
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Slowly rotating black holes in dynamical Chern-Simons
gravity: Deformation quadratic in the spin

Kent Yagi, Nicolás Yunes, and Takahiro Tanaka
Phys. Rev. D 86, 044037 — Published 21 August 2012

DOI: 10.1103/PhysRevD.86.044037

http://dx.doi.org/10.1103/PhysRevD.86.044037


DT11159

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Slowly Rotating Black Holes in Dynamical Chern-Simons Gravity:

Deformation Quadratic in the Spin

Kent Yagi,1, ∗ Nicolás Yunes,1 and Takahiro Tanaka2

1Department of Physics, Montana State University, Bozeman, MT 59717, USA.
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan.

We derive a stationary and axisymmetric black hole solution to quadratic order in the spin angular
momentum. The previously found, linear-in-spin terms modify the odd-parity sector of the metric,
while the new corrections appear in the even-parity sector. These corrections modify the quadrupole
moment, as well as the (coordinate-dependent) location of the event horizon and the ergoregion.
Although the linear-in-spin metric is of Petrov type D, the quadratic order terms render it of type I.
The metric does not possess a second-order Killing tensor or a Carter-like constant. The new metric
does not possess closed timelike curves or spacetime regions that violate causality outside of the
event horizon. The new, even-parity modifications to the Kerr metric decay less rapidly at spatial
infinity than the leading-order in spin, odd-parity ones, and thus, the former are more important
when considering black holes that are rotating moderately fast. We calculate the modifications
to the Hamiltonian, binding energy and Kepler’s third law. These modifications are crucial for
the construction of gravitational wave templates for black hole binaries, which will enter at second
post-Newtonian order, just like dissipative modifications found previously.

PACS numbers: 04.30.-w,04.50.Kd,04.25.-g,04.25.Nx

I. INTRODUCTION

Although General Relativity (GR) has passed all Solar
System and binary pulsar tests [1], it remains yet to be
verified in the non-linear, dynamical strong-field/strong-
curvature regime. One of the best astrophysical environ-
ments to perform such tests is near black holes (BHs).
Mathematical theorems in GR guarantee that the exte-
rior gravitational field of a vacuum, stationary and ax-
isymmetric BH is given by the Kerr metric [2–7] The
multipole moments of an uncharged BH in GR are there-
fore completely characterized by its mass (mass monopole
moment) and spin angular momentum (current dipole
moment). If GR is modified, however, BHs need not be
represented by the Kerr solution. For example, a sta-
tionary BH solution that differs from the Kerr metric
has recently been found in quadratic gravity to linear-
order in a slow-rotation approximation [8–11]. Future
observations of electromagnetic radiation from accretion
disks [12–14] and gravitational radiation from extreme
mass-ratio inspirals [15–21] will allow us to probe the
spacetime structure and test the Kerr hypothesis: that
the massive compact objects at the center of most galax-
ies are Kerr BHs.

A well-motivated theory that has recently received
much attention is Chern-Simons (CS) modified grav-
ity [22, 23]. The CS action modifies the Einstein-Hilbert
one by adding a kinetic scalar field term and a potential
composed of the product of this field with the Pontrya-
gin density (the contraction of the Riemann tensor with
its dual). Such a potential is necessary to cancel anoma-
lies in heterotic, superstring theory [24] and it also arises
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naturally in loop quantum gravity [25–27] and in effective
field theories of inflation [28]. This theory is also related
to 3D topologically massive gauge theories [29]. Two for-
mulations of CS gravity exist: a non-dynamical one and
a dynamical one. In the former, the scalar field kinetic
term is absent from the action, and thus, this field must
be prescribed a priori, leading to an extra constraint on
the space of solution, i.e. the vanishing of the Pontryagin
density [30]. In the latter, the scalar field kinetic term is
kept in the action and the scalar is controlled by a wave
equation sourced by the Pontryagin density. Therefore,
the dynamical theory preserves diffeomorphism invari-
ance and the strong equivalence principle, although it vi-
olates GR’s Birkhoff theorem [30, 31] and the effacement
principle [32].

Dynamical CS gravity is more appealing from a the-
oretical standpoint but it remains relatively unexplored
due to its mathematical complexity. The first study of
BH solutions in dynamical CS gravity was carried out by
Yunes and Pretorius [8], and later by Konno et al. [11].
In these studies, a slow-rotation approximation was used
to find the leading-order in spin corrections to the Kerr
metric, which enter in the gravitomagnetic sector and
modify frame-dragging. A rather weak but robust con-
straint on dynamical CS gravity was placed [33] with
Gravity Probe B [34] (similar constraints can be ob-
tained from LAGEOS and LAGEOS 2 [35] through mea-
surements of the Lense-Thirring effect [36].) Dynamical
CS gravity can also be constrained by table-top experi-
ments that confirm Newton’s law to length scales above
O(10µm) [37]. Interestingly, table-top experiments place
similar constraint to those obtained from Solar System
observations.

A much stronger constraint can be placed with future
gravitational wave observations of compact binary coales-
cences. This necessitates a calculation of both dissipative
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corrections to the waveform, i.e. modifications to the rate
of change of the energy, angular momentum and Carter
constant, and conservative corrections, i.e. modifications
to the binding energy and Kepler’s Third Law. In [32],
we calculated the former and found that they introduce
modifications to the waveform at 2nd post-Newtonian
(PN) order in terms of its frequency (or velocity) de-
pendence, although its amplitude is of course suppressed
relative to GR by the CS coupling constant. In order
to obtain the full 2PN waveform, we must first compute
the 2PN conservative corrections, which require a calcu-
lation of (i) a stationary, axisymmetric BH solution at
quadratic order in spin, and (ii) the dipole-dipole scalar
force acting on the binary components. In this paper, we
concentrate on the former.

We will search for a slowly-rotating BH solution in dy-
namical CS gravity at quadratic order in spin with two
approximations: slow-rotation and small coupling [8].
The former assumes that the BH spin angular momen-
tum is much smaller than its mass squared. The latter
postulates that the deformation away from GR is small,
which corresponds to a dynamical CS dimensionless cou-
pling constant [defined later in Eq. (1)] much smaller than
unity. This is a reasonable approximation, given that
GR has already passed stringent tests, albeit in the weak
field. Moreover, the dynamical CS action is an effec-

tive theory that derives from a leading-order truncation
in the dynamical CS coupling parameter of a more fun-
damental one. Therefore, the action and its associated
modified field equations are only valid to leading-order
in the dynamical CS coupling parameter. If one did not
use the small-coupling approximation to iteratively solve
the modified field equations, third time derivatives could
arise in the field equations, probably signaling the pres-
ence of ghost modes. Presumably, these ghost modes
might be eliminated by an appropriate UV completion.

The method we employ to find a slowly-rotating solu-
tion at second order in the spin is rather novel in this
context. We follow closely BH perturbation theory tech-
niques [38, 39]: we treat the second-order in spin correc-
tion to the dynamical CS metric as a perturbation away
from the leading-order in spin solution found by Yunes
and Pretorius [8]. We then derive master equations gov-
erning this perturbation and decompose the solution in
tensor spherical harmonics, which decouples the system
into a linear ordinary differential one. The solution to
this system is then mathematically straightforward, al-
though we do verify that the full metric satisfies the dy-
namical CS field equations explicitly with symbolic ma-
nipulation software. As expected, the quadratic-order in
spin corrections modify only the even-parity sector of the
metric.

The properties of this solution are also quite interest-
ing. Since we obtain corrections to quadratic order in the
spin, we are able to compute the gauge-dependent shift in
the location of the event horizon and the ergosphere, as
well as the deformation in the Kerr quadrupole moment.
We also find that the new metric retains its Lorentz signa-

ture and closed timelike curves do not exist outside of the
event horizon. Therefore, such a spacetime is perfectly
suitable to the study of photon trajectories when consid-
ering the shadow of BH accretion disks. We also consider
test-particles motion in this new background. We obtain
the corrections to the relation among the binding energy,
the (z-component of) angular momentum, and the orbital
frequency, and the frequency at the innermost stable cir-
cular orbit.
Perhaps one of the most interesting, albeit not sur-

prising properties of the new solution is that, although
the linear order in spin metric [8] remains of Petrov type
D [40], the quadratic order terms calculated here ren-
der the metric of type I. Obviously, this is drastically
different from the Kerr metric, which remains of Petrov
type D to all orders in a small spin expansion. This
is because if a metric is not of Petrov type Dat some
order in spin, this violation cannot be compensated for
by higher order spin contributions, as long as the small
spin approximation holds. The new BH solution does
not possess a non-trivial second-rank Killing tensor, and
thus, there are no naive extensions of the Carter-like con-
stant and a separable structure is not admissible [41, 42].
The latter statement means that there does not exist any
spacetime coordinate transformation that leads to sepa-
rable Hamilton-Jacobi equations. One cannot, however,
rule out a canonical transformation that does render the
equations separable. This is related to the fact that there
might exist a higher-rank Killing tensor that kneads to a
fourth constant of the motion. Given this, it is not clear
whether geodesics in this new background will be chaotic
or not. Nonetheless, upon orbit-averaging, a modified
Carter-like constant reappears, which might indicate that
orbits are regular, except for resonant ones.
The remainder of this paper presents further details

and it is organized as follows. Section II presents the
basic equations of dynamical CS gravity. Section III be-
gins by describing the approximation used to find BH
solutions in this theory and then continues to describe
the solution found in [8] and [11] and the new solution
found in this paper. Section IV investigates the basic
properties of this new BH solution, such as the (gauge-
dependent) location of the event horizon and ergosphere.
Section V discusses geodesics in this new background and
the Petrov type of the new solution. Section VI sum-
marizes and describe several possible avenues for future
research.
All throughout, we use the following conventions, fol-

lowing mostly Misner, Thorne and Wheeler [43]. We
use the Greek letters (α, β, · · · ) to denote spacetime in-
dices. The metric is denoted gµν and it has signature
(−,+,+,+). We use geometric units, with G = c = 1.

II. DYNAMICAL CHERN-SIMONS GRAVITY

In this section, we introduce the basic equations of
dynamical CS gravity and establish notation. The action
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is defined by [23]

S ≡
∫

d4x
√−g

{
κgR+

α

4
ϑRνµρσ

∗Rµνρσ

−β

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmat

}
. (1)

Here, κg ≡ (16π)−1, g denotes the determinant of the
metric gµν and Rµνδσ is the Riemann tensor. ∗Rµνρσ is
the dual of the Riemann tensor, defined by [23]

∗Rµνρσ ≡ 1

2
ǫρσαβRµν

αβ , (2)

where ǫµναβ is the Levi-Civita tensor. ϑ is a scalar field,
while α and β are coupling constants. V (ϑ) is an addi-
tional potential and Lmat denotes the matter Lagrangian
density. Following [8], we take ϑ and β to be dimension-
less and α to have dimensions of (length)2. For conve-
nience, we define a dimensionless parameter

ζ ≡ α2

κgβM4
, (3)

where M is the typical mass of the system (or strictly
speaking, the curvature length scale).
The field equations in this theory are given by [23]

Gµν +
α

κg
Cµν =

1

2κg
(Tmat

µν + T ϑ
µν) , (4)

where Gµν is the Einstein tensor and Tmat
µν is the matter

stress-energy tensor. The C-tensor and the stress-energy
tensor for the scalar field are defined by

Cµν ≡ (∇σϑ)ǫ
σδα(µ∇αR

ν)
δ + (∇σ∇δϑ)

∗Rδ(µν)σ , (5)

T ϑ
µν ≡ β(∇µϑ)(∇νϑ)−

β

2
gµν

[
∇δϑ∇δϑ− 2V (ϑ)

]
. (6)

Equivalently, Eq. (4) can be rewritten as

Rµν = −4
α

κg
Cµν +

1

2κg

(
T̄mat
µν + T̄ ϑ

µν

)
, (7)

where we introduced the trace-reversed stress-energy ten-
sors

T̄mat
µν ≡ Tmat

µν − 1

2
gµνT

mat , (8)

T̄ ϑ
µν ≡ β(∇µϑ)(∇νϑ) , (9)

and used the fact that the C-tensor is traceless. The
evolution equation of the scalar field is given by

�ϑ = − α

4β
Rνµρσ

∗Rµνρσ +
dV

dϑ
. (10)

In 4D, low-energy effective string theories, the (axion)
scalar field has a shift symmetry, i.e. the equations of
motion are invariant under the symmetry transformation
ϑ → ϑ + c, with c a constant, which disallows any mass

terms in the action. If one forgets about shift-symmetry
and insists on a mass term, then the dynamics of the
scalar field would freeze and their would not be much
scalar-field propagation. In dynamical CS gravity, how-
ever, such mass terms are not allowed. For simplicity, in
this paper we set V (ϑ) = 0 throughout.

Dynamical CS gravity should be thought of as an effec-
tive theory, and as such, it possess a cut-off scale outside
which its action should be modified through the inclusion
of higher-order curvature terms. This cut-off scale can be
determined by estimating the order of magnitude of loop
corrections to the second term in Eq. (1) due to n-point
interactions. Denote the additional number of vertices
and scalar and graviton propagators relative to tree level
diagrams as V , Ps and Pg, one has

Ps =
V

2
, Pg = (n− 1)

V

2
. (11)

One immediately sees that loop corrections are sup-

pressed by a factor of αV M
(2−n)V
pl ΛnV , where Mpl is the

Planck mass and Λ is the energy scale introduced such
that the suppression factor becomes dimensionless. This
factor becomes of order unity when Λ takes the critical
value

Λc ≡ M
1−2/n
pl α1/n , (12)

which corresponds to the cutoff energy scale above which
one cannot treat dynamical CS gravity as an effective
theory.
Given this cut-off scale, one can estimate the value of

α above which the theory is not an effective one any-
more. First, notice that for a fixed value of α, Λc be-
comes larger as n increases. Hence, n = 3 will lead to
the most stringent constraint on α. From Eq. (12), the
critical wavelength scale below which the strong coupling
effect cannot be neglected is given by

λc ≡ L
1/3
pl α1/3 , (13)

where Lpl is the Planck length scale. When one takes λc

to be of O(10µm), thus saturating the table-top experi-
ment bound [37], one finds that

√
α < O(108km). (14)

For values of α that satisfy the above inequality, dy-
namical CS gravity can be treated as an effective the-
ory and higher-order curvature terms in the action can
be neglected. Notice that this inequality is of the same
order as the constraint obtained from Solar System ex-
periments [33]. Of course, one can have a value of α
that satisfies this inequality, without necessarily having
ζ ≪ 1. In this paper, however, we are interested in BHs
of masses in the range (3, 107)M⊙, for which the small
coupling approximation requires

√
α ≪ 107km, thus au-

tomatically satisfying the inequality in Eq. (14).
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III. ROTATING BLACK HOLE SOLUTIONS

In this section, we describe the two approximation
schemes that we use to obtain the slowly rotating BH
solution in dynamical CS gravity at quadratic order in
spin. We then describe the slowly-rotating BH solution
at linear-order in spin, found by [8] and [11], and apply
these approximations to find the second-order in spin so-
lution.

A. Approximation Schemes

Following [8], we consider stationary and axisymmet-
ric BH solutions in dynamical CS gravity with small-
coupling (ζ ≪ 1) and slow-rotation (χ ≪ 1). The small-
coupling approximation implies that we consider small
CS deformations away from GR. The metric can then be
expanded as

gµν = g(0)µν + α′2g(2)µν +O(α′4) , (15)

where α′ is a bookkeeping parameter that labels the order

of the small-coupling approximation, with g
(n)
µν ∝ αn.

Notice that only terms with even powers in α′ appear

in the metric. Then, we expand each g
(0)
µν and g

(2)
µν in a

slow-rotation expansion via

g(0)µν = g(0,0)µν + χ′g(1,0)µν + χ′2g(2,0)µν +O(χ′3) , (16)

α′2g(2)µν = α′2g(0,2)µν + α′2χ′g(1,2)µν + α′2χ′2g(2,2)µν

+O(α′2χ′3) , (17)

where χ′ is another bookkeeping parameter that labels
the order of the slow-rotation approximation. Notice that

g
(m,n)
µν ∝ χmαn, where χ ≡ a/M is the dimensionless spin
parameter.

The quantities g
(0,0)
µν , g

(1,0)
µν and g

(2,0)
µν can be obtained

by expanding the Kerr solution in χ ≪ 1, whose line
element in Boyer-Lindquist (BL) coordinates (t, r, θ, φ)
is

ds2
K

= −
(
1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+Σdθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θdφ2 ,

(18)

where ∆ and Σ are defined by

∆ ≡ r2 − 2Mr + a2 , (19)

Σ ≡ r2 + a2 cos2 θ . (20)

Here, M is the mass of the BH and a ≡ S/M with S
denoting the magnitude of spin angular momentum of
the BH.

Let us now expand the scalar field ϑ. From Eq. (10),
we see that the leading-order contribution to ϑ is propor-
tional to α. Therefore, we can expand ϑ as

ϑ = α′

[
χ′ϑ(1,1) + χ′2ϑ(2,1)

]
+O(α′χ′3) . (21)

There is no ϑ(0,1) term here because the Pontryagin den-
sity vanishes when evaluated on spherically symmetric
spacetimes. There is no O(α′2) term and we have also
here neglected terms of O(α′3) since they do not affect
the metric perturbation at O(α′2).

B. BH solutions to O(α′2χ′)

Let us first concentrate on solutions at O(α′2χ′0). As
already mentioned, the Pontryagin density vanishes for
any spherically symmetric spacetime [44]. Thus, static,
spherically symmetric BHs are still described by the

Schwarzschild solution. This implies that g
(0,n)
µν = 0 for

all n, and in particular, g
(0,2)
µν = 0.

To O(α′2χ′) in metric, Yunes and Pretorius found that
in BL-type coordinates (the coordinates where the GR
part of the BH metric is identical to Kerr in BL coordi-
nates) [8, 11]

ϑ(1,1) =
5

8

α

β
χ
cos θ

r2

(
1 +

2

7

M

r
+

18

5

M2

r2

)
(22)

and the only non-vanishing term in g
(1,2)
µν is

g
(1,2)
tφ =

5

8
ζMχ

M4

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
sin2 θ , (23)

with all other components set to zero. Therefore, the
line-element to O(α′2χ′) is given by

ds2 = ds2K +
5

4
ζMχ

M4

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
sin2 θdtdφ .

(24)

Notice that although the correction term does not diverge
at the unperturbed Schwarzschild horizon, r = 2M , it
does not vanish there, either. One can, however, resum
the metric such that the correction indeed vanishes at the
Schwarzschild horizon, as we will discuss in Sec. III C 3.

C. BH solutions at O(α′2χ′2)

1. Scalar Field

Since the right-hand side of Eq. (10) is already pro-
portional to α/β, we expand the Pontryagin density
Rνµρσ

∗Rµνρσ only up to O(α′0). This means that we can
substitute the Kerr solution in Rνµρσ

∗Rµνρσ and expand



5

it in powers of χ′ to find

Rνµρσ
∗Rµνρσ = 288

M3χ cos θ

r7

(
1− 28

3

M2

r2
χ2 cos2 θ

)

+O(χ′5) . (25)

The Pontryagin density is a parity odd quantity, and
hence it can only depend on odd powers of χ′. Since
we are only interested in a BH solution to O(α′2χ′2),
we need not concern ourselves with the second term in
Eq. (25). Therefore, one finds that

ϑ(2,1) = 0 , (26)

and we only have to consider ϑ(1,1) [see Eq. (22)] to con-

struct g
(2,2)
µν . In fact, this shows that ϑ(n,1) = 0 for all

even n.

2. Metric Tensor: Equations

Consider an expansion of the metric of the form gµν =

g
(0,0)
µν + hµν where hµν denotes a metric perturbation
away from Schwarzschild solution. For us, this metric
deformation contains both known terms, such as pure
Kerr deformations of Schwarzschild and CS corrections
at O(α′2χ′), as well as unknown terms, such as CS cor-
rections at O(α′2χ′2), namely

hµν = χ′g(1,0)µν + χ′2g(2,0)µν + χ′α′2g(1,2)µν + χ′2α′2g(2,2)µν .
(27)

The Einstein tensor can then be expanded as

Gµν = G[0]
µν +G[1]

µν [hµν ] +G[2]
µν [hµν , hµν ] +O(h3) . (28)

Here, the superscript in square brackets counts the num-
ber of times hµν appears. Obviously, the first term in
Eq. (28) vanishes because the Schwarzschild metric sat-
isfies the vacuum Einstein equations.
With this notation, we can split the O(α′2χ′2) part of

the Einstein tensor G
(2,2)
µν into two contributions

G(2,2)
µν = G[1]

µν

[
g(2,2)µν

]
+G[2]

µν

[
g(1,0)µν , g(1,2)µν

]
, (29)

where the first term is constructed from the unknown
functions g

(2,2)
µν and its derivatives, while the second term

is a known function built from g
(1,0)
µν and g

(1,2)
µν only. We

can then rewrite the field equations at O(α′2χ′2) as

G[1]
µν

[
g(2,2)µν

]
= S(2,2)

µν , (30)

where we have defined the source term

S(2,2)
µν ≡ −G[2]

µν

[
g(1,0)µν , g(1,2)µν

]
− C′

µν
(2,2) + T ′ϑ

µν
(2,2) .

(31)

For convenience, we introduced the reduced C-tensor C′
µν

and the reduced stress energy-momentum tensor of the
scalar field T ϑ

µν
′:

C′

µν ≡ (α/κg)Cµν , T ′ϑ
µν ≡ (1/2κg)T

ϑ
µν . (32)

The components of S
(2,2)
µν can be calculated from

Eqs. (22), (24) and the Kerr metric.

The recasted field equations carry a strong resemblance
with the equations of BH perturbation theory [38, 39].
The quantity on the left-hand side of Eq. (30) can be in-
terpreted as the Einstein tensor constructed from the un-

known perturbation g
(2,2)
µν in a Schwarzschild background

g
(0,0)
µν . Since the source S

(2,2)
µν is an analytic function that

can be computed exactly, g
(2,2)
µν can be solved for using

Schwarzschild BH perturbation theory tools.

Following Refs. [38, 39], we first decompose the metric

perturbation g
(2,2)
µν and the source S

(2,2)
µν in tensor spher-

ical harmonics. Since terms of O(α′2χ′2) are parity even,
we only consider the metric perturbation in the even-
parity sector, which has 7 independent metric compo-
nents. Imposing stationarity and axisymmetry reduces
the number of independent components to 5. The latter
condition allows us to consider the m = 0 mode only in
the spherical harmonic decomposition. Two gauge de-
grees of freedom remain, which we fix by adopting the
Zerilli gauge. One is then left with 3 independent de-
grees of freedom, which allows us to parameterize the
metric perturbation via

g(2,2) =
∑

l

[
f(r)H0ℓ0(r)a

(0)
ℓ0 +

1

f(r)
H2ℓ0(r)aℓ0

+
√
2Kℓ0(r)gℓ0

]
. (33)

and the source term via

S(2,2) =
∑

l

[
A

(0)
ℓ0 a

(0)
ℓ0 +Aℓ0aℓ0 +Bℓ0bℓ0

+G
(s)
ℓ0 gℓ0 + Fℓ0fℓ0

]
, (34)

with f(r) ≡ 1− 2M/r and the five tensor spherical har-

monics a
(0)
ℓ0 , aℓ0, bℓ0, gℓ0 and fℓ0 defined in Appendix A.

Notice that boldfaced quantities here refer to rank-2 co-

variant tensors. The source term coefficients A
(0)
ℓ0 , Aℓ0,

Bℓ0, G
(s)
ℓ0 and Fℓ0 are non-vanishing only for ℓ = 0 and

ℓ = 2, and we provide explicit expressions for them in
Appendix A.

Using this decomposition, the field equations in
Eq. (30) are no longer coupled, partial differential equa-
tions, but they rather become coupled ordinary differen-
tial equations for (H0ℓ0, H2ℓ0,Kℓ0), namely [38, 39]
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f(r)2
d2Kℓ0

dr2
+

1

r
f(r)

(
3− 5M

r

)
dKℓ0

dr
− 1

r
f(r)2

dH2ℓ0

dr

− 1

r2
f(r)(H2ℓ0 −Kℓ0)−

l(l + 1)

2r2
f(r)(H2ℓ0 +Kℓ0) = −A

(0)
ℓ0 , (35)

−r −M

r2f(r)

dKℓ0

dr
+

1

r

dH0ℓ0

dr
+

1

r2f(r)
(H2ℓ0 −Kℓ0) +

l(l + 1)

2r2f(r)
(Kℓ0 −H0ℓ0) = −Aℓ0 , (36)

f(r)
d

dr
(H0ℓ0 −Kℓ0) +

2M

r2
H0ℓ0 +

1

r

(
1− M

r

)
(H2ℓ0 −H0ℓ0) =

rf(r)√
l(l + 1)/2

Bℓ0 , (37)

f(r)
d2Kℓ0

dr2
+

2

r

(
1− M

r

)
dKℓ0

dr
− f(r)

d2H0ℓ0

dr2
− 1

r

(
1− M

r

)
dH2ℓ0

dr

−r +M

r2
dH0ℓ0

dr
+

l(l+ 1)

2r2
(H0ℓ0 −H2ℓ0) =

√
2G

(s)
ℓ0 , (38)

H0ℓ0 −H2ℓ0

2
=

r2Fℓ0√
l(l+ 1)(l− 1)(l + 2)/2

. (39)

In Eqs. (35), (36) and (38), ℓ = 0 or 2, while in Eqs. (37)
and (39) ℓ = 2. We have checked that these equations are
identical to those derived from the field equations directly
through the use of symbolic manipulation software.

3. Metric Tensor: Solution

Before solving these equations, let us exhaust the re-
maining gauge freedom in the ℓ = 0 mode. We already
explained that for modes with ℓ ≥ 2, one is left with
5 independent variables after imposing stationarity and
axisymmetry. Mathematically, these variables are con-
tained in the coefficients of the five spherical tensor har-

monics a
(0)
ℓ0 , aℓ0, bℓ0, gℓ0 and fℓ0. We eliminate two

of them by imposing the Zerilli gauge, i.e. setting the
coefficients of bℓ0 and fℓ0 to zero. The ℓ = 0 mode,
however, is different because from the start it possesses
only 3 independent variables, after imposing stationary
and axisymmetry. One of them corresponds to a redef-
inition of the spherical areal radius, which we eliminate

by setting K00 = 0.

Let us now discuss how to solve the differential sys-
tem in Eqs. (35)-(39). When we substitute K00 = 0 in
Eq. (35) with ℓ = 0, we are left with a first-order or-
dinary differential equation for H200. We can solve for
H200 and then use Eqs (36) and (38) to find H000. With
this, we can then obtain the ℓ = 2 perturbative modes
to find the (H0ℓ0, H2ℓ0,Kℓ0) functions that we present
in Appendix A for completeness. Each of these solu-
tions is composed of the sum of a homogeneous and an
inhomogeneous solution. The former introduces integra-
tion constants chosen by requiring (i) that the metric be
asymptotically flat at spatial infinity, e.g. H0ℓ0 → 0 as
r → ∞, and (ii) that the mass and spin angular momen-
tum associated with the new solution is given by M and
Ma, as measured by an observer at spatial infinity.
The line element to O(α′2χ′2) is then ds2 = ds2K +

δ(ds2)CS, where

δ(ds2)CS = 2gCS

tφdtdφ+gCS

tt dt
2+gCS

rr dr
2+gCS

θθdθ
2+gCS

φφdφ
2

(40)
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with

gCS

tt = ζχ2M
3

r3

[
201

1792

(
1 +

M

r
+

4474

4221

M2

r2
− 2060

469

M3

r3
+

1500

469

M4

r4
− 2140

201

M5

r5
+

9256

201

M6

r6
− 5376

67

M7

r7

)
(3 cos2 θ − 1)

− 5

384

M2

r2

(
1 + 100

M

r
+ 194

M2

r2
+

2220

7

M3

r3
− 1512

5

M4

r4

)]
+O(α′2χ′4) ,

(41)

gCS

rr = ζχ2 M3

r3f(r)2

[
201

1792
f(r)

(
1 +

1459

603

M

r
+

20000

4221

M2

r2
+

51580

1407

M3

r3
− 7580

201

M4

r4

−22492

201

M5

r5
− 40320

67

M6

r6

)
(3 cos2 θ − 1) (42)

− 25

384

M

r

(
1 + 3

M

r
+

322

5

M2

r2
+

198

5

M3

r3
+

6276

175

M4

r4
− 17496

25

M5

r5

)]
+O(α′2χ′4) ,

gCS

θθ =
201

1792
ζχ2M2M

r

(
1 +

1420

603

M

r
+

18908

4221

M2

r2
+

1480

603

M3

r3
+

22460

1407

M4

r4
+

3848

201

M5

r5
+

5376

67

M6

r6

)
(3 cos2 θ − 1)

+O(α′2χ′4) , (43)

gCS

φφ = sin2 θgCS

θθ +O(α′2χ′4) (44)

and gCS

tφ given in Eq. (23). We have checked explic-
itly that the solution above satisfies the field equations
[Eq. (30)] to O(α′2χ′2) with symbolic manipulation soft-
ware.
The choice of homogeneous integration constants de-

pend on how we choose to define the mass M and the
reduced spin angular momentum a. The most natural
choice is to define these quantities as measured by an ob-
server at infinity, which then leads to the metric displayed
above. With these definitions, the angular velocity and
area of the event horizon are modified to

ΩH ≡ − gtt
gtφ

∣∣∣
r=rH

= ΩH,K

(
1− 709

7168
ζ

)
, (45)

AH ≡ 2π

∫ π

0

√
gθθgφφ|r=rHdθ

= AH,K

(
1− 915

28672
ζχ2

)
, (46)

where rH is the location of the horizon, which will be dis-
cussed in the next section (Eq. (55)), and where ΩH,K =
a/(r2

H,K
+ a2) and AH,K = 16πM2(1 − χ2/4) + O(χ4),

with rH,K the horizon radius for the Kerr metric: rH,K =

M +
√
M2 − a2. One can physically interpret this result

by thinking of the BH metric found here as representing
a BH surrounded by a scalar field “cloud” with a dipole
density structure. As such, the modified BH horizon area
and its angular velocity will be modified from what one
would expect for a Kerr BH in vacuum GR due to the
presence of the scalar field.
One could of course insist on defining the mass and

reduced angular momentum such that the horizon struc-
ture of the modified BH remains identical to that of the

Kerr metric. This would require a renormalization of M
and a via

M̃ ≡ M

(
1− 2333

57344
ζχ2

)
, (47)

ã ≡ a

(
1− 709

7168
ζ

)
, (48)

which then leads to ΩH = Ω̃H,K and AH = ÃH,K where a
quantity with a tilde means that M and a appearing in

that quantity are replaced by M̃ and ã. One can think

of M̃ and ã as a “bare” BH mass and reduced angular
momentum. The asymptotically defined M and a are
larger than the bare ones due to the cloud of scalar field
outside the BH.
Another quasi-local measure of mass MKomar and re-

duced spin angular momentum aKomar can be defined by
the Komar integrals [45]. For the modified BH metric in
Eq. (40) one finds

MKomar ≡ 1

2

∫ π

0

(
tα;βn[αrβ]

√
gθθgφφ

)
|r=rHdθ

= M

(
1− 1727

14336
ζχ2

)
, (49)

aKomar ≡ − 1

4M

∫ π

0

(
φα;βn[αrβ]

√
gθθgφφ

)
|r=rHdθ

= a

(
1− 29

128
ζ

)
, (50)

where tα∂α = −∂/∂t and φα∂α = ∂/∂φ are timelike
and spacelike Killing vectors, while nα and rα are the
unit covariant vectors normal to the t = const. and r =
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const. hypersurfaces, respectively. Notice that the above
quantities are calculated at r = rH, which are different
from the so-called Komar mass and angular momentum
which is defined over a 2-sphere at spatial infinity [45]. As
before, the above quasilocal quantities are smaller than
those defined at spatial infinity due to the presence of the
scalar field cloud close to the modified BH. One could re-
express the metric in terms of (MKomar, aKomar) or (M̃, ã),
but we choose not to do so as these quantities are not the
masses and angular momenta that an observer at infinity
would measure.
One might be worried that the solution presented in

Eq. (40) diverges at the unperturbed Schwarzschild hori-
zon. This is simply a spurious divergence that arises due
to the slow-rotation expansion, even for the Kerr metric.
For example, if one takes the (r, r) component of the Kerr
metric in BL coordinates and expands it in χ ≪ 1, one
finds terms to leading order that scale as (r − 2M)−1,
which diverges at the Schwarzschild horizon. The unex-
panded Kerr metric, however, can have a horizon located
inside 2M for prograde spins. One can then be faced with
the unpleasant situation of the slow-rotation expansion
of grr diverging outside the true event horizon due to the
slow-rotation approximation.
For practical reasons, one might wish to eliminate this

feature through resummation. By the latter, we mean a
modification of certain terms in the metric that naively
diverge at the Schwarzschild or unperturbed Kerr hori-
zon, such that

1. when the resummed metric is expanded in χ ≪ 1,
it becomes identical to the old metric to a given
order in χ, i.e. Ê[gresumµν ] = Ê[gµν ].

2. all components of the resummed metric gresumµν re-
main finite everywhere outside the dynamical CS
modified horizon.

where gresumµν is the resummed metric, gµν is the metric

of Eq. (40) and the Ê[·] operator stands for expansion in
χ ≪ 1.
In principle, there is an infinite number of ways in

which one can resum the metric. One way is to re-
place ∆ → ∆′ in grr,K [i.e. in the (r, r) component of
the Kerr metric in Eq. (18)] and f(r) → f ′(r) in δ(ds2

CS
)

of Eq. (40), where we have defined

∆′ ≡ ∆+
915

14336
ζM2χ2 , (51)

f ′(r) ≡ 1− rH
r

. (52)

To retain the asymptotic behavior in the χ ≪ 1 limit, one
then needs to add the following counterterm in the (r, r)
component of the metric (induced by the ∆′ modification
to the Kerr metric):

δgrr =
915

14336

ζM2χ2

f ′(r)2
. (53)

With these changes, the resummed metric is

gresumµν = gµν,K[∆
′] + gCS

µν [f
′] + δgrrδ

r
µδ

r
ν , (54)

will satisfy the conditions enumerated above.

IV. PROPERTIES OF THE SOLUTION

In this section, we discuss various properties of the
new solution. We begin by finding the corrected loca-
tions of the horizon and ergosphere. We continue with
a calculation of the corrected quadrupole moment of the
spacetime. We then determine the Petrov type of the
new solution.

A. Singularity, Horizon, and Ergosphere

The spacetime in Eq. (40) contains a true singularity
at r = 0. This can be verified by computing the Kretch-
mann invariant RµνρσR

µνρσ , which diverges at r = 0.
Indeed, this quantity is identical to that found in [8] to
O(α′2χ′). We do not present the O(α′2χ′2) term here, as
this cannot cure the r = 0 divergence.
The location of the event horizon can be found by solv-

ing the equation gttgφφ − g2tφ = 0 for r [45]. We find

rH = rH,K − 915

28672
ζMχ2 +O(α′2χ′3) , (55)

The horizon radius decreases relative to the Kerr horizon
radius, but of course, the shift of the horizon location
depends on how one renormalizes the mass and spin and
also on the choice of radial coordinate.
The location of the ergosphere can be found by solving

the equation gtt = 0 for r. We find

rergo = rergo,K − 915

28672
ζMχ2

(
1 +

2836

915
sin2 θ

)

+O(α′2χ′3) (56)

with the ergosphere of the Kerr solution given by
rergo,K = M +

√
M2 − a2 cos2 θ ≈ rH,K[1 + (χ/4) sin2 θ].

B. Lorentz Signature

We show the Lorentzian signature of the metric is pre-
served outside the horizon, provided the coupling con-
stant is small. Otherwise, our perturbative construction
of solution will not be justified well. By denoting the
determinant of the metric component as g and the one
for the Kerr as gK ≡ −r2 sin2 θ(r2 + a2 cos2 θ) + O(χ′3),
g/gK is given by
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g

gK

= 1 +
4211

6272
ζ
M3

r3
χ2

(
1 +

415

201

M

r
+

14008

4221

M2

r2
+

3200

201

M3

r3
− 14780

1407

M4

r4
− 8108

201

M5

r5
− 16128

67

M6

r6

)
cos2 θ

− 201

896
ζ
M3

r3
χ2

(
1 +

1420

603

M

r
+

19888

4221

M2

r2
+

6350

201

M3

r3
+

40100

1407

M4

r4
+

8524

201

M5

r5
− 16128

67

M6

r6

)
+O(α′2χ′3) . (57)

Notice that g/gK does not diverge at r = 2M , just like
the resummed metric. This is because the determinant of
the metric is given by g = grrgθθ(gttgφφ−g2tφ), and while

grr ∝ f(r)−2, the quantity (gttgφφ − g2tφ) ∝ ∆2 ∼ f(r)2

and thus g is finite at r = 2M . Since the correction terms
fall off rapidly as r → ∞, it is important to look at the
signature of g/gK at the horizon, which is given by

g

gK

= 1− 74849

401408
ζχ2

(
1 +

27901

74849
cos2 θ

)
+O(α′2χ′3) .

(58)
The correction terms above are negative for any θ. The
magnitude of the correction to g/gK becomes the largest
at the poles and at the equatorial plane, respectively.
One can see that within the small-coupling and slow-
rotation regime, the signature flip does not take place.

C. Closed Timelike Curves

The new BH solution contains no closed timelike curves
(CTCs) outside the horizon. If they existed, these curves
could be found by solving for the region where gφφ > 0.
The explicit forms of gφφ at the horizon is given by

gφφ = 4 sin2 θM2

[
1− 1

4
χ2 cos2 θ

− 12283

100352
ζχ2

(
1− 54483

24566
cos2 θ

)]
+O(α′2χ′3) ,

(59)

where we note that gφφ vanishes at the poles. The cor-
rection terms are positive in the polar region and nega-
tive in the equatorial region. Eq. (59) clearly shows that
small perturbation due to CS coupling does not change
the causal structure of spacetime.

D. Multipolar Structure

Since M and a are asymptotic quantities, the first non-
vanishing correction to the spacetime’s multipolar struc-
ture on gµν appears in the mass quadrupole moment.
Following Thorne [46], we can read off the multipole mo-
ments by transforming the metric from BL-type coor-
dinates to so-called asymptotically Cartesian and mass
centered (ACMC) coordinates (the coordinates where
the multipole moments are defined in a spacetime region

asymptotically far from the source). In order to deter-
mine the quadrupole moment, we need to transform to
ACMC coordinates such that gtt and gij atO(r−2) do not
contain any angle dependence. In these coordinates, the
metric component gtt for a stationary and axisymmetric
spacetime can be expressed as

gtt = −1+
2M

r
+

√
3

2

1

r3
[I20Y20 + (l = 0 pole)]+O

(
1

r4

)
.

(60)
Here, Y20 is the (ℓ,m) = (2, 0) spherical harmonic, and
I20 corresponds to (m = 0) quadrupole moment.
Let us first extract the quadrupole moment of a Kerr

BH. By choosing the flat-spacetime normalized basis

e0 = ∂t, er = ∂r, eθ = r−1∂θ, eφ = (r sin θ)−1∂φ ,
(61)

associated with BL coordinates, the Kerr metric can be
re-expressed as

ḡtt,K = −1 +
2M

r
− 2ma2 cos2 θ

r3
+O

(
1

r5

)
, (62)

ḡtφ,K = −2Ma sin θ

r2
+

2Ma3 sin θ cos2 θ

r4
+O

(
1

r6

)
,

(63)

ḡrr,K = 1 +
2M

r
+

4M2 − a2 sin2 θ

r2

+
8M3 − 2Ma2(2− cos2 θ)

r3
+O

(
1

r4

)
, (64)

ḡθθ,K = 1 +
a2 cos2 θ

r2
, (65)

ḡφφ,K = 1 +
a2

r2
+

2Ma2 sin2 θ

r3
+O

(
1

r5

)
. (66)

In order to read off the quadrupole moment, we need to
transform to appropriate ACMC coordinates (t′, r′, θ′, φ′)
such that −a2 sin2 θ/r2 in ḡrr,K and ḡθθ,K disappears.
This can be realized by the transformation

t = t′ , (67)

r = r′ +
a2 cos2 θ′

2r′
, (68)

θ = θ′ − a2 cos θ′ sin θ′

2r′2
, (69)

φ = φ′ . (70)

In this ACMC coordinates, g′tt,K becomes

g′tt,K = −1 +
2M

r′
− 3ma2 cos2 θ′

r′3
+O

(
1

r′5

)
. (71)
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Therefore, by comparing this with Eq. (60), one can read
off the quadrupole moment as [46]

I20,K = −8

√
π

15
Ma2 . (72)

Let us now follow the above procedure to determine
the quadrupole moment of the new BH solution. Since
the correction in the metric is already to O(α′2χ′2), it
is not affected by the above coordinate transformation.
The quadrupole moment in the new solution can then be
read off as

I20 = I20,K

(
1− 201

1792
ζ

)
. (73)

Notice that this correction vanishes to linear order in the
spin; the linear-order in spin terms correct the multipo-
lar structure of the spacetime at much higher multipole
order [40].

Geroch and Hansen [47, 48] proposed a slightly dif-
ferent definition of multipole moments, which for exam-
ple leads to a I20,K that differs from Eq. (72) by a fac-

tor 8
√
π/15. However, this difference is just a matter

of convention. One should realize, of course, that the
quadrupole moment itself is not a directly observable
quantity. Modifications to the BH multipolar structure,
however, do imprint on the motion of massive and mass-
less bodies. Corrections to the gravitational radiation
induced by this modified motion is indeed observable.

E. Petrov Type

A generic spacetime can be classified into Petrov types
by counting the number of distinct principal null direc-
tions (PNDs) kµ of the Weyl tensor Cµνρσ [49, 50], where
kµ satisfies

kνkρk[τCµ]νρ[σkχ] = 0 . (74)

This is equivalent to finding the number of distinct PNDs
lµ that make one of the Weyl scalars Ψ0 = 0, which
reduces to counting the number of distinct roots of the
following equation for b [50]:

Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 = 0 . (75)

Here, Ψ0,...Ψ4 are five complex Weyl scalars in an arbi-
trary tetrad with the restriction Ψ4 6= 0.

If Eq (75) contains at least one degenerate root, the
spacetime is said to be algebraically special and the fol-
lowing relation holds:

I3 = 27J2 . (76)

Here, the quadratic and cubic Weyl quantities I and J
are defined by [50]

I ≡ 1

2
C̃αβγδC̃

αβγδ

= 3Ψ2
2 − 4Ψ1Ψ3 +Ψ4Ψ0 , (77)

J ≡ −1

6
C̃αβγδC̃

γδ
µνC̃

µναβ

= −Ψ3
2 + 2Ψ1Ψ3Ψ2 +Ψ0Ψ4Ψ2 −Ψ4Ψ

2
1 −Ψ0Ψ

2
3

(78)

with

C̃αβγδ ≡
1

4

(
Cαβγδ +

i

2
ǫαβµνC

µν
γδ

)
. (79)

If Eq. (76) is not satisfied, the spacetime is of Petrov type
I. The Kerr BH and the slowly-rotating BH in dynamical
CS gravity to O(α′2χ′) is known to be of Petrov type D,
which means that Eq. (75) has double degenerate roots.
In type D spacetimes, not only Eq. (76) holds but there
are additional conditions that need to be satisfied:

K = 0, N − 9L2 = 0 , (80)

where K, L and N are defined as

K ≡ Ψ1Ψ
2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3 , (81)

L ≡ Ψ2Ψ4 −Ψ2
3 , (82)

N ≡ Ψ2
4I − 3L2

= Ψ3
4Ψ0 − 4Ψ2

4Ψ1Ψ3 + 6Ψ4Ψ2Ψ
2
3 − 3Ψ4

3 . (83)

Equation (76) determines whether a spacetime is al-
gebraically special, but when the spacetime is an ap-
proximate solution, to what order in perturbation theory
should this equation be calculated? Let us first concen-
trate on the BH metric in dynamical CS gravity with only
the odd-parity terms of O(α′2χ′). One can construct a
null tetrad that is a deformation away from the Kerr prin-
cipal null tetrad, such that Ψ2 = O(1), while Ψ1 and Ψ3

are ofO(α′2χ′). The remaining Newman-Penrose scalars,
Ψ0 and Ψ4, would vanish to this order. One then sees
that the first term in Eqs. (77) and (78) is of O(1), the
second is of O(α′4χ′2) and the others vanish to this or-
der. Therefore, Eq. (76) is trivially satisfied to O(α′2χ′),
while the first non-trivial dynamical CS corrections en-
ters at O(α′4χ′2). Similarly, if one were studying the
new BH metric found in this paper, i.e. including terms
of O(α′2χ′2), then one would have to consider Eq. (76)
to O(α′4χ′4). Obviously, if Eq. (76) is not satisfied at
O(α′4χ′2), then one does not need to consider the higher
order terms. Notice also that the I and J quantities are
invariant, and one could have chosen another tetrad, but
the arguments presented above would still hold.
Now that the order to which terms must be expanded

is clear, let us focus again on the BH metric in dynamical
CS gravity with only the odd-parity terms of O(α′2χ′).
Sopuerta and Yunes [40] claimed that this metric is of
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Petrov type D. We have verified this claim as follows.
First, we showed that Eq. (76) is satisfied to O(α′4χ′2).
Then, we showed that the relations in Eq. (80) are also
satisfied to O(α′4χ′2). Although this is sufficient to claim
that the metric to this order is of Petrov type D, we also
verified explicitly that Eq. (75) has double degenerate
roots. This then implies that one can rotate the null
tetrad to a principal one (of the dynamical CS metric),
where Ψ2 is non-vanishing and contains Kerr terms [of
O(α′0) but with spin corrections], as well as terms of
O(α′2χ′). All other Newman-Penrose scalars vanish at
this order, i.e. they are at least of O(α′2χ′2).
Let us now focus on the new BH metric in dynamical

CS gravity, which includes terms of O(α′2χ′2). Picking
the principal null tetrad of the BH metric in dynamical
CS gravity with only the odd-parity terms included, one
can show that Eq. (76) is not satisfied to O(α′4χ′4). One
might worry that to make this statement precise, one
would have to account for terms of O(α′4χ′) in the grav-
itomagnetic sector of the dynamical CS metric. These
terms, however, would modify Eq. (76) at O(α′6χ′2), and
thus they can be neglected. Since Eq. (76) is not satis-
fied to O(α′4χ′4), the new metric presented in this paper
breaks symmetries that the odd-parity BH metric used
to have. This suggests the exact BH solution should be
of Petrov type I.

V. GEODESIC MOTION AND SEPARABILITY,

BINDING ENERGY AND KEPLER’S LAW

In this section, we discuss the separability of the
geodesic equations in the modified metric and find the
binding energy, Kepler’s Law and the innermost stable
circular orbit (ISCO).

A. Geodesic Motion of Test-Particles and

Separability

Consider the motion of non-spinning test particles in
the new BH solution. We concentrate here on non-
spinning objects, as otherwise we would have to intro-
duce an additional scalar dipole-dipole interaction [32],
which will be investigated elsewhere [51].
One of the most interesting properties of the Kerr

metric is that the geodesic equations are Liouville inte-
grable [52]. This leads to the existence of four constants
of motion or invariants (quantities that Poisson commute
with the Hamiltonian): the mass, energy, angular mo-
mentum and the Carter constant. The existence of this
last quantity, found by Carter [53], as well as the use of
the proper coordinate system, is crucial in showing that
the Hamilton-Jacobi equations are separable. In GR, this
is related to the Kerr solution being of Petrov type D [54],
i.e. its associated Weyl tensor possesses double degener-
ate principal null directions. As shown in Sec. IVE, the
new solution derived in this paper is of Petrov type I

and there is no guarantee that it possesses a Carter-like
constant.
The Carter constant is associated with the existence

of a second-rank Killing tensor ξαβ , which in GR and in
BL coordinates is defined by

ξαβ = ∆k(αlβ) + r2gαβ (84)

with two null vectors kα and lα. The odd-parity BH
solution in dynamical CS gravity of [40] does possess a
Killing tensor ξ̄αβ at O(α′2χ′), where the null vectors k̄α

and l̄α are given by

k̄α∂α ≡ r2 + a2

∆
∂t + ∂r +

( a

∆
− δgCS

φ

)
∂φ , (85)

l̄α∂α ≡ r2 + a2

∆
∂t − ∂r +

( a

∆
− δgCS

φ

)
∂φ (86)

and

δgCS

φ ≡ 5

8
ζ
χ

M

M6

r6f(r)

(
1 +

12

7

M

r
+

27

10

M2

r2

)
. (87)

Moreover, one can show that the two null vectors kα and
lα are also principal null directions of the spacetime to
O(α′2χ′) [40].
Let us now study whether a non-trivial second-order

Killing tensor continues to exist to O(α′2χ′2), i.e. we
look for a correction δξαβ to the Killing tensor

ξαβ = ξ̄αβ + α′2χ′2δξαβ +O(α′2χ′3) , (88)

that satisfies the Killing equation ∇(γξαβ) = 0. If a con-
served quantity contains both even and odd parts un-
der the simultaneous reflection t → −t and φ → −φ,
they should be separately conserved. The new BH met-
ric is symmetric under this simultaneous reflection, and
hence any geodesic remains geodesic under this trans-
formation. This means that if we consider a quantity
ξαβu

αuβ (here, uα is a four velocity vector), the only
non-vanishing components allowed are those even in re-
flection, i.e. (t, t), (t, φ), (φ, φ), (r, r), (r, θ) and (θ, θ).
Without loss of generality, these six components can be
parametrized through six free functions, A(r, θ), B(r, θ),
C(r, θ), D(r, θ), E(r, θ) and δξrθ(r, θ), through the fol-
lowing ansatz:

δξαβ ≡ A(r, θ)tαtβ +B(r, θ)tαφβ + C(r, θ)φαφβ

+D(r, θ)gαβ + E(r, θ)ξ̄αβ + δξrθ(r, θ)rαθβ ,

(89)

where θα∂α ≡ ∂/∂θ.
From the symmetry arguments described above, the

Killing equations contain only 10 independent compo-
nents. The five functions F ≡ (A,B,C,D,E) appear
only in the form ∂rF or ∂θF . Thus, we can solve the
10 Killing equations for the 10 functions ∂rF and ∂θF
in terms of δξrθ(r, θ). We have found, however, that the
consistency relation ∂θ(∂rB) = ∂r(∂θB) does not hold
for any δξαβ to O(α′2χ′2). Since our ansatz is sufficiently
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generic, this strongly indicates that there does not exist
any non-trivial second-rank Killing tensor in the new BH
solution.
By applying Theorem 1 in Benenti and Francav-

iglia [41], the non-existence of a non-trivial second-rank
Killing tensor is enough to claim that the 4 dimensional
manifold does not admit a separability structure. This
means that there does not exist any spacetime coordinate
transformation that leads to the Hamilton-Jacobi equa-
tion being separable. Since this is an important point, we
have verified it in two additional ways: (i) by performing
a Levi-Civita test [42, 55] and (ii) by trying to map the
new solution to the most generic spacetime that admits
a separability structure [41] [see Appendix B for more
details]. In all cases, it is clear that the new metric does
not admit such a structure.
Up until now, we showed in various ways that a non-

trivial second-rank Killing tensor that is a perturbation

of the Killing tensor found in [40] does not exist. One
might wonder whether there is a completely new second-
rank Killing tensor that is not a perturbation of that
in [40]. If this exists, one must be able to find it by set-
ting ξ̄αβ = 0 in Eq. (88). By imposing the same ansatz
of Eq. (89), we can again solve for ∂rF and ∂θF . This
time, ∂θ(∂rB) = ∂r(∂θB) is trivially satisfied. However,
one finds that the only solution of δξrθ that satisfies
∂θ(∂rF) = ∂r(∂θF) is δξrθ = 0, leading to δξαβ = 0.
This proves that a completely new non-trivial 2nd-rank
Killing tensor at O(α′2χ′2) does not exist. The non-
existence of this tensor can be proved in a different man-
ner. If it exists, the leading contribution should start at
O(α′2χ′2). However, the only possible form of this lead-
ing term would be α′2χ′2ξ̄K

αβ where ξ̄K

αβ is the 2nd-rank
Killing tensor of the Kerr spacetime. This is because the
completely new Killing tensor divided by α′2χ′2 should
also be a Killing tensor whose leading term should satisfy
the GR Killing equations. Since α′2χ′2ξ̄K

αβ does not sat-

isfy the Killing equations at O(α′2χ′2), we conclude that
the completely new 2nd-rank Killing tensor cannot exist.
Of course, we cannot rule out the possibility of the exis-
tence of the completely new Killing tensor once the small
coupling or slowly rotating approximation is violated. In
this sense, we have only shown the non-existence of the
perturbative non-trivial, 2nd-rank Killing tensor in the
new BH solution. However, we emphasize that, in this
paper, we only focus on the situation where both of the
approximations hold.
Although the geodesic equations are not exactly inte-

grable, the new solution is sufficiently close to the one
found by Yunes and Pretorius [8] that, except for the
resonant orbits, the geodesic equations are still approx-
imately integrable. By the latter, we mean that when
one orbit-averages, there still exists a Carter-like con-
stant, i.e. the O(α′2χ′2) terms that spoil the existence
of a Killing tensor are odd in ωt, where ω is any of the
fundamental frequencies of the motion, and thus, van-
ish upon orbit-averaging. This can be shown explicitly

by applying canonical perturbation theory [56] following
e.g. Glampedakis and Babak [57], as we discuss in Ap-
pendix C.
The new metric found here cannot be mapped to the

new bumpy metrics proposed in [58]. This is because
the latter assumed the existence of a non-trivial second-
rank Killing tensor, while the solution found here does
not possess it. We have tried to map the new solution to
a generic deformed Lewis-Papapetrou spacetime [59] in
one of the BL-type coordinates. We found that a naive
mapping does not seem to work, which implies that a
further coordinate transformation is probably needed.

B. Binding Energy, Kepler’s Third Law, the

Location of the ISCO and Curves of Zero Velocity

From the definitions of the energy E and the (z-
component of) orbital angular momentum Lz, we have

ṫ =
Egφφ + Lzgtφ
gtφ2 − gttgφφ

, (90)

φ̇ = −Egtφ + Lzgtt
g2tφ − gttgφφ

, (91)

where the overhead dot stands for a derivative with re-
spect to the affine parameter. By substituting the above
equations in uαuα = −1, with uα the particle’s four-
velocity, we obtain

grrṙ
2 + gθθθ̇

2 = Veff(r, θ;E,Lz) , (92)

where the effective potential is given by

Veff ≡
E2gφφ + 2ELzgtφ + L2

zgtt
g2tφ − gttgφφ

− 1 . (93)

For simplicity, we restrict attention to equatorial, cir-
cular orbits. Then, E and Lz can be obtained from
Veff = 0 and ∂Veff/∂r = 0 as

E = EK + δE , (94)

Lz = Lz,K + δLz . (95)

Here, EK and Lz,K are the energy and the (z-component
of) orbital angular momentum for the Kerr back-
ground [52]:

EK ≡ r3/2 − 2Mr1/2 + aM1/2

r3/4(r3/2 − 3Mr1/2 + 2aM1/2)1/2
, (96)

Lz,K ≡ M1/2(r2 − 2aM1/2r1/2 + a2)

r3/4(r3/2 − 3Mr1/2 + 2aM1/2)1/2
, (97)

where we have defined φ to be positive in the direction of
prograde orbits. This implies that negative a corresponds
to retrograde orbits. The CS corrections are
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δE ≡ 5

4
ζχ

M11/2

r3(r − 3M)5/2

(
1− 33

14

M

r
− 183

140

M2

r2
− 603

70

M3

r3
+

81

4

M4

r4

)

− 201

7168
ζχ2 M3

r1/2(r − 3M)5/2

(
1 + 4

M

r
− 59315

4221

M2

r2
+

38954

4221

M3

r3
+

289564

4221

M4

r4
+

188420

1407

M5

r5

−566500

1407

M6

r6
− 27360

67

M7

r7
− 61584

67

M8

r8
+

96768

67

M9

r9

)
+O(α′2χ′3) , (98)

δLz ≡ 15

8
ζχ

M5

r3/2(r − 3M)5/2

(
1− 3

M

r
− 2

5

M2

r2
− 6

M3

r3
+

108

5

M4

r4

)

− 603

7168
ζχ2 rM5/2

(r − 3M)5/2

(
1− 4

3

M

r
− 54833

12663

M2

r2
+

110798

12663

M3

r3
+

15100

12663

M4

r4
+

369428

4221

M5

r5

−74092

603

M6

r6
+

32768

469

M7

r7
− 40688

67

M8

r8
+

32256

67

M9

r9

)
+O(α′2χ′3) . (99)

When we expand E and Lz in powers of M/r, the
leading-order correction to the binding energy Eb ≡ E−1
and Lz are

Eb = Eb,K

(
1 +

201

3584
ζχ2M

2

r2

)
+O

(
α′2M

4

r4

)
,

(100)

Lz = Lz,K

(
1− 603

7168
ζχ2M

2

r2

)
+O

(
α′2M

5

r5

)
.(101)

Relative to the leading-order Kerr (or Kepler) terms, the
corrections are proportional to (M/r)2 which are of 2PN
orders. As before, the corrections in E and Lz would
change if one used a different renormalization of the mass
and spin, such as M̃ and ã, but these quantities are not
observable at spatial infinity.

We can also derive the correction to Kepler’s Third
Law by calculating the orbital angular frequency of a
test particle ω ≡ Lz/r

2 to find

ω2 = ω2
K

(
1− 603

3584
ζχ2M

2

r2

)
+O

(
α′2M

6

r6

)
, (102)

where ω2
K
≡ M(r3/2 + aM1/2)−2 [52].

However, the expressions for E, Lz and ω above are not
gauge invariant. The gauge invariant relation between E
and ω can be obtained by expanding Eqs. (100) and (102)
to 2PN order and eliminating M/r. The final result is

ω(E) =
2
√
2

M
|Eb|3/2

[
1 +

9

4
|Eb| − 4

√
2|Eb|3/2

+
891

32

(
1 +

64

297
χ2 − 67

2772
ζχ2

)
|Eb|2

]

+O
[
|Eb|4

]
+O(α′2χ′3) . (103)

and its inverse is

E(ω) = 1− 1

2
(Mω)2/3 +

3

8
(Mω)4/3 − χ

3
(Mω)5/3

+
27

16

(
1 +

8

27
χ2 − 67

2016
ζχ2

)
(Mω)2

+O
[
(Mω)7/3

]
+O(α′2χ′3) , (104)

To O(α′0χ′0), this agrees with the standard PN E–ω re-
lation shown in [60].
Let us now derive the correction to the location of

ISCO. Substituting Eqs. (94) and (95) in Eq. (93), and
then solving the equation ∂2Veff/∂r

2 = 0 for r, we obtain

rISCO = rISCO,K +
77

√
6

5184
ζMχ− 9497219

219469824
ζMχ2

+O(α′2χ′3) , (105)

where the Kerr ISCO radius is given by [52]

rISCO,K ≡ M
{
3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]

1/2
}

(106)
with

Z1 ≡ 1 + (1− χ2)1/3[(1 + χ)1/3 + (1 − χ)1/3] ,

(107)

Z2 ≡ (3χ2 + Z2
1 )

1/2 . (108)

The CS correction at linear order in χ agrees with that
found in [8], while the O(α′2χ′2) term is new. The radial
location of the ISCO, however, is not gauge invariant. A
gauge invariant quantity can be obtained by calculating
the angular orbital frequency ωISCO at ISCO, which is

ωISCO = ωISCO,K − 77

124416
ζ
χ

M
(109)

− 2333803
√
6

31603654656
ζ
χ2

M
+O(α′2χ′3) , (110)
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where ωISCO = M1/2(r
3/2
ISCO,K + χM3/2)−1.

For completeness, let us also compute the correction
to the radiative efficiency η, which is defined by

η ≡ 1− E(rISCO) . (111)

This quantity corresponds to the maximum fraction of
energy being radiated when a test particle accretes into
a central BH. For Schwarzschild and extremal Kerr BHs,
η ∼ 0.06 and η ∼ 0.42, respectively. The radiative effi-
ciency for the new solution is then

η = ηK+
3673

√
3

31352832
ζχ− 8087

√
2

48771072
ζχ2+O(α′2χ′3) . (112)

Notice that there are both linear in χ and quadratic in
χ corrections.
Finally, let us consider curves of zero velocity

(CZV) [61, 62] in the r−θ plane, i.e. curves with Veff = 0.
Since the left-hand side of Eq. (93) is always positive,
bound orbits are allowed if and only if Veff ≥ 0. Fig-
ure 1 shows CZVs for the Kerr solution while Fig. 2
shows the one for the new solution. The enclosed regions
represent the regions where Veff ≥ 0 and the solid lines
at r/M = 1.95 correspond to the location of the event
horizon for the particular case considered in the figures,
i.e. E = 0.95, Lz = 3M,χ = 0.3 and in the CS case,
ζ = 0.1. When we draw these figures, we first expand
the metric gµν in a and calculate Veff. We do not further
expand this Veff in a, since if we do this, Veff is propor-
tional to a negative power of a, which would render the
expansion invalid near the horizon.
Two allowed regions are clearly visible in these figures:

an outer region and an inner region, for both the GR and
CS cases. The outer regions are similar in GR and CS
theory, although due to the scale of the figure the differ-
ences look small. As shown in [40] and recently in [17],
orbits in the outer region are still distinguishable with
gravitational wave observations. On the other hand, the
structure of the inner regions change drastically, as ex-
pected since the CS correction modifies the strong field
regime. These inner enclosed regions are inside the hori-
zon, however, and thus they cannot be probed with grav-
itational waves, at least for slowly rotating BHs. Also,
we cannot trust the perturbative solution there.

VI. CONCLUSIONS AND DISCUSSIONS

We have found a stationary, axisymmetric BH solution
in the small-coupling and slow-rotation approximations
at linear order in the coupling constant but at next-to-
leading order in the spin. This solution does not satisfy
the vacuum Einstein equations but the modified field
equations. We used a novel technique to find this so-
lution, based on Schwarzschild BH perturbation theory.
That is, we decomposed the metric perturbation and the
source terms (that come from modifications to GR) in
tensor spherical harmonics, reducing the field equations

to a set of coupled, ordinary differential equations that
are much simpler to solve. We found that corrections
at quadratic order in the spin appear in the even parity
sector of the metric.

The method presented here could be used to find so-
lutions both to higher order in χ (or a/M) and to higher
order in ζ defined in Eq. (3). The dynamical CS action,
however, is a linear-order-in-ζ truncation of a more fun-
damental theory, and thus, it is valid only to linear order
in the coupling constant. If one were to carry out this cal-
culation to O(α′4χ′), one would find a modification only
in the gravitomagnetic sector, which is easy to compute.

A nontrivial property of the new solution is that, al-
though it is of Petrov type D to O(α′2χ′), it is of Petrov
type I to O(α′2χ′2). This is different from the Kerr met-
ric, which is of Petrov type D to all orders in χ′. The
new metric does not possess a second-order Killing ten-
sor or a Carter-like constant. This then implies that
there does not exist a spacetime coordinate transfor-
mation that leads to Hamilton-Jacobi equations being
separable, which also implies that geodesic motion is,
in all likelihood, chaotic when corrections of O(α′2χ′2)
are included in the metric. However, although there
is no exact Carter-like constant, we have also showed
that the geodesic equations are still separable after orbit-
averaging, except for the resonant orbits, by applying
canonical perturbation theory [56, 57, 63]. In some sense,
then, it might be possible to recover geodesic regular-
ity on average, although it is not clear what this means
precisely. Possible future work could concentrate on
studying whether geodesics in this background are truly
chaotic, and if so, whether such chaos manifests itself
outside the event horizon. Moreover, one could also in-
vestigate how large the shifts in the orbital frequencies
of geodesic test-particles are and discuss observational
prospects of probing such a spacetime (see Vigeland and
Hughes [63] for similar work on bumpy spacetimes, as
well as Appendix C.).

Some insight might be gained by comparing geodesic
orbits in this new background to those in the Manko-
Novikov (MN) spacetime [64]. Gair et al. [61] inves-
tigated geodesic orbits in the MN background through
CZVs in cylindrical coordinates (t, ρ, z, φ). They found
that when the quadrupole moment deviates from Kerr,
chaotic islands arise in the inner region of the ρ−z plane.
Strictly speaking, the Hamilton-Jacobi equations are not
separable in the MN metric, but in the outer region, it
seems that there exists a nearly invariant quantity that
corresponds to a Carter-like constant. Such a result is
related to the Kolmogorov, Arnold and Moser (KAM)
theorem [56] which states that when a separable Hamil-
tonian system is weakly perturbed, the perturbed motion
within the phase space remains mostly in the neighbor-
hood of the invariant tori (see related work by Aposto-
latos et al. [65–67]). This suggests that except for certain
resonant orbits, there should exists a fourth constant of
motion in the phase space where motion is non-chaotic.
This constant of motion, however, is not related to the
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FIG. 1: Curves of zero velocity, Veff = 0 for the Kerr metric. The enclosed regions show the allowed orbit region Veff ≥ 0 for
E = 0.95, Lz = 3M and χ = 0.3. The left panel corresponds to the inner region while the right panel corresponds to the outer
region. The thick solid lines at r/M = 1.955 correspond to the location of the event horizon when χ = 0.3.

FIG. 2: Curves of zero velocity, Veff = 0 for the new BH metric with ζ = 0.1. As in Fig. 1, the enclosed regions show the
allowed orbit region Veff ≥ 0 for the same parameters. The middle panel corresponds to the inner region while the right panel
corresponds to the outer region. The left panel zooms into the region around θ ≈ (3/4)π. Similar structure appears at around
θ ≈ (1/4)π. The shaded areas are the allowed regions where test-particle orbits exist. The thick solid lines at r/M = 1.955
correspond to the location of the event horizon when χ = 0.3.

symmetries of the spacetime anymore, and since it does
not exist for resonant orbits, one cannot expect to find
a global Killing tensor. In Fig. 1, we have shown that
there are no additional CZV islands produced in the new
spacetime compared to Kerr outside the event horizon.
Although the structure of the inner region changes drasti-
cally, this occurs inside the horizon. Whether chaotic or-
bit exists in the new spacetime outside the horizon needs
to be verified numerically.

In addition to the global structure of the spacetime,
we investigated other properties in detail. We first found
that the horizon radius and the location of the ergosphere
are modified from the GR expectation, although they are
not modified up to linear-order in the spin. We also com-
puted the 2PN conservative corrections to the binding
energy and Kepler’s Third Law, in terms of the asymp-
totic mass M and spin a. This, in addition to the dis-
sipative corrections found in [32], will allow for the con-
sistent calculation of the gravitational waveform to 2PN

order, after the dipole-dipole scalar force is calculated.
This waveform can then be mapped to the parameterized-
post-Einsteinian framework [68] and future gravitational
wave constraints on ζ can be investigated.

One might wonder whether constraints on ζ can be
placed with observations of the orbital decay of binary
pulsars. The gravitational fields outside of a BH, how-
ever, is very different from that outside a neutron star
in dynamical CS gravity [33, 69], due to the different
boundary conditions used when solving the modified field
equations. Thus, the new BH solution found here cannot
be used to investigate binary pulsar constraints. Instead,
one would need to obtain NS solutions to quadratic or-
der in spin, so that the dipole scalar charge that sources
2PN scalar radiation and the dipole-dipole force can be
calculated. This would lead to different 2PN conserva-
tive corrections to the binding energy and Kepler Third
Law.

Two low-mass X-ray binary (LMXB) systems contain-
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ing BHs have yielded a measurement or constraint on the
orbital decay [70], but the BH spins have not yet been
determined. Since the dipole scalar charge is sourced by
BH spins, it is currently impossible to place a constraint
on dynamical CS gravity with these systems. Moreover,
binary parameters in binary pulsars and LMXBs have
been determined by assuming that GR is correct. Since
the conservative part (that determines the binary param-
eters) appears at the same order as the dissipative part
(that causes the orbital decay rate), one would have to
redo the fits to simultaneously determine binary param-
eters and constrain ζ.
Electromagnetic radiation from accretion disks around

a central BH, such as Sgr A∗, can also be a powerful
tool to test GR [12]. One could study how these ob-
servables, e.g. images of BH shadows [71, 72], contin-
uum spectrum [73, 74], quasi-periodic oscillations [75], Fe
emission lines [76], geodetic precessions and strong lens-
ing [77], are modified if the central SMBH is described by
the new solution found in this paper. We expect that if
the central BH is spinning moderately fast (though not
extremely fast since then our slow-rotation assumption
breaks down), the CS correction at quadratic order in
spin will be dominant over the linear-order, CS correc-
tions.
Another possible avenue for future work is to relax the

slow-rotation approximation. Obtaining an arbitrarily
fast rotating BH solution analytically seems difficult, but
a numerical solution might be feasible. The results in this
paper can then be used as a check of the slow-rotation
limit of such a numerical solution. Once we obtain the
correction to the quadrupole moment without applying
the slow-rotation approximation, we can map this to a
correction to the gravitational waveform.
As a final remark, one could also investigate other

modified gravity theories with the techniques developed
in this paper. For example, in Ref. [32], we studied
Einstein-Dilaton-Gauss-Bonnet theory, where a static,
spherically symmetric BH solution [78] is known, as well
as a stationary, axisymmetric BH solution at linear or-
der in spin [10]. We have checked that this solution can
be mapped to Benenti and Francaviglia metric shown in
Appendix B2, suggesting that there exists a non-trivial
second-rank Killing tensor and a Carter-like constant,
and hence it admits a separability structure. One could
then, for example, check whether the latter is of Petrov
type D. One could also extend this solution to quadratic
order in spin to see how the properties of the spacetime
change compared to the linear order corrections.
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Appendix A: Tensor Harmonics

In this paper, we used the following tensor spherical
harmonics to decompose the metric perturbation and the
source term [38, 39]:

a
(0)
ℓ0 =



Yℓ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (A1)

aℓ0 =



0 0 0 0
0 Yℓ0 0 0
0 0 0 0
0 0 0 0


 , (A2)

bℓ0 =
r√

2ℓ(ℓ+ 1)




0 0 0 0
0 0 ∂

∂θYℓ0 0
0 ∂

∂θYℓ0 0 0
0 0 0 0


 , (A3)

gℓ0 =
r2√
2




0 0 0 0
0 0 0 0
0 0 Yℓ0 0
0 0 0 sin2 θYℓ0


 , (A4)

fℓ0 =
r2√

2l(ℓ+ 1)(ℓ− 1)(ℓ+ 2)




0 0 0 0
0 0 0 0
0 0 Wℓ0 0
0 0 0 − sin2 θWℓ0


 ,

(A5)
where Yℓ0 are the m = 0 spherical harmonics and Wℓ0

are given by

Wℓ0 ≡
(

d2

dθ2
− cot θ

d

dθ

)
Yℓ0 . (A6)

On the other hand, the coefficients of the source after
a tensor spherical harmonics decomposition are
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A00 =
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√
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r5
− 22896

25

M6

r6

)
, (A11)

G
(s)
00 = −25

√
2π

96
ζ
m4

r6
1

f(r)2
χ2

(
1− 87

M2

r2
+ 18

M3

r3
+

33892

175

M4

r4
+

302136

175

M5

r5
− 100176

25

M6

r6
+

44928

25

M7

r7

)
,

(A12)

G
(s)
20 = −5

√
10π

48
ζ
m4

r6
1

f(r)2
χ2

(
1− 219

5

M2

r2
+ 162

M3

r3
− 19868

175

M4

r4
+

186072

175

M5

r5
− 121416

25

M6

r6
+

127872

25

M7

r7

)
,

(A13)

F20 =
5
√
15π

96
ζ
m4

r6
1

f(r)
χ2

(
1 + 2

M

r
− 272

5

M2

r2
+

984

5

M3

r3
+

7788

175

M4

r4
+

18264

25

M5

r5
− 55296

25

M6

r6

)
. (A14)

By substituting the above source terms in Eqs. (35)- (39), we obtain a set of ordinary differential equations for
(H000, H200,K00, H020, H220,K20), which we solved to find

H000 = −5
√
π

192
ζχ2 M5

r5f(r)

(
1 + 100

M

r
+ 194

M2

r2
+

2220

7

M3

r3
− 1512

5

M4

r4

)
+O(α′2χ′3) , (A15)

H200 = −25
√
π

192
ζχ2 M4

r4f(r)

(
1 + 3

M

r
+

322

5

M2

r2
+

198

5

M3

r3
+

6276

175

M4

r4
− 17496

25

M5

r5

)
+O(α′2χ′3) , (A16)

K00 = O(α′2χ′3) , (A17)

H020 =
469

√
5π

5230
ζχ2 M3

r3f(r)

(
1 +

M

r
+

4474

4221

M2

r2
− 2060

469

M3

r3
+

1500

469

M4

r4
− 2140

201

M5

r5
+

9256

201

M6

r6
− 5376

67

M7

r7

)
+O(α′2χ′3) ,

(A18)

H220 =
201

√
5π

2240
ζχ2M

3

r3

(
1 +

1459

603

M

r
+

20000

4221

M2

r2
+

51580

1407

M3

r3
− 7580

201

M4

r4
− 22492

201

M5

r5
− 40320

67

M6

r6

)
+O(α′2χ′3) ,

(A19)

K20 =
201

√
5π

2240
ζχ2M

3

r3

(
1 +

1420

603

M

r
+

18908

4221

M2

r2
+

1480

603

M3

r3
+

22460

1407

M4

r4
+

3848

201

M5

r5
+

5376

67

M6

r6

)
+O(α′2χ′3) .

(A20)

This solutions can then be used to reconstruct the metric
perturbation, presented in the main text.

Appendix B: Alternative Ways to Prove the

Non-admittance of a Separability Structure

In Sec. VA, we have shown that a 2nd-rank Killing
tensor does not exist for the new BH solution by directly
attempting to solve the Killing equations with a general

ansatz for the Killing tensor, restricted by the symmetries
of the spacetime. This implies that the new BH solution
does not admit a separability structure. In this appendix,
we verify this point in two additional ways.

1. Levi-Civita test

Whether a Hamiltonian system is separable or not in
a given coordinate system xα can be determined by the
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so-called Levi-Civita test [42, 55]. This test states that
the Hamilton-Jacobi equations are separable if and only
if the Hamiltonian H ≡ (1/2)gµνpµpν [53] satisfies the
following equations for each pair of distinct indices α
and β:

∂H

∂xα

∂H

∂xβ

∂2H

∂pαpβ
+

∂H

∂pα

∂H

∂pβ

∂2H

∂xαxβ

− ∂H

∂pα

∂H

∂xβ

∂2H

∂xαpβ
− ∂H

∂xα

∂H

∂pβ

∂2H

∂pαxβ
= 0 . (B1)

Here, pα is the conjugate momentum of the coordinate
xα. Note that the repeated indices do not indicate sum-
mation. For the stationary and axisymmetric spacetime,
since the metric only depends on r and θ, the only rel-
evant combination of (α, β) in the above equation is
(α, β) = (r, θ). We have checked that the slowly rotating
BH solution in dynamical CS gravity at linear order in
spin satisfies Eq. (B1). The new solution in BL-like coor-
dinates does not satisfy the above equations, as we veri-
fied explicitly with symbolic manipulation software. This
suggests that there is no conserved quantity correspond-
ing to the Carter constant that can be constructed from a
2nd-order Killing tensor, and thus, the Hamilton-Jacobi
equations are not separable in BL-like coordinates.
Next, we investigated whether there exist any coordi-

nates in which the new BH solution satisfies Eq. (B1).
In particular, we allowed for diffeomorphisms xµ →
x′µ = xµ + ξµ, restricted to ξµ being of order O(α′2χ′2).
With this coordinate transformation, gµν transforms via
gµν → g′µν = gµν − 2h(µ;ν). We verified, however, that
the transformed Hamiltonian does not satisfy Eq. (B1)
with (α, β) = (r, θ). We found that the left-hand-
side of this equation contains only five terms, which are
proportional to the combinations (E2prpθ), (ELzprpθ),
(L2

zprpθ), (p
3
rpθ) and (prp

3
θ). If Eq. (B1) is satisfied, the

coefficient of each term must vanish separately (i.e. there
are five equations to be satisfied). On the other hand, we
found that ξµ appears in these coefficients only through
∂θξ

r, ∂rξ
θ, ∂r∂θξ

r and ∂r∂θξ
θ. We tried to solve the five

equations for these four quantities, but could not obtain
a consistent solution, which then proves that there does
not exist any coordinate transformation where Eq. (B1)
is satisfied.

2. Mapping to the General Metric that admits a

Separability Structure

The inverse of the metric components of a spacetime
that admits a separability structure can be expressed
as [41]

grr =
Q(r)

r2 + p2
, gθθ =

P (p)

(r2 + p2)a2 sin2 θ
,

gab =
Q(r)

r2 + p2
ζabr (r) +

P (p)

r2 + p2
ζabp (p), (a, b = t, φ) ,

(B2)

where p ≡ a cos θ. There are four functions of r, Q(r)
and ζabr (r), and four functions of θ, P (p) and ζabp (p). The
Kerr solution can be expressed as

QK(r) = ∆, PK(p) = a2 sin2 θ ,

ζabr,K(r) =
1

∆2

(
(r2 + a2)2 a(r2 + a2)
a(r2 + a2) a2

)
,

ζabp,K(p) =

(
a2 sin2 θ a

a 1
sin2 θ

)
. (B3)

The deviation from the Kerr solution can be
parametrized as

grr =
QK

r2 + p2
(1 + δQ) , (B4)

gθθ =
PK

(r2 + p2)a2 sin2 θ
(1 + δP ) , (B5)

gtt =
1

r2 + p2
[
QKζ

tt
r,K(1 + δQ+ δζttr )

+PKζ
tt
p,K(1 + δP + δζttp )

]
, (B6)

gtφ =
1

r2 + p2
[
QKζ

tφ
r,K(1 + δQ+ δζtφr )

+PKζ
tφ
p,K(1 + δP + δζtφp )

]
, (B7)

gφφ =
1

r2 + p2
[
QKζ

φφ
r,K(1 + δQ+ δζφφr )

+PKζ
φφ
p,K(1 + δP + δζφφp )

]
. (B8)

where,

δA ≡ A−AK

AK

, (A = Q,P, ζabr , ζabp ) . (B9)

This can be interpreted as the most general bumpy space-
time that admits a separability structure.
Let us now try to map the new BH solution to the

above bumpy metric. First, to O(α′2χ′), the only rel-
evant parameters are δQ, δP , δζttr and δζtφr . We find
that

δQ = δP = δζttr = 0 ,

δζtφr = −5

8
ζ
M4

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
. (B10)

To O(ζχ2), we find that the new BH solution cannot be
mapped to the above bumpy spacetime with BL-like co-
ordinates. We also considered coordinate transforming
the new BH solution to find a map to the above metric.
Once again, however, we found that there does not ex-
ist any coordinates where the new BH solution can be
mapped to the above bumpy spacetime. This then im-
plies that new BH solution does not admit a separability
structure.

Appendix C: Canonical perturbation theory and

secular separability of the geodesic equations

Consider a Hamiltonian system in angle-action vari-
ables, where we use wα to denote the angle variable and
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Iα = (pt, Jr, Jθ, Jφ) to denote the conjugate action vari-
ables, with

Ji ≡
∮

dxipi . (C1)

We can then express the Hamiltonian as

H =
1

2
gµν
YP

pµpν +
1

2
ǫhµνpµpν +O(ǫ2)

= H0(Iβ) + ǫH1(w
α, Iβ) +O(ǫ2) , (C2)

where gµνYP denotes the stationary, axisymmetric CS BH
metric at O(α′2χ′) found by Yunes and Pretorius [8]
and hµν is the difference between the new solution and
theirs. We have also defined H0 ≡ (1/2)gµνYPpµpν and
H1 ≡ (1/2)hµνpµpν , where ǫ = O(χ′) is a bookkeep-
ing parameter that labels the order of the perturbation.
Clearly, the first (second) term is the unperturbed (per-
turbed) Hamiltonian. Note that the unperturbed Hamil-
tonian depends only on the action variables, while the
perturbed one depends both on the angle and action vari-
ables.
Now, let us seek a canonical transformation from

(wα, Iβ) to (ŵα, Îβ) such that the new action Îβ is con-
stant and the new angle variables ŵα are linear in the
affine parameter. With this choice, the new Hamiltonian
would depend only on the new action variables. Such a
canonical transformation exists if one can find an appro-
priate generating function, which can be parameterized
as [56, 57]

F (wα, Îβ) = wαÎα +Φ(wα, Îβ) , (C3)

where Φ is a function of the old angle variables and the
new action variables, which are assumed to be periodic
in wα.
Whether such a canonical transformation exists then

depends on whether Φ exists. This function must satisfy
the Hamilton-Jacobi equation

H

(
wα,

∂F

∂wα

)
= Ĥ(Îβ , ǫ) , (C4)

where Ĥ is the new Hamiltonian. We expand Ĥ as

Ĥ(Îβ , ǫ) = H0(Îβ) + ǫH1(Îβ) +O(ǫ2) , (C5)

and substitute this into Eq. (C4) to yield

H0(Îβ) = Ĥ0(Îβ) , (C6)

να0
∂Φ

∂wα
+H1(w

α, Îβ) = Ĥ1(Îβ) , (C7)

where να0 ≡ ∂H0/∂Iα represents the unperturbed fre-
quencies. Next, since Φ is assumed to be periodic in wα,
we Fourier decompose it

Φ(wα, Îβ) =
∑

j

Bj(Îβ)e
2πi(j·w) , (C8)

where j is a 3-dimensional vector of the integer in-
dices. The coefficients Bj can be determined by solv-
ing Eq. (C7). Since the derivative of Φ with respect to
wα does not contain any constant term, the first term
on the right hand side of Eq. (C7) does not depend

on Îβ when one orbit-averages. Therefore, upon orbit-
averaging, Eq. (C7) becomes

〈H1〉 (wα, Îβ) = Ĥ1(Îβ) , (C9)

where the orbital averaging is defined as

〈A〉 ≡
∮

dwαA , (C10)

for any quantity A. The oscillatory part of Eq. (C7) must
satisfy

να0
∂Φ

∂wα
= 〈H1〉 −H1 . (C11)

Similar to Eq. (C8), we decompose the right hand side of
the above equation as

〈H1〉 −H1 =
∑

j 6=0

Cj(Îβ)e
2πij·w . (C12)

By substituting this equation and Eq. (C8) into
Eq. (C11), we can determine the coefficients Bj in
Eq. (C8) as

Bj(Îβ) =
Cj(Îβ)

2πi(j · ν0)
, j 6= 0 . (C13)

Thus, when j · ν0 6= 0, the Bj coefficients exist, which
then implies that Φ and the canonical transformation in
question indeed exist.
If the generating function exists, the relation between

the old and the new action variables is

Iα =
∂F

∂wα
= Îα +

∂Φ

∂wα
. (C14)

Taking the orbital average of this equation, we obtain

〈Iβ〉 =
〈
Îβ

〉
. (C15)

Thus, there is no secular change in the action variables,
which means that the conserved quantities (energy, an-
gular momentum and the Carter-like constant) are not
modified in a secular sense [57]. Therefore, when we take
an orbital average, the geodesic equations must remain
secularly integrable.
This, however, does not mean that there are no secular

changes in the angular frequencies ωi. The shifts in these
frequencies conjugate to the orbital proper time can be
calculated via [63]

δωi ≡ 1

m

∂ 〈H1〉
∂Ii

, (C16)



20

where m is the mass of the test particle. This can be
related to the shifts in the observed angular frequencies
Ωi via

δΩi =
δωi

Γ
− ωiδΓ

Γ2
(C17)

with

ωi ≡ 1

m

∂H0

∂Ii
, Γ ≡ 1

m

∂H0

∂It
, δΓ ≡ 1

m

∂ 〈H1〉
∂It

. (C18)

Resonant orbits must be treated separately. In this
case, j · ν0 = 0 and the right-hand side of Eq. (C13)
diverges. This, in turn, means a canonical transformation
does not exist, and thus, a Carter-like constant of motion
does not exist either at resonance, even when one takes
the orbit averaging. Since a constant of the motion must
be a global quantity, this implies that a Carter constant
cannot globally exist.
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