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We derive the radiation reaction forces on a compact binary inspiral through 3.5 order in the
post-Newtonian expansion using the effective field theory approach. We utilize a recent formulation
of Hamilton’s variational principle that rigorously extends the usual Lagrangian and Hamiltonian
formalisms to dissipative systems, including the inspiral of a compact binary from the emission of
gravitational waves. We find agreement with previous results, which thus provides a non-trivial
confirmation of the extended variational principle. The results from this work nearly complete the
equations of motion for the generic inspiral of a compact binary with spinning constituents through
3.5 post-Newtonian order, as derived entirely with effective field theory, with only the spin-orbit
corrections to the potential at 3.5 post-Newtonian remaining.

I. INTRODUCTION

The advent of advanced ground-based gravitational wave (GW) interferometer detectors (i.e., advanced LIGO
and advanced VIRGO) brings an increasing demand for more accurate waveform templates to be used for detecting
gravitational waves and for extracting information about the parameters associated with a source, such as the masses,
spins, distance, and sky location. Currently, a goal of the GW source-modeling community is to produce inspiral
waveforms accurate through at least 3.5 post-Newtonian (PN) order. The PN expansion is a perturbation theory for
the gravitational field and the binary’s motion in the weak-field and slow-motion limits (see [1] for a review). The
equations for the relative motion of the binary are known already through 3.5PN order, even when including the spin
angular momenta of the binary’s constituents (see, e.g., [1–5] and references therein). However, the gravitational wave
flux and the waveform, especially, are not yet known to such a high order for spinning binary inspiral sources.
High-accuracy waveforms and source-modeling are also important for matching post-Newtonian inspiral waveforms

to numerical simulations of binary mergers for purposes of parameter estimation (see e.g., [6]) and for accurately
calibrating phenomenological models like Effective One Body [7] and hybrid models [8–11]. These phenomenological
models may be used to construct relatively cheap template banks without having to run a prohibitively large number
of expensive numerical simulations of binary mergers. This is especially true if combined with an efficient template
bank compression and representation scheme such as provided by the Reduced Basis method [12].
The Effective Field Theory (EFT) approach [13] offers an efficient and algorithmic computational framework com-

pared to traditional methods [1, 14] and has rapidly made useful contributions towards the goal of 3.5PN-accurate
inspiral waveforms. To date, this includes the calculation of the PN corrections to the binding potential, including
spin angular momenta of the binary’s component masses, through 3PN order [2, 3, 13, 15–22], the spin1-spin2 terms
computed at 4PN [23], the leading order radiation reaction force at 2.5PN [24], the multipole moments needed for
calculating the gravitational wave flux through 3PN [25], and the moments needed for calculating the waveform
amplitude corrections through 2.5PN [26].
In this paper, we calculate the radiation reaction forces that appear at 3.5PN order (spin effects do not enter

radiation reaction until 4PN). In doing so, we nearly complete the PN equations of motion for the generic inspiral of a
compact binary with spinning constituents as computed entirely in the EFT framework. Only the spin-orbit correction
to the potential at 3.5PN order is remaining to be computed in EFT. This is a rather remarkable achievement given
that the EFT approach was introduced almost eight years ago [13].
Computing radiative effects in the EFT approach presents a unique challenge since the formalism makes heavy use

of an action formulation of the binary system. More specifically, it is well-known that Lagrangians and Hamiltonians
are not generally applicable to dissipative systems, which would make computing the PN radiation reaction forces in
EFT very difficult. In [24], it was indicated how this might be overcome using a language and notation from quantum
field theory but was not given a rigorous foundation within a purely classical mechanical context. Nevertheless, as a
demonstration of the formalism, the 2.5PN radiation reaction force and the gravitational waveform from the binary’s
leading order quadrupole moment were computed [24] and shown to agree with existing results [27, 28], thus lending
credibility to the method. Recently, one of us (CRG) gave a rigorous extension of Hamilton’s variational principle in
[29] that yields a Lagrangian (and Hamiltonian) formulation that suitably and correctly describes generally dissipative
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systems. We use this formalism here, together with EFT, to compute the 3.5PN radiation reaction force and find
agreement with previously published results [30, 31] (see also [32, 33] for the derivation in a Hamiltonian formalism).
This agreement lends non-trivial confirmation for the validity of the extended variational principle for dissipative
systems described in [29] (see also the examples given in that reference).
This paper is organized as follows. Section II gives an overview of the formalisms needed to compute the radiation

reaction force at 3.5PN order in EFT. Specifically, Section IIA reviews the EFT of compact binary inspirals and
Section II B reviews the recently formulated extension of Hamilton’s variational principle for dissipative systems [29].
Section III discusses the computation of the 3.5PN radiation reaction force in EFT where agreement is shown with
previous results [30, 31]. Section IV concludes the paper and Appendix A outlines in detail the EFT calculation of
the leading order 2.5PN radiation reaction force of Burke and Thorne [27, 28].

II. OVERVIEW OF EFFECTIVE FIELD THEORY AND DISSIPATIVE MECHANICS

We begin by reviewing the effective field theory of compact binary inspirals, focusing mainly on the radiation sector,
and end the section by reviewing how dissipative (e.g., radiative) effects can be handled within the newly developed
mechanics for dissipative systems [29].

A. Effective field theory of compact binary inspirals

The EFT approach, introduced by Goldberger and Rothstein in [13], separately treats the relevant scales of the
binary by successively “integrating out” the smaller scales thereby yielding a hierarchy of EFTs that are related to
each other through so-called matching calculations. The effects of short-distance physics in a large-distance effective
theory are parameterized in a manner consistent with the symmetries (e.g., general coordinate invariance) as discussed
in more detail below.
The slow inspiral of compact binaries has three relevant scales, from smallest to largest: the size of the compact

objects (COs) Rm, their orbital separation r, and the wavelength of the emitted gravitational waves λ. The first
EFT describes the extended masses in the point particle approximation. To incorporate the finite size of the CO
one appends to the point particle action all possible interaction terms that are consistent with general coordinate
invariance and reparameterizations of the worldline. This leads to a worldline EFT, for one of the COs (e.g., spherical
and non-spinning), that is described by the action [13]

SCO = −m

∫

dτ + CE

∫

dτ EαβE
αβ + CB

∫

dτ BαβB
αβ + · · · (1)

where Eαβ and Bαβ are the electric and magnetic parts of the Weyl curvature tensor. The coefficients CE , CB, . . .
are determined via a matching calculation, wherein a chosen quantity is calculated in the effective theory and in the
long-distance limit of the “full” theory for the CO. One can show that these extra terms in the action contribute to
the binding potentials (due to induced quadrupole moments) starting at 5PN for non-spinning COs. We can therefore
ignore these terms for the work presented here.
As one “zooms out” from Rm to the orbital radius r, the system is described by General Relativity coupled to

two COs that are each described by the worldline EFT in (1). At this scale, the particles interact with two kinds
of gravitational perturbations. The first describes the nearly instantaneous potentials that bind the two particles in
orbit (for further details see [13]). The second is the long-wavelength GWs emitted by the binary.
As one “zooms out” from r, the binary itself is described in the point particle approximation by a composite object

[13, 24, 34]. This composite object radiates gravitational waves from its time-dependent multipole moments that can
be calculated by matching onto the radiative moments of the binary at the orbital scale. The worldline EFT for this
radiating object has an action given by [34]

Srad[x
µ, hµν ] = −

∫

dτ M(τ) −
1

2

∫

dτ Lab(τ)
[

Ωab
L + uµωµ

ab(τ)
]

+
1

2

∞
∑

n=0

∫

dτ c(I)n Iaba1···an(τ)∇a1
· · · ∇an

Eab(x
µ)

+
1

2

∞
∑

n=0

∫

dτ c(J)n Jaba1···an(τ)∇a1
· · · ∇an

Bab(x
µ) + · · · (2)

where xµ(τ) are the worldline coordinates (τ beings its proper time), Iaba1···an(τ) and Jaba1···an(τ) are the symmetric,
trace-free (STF) mass and current multipole moments, respectively, of the composite object [34, 35], Ωab

L is the
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angular frequency of the body’s rotation as measured in a locally flat Lorentz frame, and ωµ
ab are the spin connection

coefficients, which couple to the total angular momentum Lab = −Lab. Also, lower case roman letters takes values in
{1, 2, 3}. The mass of the body is taken to be generally time-dependent M(τ) as the body may lose rest-mass energy,
as measured by a distant observer, via gravitational wave emission. A local Lorentz frame is attached to the worldline
such that eµ0 (τ) = uµ(τ) = dxµ/dτ and eµa(τ) are space-like vectors that rotate with the body and thus account for

its spin dynamics. The first several c
(I,J)
n coefficients are conventionally taken to be

c
(I)
0 = 1, c

(J)
0 = −

4

3
, c

(I)
1 =

1

3
. (3)

It is important to note that (2) describes any multipolar, extended body that has a size smaller than the wavelength
of gravitational waves it emits. Therefore, (2) is a rather general and model-independent description of such a system.
However, using the multipole moments computed in the PN expansion for compact binary inspirals [25, 35] one may
use (2) to study radiative effects, such as radiation reaction, in compact binary systems.
As with any field theory coupled to point particles, including the EFTs reviewed here, divergences will appear.

However, there are an infinite number of parameters in the theory (e.g., c
(I)
n , c

(J)
n ) so that divergences can always

be absorbed into these coupling constants. Interestingly, these parameters can exhibit a classical renormalization
group flow due to gravitational screening effects, which manifest as logarithmic divergences in the potentials. Unlike
with traditional approaches for the PN expansion [1], divergences in the EFT approach have a natural place and
interpretation in the context of renormalization group theory [13]. Spin angular momenta for the binary’s component
masses can be included as in [2].

B. Classical mechanics for dissipative systems

Determining the evolution of the compact binary in EFT is achieved by integrating out the gravitational perturba-
tions from the action. In practice, this is accomplished by solving for the gravitational perturbations and substituting
these solutions into the original action to yield an effective action for the worldlines of the component masses [13, 36],
which is efficiently carried out using Feynman diagrams [13]. This procedure is well-suited for conservative interac-
tions, such as for computing PN corrections to the binding potential of a compact binary, but requires modification
when studying dissipative systems, such as the inspiral of a compact binary due to the emission of gravitational
radiation, the reason being that dissipative systems generally do not admit Lagrangian or Hamiltonian descriptions.
Recently, one of us (CRG) introduced a rigorous variational calculus for Hamilton’s principle of stationary action

that includes systems exhibiting dissipative effects and thus generalizes the usual action principle [29]. The derivation
and the details will not be given here but instead refer the reader to [29]. However, we will review the relevant
formalism needed specifically for computing the radiation reaction force in this paper.
The total system formed by the gravitational perturbations hµν and the worldlines of the compact bodies in a

binary system, ~xK(t) for K = 1, 2, is closed. Only when the gravitational perturbations are integrated out is the
dynamics of the worldlines open. When integrating out the long wavelength gravitational perturbations at the level of
the action one must be careful when applying Hamilton’s principle of stationary action to the effective action since it
is formulated by specifying boundary conditions in time, not initial conditions. This observation may seem innocuous
except that the resulting effective action for the worldlines describes conservative (i.e., non-dissipative) dynamics –
the Green function for the gravitational perturbations that appear in the effective action are time-symmetric (as these
are the ones satisfying boundary conditions according to Sturm-Liouville theory) and hence do not account for the
dissipative effects of radiation reaction [24] .
To overcome this problem, one formally doubles the degrees of freedom [45] so that hµν → (hµν1, hµν2) and

~xK → (~xK1, ~xK2) then constructs the following action [29],

S[~xK1, ~xK2, hµν1, hµν2] = S[~xK1, hµν1]− S[~xK2, hµν2] (4)

where each action on the right side consists of the Einstein-Hilbert action (here, gauge-fixed in the Lorenz gauge and
expanded around flat spacetime) and the worldline EFT action (2). Integrating out the long wavelength gravitational
perturbations using Feynman diagrams at the desired PN order (see [24] for the Feynman rules of the radiation EFT
and how to construct the Feynman diagrams) gives the effective action for the open dynamics of the binary’s inspiral.
After all variations are performed one is free to identify the doubled variables with the physical ones so that, for
example, ~xK1, ~xK2 → ~xK . This limit will be called the physical limit.
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It is convenient, but not necessary, to change variables from the (1, 2) variables to ± variables where

~xK+ =
~xK1 + ~xK2

2
(5)

~xK− = ~xK1 − ~xK2 (6)

This change of variable is motivated by the physical limit since then ~xK− → 0 and ~xK+ → ~xK where ~xK is the
physical worldline of the Kth body. By computing the following variation [29],

0 =
δSeff [~x1±, ~x2±]

δ~xK−(t)

∣

∣

∣

∣ ~xK−=0
~xK+=~xK

(7)

one obtains a set of worldline equations of motion that properly incorporates radiation reaction effects [24, 29]. It is
important to note that (7) receives non-zero contributions from terms in the effective action that are perturbatively
linear in ~xK− or its time derivatives. Therefore, all terms of quadratic order or higher in any “−” variables can
be dropped from the effective action for the purposes of deriving the worldline equations of motion. We will take
advantage of this property in the course of the calculations below in Section III and Appendix A.
In the remaining sections, we compute the terms of the effective action at 3.5PN order by computing the corre-

sponding Feynman diagrams in the extended action formalism of [29]. Once the effective action is derived in Section
III, we then apply the variational principle in (7) to obtain the radiation reaction forces on the binary at 3.5PN order.

III. RADIATION REACTION THROUGH 3.5PN

In this section we lay out how to calculate the radiation reaction at 3.5PN in the EFT. However, the first non-
conservative term in the acceleration enters at 2.5PN order and is due to radiation reaction. We include in Appendix
A a detailed calculation of the radiation reaction at 2.5PN using the EFT. The 3.5PN terms can be derived similarly
so we will often refer the reader to Appendix A for formulae.
The relative acceleration ai = ai1 − ai2 for a non-spinning two-body system can be expanded as

ai = ai0 + ǫai1 + ǫ2ai2 + ǫ2.5ai2.5 + ǫ3ai3 + ǫ3.5ai3.5 + · · · (8)

where ǫ = 1 counts the post-Newtonian order. The motion through 2PN order is conservative, meaning that the
motion can be characterized by the conserved total energy and angular momentum. Dissipative effects first arise at
order 2.5PN due to gravitational radiation reaction. The 3PN terms are again conservative while the 3.5PN terms
are the first post-Newtonian corrections to radiation reaction.
The first term in (8) is just the Newtonian acceleration,

ai0 = −
m

r2
ni, (9)

while the second term is the 1PN correction, derived from the Einstein-Infeld-Hoffmann (EIH) Lagrangian [37],

ai1 = −(3 + η)
m

r
ai −mη

~a · ~x

r2
ni −

1− 3η

2
v2ai − (1− 3η)~v · ~a vi −

m

r2

{

ni

[

−
m

r
+

3

2
(1 + η)v2 −

3

2
ηṙ2

]

− viṙ(3 + η)

}

(10)

= −
m

r2

{

ni

[

−2(2 + η)
m

r
+ (1 + 3η)v2 −

3

2
ηṙ2

]

− 2(2− η)ṙvi
}

, (11)

where m is the total mass, η = m1m2/m
2 is the symmetric mass ratio, ni = xi/r with xi = xi

1 − xi
2 the separation

between the point masses, and vi = dxi/dt. The EIH Lagrangian was calculated using the EFT in [13, 15]. To go
from Eq. (10) to Eq. (11) it is necessary to order-reduce by substituting the O(ǫ0) expression for the acceleration.
By including the acceleration at O(ǫ2.5) when performing the order-reduction, we get a contribution to the 3.5PN
acceleration. This will be discussed in more detail below. In the rest of this section we derive the radiation reaction
through 3.5PN using the EFT.



5

Iij Ikl

A B

FIG. 1: The Feynman diagram giving the contribution to the radiation reaction from the mass quadrupole. A and B label
worldlines that have been doubled in the extended variational principle.

A. Feynman diagrams

To calculate the radiation reaction, we begin from the worldline action (2) and integrate out the electric and
magnetic parts of the Weyl curvature tensor giving, to the order we require, the effective action

S3.5PN
eff = Smq + Smo + Scq, (12)

where the terms on the right-hand side stand for mass quadrupole (mq), mass octupole (mo), and current quadrupole
(cq), respectively. As discussed in Appendix A, at 2.5PN this is accomplished by calculating the diagram in Fig. 1.

At 2.5PN, each vertex is given by the leading order mass quadrupole moment Iij = Iij0 +O(ǫ) where

Iij0 =
∑

K

mK

(

xi
Kxj

K −
1

3
δijx2

K

)

, (13)

and where K labels the worldlines in the binary K = 1, 2 and the subscript on Iij denotes the (relative) PN order in
ǫ. To calculate at 3.5PN, we need to include PN corrections to the mass quadrupole,

Iij = Iij0 + ǫIij1 +O(ǫ1.5)

=
∑

K

mK

{

xi
Kxj

K + ǫ

[(

3

2
v2K −

∑

L 6=K

GmL

r

)

xi
Kxj

K +
11

42

d2

dt2
(

x2
Kxi

Kxj
K

)

−
4

3

d

dt

(

~xK · ~vKxi
Kxj

K

)

]}

TF

+O(ǫ1.5)

(14)

=

{

µxixj + ǫµ

[(

29

42
(1− 3η)v2 −

1

7
(5− 8η)

m

r

)

xixj +
1

21
(1− 3η)

(

11r2vivj − 12rṙx(ivj)
)

]}

TF

+O(ǫ1.5), (15)

where TF denotes taking the trace-free part of the enclosed expressions and in the last line we have gone to center-of-
mass coordinates and µ = ηm is the reduced mass. The diagram in Fig. 1 is derived in Appendix A (see Eq. (A21))
for the full mass quadrupole moment,

Smq =
G

5

∫

dt Iij− (t)I
(5)
ij+(t). (16)

where Iij− ≡ Iij1 − Iij2 and Iij+ ≡ (Iij1 + Iij2 )/2, and IijA for A = 1, 2 is the mass quadrupole moment formed by the

Ath worldline (A labels the doubled worldlines, not the components of the two-body system, which is indexed by
K = 1, 2). By expanding in ǫ,

Smq =
G

5

[

ǫ0
∫

dtIij0−(t)I
(5)
0ij+(t) + ǫ

∫

dtIij0−(t)I
(5)
1ij+(t) + ǫ

∫

dtIij1−(t)I
(5)
0ij+(t) +O(ǫ1.5)

]

. (17)

The first term corresponds to the 2.5PN radiation reaction, calculated in Appendix A. The second term can be
treated similar to the 2.5PN term because the same factor of Iij0− will be functionally differentiated when applying
Eq. (7). In the last term, however, we need to do a bit more work. It is easiest to use Eq. (14) and integrate by parts
to move the derivatives in the last two pieces of the “−” mass quadrupole onto the “+” mass quadrupole in Eq. (17).
Once that is done, it is straightforward to vary with respect to the “−” coordinates following Eq. (7). This will be
done in Section III B.
There are two more diagrams that need to be calculated in order to get the effective action necessary to extract the

3.5PN radiation reaction force. First, there is a contribution from the mass octupole, as shown on the left-hand side
of Fig. 2. Second, there is a contribution from the current quadrupole shown on the right-hand side of Fig. 2. These
will be discussed in turn.
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Iijk Ilmn

A B

Jij Jkl

A B

FIG. 2: The Feynman diagram giving the contributions to the radiation reaction from the mass octupole (left) and the current
quadrupole (right).

Evaluating the octupole contribution we have

iSmo =
1

2

i2

(6mpl)2

∫

dt

∫

dt′ IijkA (t)
〈

EA
ij,k(t)E

B
lm,n(t

′)
〉

I lmn
B (t′), (18)

where

Eij,k =
1

2
(h00,ijk + hij,00k − hj0,0ik − hi0,0jk) . (19)

Following the same procedure that is shown in Appendix A, we can write the integrand as

IijkA (t)
〈

EA
ij,k(t)E

B
lm,n(t

′)
〉

I lmn
B (t′) = IijkA (t)IijkB (t′)

[

5

2
D(3)AB + 5σD(4)AB + σ2D(5)AB

]

, (20)

where σ is the Synge world function defined in Eq. (A9) and the indices are now contracted with δij . The quantities
DAB are given in Eq. (A7) and the numerical superscripts on DAB indicate the number of derivatives with respect
to σ. Thus the contribution to the effective action is

iSmo = −
1

72m2
pl

∫

dt

∫

dt′ IijkA (t)IijkB (t′)

[

5

2
D(3)AB + 5σD(4)AB + σ2D(5)AB

]

(21)

=
8πiG

9

∫

dt

∫

dt′ Iijk− (t)Iijk+(t
′)

[

5

2
D

(3)
ret + 5σD

(4)
ret + σ2D

(5)
ret

]

. (22)

Changing variables from t′ to s = t′ − t, holding t fixed, we find using Eq. (A17)

Smo =
8πG

9

∫

dt Iijk− (t)

∫

ds

[

−
15

4s5
dDret(s)

ds
+

15

4s4
d2Dret(s)

ds2
−

5

4s3
d3Dret(s)

d32
+

1

4s

d5Dret(s)

ds5

]

Iijk+(t+ s). (23)

Integrating by parts to put the derivatives on Iijk+(t+ s) and Laurent expanding to linear order in s, we find

Smo =
8πG

9

∫

dt Iijk− (t)

∫

dsDret(s)

[

15

4s6
Iijk+(t) +

15

8s4
I ′′ijk+(t)−

5

32s4
I
(4)
ijk+(t)−

1

64
I
(6)
ijk+(t)−

s

42
I
(7)
ijk+(t)

]

. (24)

The first four terms are divergent and are removed by regularization as described in Appendix A. Keeping only the
finite term (i.e., the last one) and using Eq. (A22), we obtain

Smo = −
G

189

∫

dt Iijk− (t)I
(7)
ijk+(t). (25)

Since this contribution begins at order 3.5PN we only need the leading order mass octupole moment Iijk = Iijk0 +O(ǫ)
with

Iijk0 =
∑

K

mK

(

xi
Kxj

Kxk
K

)

STF
= −µ

δm

m

(

xixjxk
)

STF
, (26)

where δm = m1 −m2 is the mass difference and STF indicates taking the symmetric, trace-free part of the enclosed
expression. Varying Eq. (25) using Eq. (7) gives the mass octupole contribution to the radiation reaction force at
order 3.5PN, the result of which will be given in Section III B.
The current quadrupole contribution follows similarly. Evaluating the diagram on the right-hand side of Fig. 2 we

have

iScq =
1

2

(

2

3mpl

)2 ∫

dt

∫

dt′ J ij
A (t)

〈

BA
ij(t)B

B
kl(t

′)
〉

Jkl
B (t′), (27)
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where Bij is the magnetic part of the Weyl tensor,

Bij = ǫiαβλC
αβ

jρu
λuρ

= ǫiabR
ab
j0 +O(v), (28)

and the current quadrupole is given by

J ij =
∑

K

(

xi
KLj

K +
3

2
xi
KSj

K

)

STF

, (29)

where ~L is orbital angular momentum and ~S is the spin angular momentum. The spin contribution enters at 4PN so
we can neglect the second term in the current quadrupole above.
To linear order, the magnetic Weyl tensor is

Bij = ǫ ab
i

(

ha0,bj + hbj,a0

)

. (30)

Following the same method as discussed in the Appendix, we can write the action as

iScq = −
2

3m2
pl

∫

dt

∫

dt′ J ij
A (t)

[

σD′′AB(σ)
]′
JijB(t

′) (31)

=
128πiG

3

∫

dt

∫

dt′ J ij
− (t)

[

σD′′
ret(σ)

]′
Jij+(t

′) (32)

Changing variables from t′ to s, integrating by parts, and Laurent expanding as before we obtain

Scq = −
64πG

3

∫

dtJ ij
− (t)

∫

dsDret(s)

[

−
3

s4
Jij+(t)−

1

2s2
J
(2)
ij+(t) +

3

8
J
(4)
ij+(t) +

4s

15
J
(5)
ij+(t)

]

. (33)

Again, the first three terms are divergent and are removed by regularization. Therefore, we obtain

Scq = −
64G

45

∫

dt J ij
− (t)J

(5)
ij+(t). (34)

B. Radiation reaction force

We are now ready to vary the action, Eq. (12), to obtain the equations of motion. Since after varying we will set
all the “−” variables to zero, we just need to vary with respect to the minus coordinates, using Eq. (7), or

F i
K(t) =

[

∂Leff

∂xKi−(t)
−

d

dt

(

∂Leff

∂ẋKi−(t)

)]

~xK−=0
~xK+=~xK

(35)

where the effective Lagrangian is given by Seff =
∫

dt Leff(t).
There are two contributions at order 3.5PN from the mass quadrupole piece, as discussed below Eq. (17). The

easier one is when the lowest order mass quadrupole has the minus coordinates. In that case, we get

aimq,1 = −
2G

5
xjI

(5)
1,ij (36)

where xj is the relative coordinate. To get the other mass quadrupole piece from Eq. (17), first substitute the 1PN
part of Eq. (14) into the action for the minus coordinates, integrate by parts to remove the explicit derivatives (so
that there are no acceleration terms appearing) and then vary with respect to the minus coordinates. This gives

aimq,2 =
G

105
(1− 3η)

(

17xixj − 11r2δij
)

xkI
(7)
jk +

G

15
(1 − 3η)

(

8xixjvk − 8~x · ~v xkδij + 9vixjxk
)

I
(6)
jk

+
3G

5
(1− 3η)

(

2vixjvk −
m

r3
xixjxk − v2xkδij

)

I
(5)
jk +

G

5

m

r
(1− 2η)

(

2xkδij −
1

r2
xixjxk

)

I
(5)
jk . (37)
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The mass octupole contribution is, from Eq. (25),

aimo = −
G

63
µ
δm

m
xjxkI

(7)
ijk , (38)

while the current quadrupole piece is, from Eq. (34),

aicq =
16G

45

δm

m

(

2xjvkǫiklJ
(5)
jl + xkvjǫiklJ

(5)
jl − xjvkǫkjlJ

(5)
il + xjxkǫiklJ

(6)
jl

)

. (39)

There is one more place where we get a contribution to the 3.5PN radiation reaction. We must substitute the 2.5PN
radiation reaction for the accelerations that appear on the right hand side of the 1PN acceleration in Eq. (10). Doing
this gives

aireduced =
2G

5

[

(3 + η)
m

r
xkδij +

m

r3
ηxixjxk +

1

2
(1 − 3η)v2xkδij + (1 − 3η)vixjvk

]

I
(5)
jk . (40)

Combining all these terms, the 3.5PN acceleration is

ai3.5 = aimq,1 + aimq,2 + aimo + aicq + aireduced

= −
2G

5
xjI

(5)
1,ij +

G

105
(1− 3η)(17xixj − 11r2δij)xkI

(7)
jk +

1

15
(1− 3η)(9vixj + 8vjxi − 8~x · ~v δij)xkI

(6)
jk

+
G

5

[

8(1− 3η)vivj − (4− 13η)
m

r3
xixj

]

xkI
(5)
jk −

2G

5

[

(1− 3η)v2 − (4− η)
m

r

]

xkI
(5)
ik

−
G

63

δm

m
xjxkI

(7)
ijk +

16G

45

δm

m

(

2xjvkǫiklJ
(5)
jl + xkvjǫiklJ

(5)
jl − xjvkǫkjlJ

(5)
il + xjxkǫiklJ

(6)
jl

)

, (41)

where the all the moments are evaluated at lowest order except for I
(5)
1,ij , which is the 1PN contribution. This agrees

with Eq. (3.15) in Ref. [31].

IV. CONCLUSION

In this paper we computed the radiation reaction forces at the 3.5PN order for a compact binary inspiral using
the effective field theory approach. To accomplish this, we utilized a recently introduced extension of Hamilton’s
variational principle of stationary action [29] that properly incorporates dissipative effects (e.g., radiation reaction)
within a Lagrangian or Hamiltonian formalism.
We find agreement between our 3.5PN radiation reaction forces and those of Iyer and Will [30, 31]. We also derive

the Burke-Thorne 2.5PN radiation reaction force [27, 28], first demonstrated in the EFT approach in [24], in detail
in an appendix. The agreement between our results and previous results gives a strong, non-trivial check that the
extended action principle formalism for dissipative mechanics (briefly discussed in Section II B, its need emphasized
in [24], and given a proper rigorous framework in [29]) is the correct formalism for describing dissipative effects in a
dynamical system.
Combined with previous results from the EFT community, our work nearly completes the equations of motion for

a spinning compact binary through 3.5PN order and derived entirely using the EFT approach. These previous works
include: the 1PN [13, 15], 2PN [16], and 3PN [17] non-spinning corrections to the Newtonian potential; the 1.5PN
[2] and 2.5PN [18–20] spin-orbit corrections; the 2PN [2] and 3PN [2, 3, 21, 22] spin-spin corrections; and the 2.5PN
[24] and now 3.5PN [this paper] radiation reaction forces. The only contribution remaining to be computed through
3.5PN is from the 3.5PN spin-orbit correction to the potential.
This work also paves the way for higher order radiation reaction calculations in EFT, including the conservative

contribution from the radiative back-scattering of gravitational waves off the total mass of the binary spacetime (i.e.,
the 4PN tail term [38–41]) and the 4PN contribution from the spin-orbit coupling of the current quadrupole [41, 42].
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Program at the Jet Propulsion Laboratory administered by Oak Ridge Associated Universities through a contract with
NASA. AKL was supported in part by the National Science Foundation under Grant No. PHY-0854782. Copyright
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Appendix A: Radiation reaction at 2.5PN

To calculate the radiation reaction, we begin by using the worldline action in Eq. (2) and “integrate out” the electric
and magnetic parts of the Weyl curvature tensor. This is accomplished by calculating the diagram in Fig. (1), where
at order 2.5PN the mass quadrupole moment is given in Eq. (13). In the dissipative mechanics formulation [29] of
the EFT the contribution to the effective action from this diagram is

iS2.5PN
eff =

1

2

i2

(2mpl)2

∫

dt

∫

dt′ IijA (t)
〈

EA
ij (t)E

B
kl(t

′)
〉

IklB (t′) (A1)

The Feynman rules that tell how to translate Fig. 1 into Eq. (A1) are given in [24]. Here A and B are indices that
label the doubled variables (see Sec. II B), which will be called history indices, and the effective action is independent
of the basis chosen for the fields. For our purposes, it is convenient to work with the basis in which the history indices
are A,B = ±.
The electric part of the Weyl tensor is given in terms of the metric perturbations to linear order by

Eij = Rαiβju
αuβ

=
1

2
[∂i∂jh00(t, x) + ∂0∂0hij(t, x)− ∂0∂ihj0(t, x)− ∂0∂jhi0(t, x)] +O(h2). (A2)

The two-point function in Eq. (A1) is then

〈

EA
ij (t)E

B
kl(t

′)
〉

=
1

4

〈

[hA
00,ij(t) + hA

ij,00(t)][h
B
00,kl(t

′) + hB
kl,00(t

′)]
〉

+
1

4

〈

[hA
i0,j0(t) + hA

j0,i0(t)][h
B
k0,l0(t

′) + hB
l0,k0(t

′)]
〉

,

(A3)
where we have evaluated the radiation fields at the binary’s center of mass (taken to be at the origin of our spatial

coordinates) so that hαβ(t) ≡ hαβ(t,~0) and have used

〈hi0(t)hkl(t
′)〉 ∝ Pi0kl = 0, (A4)

with

Pαβγδ =
1

2
(ηαγηβδ + ηαδηβγ − ηαβηγδ). (A5)

In terms of the field propagators, the two-point function is

〈

EA
ij (t)E

B
kl(t

′)
〉

=
1

8

(

∂i∂j∂k′∂l′ + 2Pijkl∂
2
0∂

2
0′ − ηij∂

2
0∂k′∂l′ − ηkl∂i∂j∂

2
0′
)

DAB(t− t′,~0)

+
1

8
(ηik∂j∂0∂l′∂0′ + ηjl∂i∂0∂k′∂0′ + ηil∂j∂0∂k′∂0′ + ηjk∂i∂0∂l′∂0′)D

AB(t− t′,~0), (A6)

where the prime on the spacetime index of a derivative means that it is a derivative with respect to x′µ and the matrix
of (scalar) propagators in the ± basis is

DAB =

(

0 −iDadv

−iDret 0

)

. (A7)

Since the two-point function is contracted with IijA and IklB , which are symmetric and trace-free, a number of these
terms will drop, leaving

IijA (t)
〈

EA
ij (t)E

B
kl(t

′)
〉

IklB (t′) =
1

8
IijA (t)

[

(

∂i∂j∂k′∂l′ + 2ηikηjl∂
2
0∂

2
0′
)

DAB(t− t′,~0)
]

IklB (t′)

+
1

2
IijA (t)

[

ηik∂j∂0∂l′∂0′D
AB(t− t′,~0)

]

IklB (t′). (A8)

The propagators can be written in terms of Synge’s world function

σ(xα, x′α) =
1

2
ηαβ(x

α − x′α)(xβ − x′β) =
1

2
(t− t′)2 −

1

2
(~x− ~x ′)2. (A9)
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Therefore, by use of the chain rule, we can simplify Eq. (A8) to

IijA (t)
〈

EA
ij (t)E

B
kl(t

′)
〉

IklB (t′) = IijA (t)IijB(t
′)

[

3

2
D′′AB + 2(t− t′)2D(3)AB +

1

4
(t− t′)4D(4)AB

]

(A10)

= IijA (t)IijB(t
′)

[

−
1

2
D′′AB +

(

σ2D′′AB
)′′
]

, (A11)

where the derivatives on DAB are with respect to σ. Plugging this back into the effective action, Eq. (A1), we have

iS2.5PN
eff = −

1

8m2
pl

∫

dt

∫

dt′ IijA (t)IijB (t′)

[

−
1

2
D′′AB +

(

σ2D′′AB
)′′
]

. (A12)

Summing over the history indices A,B = ± and using Eq. (A7) gives

iS2.5PN
eff =

i

8m2
pl

∫

dt

∫

dt′
{

Iij− (t)Iij+(t
′)

[

−
1

2
D′′

ret +
(

σ2D′′
ret

)′′
]

+ Iij+ (t)Iij−(t
′)

[

−
1

2
D′′

adv +
(

σ2D′′
adv

)′′
]}

(A13)

= 8πiG

∫

dt

∫

dt′Iij− (t)Iij+(t
′)

[

−
1

2
D′′

ret(σ) +
(

σ2D′′
ret(σ)

)′′
]

, (A14)

where in the last line we have used m−2
pl = 32πG and the identity between the retarded and advanced propagators

Dadv(x, x
′) = Dret(x

′, x). (A15)

The next step is to write the integral in the effective action in a quasi-local expansion about the point t′ = t, which
is when the retarded propagator has non-vanishing support. To do so, define the time difference as

s = t′ − t, (A16)

so that

σ =
s2

2
. (A17)

By changing variables to t and s and by integrating by parts to remove the derivatives on the propagators, we can
write the effective action as

S2.5PN
eff = 8πG

∫

dtIij− (t)

∫

dsDret(s)

[

−
3

4

d

ds

(

Iij+(t+ s)

s3

)

−
3

4

d2

ds2

(

Iij+(t+ s)

s2

)

−
1

2

d3

ds3

(

Iij+(t+ s)

s

)

+
1

4

d4Iij+(t+ s)

ds4

]

. (A18)

The retarded propagator is proportional to

Dret(s,~0) ∝
δ(s)

s
, (A19)

so we Laurent expand the terms in the square brackets up O(s),

S2.5PN
eff = 8πG

∫

dtIij− (t)

∫

dsDret(s)

[

3

s4
Iij+(t) +

3

8s2
I ′′ij+(t) +

1

32
I
(4)
ij+(t) +

s

10
I
(5)
ij+(t)

]

. (A20)

The first three terms are power divergent and are thus zero in dimensional regularization. If we picked a different
regularization scheme, these terms will end up renormalizing either the mass or other (possibly gauge-violating) terms
in the action (see [43] for further discussion on this point). We thus can remove them and keep only the finite term
(the last one),

S2.5PN
eff =

4πG

5

∫

dtIij− (t)I
(5)
ij+(t)

∫

ds sDret(s)

=
G

5

∫

dtIij− (t)I
(5)
ij+(t), (A21)
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where we have used
∫

ds sDret(s) =
1

4π
. (A22)

To get the equations of motion once we have the above action, we vary in the usual way with respect to the worldline
coordinates for each body. At the end of the calculation we set the history indices to be the same so that all the
“−” variables are set to zero. Therefore, to get a non-zero result, we just need to vary with respect to the minus
coordinate as in Eq. (7), or

F i
K(t) =

[

∂L2.5PN
eff

∂xKi−(t)
−

d

dt

(

∂L2.5PN
eff

∂ẋKi−(t)

)]

~xK−=0
~xK+=~xK

(A23)

where the effective Lagrangian is given by S2.5PN
eff =

∫

dt L2.5PN
eff (t). Using the leading PN mass quadrupole moment,

Eq. (13), we get

F i
K =

2GmK

5
xKj

d5Iij(t)

dt
. (A24)

We have been using the mostly-minus convention for the metric, so for the spatial components ηij = −δij . Switching
now to contracting indices with δij we have

F i
K = −

2GmK

5
xKj

d5Iij(t)

dt
. (A25)

We thus recover the Burke-Thorne force [27, 28] using the EFT [24].
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