coherent oscillations of the field’s zero mode, 〈φ〉(t) = (1/V )

∫
φ(t,xdV , for T = 0.25. Note the approximate

(nonlinear) oscillation period of P ∼ 8.5. We note that we could have investigated the traditional symmetry-breaking
mechanism with a double-well symmetric about φ = 0. In this case, the Z2 symmetry-breaking would lead to spinodal
decomposition and the formation of domain walls.

A. Lattice Implementation

We simulate the formation of oscillons using a cubic lattice with N3 = 2563 points, periodic boundary conditions,
lattice spacing dx = 0.5 and time step dt = 0.01. We prepare the initial thermal state using standard Langevin
dynamics [25]

φ̈+ γφ̇−∇2φ = −∂V
∂φ

+ ζ, (4)
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FIG. 1: Evolution of the field’s zero mode (volume-averaged field) after the quench. The initial temperature was set to T = 0.25.
Note the damping of the amplitude as energy is transferred to higher k modes.

where V (φ) is the rescaled potential in Eq. 3 with α = 0 and ζ is a Markovian noise with two-point correlation
function obeying the fluctuation-dissipation relation

〈ζ(x, t)ζ(x′, t′)〉 = 2γTδ(x− x′)δ(t− t′), (5)

where T is the temperature parameter characterizing the initial state and we take γ = 1. The system was evolved
until thermalization was achieved, indicated by the onset of equipartition with every mode having average kinetic
energy T/2, after which the potential was quenched from α = 0 to α = 3/2 and the field’s coupling to the heat bath
was removed (γ → 0). So, after the quench the dynamics is conservative. The evolution of the field was done using
a symplectic velocity Verlet algorithm and the Laplacian was discretized with a second-order accurate, forth-order
isotropic stencil using all 26 neighbors of a 3 × 3 × 3 cube around a point [26]. We have checked that our results
showed no particular dependence on the choice of box size, lattice spacing and timestep.

B. Hartree Approximation and Oscillon Emergence

Thermal fluctuations in φ will change the potential V (φ) which, to leading order in perturbation theory, can be
approximated by the Homogeneous Hartree Approximation [27]. Since the Hartree approximation assumes that the
fluctuations of the field remain Gaussian throughout its evolution, it works well just before and after the quench for
all temperatures. For low temperatures, it remains valid at all times. We can thus derive the Hartree potential by
writing the field as φ = φ̄ + δφ and then averaging over all fluctuations δφ to get VH = 〈V (φ̄ + δφ)〉. Under the
Hartree assumptions we have 〈δφ〉 = 0 and 〈δφ2〉 = β, where 〈δφ2〉 is the mean square variance of the field and is
proportional to the temperature parameter T . Suppressing the bar, the Hartree potential becomes

VH(φ) = −αβφ+

(
1 +

3

2
β

)
φ2

2
− αφ

3

3
+
φ4

8
. (6)

When thermal equilibrium is reached through the coupling to the heat bath, the field modes in momentum space
satisfy

〈|φeq(k)|2〉 =
T

k2 +m2
H

, (7)
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with the Hartree mass given by m2
H = V ′′H(0) =

(
1 + 3

2β
)
.

On the lattice, Eq. 7 has to be adjusted for lattice effects due to the φ dependence on the discretization and the
inherent UV cutoff on the lattice. For the lattice UV cutoff π/dx, β can be analytically obtained in terms of the
temperature T as [15]

β =
3T

4πdx
. (8)

The continuous dispersion relation ω2 = k2 + m2
H has to be modified to take into account the field dependence on

the discretization scheme. For the isotropic discretization we use here, the radially-averaged dispersion relation will
be given by ω2 = k2

eff +m2
H , with [28]

k2
eff = − c4

dx2
− 2

πdx2

∫ π/2

0

cos θ

∫ π/2

0

[
2c3 [cos [k cosφ cos θdx] + cos[k sinφ cos θdx] + cos[k sin θdx]]

+4c2 [cos [k cosφ cos θdx] cos[k sinφ cos θdx] + cos [k cosφ cos θdx] cos[k sin θdx] + cos[k sinφ cos θdx] cos[k sin θdx]]

+8c1 cos [k cosφ cos θdx] cos[k sinφ cos θdx] cos[k sin θdx]
]
dφdθ, (9)

and c1 = 1/30, c2 = 1/10, c3 = 7/15, c4 = −64/15 being the discretization coefficients of the Laplacian. With these
lattice effects taken into account, the two-point correlation function at equilibrium becomes

〈|φlatt
eq (k)|2〉 =

T

k2
eff + 1 + 9T/(8πdx)

. (10)
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FIG. 2: Radially-averaged two-point correlation functions for the field φ at T = 0.25. On the left, we show the simulation
data at equilibrium and the analytical approximation 〈|φlatt

eq (k)|2〉 (solid line) of Eq. 10. On the right, the same data is plotted
along with the two-point correlation function data at time 44m−1 after the quench (diamonds). Modes with k . 1.5m get
significantly amplified while the rest remain in thermal equilibrium throughout the simulation.

In the left part of Fig. 2 we show the radially-averaged two-point correlation function for the field φ after it reaches
thermal equilibrium at temperature T = 0.25. Squares denote the data from the numerical simulation, and the black
solid line is the theoretically predicted spectrum 〈|φlatt

eq (k)|2〉, adjusted for lattice effects. The averaging for low k-modes
is less accurate because, on the lattice, there are fewer modes to compute the average of the power spectrum. As k gets
larger, there are more modes with the same value of k and the agreement with the theoretically-predicted spectrum
is evident. On the right we plot the equilibrium spectrum (squares) and the spectrum at t = 44m−1 (diamonds)
after the quench. Modes with k . 1.5m have been parametrically amplified, whereas modes with k & 1.5m have
remained in thermal equilibrium. The low k, out of equilibrium modes that are parametrically amplified after the
quench are the ones responsible for oscillon formation. Oscillons emerge synchronously after the quench as the system
is tossed out of equilibrium, and then slowly disappear as the field evolves towards its new equilibrium state [15, 17].
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A visualization of the process can be seen at [29]. In Fig. 3, we show a snapshot of the field at t = 44m−1 after a
thermal Wiener filter has been applied to remove the high k-modes still in equilibrium, with oscillons appearing as
localized spikes in the field.

The Hartree potential can be used to describe some of the relevant timescales. From Fig. 1, we note that the
oscillations of the zero mode are displaced from φ = 0, the tree-level minimum, as can be seen from taking the first
derivative of eq. 6. In order to obtain the typical oscillation frequency about the vacuum, we must use this value of
〈φ〉 in the second derivative of VH(φ). For T = 0.25 and dx = 0.5 we obtain (V ′′H)1/2 = ω ∼ 0.68, giving an oscillating
period of P ∼ 9.2, which is very close to what is seen in Fig. 1. This is the typical period of the oscillation driving
the formation of oscillons.

FIG. 3: Snapshot of the field φ at t = 44m−1 after the system is quenched from a single to a symmetric double-well. The
simulation size shown here is L3 = 1283. The field was initially thermalized at T = 0.25. Oscillons (spatial ordering) appear as
spikes about the zero mode of the field. Three isosurfaces are shown at φ = 0.5, 1.3, 1.6 in purple, cyan and red, respectively.
As the system evolves towards its new equilibrium, the spatiotemporal ordering is gradually lost and oscillons subsequently
disappear. A full visualization of the process can be seen at [29], where it is also clear that for early times oscillons emerge in
synchrony (time ordering).

III. INFORMATION CONTENT OF COHERENT FIELD CONFIGURATIONS

Reverting back to Fig. 2, we observe a marked difference in the two-point correlation function of field modes between
the equilibrium (left) and nonequilibrium phases (right). In particular, as we emphasized before, low k-modes with
k . 1.5m are greatly amplified when the field is away from equilibrium [15]. In this section, we propose a measure
to quantify this nonequilibrium amplification of low k-modes. We further show that this measure, having a natural
interpretation as an entropy in field configuration space, correlates with the number of coherent field configurations
(oscillons, in the case studied here) that emerge as the system is tossed out of equilibrium. Thus, we propose that our
entropic measure can be used to quantify the emergence of complexity in field theory, if by complexity we understand
the appearance of spatially-localized coherent field configurations, in contrast with the structureless (disorganized)
thermal state.

Following our recent work [24], we define the modal fraction of a field φ(x, t) in Fourier space at time t as

f(k, t) =
|φ(k, t)|2∫
|φ(k, t)|2d3k

. (11)

Equivalently, in equilibrium we have
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g(k) =
|φeq(k)|2∫
|φeq(k)|2d3k

, (12)

with |φeq(k)|2 given by Eq. 7. Note that with this definition, g(k) depends on the temperature T only through the
Hartree mass correction term β. In the lattice implementation, g(k) is computed with |φlatt

eq (k)|2 as defined in Eq.
10. The linear dependence on the temperature is cancelled by our choice of normalization, which gives the modal
fraction units of m−3. Next, we define the dimensionless relative configurational entropy (RCE) of the power spectra
as

Sf (t) =

∫
Sf (k, t)d3k, (13)

where the relative configurational entropy density Sf (k, t) is given by

Sf (k, t) = f(k, t) ln
f(k, t)

g(k)
. (14)

Our definition of the RCE is a field-theory version of the Kullback-Leibler divergence (KLd) commonly used in infor-
mation theory to compare two probability distributions P and Q of a discrete random variable: DKL =

∑
Pi ln(Pi/Qi)

[30]. In information theory, the KLd gives a measure of the expected number of extra bits required to code samples
from P using a code based on Q. Usually, P represents the “true” data or a precisely computed distribution, while
Q represents a theory, model, or approximation of P .

By comparing the modal fraction of the field’s Fourier transform at time t with that of the thermal state, we
obtain a measure of the amplification of the low k-modes responsible for oscillon formation, a “distance” in Fourier
configuration space from the thermal state. (In principle, other mode expansions could be used, although, as we
argued in Ref. [24], for localized fields the Fourier transform is the most natural.) Modes that remain in equilibrium
throughout the evolution of the field (here, roughly for |k| > 1.5m) have f(k, t) = g(k) and Sf (k, t) = 0, and thus
do not contribute to the RCE. The larger the modal fraction f(k, t), the larger its associated relative entropy density
Sf (k, t).

The RCE thus provides a clear measure of the departure from equilibrium. Furthermore, it peaks where the field
is most organized into coherent spatial structures. This is consistent with the notion that the farther a system is
from equilibrium, the farther it is from satisfying equipartition. In effect, since the thermal state has maximum
entropy and hence no information (all modes have the same average energy–as equipartition determines) the RCE
gives a measure of information in field configuration space: peaks in the RCE correspond to peaks in information-rich
coherent structures. In the case here of a scalar field with an attractive self-interaction, the attractor point of its
dynamics, the oscillon, is the farthest that it can be from equipartition. This explains why the RCE peaks when
oscillons are present, with the amplitude of the peaks correlating directly with the number of oscillons, as we will see
below.

In Fig. 4 we plot the RCE density (left) and RCE (right) as a function of time for the same simulation with T = 0.25
of Figs. 2 and 3. Since the field starts in thermal equilibrium, the RCE density, Sf (|k|, t), is zero everywhere initially.
After the quench, energy is transferred to low-k modes and spikes in Sf (|k|, t) begin to appear. These are clearly seen
after integrating over the k modes, as shown in the plot of the RCE on the right.

Note that the oscillating period of the RCE coincides with that of the field’s zero mode (cf. Fig. 1). For the fiducial
value of T = 0.25 used here, we estimated at the end of Section II.B the period to be approximately P ∼ 9.2. Oscillons
emerge and breath with this same period for as long as the field oscillates with large enough amplitude. Some new
ones appear as time advances, as it’s clear from the peak at t ' 44, but always with the same oscillating frequency, in
a clear illustration of spatiotemporal synchronous emergence. Even if an isolated oscillon may have a lifetime of order
τ ∼ 7, 000, here they will disappear in a much shorter timescale as the field approaches equilibrium. We refer the
reader to Ref. [17] for details. Conceivably, if the driving oscillation of the zero mode could be maintained, oscillons
would also remain in the system.

In order to substantiate the claim that the RCE gives a quantitative measure of the emergence of spatiotemporal
structure in the system, in Fig. 5 we plot both Sf (t) and the number density of oscillons nosc(t) = Nosc(t)/V . Here,
Nosc(t) is the number of oscillons in the lattice, which is computed after a Wiener filter is applied to the field. Oscillons
are identified as spikes with amplitude φ(x, y, z, t) > φave(t) + 0.5, with φave the volume-averaged field, or zero mode.
This criterion was confirmed by visually correlating the oscillon count with snapshots of the filtered field.
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FIG. 4: Relative entropy density Sf (|k|, t) and relative entropy Sf (t) as a function of time for a simulation of initial temperature
T = 0.25. Initially the relative entropy is zero, corresponding to the time just after the quench when the system is still in
equilibrium. As parametric resonance takes place, spikes in the low k part of the relative entropy density emerge, signaling
the formation of oscillons. The amplitude of the spikes correlate with the number of oscillons formed, as explained below. As
the system evolves back to equilibrium, the oscillons disappear and the relative configurational entropy goes back to zero. The
wave vector magnitude k has units of m and time has units of m−1.

It is quite clear that the spikes in Sf (t) coincide with the synchronous emergence of oscillons, and that the higher
the amplitude of Sf (t) the larger the number density of oscillons present. (An advantage of defining the relative
entropy to be dimensionless is that it can be consistently used for similar simulations in lattices of different size.
When the simulation size is increased while working with the same initial temperature, the power spectrum will look
the same but the number of oscillons formed will be proportionally larger. Therefore, our definition of the relative
entropy is a consistent measure of the number density of oscillons formed.)

As an illustration, the highest peak in the two-point correlation function, shown in the right-side plot of Fig. 2,
appears at time t = 44m−1. The isosurface snapshot of Fig. 3 shows the richness of spatial structure in the field at
that time. This is also the time when the highest peak in the RCE appears, and corresponds to the maximum in the
number density of oscillons, as is clear from Fig. 5. Eventually, as the system evolves towards its final equilibrium
state, the relative entropy goes slowly back to zero, signaling the disappearance of coherent structures in the field.

For low temperatures, the Hartree approximation is valid for all times and Eq. 10 describes well the equilibrium
spectrum. For larger temperatures (T & 0.30), the Hartree approximation breaks down and we cannot use Eq. 10 as
descriptive of the equilibrium state of the system. Although it will still be a good base for studying the emergence of
structure in the field, it should be used with care.

To verify that the correspondence between the RCE and the number density of oscillons holds for the temperature
range where oscillons appear in the system, we extract the maxima of the RCE and the corresponding oscillon number
density at that time for a range of initial temperatures 0.10 ≤ T ≤ 0.29. (For example, for T = 0.25 this would be
at t = 44m−1 in the simulation displayed in Fig. 5.) For each value of T we perform an ensemble average over 15
simulations and plot the results in Fig. 6. The vertical axis on the left displays the ensemble-averaged maximum
value of the RCE, Smax, with the data shown in circles, while the right vertical axis displays the corresponding
ensemble-averaged oscillon number density nosc with the data depicted by diamonds. The error bars show the
standard deviation of the ensemble. For low temperatures 0.10 ≤ T ≤ 0.15, the fluctuations on the field do not have
large enough amplitude to lead to oscillon formation and the RCE is zero. As the temperature increases, parametric
amplification of the oscillon-related k modes triggers the formation of oscillons. The relationship between the RCE
and the number density of oscillons is evident: higher temperature leads to both higher RCE and larger oscillon
number-density. For temperatures T ∼ 0.28− 0.29 we begin to see a discrepancy between the two values, the reason
being that the Hartree approximation starts to diverge from the true equilibrium spectrum. (For reference, symmetry
restoration occurs roughly at T ∼ 0.32.) We note that the results of Fig. 6 are independent of the simulation volume.
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FIG. 5: Relative configurational entropy Sf (t) (continuous line) and number density of oscillons nosc(t) (dashed line) as a
function of time for a simulation of initial temperature T = 0.25. Initially, both the relative entropy and the number density
of oscillons are zero, since the system starts in equilibrium. After the quench, a clear correlation is seen between the spikes in
Sf (t) and the maxima of nosc. The wave vector magnitude |k| has units of m and time has units of m−1.
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FIG. 6: Ensemble-averaged values of the maxima of the RCE and of the oscillon number density for a range of different initial
temperatures. For low temperatures T . 0.15, no oscillon formation is possible and the RCE is zero. As the temperature
increases, the maxima of the RCE increase in amplitude at the same rate as the maxima of the oscillon number density. For
temperatures T ∼ 0.28− 0.29 the rates begin to diverge as the Hartree approximation is no longer valid.

IV. CONCLUSION AND DISCUSSIONS

We investigated the nonequilibrium dynamics of symmetry breaking in the context of a 3d real scalar field model with
a double-well potential. Preparing the system in a parity-invariant initial thermal state, we break the Z2 symmetry
by adding a cubic term to the potential. As a result, coherent spatiotemporal structures emerge, an ensemble of long-
lived oscillons. We proposed a measure to quantify the emergence of spatiotemporal order, which essentially counts
the modes out of equilibrium. This measure, which we called relative configurational entropy following our previous
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work of Ref. [24], provides an accurate description both of the departure from equilibrium and of the emergence of
coherent structures in the field. “Relative” here refers to computing an entropic distance in field configuration space
from a baseline which we took to be the thermal state. This way, we are able to provide the informational content of
nonequilibrium field structures, in particular of coherent states that emerge during spontaneous symmetry breaking.
We could just as easily have studied the information content of domain-wall formation had we used a different initial
state centered at the maximum of the double-well potential.

The measure we proposed here should be generalizable to many different contexts. For example, it should be
possible to apply it to models with gauge fields, or in nonrelativistic applications of interest to condensed matter
physics, such as Ginzburg-Landau models of superfluids and superconductors. Furthermore, a similar measure should
also be of interest in cosmological contexts where topological and nontopological structures appear due to symmetry
breaking driven by the cosmic expansion. Finally, it would be interesting to see if such ideas could be extended
to compute the relative configurational entropy of metric spaces, thus providing a possible measure of gravitational
entropy. Work along these lines is currently in progress.
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V. APPENDIX: ANALYTICAL ESTIMATE OF THE MODAL FRACTION NORMALIZATION AT
EQUILIBRIUM

The normalization of the modal fraction at equilibrium in Eq. 11 can be computed analytically. This will provide
an estimate of how important lattice effects are for different lattice parameters. We assume spherical symmetry in
momentum space and impose a UV cutoff Λ to perform the integral

∫
|φan

eq(k)|2d3k =

∫ Λ

0

T

k2 +m2
H

4πk2dk = 4πT

(
Λ−mH tan−1 Λ

mH

)
, (15)

where T is the temperature and mH is the Hartree mass. The value of the UV cutoff Λ is chosen appropriately
to describe the discretization employed in the numerical calculations. Here, we pick the value Λ =

√
3π/dx which

corresponds to the largest wavevector represented in a cubic lattice of lattice spacing dx. Geometrically, this choice
makes the integration volume of Eq. 15 to be the smallest sphere that fully covers the cubic lattice in momentum
space.

We evaluate Eq. 15 for T = 0.25 and several choices of lattice spacing dx. The results are shown in Table I. For
large values of dx, the analytical approximation is in good agreement with the numerically calculation; but as the
lattice spacing is decreased, the two values begin to diverge. To see why the analytical approximation underestimates
the value of the integral, note that k2 grows faster than the numerically-calculated k2

eff of Eq. 9 and this becomes
increasingly more noticeable for smaller lattice spacings and hence larger volume of integration. This further justifies
our incorporation of lattice correction effects in the dispersion relation in Eq. 10, as the discrepancy is of the order of
10% for dx = 0.5 used throughout this paper.

dx
∫
|φlatt

eq (k)|2d3k
∫
|φan

eq (k)|2d3k
0.9 14.8874 14.3853

0.7 20.9985 19.6331

0.5 32.0204 29.1701

0.3 57.611 51.5837

0.1 184.715 164.262

TABLE I: Comparison between the numerical and analytical values of the modal fraction normalization at equilibrium for
different values of lattice spacing. The analytical approximation given by Eq. 15 works well as long as the lattice spacing is
not very small. For smaller values of dx, the lattice effects on the dispersion relation calculated in Eq. 9 have to be taken into
account. The lattice spacing dx is given in units of m−1 and the normalization factors have units of [Tm].
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